YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
Page 1: Arno smets tu delft presentation arnhem

Challenge the future

DelftUniversity ofTechnology

Picture Source: www.nasa.gov

Solar Electricity

Arno Smets and Miro Zeman

Delft University of Technology

Page 2: Arno smets tu delft presentation arnhem

About myself

1974 born in Netherlands

1992-1997 Physics at TU Eindhoven

1998-2002 PhD TU Eindhoven

2002-2004 Post-doctoral Reseacher Helianthos Project

2005-2010 Researcher at AIST, Japan

2010-now Assistant professor at TU Delft

Photovoltaic Materials and Devices

Arno Smets

Page 3: Arno smets tu delft presentation arnhem

People

Photovoltaic Materials and Devices

Scientific Staff

4 Post docs 4 TechniciansSecretary

18 PhD students

Guests

~30 MSc students (15 final MSc project, 15 traineeship)

Page 4: Arno smets tu delft presentation arnhem

Challenge the future

DelftUniversity ofTechnology

Picture Source: www.nasa.gov

Outline

Introduction

Photovoltaics

PV Systems

PV technology

Summary

Page 5: Arno smets tu delft presentation arnhem

1INTRODUCTION

Page 6: Arno smets tu delft presentation arnhem

Humanity’s ten top problems

Source: Lecture Prof. R.E. Smalley (Rice University) at 27th

Illinois Junior Science & Humanities Symposium, 2005

for next 50 years

1. ENERGY2. WATER3. FOOD4. ENVIRONMENT 5. POVERTY6. TERRORISM & WAR7. DISEASE8. EDUCATION9. DEMOCRACY10. POPULATION

Page 7: Arno smets tu delft presentation arnhem

Humanity’s ten top problems

Source: Lecture Prof. R.E. Smalley (Rice University) at 27th

Illinois Junior Science & Humanities Symposium, 2005

for next 50 years

1. ENERGY2. WATER3. FOOD4. ENVIRONMENT 5. POVERTY6. TERRORISM & WAR7. DISEASE8. EDUCATION9. DEMOCRACY10. POPULATION

Page 8: Arno smets tu delft presentation arnhem

The Energy ProblemGrowing world

population

Increasing living standard:

Energy Shortage

Energy consumption per capita

Results in pressureon economy:

1900 1920 1940 1960 1980 2000

0

20

40

60

80

100

120

Ann

. ave

rg. o

il pr

ice

(in 2

008

US

D)

Time

Page 9: Arno smets tu delft presentation arnhem

Jeopardizing our habitats:

Somalia

PakistanMexico

Russia

Climate change

“The weather makers”, Tim Flannery

The Energy Problem

Page 10: Arno smets tu delft presentation arnhem

Energy transition

Source: Lecture Prof. Moniz (MIT) at TUD 2010

50 years

is a characteristic time scale for change in energy mix

Page 11: Arno smets tu delft presentation arnhem

oilcoalgasnuclear powerhydroelectricitybiomass (traditional)biomass (advanced)

solar power (photovoltaics

(PV) & solar thermal generation (CSP)

solar thermal (heat only)other renewablesgeothermal

wind energy

year2000 2020 2040

200

600

1000

1400

2100

EJ/a

PV & CSPPV & CSP

Energy transition scenario

Source: German Advisory Council on Global Change, 2003, www.wbgu.de

Page 13: Arno smets tu delft presentation arnhem

Nuclear Gravitational

Hydro-tidal

Wind

Thermal

Chemical

Mechanical Electrical

Coal, oil, gas, biomass, hydrogen

Heat engines

Electric generators

Fuel Cells

η=90%

η<60% η=90%

Source: L. Freris, D. Infield, Renewable Energy in Power Systems, Wiley 2008

Electricity generation

Page 14: Arno smets tu delft presentation arnhem

Nuclear Gravitational

Hydro-tidal

Wind

Thermal

Chemical

Mechanical Electrical

SolarCoal, oil, gas, biomass, hydrogen

Heat engines

Electric generators

Photovoltaics

Fuel Cells

Solar thermal

η=90%

η<60% η=90%

Electricity generation

Source: L. Freris, D. Infield, Renewable Energy in Power Systems, Wiley 2008

Page 15: Arno smets tu delft presentation arnhem

oilcoalgasnuclear powerhydroelectricitybiomass (traditional)biomass (advanced)

