YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
Page 1: Joe Kelleher Presentation (May 27th 2014)

Using  neutrons  for  in-­‐situ  observation  of  engineering  

material  behaviour    

Joe  Kelleher  Instrument  Scientist,  ENGIN-­‐X  beamline,  ISIS  

Page 2: Joe Kelleher Presentation (May 27th 2014)

Neutrons  at  ISIS  

H-­‐  ion  accelerator  

Proton  (H+  ion)  synchrotron  

Second  target  station  

First  target  station  

Engin-­‐X  beamline  

IMAT  beamline  

Page 3: Joe Kelleher Presentation (May 27th 2014)

The  ENGIN-­‐X  beamline  

Incident beam

South detector bank

North detector bank

Page 4: Joe Kelleher Presentation (May 27th 2014)

Engin-­‐X  layout  Radial

collimator (defines

outgoing beam size)

Incident slits

Strain direction

(bank 1)

Diffraction detector (bank 1)

Diffraction detector (bank 2)

Strain direction

(bank 2) 45º 45º

Sample on translation / rotation table

Strain direction (transmission

detector)

Time of flight

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

16

18

20

22

24

26

28

β-Sn powder

Total cross section (barns)

Neutron wavelength (Å)

Experiment Calculation

Transmission detector

Page 5: Joe Kelleher Presentation (May 27th 2014)

Types  of  experiment:  trends  from  1999  to  2011  

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

100%

1999  (PEARL)

2002 2005 2008 2011

Strain scanning: welds

Strain scanning: other

In-situ loading, room temperature

In-situ loading, high temperature

Other in-situ processes

Physics of neutron measurement

In-situ loading, cryo-temperature

Shar

e of

use

r ex

per

imen

t ti

me

Page 6: Joe Kelleher Presentation (May 27th 2014)

From  materials  to  processes  Magnetic fields

Electrochemical reactions

Mechanical deformation

Heat treatment

Phase transformations

Welding

Fuel cells

Corrosion

Shape memory alloys

Material forming

Page 7: Joe Kelleher Presentation (May 27th 2014)

Stressrig  (up  to  100kN)  

Cryostat  Down  to  -­‐200C  

Optical  furnace  

Up  to  1100C  

Resistance  furnace  (small  samples,  up  to  ~1600C)  

Sample  environments  for  in-­‐situ  tests  

Ceramic  heating  pads  (larger  samples)  

Page 8: Joe Kelleher Presentation (May 27th 2014)

In-­‐situ  heat  treatment  

Linear  weld   Ni  superalloy   Circumferential  pipe  weld  

Single  crystal  Ni  superalloy  

Anna  Paradowska  demonstrates  proof  of  principle  

James  Rolph  et  al.  Comptes  Rendus  

Physique  13(3):307–15.  (2012)  

Bo  Chen  et  al.  Acta  Materialia  submitted  (2013)  

See  γ’  misfit  as  function  of  temperature  

Page 9: Joe Kelleher Presentation (May 27th 2014)

In-­‐situ  heat  treatment    of  pipe  weld  

2.865

2.87

2.875

2.88

2.885

2.89

2.895

2.9

0 200 400 600 800

Atom

ic  la*ce  sp

acing  /  Å  

Temperature  /   ° C

Weld... Stress-­‐free reference...

Hea8ng Hea8ng Cooling Cooling

Bo  Chen,  Alexandros  Skouras,  Yiqiang  Wang,  Joe  Kelleher,  Shu  Yan  

Zhang,  David  Smith,  Peter  Flewitt,  Martyn  Pavier  

Page 10: Joe Kelleher Presentation (May 27th 2014)

Cyclic  voltage  on  PZT  ferroelectric  

100  MPa  applied  

Zero  load    

The  MANTID  platform  §  Data  reduction  and  visualisation  

for  all  ISIS  instruments  §  Supports  event  mode  and  

stroboscopic  data    

David  Hall,  2013  

                 Loading  direction                  Transverse  direction    

500  V  /  mm  AC  electric  field    

Cyclic  electric  field  causes  straining  of  poled  PZT,  but  applied  load  

depoles  the  PZT    

Plots  show  difference  between  +  and  –  half-­‐cycles  

 

–  

+  

Page 11: Joe Kelleher Presentation (May 27th 2014)

In-­‐situ  welding  

Page 12: Joe Kelleher Presentation (May 27th 2014)

Fatigue  crack  growth  

Page 13: Joe Kelleher Presentation (May 27th 2014)

Practical  considerations  

• Sample  environment  –  Sufficiently  non-­‐interacting  with  neutron  beam  –  ‘Contains’  the  process  for  steady-­‐state,  safety  

• Timing  for  dynamic  effects  –  Synchronise  clocks  or  use  trigger  pulses  – Get  event  mode  acquisition  to  collect  other  data  

• Can  we  record  more  than  just  the  neutron  data?  

Page 14: Joe Kelleher Presentation (May 27th 2014)

Supplementary  analytical  methods  

Things  that  might  change  in  a  process  

•  Mechanical  deformation,  stress  and  strain  

•  Material  ‘damage’  •  Phase  changes  •  Diffusion  •  Temperature  

Methods  that  might  reveal  these  changes  

•  Image  correlation  •  Acoustic  emission  •  Thermoelastography  •  Dilatometry  •  Calorimetry  •  Ultrasonic  and  magnetic  

methods  

•  Sometimes  possible  to  measure  these  ‘for  free’  with  existing  sensors  

Page 15: Joe Kelleher Presentation (May 27th 2014)

Full-­‐spectrum  imaging  

• Neutron  detectors  not  intrinsically  sensitive  to  wavelength,  but  to  time  of  detection  – …hence  velocity,  hence  wavelength  

• Each  pixel  of  a  2D  detector  can  record  a  full  wavelength  spectrum  

• We  can  thus  see  both  spatial  and  temporal  variation  in  several  physical  parameters  

Page 16: Joe Kelleher Presentation (May 27th 2014)

Time-­‐of-­‐Klight  neutron  imaging  for  in-­‐situ  studies  

Bragg  edges  show  crystal  structure  –  how  those  atoms  are  arranged  

Resonance  peaks  show  which  atoms/isotopes  present  

Wavelength  

Detected  intensity  

Height  →  Texture  

Height  →  Concentration  

Width  →  Temperature   Position  →  Strain  

Page 17: Joe Kelleher Presentation (May 27th 2014)

Steven  Peetermans  &  Joe  Kelleher  (2013)   17

Transmission  spectrum  from  single  crystal  

Σabs+Σinc+Σinel,coh

Σel,coh Position = Orientation and strain

Width = Mosaicity

Page 18: Joe Kelleher Presentation (May 27th 2014)

Conclusion:  Some  future  directions?  

• Broader  array  of  sensing  and  actuation  on  beamlines  –   Users  won’t  need  to  bring  their  own  

• Flexible  data  chopping  with  event  mode  –  Especially  cyclic  or  highly  dynamic  processes  

• Sensor  /  actuator  bus  for  real  time  measurement  and  control  (e.g.  CANBUS  for  vehicles)  


Related Documents