solar power (photovoltaics (PV) & solar thermal generation (CSP)

solar thermal (heat only)other renewablesgeothermal

wind energy

ELECTRICITY GENERATION

15%

16%

19%

40%

10%

1/3

ELECTRICITY CONSUMPTION

residential

industry

transmission losses

40%

47%

13%

conversion losses

2/3

oil

coal

gas

nuclear

hydro

Electricity generation 2007

Page 16: Arno smets tu delft presentation arnhem

fossiloilcoalgasnuclear powerhydroelectricitybiomass (traditional)biomass (advanced)

solar power (photovoltaics

(PV) & solar thermal generation (CSP)

solar thermal (heat only)other renewablesgeothermal

wind energy

65%

Electricity generation 2007

87%

World

oil

coal

gas

hydro 19%

nuclear 16%

oil

2%

coal

26%

gas 59%

wind 3%nuclear 4%biomass 6%

Netherlands20 202 TWh 103 TWh

Sorce: Eurostat

2009 edition , BP Statistical Review Full Report (http://www.bp.com/images)

25 Nuclear power plants

(0.5 GW)

Electricity:

20-25 kWh/d/p

Total Energy:

(gas,oil,etc.)

125 kWh/d/p

Page 17: Arno smets tu delft presentation arnhem

Energy transition scenario

Electricity as energy carrier

Page 18: Arno smets tu delft presentation arnhem

Living on renewables?

David JC MacKay“Sustainable Energy:Without the hot air”

Page 19: Arno smets tu delft presentation arnhem

Population density:

Netherlands: 16400000 41500 395 2530

Living on renewables?

Page 20: Arno smets tu delft presentation arnhem

Population density:

Netherlands: 16400000 41500 395 2530

0.016 W/m2

0.028 W/m2

0.067 W/m2

0.068 W/m2

0.22 W/m2

0.32 W/m2

0.57 W/m2

0.70 W/m2

1.2 W/m2

1.9 W/m2

2.0 W/m2

125 kWh/day/p

Requiredenergy per m2

Living on renewables?

Page 21: Arno smets tu delft presentation arnhem

Population density:

Netherlands: 16400000 41500 395 2530

0.016 W/m2

0.028 W/m2

0.067 W/m2

0.068 W/m2

0.22 W/m2

0.32 W/m2

0.57 W/m2

0.70 W/m2

1.2 W/m2

1.9 W/m2

2.0 W/m2

125 kWh/day/p

Requiredenergy per m2

0.11 %0.19 %0.45 %0.45 %

1.5 %2.1 %3.8 %4.6 %8.0 %12.7 %13.3 %

125kWh/day/pSurface area

required with 15 W/m2

technology

Living on renewables?

Page 22: Arno smets tu delft presentation arnhem

Netherlands: 16400000 41500 395 2530

0.016 W/m2

0.028 W/m2

0.067 W/m2

0.068 W/m2

0.22 W/m2

0.32 W/m2

0.57 W/m2

0.70 W/m2

1.2 W/m2

1.9 W/m2

2.0 W/m2

125 kWh/day/p

Requiredenergy per m2

Living on renewables?

0.11 %0.19 %0.45 %0.45 %

1.5 %2.1 %3.8 %4.6 %8.0 %12.7 %13.3 %

125kWh/day/pSurface area

required with 15 W/m2

technology

Page 23: Arno smets tu delft presentation arnhem

http://visibleearth.nasa.gov

Global demand 2010: 16 TWGlobal demand 2050: 32 TWSolar energy: 120 000 TW

Solar cell with 10% efficiency:1250 1250 km2

Solar Resources

Page 24: Arno smets tu delft presentation arnhem

2PHOTOVOLTAICS

Page 25: Arno smets tu delft presentation arnhem

Sun Solar radiation

Solar module

Electricity

Photovoltaics

(PV)

Source: A. Poruba

Page 26: Arno smets tu delft presentation arnhem

Solar cell

Solar cell

sunlight

electricityheat

Efficiency=Maximum electrical power out

Light power in

Page 27: Arno smets tu delft presentation arnhem

Photovoltaic industry

MW

Source: Photon International, March 2012

Global solar cell production

0

10000

20000

30000

40000

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

mono c-Sipoly c-Siribbon c-SiTF-SiCdTeCISrest

560 750 1257 181534% 68% 45%

69%2536

40%

4279

27381

85%

791056%

12464118%

37185

36%Thin-film

solarcells

Scaling production volume

Page 28: Arno smets tu delft presentation arnhem

Historical development of cumulative PV power:

EPIA

2009: Global Market Outlook For Photovoltaics

Until 2013

Photovoltaics

2000 2002 2004 2006 2008 20100

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

29.6

39.5

3

22.9

0

15.6

6

9.49

6.98

5.40

3.96

2.84

2.26

1.79

Cum

ulat

ive

Inst

alle

d P

V C

apac

ity (G

W)

Year

China APEC Rest of World North America Japan European Union

1.46

Nederland 2003:46 MW (1.6 %)

Nederland 2010:97 MW (0.24 %)

Page 29: Arno smets tu delft presentation arnhem

Trend in installed power technologies

The European Wind Energy Association: Wind in power: 2011 European Statistics, 2012

Page 30: Arno smets tu delft presentation arnhem

EU power capacity mixSummary

The European Wind Energy Association: Wind in power: 2011 European Statistics, 2012

in MW in MW

Total ~580 GW Total ~896 GW

Page 31: Arno smets tu delft presentation arnhem

2010 Installed Cumulative Installed Capacity Share

(MW, %)

Photovoltaics

Nederland 2010 ~60 MW (0.15%)

Page 32: Arno smets tu delft presentation arnhem

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

Page 33: Arno smets tu delft presentation arnhem

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

Page 34: Arno smets tu delft presentation arnhem

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

Page 35: Arno smets tu delft presentation arnhem

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

Page 36: Arno smets tu delft presentation arnhem

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

Page 37: Arno smets tu delft presentation arnhem

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

Page 38: Arno smets tu delft presentation arnhem

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

Page 39: Arno smets tu delft presentation arnhem

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

Page 40: Arno smets tu delft presentation arnhem

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

Page 41: Arno smets tu delft presentation arnhem

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

Page 42: Arno smets tu delft presentation arnhem

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

Page 43: Arno smets tu delft presentation arnhem

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

Page 44: Arno smets tu delft presentation arnhem

PV module supply and demandsWorld wide supply -

demand

Moving from local markets to fast changing global markets

Source: EPIA

Page 46: Arno smets tu delft presentation arnhem

PV powerLatest news

The Guardian: May 30, 2012

Wednesday, May 30, 2012 May 30 –

Guardian: Solar power generation world record set in GermanyGerman solar power plants produced a world record 22 gigawatts

of electricity –

equal to 20 nuclear power stations at full capacity –

through the midday hours of Friday and Saturday, the head of a renewable energy think tank has said.

This met nearly 50% of the nation’s midday electricity needs.

The record-breaking amount of solar power shows one of the world’s leading industrial nations was able to meet a third of its electricity needs on a work day, Friday, and nearly half on Saturday when factories and offices were closed.

Page 47: Arno smets tu delft presentation arnhem

Electricity network of today

28 power stations in Netherlands

Page 48: Arno smets tu delft presentation arnhem

Future electricity network

Page 49: Arno smets tu delft presentation arnhem

3PV SYSTEMS

Page 50: Arno smets tu delft presentation arnhem

PV system

Two main types:

=~

Stand-alone system Grid-connected system

DC loadsPV

generator

Charge controller

Storagedc/ac

invertor

Grid

PV generator

=~

dc/ac invertor

AC loads

AC loads

Page 51: Arno smets tu delft presentation arnhem

PV system

Power electronics

The highly varying environmental conditions and nonlinear nature of the photovoltaic (PV) generator make the utilization of PV energy a challenging task:

Power electronics converters:

Reliable operating interface between renewable energy resources and the electrical power grid.

Page 52: Arno smets tu delft presentation arnhem

PV system

Markets/applications:

Grid-connected(building-)integrated

(1 kWp

1 MWp)

Rural

stand-aloneand local grid(10 Wp

10 kWp)

Power plants(1 MWp

-

1 GWp)

Source: W Sinke, Solar Academy

Page 53: Arno smets tu delft presentation arnhem

PV systems

Terminology and definitions

(Average) ac system efficiency

(STC) dc module efficiencyTypically 0.75 –

0.85

hours ac peak power per year

hours per yearTypically 0.09 –

0.11 in NL/DE

Power

(of cells, modules and systems) in Watt-peak (Wp

)

Performance ratio

=

Electricity yield

in kWh/kWp

(usually per year)

Capacity factor

=

Typically 750 –

900 kWh/kWp

for c-Si modules in NL

Page 54: Arno smets tu delft presentation arnhem

Grid-connected PV system

Overview biggest PV installations:

Power Location Description Commissioned Picture

100 MWp Ukraine,

Perovo

Perovo I-V PV power plant

Constructed by: Activ Solar

2011

97 MWp Canada,

Sarnia

Sarnia PV power plant 2009-2010

84 MWp Italy,

Montalto di Castro

Montalto di Castro PV

power plant

Constructed by: SunPower, SunRay

Renewable

2009-2010

82 MWp Germany,

Senftenberg

Solarpark Senftenberg II,III

Constructed by: Saferay

2011 http://www.pvresources.com/PVPowerPlants/Top50.aspx

Page 55: Arno smets tu delft presentation arnhem

Solar

Thermal

Power plants

Photovoltaics

Wind

Hydro

Biomass

Geothermal

Source: DESERTEC foundation

DESERTEC project

Page 56: Arno smets tu delft presentation arnhem

=~ AC

Components: 3×150 Wp

modules

M. Zeman, Delft

Grid-connected PV system

Grid-connected home PV system:

Page 57: Arno smets tu delft presentation arnhem

Solar irradiation on Earth

2 3 4 5 62 3 4 5 6

The Netherlands:

2.7 sun hours/day/year

Solar irradiation: solar irradiance integrated over a period of time

Page 58: Arno smets tu delft presentation arnhem

05

101520253035404550556065

1 2 3 4 5 6 7 8 9 10 11 12

Gen

erat

ed e

nerg

y [k

Wh]

Month

Year 2010386.0 kWh

Grid-connected PV system

M. Zeman, Delft

Grid-connected home PV system: 3×150 Wp

modules

Page 59: Arno smets tu delft presentation arnhem

Cost in 2012:

Costs grid-connected PV System

M. Workum, PVMD, TU Delft

PV system is nowadays good investment!

Costs

€1030 Saves

per year: €115(500 kWh*€0,23/kWh)

EY=877 kWh/kWp

That’s

€2875 in 25 yearsA payback

period

of 9 years!

Page 60: Arno smets tu delft presentation arnhem

Costs grid-connected PV System

M. Workum, PVMD, TU Delft

PV system is nowadays good investment!

Above

6000 inverters

become

relatively

cheap

Average Dutch family

(3500 kWh @ €6800)

Cheapest

system (500 kWh @ €1030)

No installation or second inverter included. One year old data, prices are now even lower (see previous sheet)

Page 61: Arno smets tu delft presentation arnhem

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant Consulting

Page 62: Arno smets tu delft presentation arnhem

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant Consulting

PV System

Page 63: Arno smets tu delft presentation arnhem

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

Non-modular costs

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant Consulting

PV System

Page 64: Arno smets tu delft presentation arnhem

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

Non-modular costs

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant Consulting

PV System

29% Installation18% Inverter17% Maintenance16% Racking10% Wiring10% BOS, others

Non-Modular

Page 65: Arno smets tu delft presentation arnhem

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

Non-modular costs

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant Consulting

PV System

29% Installation18% Inverter17% Maintenance16% Racking10% Wiring10% BOS, others

Non-Modular

TF Silicon PV

Page 66: Arno smets tu delft presentation arnhem

4PV Technologies

Page 67: Arno smets tu delft presentation arnhem

Melt processing

First Generation

Sanyo, Silicon Hetero-Junction cell

Pure material: high efficiencies

Expensive processing:cost-price energy higher

PV technology: 1st

vs

2nd

generation

Plasma processing

Second Generation (thin film)

Lower quality material:lower efficiencies

Low costs processing:cost-price energy lower

NUON Helianthos

Silicon: record lab efficiency 20-27% Thin film: record lab efficiency 13-20%

Page 68: Arno smets tu delft presentation arnhem

PV technologies

c-Si wafer based

III-V semiconductor based

CIGS

CdTe

TF Si

Page 69: Arno smets tu delft presentation arnhem

1. Wafer based Si

2. Thin films

3. Cheap + efficient

Hillhouse and Beard, Curr. Opin. Colloid. In. 14, 245 (2009).

MC manufacturing costsSP average selling price

SI installed cost for a residential systemSIII installed cost for a utility scale system

PV technologies

Page 70: Arno smets tu delft presentation arnhem

Thin-film silicon solar cells

c-Si (180-250 μm)

p++ p++

Al Al

electron

hole

n+SiOSiO22

p-type c-Si

Al

Si-based solar cells

Page 71: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

hole

Si atomelectron

covalent bond

Metal front electrode

Metal back electrode

Incident light

Page 72: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

Incident light

hole

Si atomelectron

Metal front electrode

Metal back electrode

covalent bond

Page 73: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

Metal back electrode

covalent bond

Page 74: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

Metal back electrode

covalent bond

Page 75: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

Metal back electrode

holecovalent bond

Page 76: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

hole

Metal back electrode

covalent bond

Page 77: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

Metal back electrode

P atom

covalent bond

Page 78: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

Metal back electrodeB atom

P atom

covalent bond

Page 79: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

Metal back electrodeB atom

P atom

covalent bond

hole

Page 80: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

B atom

P atom

covalent bond

holeMetal back electrode

Page 81: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

Si atomelectron

Metal front electrode

B atom

P atom

covalent bond

holeMetal back electrode

Page 82: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

Incident light

Metal front electrode

Metal back electrode

Si atomelectron

B atom

P atom

covalent bond

hole

Page 83: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

Metal front electrode

Metal back electrode

Si atomelectron

B atom

P atom

covalent bond

hole

Page 84: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

Metal front electrode

Metal back electrode

Si atomelectron

B atom

P atom

covalent bond

hole

Page 85: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

Metal front electrode

Metal back electrode

Si atomelectron

B atom

P atom

covalent bond

hole

Page 86: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

Metal front electrode

Metal back electrode

Si atomelectron

B atom

P atom

covalent bond

hole

Page 87: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

Metal front electrode

Metal back electrode

Si atomelectron

B atom

P atom

covalent bond

hole

Page 88: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

Metal front electrode

Metal back electrode

Page 89: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

Metal back electrode

Incident light

electron

hole

Metal front electrode ARC

Page 90: Arno smets tu delft presentation arnhem

Solar cell

gap energy1.1 eV

generation

recombination

light

X

X

X

Main losses

Page 91: Arno smets tu delft presentation arnhem

Solar cell

Semiconductor

Metal back electrode

Incident light

electron

hole

Metal front electrode ARC

Additional losses

c-Si solar cell structure

Transmission

(finite α)

Reflectionn1 ≠

n2

Page 92: Arno smets tu delft presentation arnhem

Light TrappingSpectral Matching

Defect Engineering

Design principle of solar cells

Choice of MaterialMulti-junctions

Texture interfacesReflectors

Plasmonic Approaches

Bulk defectsInterface defects

Meta-stable defects

Page 93: Arno smets tu delft presentation arnhem

c-Si (180-250 μm)

p++ p++

Al Al

n+SiO2

p-type c-Si

Al

Thin-film Si (0.2 -

5 μm)

Si-based solar cells

Thin-film silicon solar cells

Page 94: Arno smets tu delft presentation arnhem

Thin-film Si (0.2 -

5 μm)

c-Si (180-250 μm)

p++ p++

Al Al

n+SiO2

p-type c-Si

Al

Si-based solar cells

Glass plate

TCO

p-type

Intrinsic a-Si:H

n-typeMetal electrode

a-Si (0.2-0.3 μm)

Thin-film silicon solar cells

Page 95: Arno smets tu delft presentation arnhem

Problem 2: mismatch single junction with solar spectrum

The a-Si:H

p-i-n

junction

Page 96: Arno smets tu delft presentation arnhem

Absorptiona-Si:H Does not cover entire spectrum!

The a-Si:H

p-i-n

junctionProblem 2: mismatch single junction with solar spectrum

Page 97: Arno smets tu delft presentation arnhem

The a-Si:H/μc-Si:H

tandem

Absorptiona-Si:H

Absorptionc-Si:H

Problem 2: mismatch with solar spectrum

Page 98: Arno smets tu delft presentation arnhem

Record ηst

(confirmed) 10.1% (a-Si) Oerlikon10.1% (μc-Si) Kaneka

Micromorph

(double)12.5% (a-Si/μc-Si) Oerlikon12.4% (a-Si/a-SiGe) USSC*

Triple-junction13.0% (Si/SiGe/SiGe) USSC*13.4% (a-Si/nc-Si/nc-Si) USSC13.4% (a-Si/a-Ge/nc-Si) USSC

Multi-junction approach

Page 99: Arno smets tu delft presentation arnhem

Glass plate

TCOp-type

Intrinsic a-Si:H

n-typeMetal electrode

a-Si/uc-Si (2.0-4.0 μm)c-Si (180-250 μm)

p++ p++

Al Al

n+SiO2

p-type c-Si

Al

Si-based solar cells

Thin-film silicon solar cells

n-typep-type

Intrinsic uc-Si:H

Page 100: Arno smets tu delft presentation arnhem

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant Consulting

Page 101: Arno smets tu delft presentation arnhem

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant ConsultingCdTe

(First Solar)

Thin Film PV:

Page 102: Arno smets tu delft presentation arnhem

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant ConsultingCdTe

(First Solar)Micromorph(Oerlikon)

Thin Film PV:

Page 103: Arno smets tu delft presentation arnhem

½

century of manufacturing history, ~90% of 2007 market

progressing by innovation and volume

reduction of manufacturing costs is major challenge

module efficiencies:

-

12 ~ 20% (now)-

18 ~ >22% (longer term)

PV technologies

Source: W Sinke

Wafer based crystalline silicon

Page 104: Arno smets tu delft presentation arnhem

low-cost potential and new application possibilities

positive impact of micro-

and nanocrystalline

silicon

efficiency enhancement is major challenge

stable module efficiencies:

6 ~ 11% (now)–

11

~ 16%

(longer term)

PV technologies

Source: W Sinke

Thin-film silicon

Page 105: Arno smets tu delft presentation arnhem

low-cost potential (partly already demonstrated)

positive impact of development of take-back and recycling systems

efficiency enhancement is major challenge

module efficiencies:

7 ~ 11% (now)–

10 ~ 15% (longer term)

PV technologies

Source: W Sinke

Cadmium Telluride

Page 106: Arno smets tu delft presentation arnhem

high performance & possibilities for multi-junction devices

reduction of manufacturing costs is major challenge; work on low-cost varieties

module efficiencies:

– 9 ~ 12% (now)–15 ~ 18% (longer term)

PV technologies

Source: W Sinke

Copper-indium/gallium-selenide/sulphide (CIGS)

Page 107: Arno smets tu delft presentation arnhem

Efficiency development

Page 108: Arno smets tu delft presentation arnhem

M. Green, Progress in PV: Res. Appl. 17, 347 (2009)

Averaged cost-price elements versus abundance in ore (2004-2009)

Cost price elements vs

abundancy

a-Si:H

thin film technology

Page 109: Arno smets tu delft presentation arnhem

Composition of the Earth’s crust

Page 110: Arno smets tu delft presentation arnhem

Composition of the Earth’s crust1st generation c-Si:

Si,O,Al,N,B,P

Page 111: Arno smets tu delft presentation arnhem

Composition of the Earth’s crust2nd

generation CdTe: Cd,Te,S,Al,Zn,O

Ratio Te/Si: 10-9

1 m2

cell 2μm CdTe

(50% =Te)1 m2

hole having depth

of (110-6/ 110-9 )~

103

m = 1 km

Page 112: Arno smets tu delft presentation arnhem

Composition of the Earth’s crustIII-V: Ga,As,Al,In,P,Ge,

Page 113: Arno smets tu delft presentation arnhem

Composition of the Earth’s crust2nd

generation CIGS: Cu,In,Se,Ga,Al,Zn,O,Cd,S

Page 114: Arno smets tu delft presentation arnhem

Composition of the Earth’s crust2nd

generation Dye-sensitized: Ti,O,Sn,Pt,C,O,H,N,S,Ru,I(and many more)

Page 115: Arno smets tu delft presentation arnhem

Composition of the Earth’s crust2nd

generation a-Si:H: H,Si,O,Zn,Al,B,P

Page 116: Arno smets tu delft presentation arnhem

TF turn-key

companies

0.35 €/Wp

Module efficiency: 10.8% guaranteed Record cell: 12.5 %

Yield > 97%Output: 120 MWp

Micromorphtechnology

Page 117: Arno smets tu delft presentation arnhem

Thin-film Si PV technology

Glass plates:

Industry hall, Thurnau, Germany

Application

Page 118: Arno smets tu delft presentation arnhem

Dutch route: Temporary superstrate solar cell concept

Development of unique low-cost roll-to-roll technology for fabrication of thin-film Si solar modules (started in 1996)

Helianthos

project

Flexible substrate:

Page 119: Arno smets tu delft presentation arnhem

Thin-film Si PV technology

Flexible substrate:

Flexible, lightweight, monolithically series connected a-Si modules

Page 120: Arno smets tu delft presentation arnhem

Thin-film Si PV technology

Page 121: Arno smets tu delft presentation arnhem

Presented by E. Hamers at the European PV solar energy conference Hamburg 6 sept. 2011.

Thin-film Si PV technology

Page 122: Arno smets tu delft presentation arnhem

7SUMMARY

Page 123: Arno smets tu delft presentation arnhem

PV technology

Summary

Direct conversion of light to electricity (PV) is an elegant process suitable for versatile, robust, low-cost technology; the global potential is practically unlimited

A wide range of technology options is commercially available, emerging or found in the lab

The first major economic milestone on the road to very large-scale use has been reached: grid parity with retail electricity prices

Page 124: Arno smets tu delft presentation arnhem

PV status in 2012

Summary

Production: -

dominant c-Si PV technology, 90% market-

large production capacity in China -

difficult time for thin-film PV technologies (TF Si, CIGS, CdTe)

Installation: -

highest contribution to newly installed power capacity in EU

Price:-

<1 €/Wp

; c-Si modules: 0.8-0.9 €/Wp

expectation 0.5 €/Wp

in 2015-

grid parity reached in Germany and Netherlands

Research trends-

increasing module efficiency (c-Si modules >20%)

Page 125: Arno smets tu delft presentation arnhem

PV technology

Challenges for TW scale implementation

turn-key system price < 1 €/Wp

(generation costs < 3-10 c€/kWh)- low-cost modules at very high efficiency (> 30%)

- add efficiency boosters (spectrum shapers), full spectrum utilization (advanced concepts)- or: very low-cost modules (<< 0.5 €/Wp) at moderate efficiency (>10%)

- polymer solar cells, nanostructured

(quantum dot) hybrid materials- Low BOS costs

use of non-toxic, abundantly available materials(preferably use Si, C, Al, O, N, …)

-

indium replacement-

non-metallic conductors (Ag C?)-

all-silicon thin-film tandems

stability (20 to 40 years)

and

realibility-

intrinsic & extrinsic degradation of organics-based solar cells

Page 126: Arno smets tu delft presentation arnhem

Challenge the future

DelftUniversity ofTechnology

Picture Source: www.nasa.gov

Thank you for your attention!

Page 127: Arno smets tu delft presentation arnhem

+

Promising low-cost solar cell technology

+

Industrial production experience (Flat panel display industry)

-

Relatively low stabilized efficiencies (η ≈ 6-7%)

+

Double-junction micromorph solar cell (η>10%)

ideal combination of materials (a-Si:H/μc-Si:H) for converting AM1.5 solar spectrum

+

2008 production of modules 400 MWproduction capacity ~ 1000 MW

Google images

Thin-film Si PV technology

Present status:

Page 128: Arno smets tu delft presentation arnhem

increase in TF Si module production

complete production lines available

Thin-film Si PV technology

Current developments:

short term: optimize micromorph tandem cell

long term: optimize triple cell, breakthrough concepts for high efficiency (η>20%)

Future developments:Oerlikon

Applied Materials


Related Documents