Top Banner

of 67

ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

Jul 07, 2018

Download

Documents

ZHIQIANG GU
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    1/67

    Recent Developments in Analysis and Testingof Spot and Seam Welds

    Dr. Shicheng Zhang

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    2/67

    2

    Brief review

    •The recent developments are characterised y the progress in

    local approach which was first proposed y !oo" in #$%&.

    •The "ey to the local approach is the determination of local

    stress parameter '(S!).

    •Different concepts are *nder development to get (S!s at spot

    welds+ especially for the a*tomotive str*ct*res.

    •,ario*s specimens are proposed for spot weld testing.

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    3/67

    78A ao*t local stress parameters at spot welds

    What are (S!s at spot welds9•They are str*ct*ral stress+ notch stress+ S.:.5.+ ;0integral+

    ow to determine the (S!s9

    •They can e n*merically calc*lated 'stress solver)+

    analytically

    appro?imated 'stress form*las) and e?perimentally meas*red

    'strain ga*ge techni@*e).

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    4/67

    1

    Str*ct*ral stresses aro*nd a spot weld Stress solver 

    Str*ct*ral stress is

    •plate theory stress witho*t sing*larity

    •linearly distri*ted over sheet thic"ness

    •o*tp*t stress of shell elements '56)

    Str*ct*ral stress is denoted as σ '*i ).

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    5/67

    &

     Cotch stress aro*nd a spot weld Stress solver 

     Cotch stress is denoted as σ" .

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    6/67

    T

    A stress solver for spot welds Stress solver 

    :np*t - σiEStress components aro*nd a spot weld

    The Stress Solver A pac"age of analytic sol*tions to spot welds

    =*tp*t - σr + σ" + F+ ;+ θ+ σ Str*ct*ral stress+ Cotch stress+ S.:.5.+ ;0integral+

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    7/67

    ρ

    2 2

    2 2

    2 2

    %

    A pac"age of sol*tions to spot welds

     σ r = ma?G  σ ui +  σ liH

    Stress solver 

     σ k = σ n +#

    1 πG  σ ui −  σ uo + σ li −  σ lo ± I2'  σ ui −  σ li )2 + '  σ uo + σ lo )2

    + 2'  σ ui + σ li −  σ ui  σ uo −  σ ui  σ lo −  σ uo  σ li −  σ li  σ lo )J#K 2 H

    #  K  I = I '  σ ui −  σ uo + σ li −  σ lo ) + & 2 '   τ qu −   τ ql )J t  2#

     K  II = I '  σ ui −  σ li ) +  12

    &'   τ qu +   τ ql )J t   K eq = ±  K  I 2 + α K  II + β K  III 

     K  III =2

    2'   τ ui −   τ li ) t 

     J ='#−  ν 2 )t 

    1L E I1'  σ ui + σ li −  σ ui  σ li ) + '  σ uo + σ lo )2 − 2'  σ ui  σ uo + σ ui  σ lo + σ uo  σ li + σ li  σ lo )J

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    8/67

    '  σ ui −  σ li )

     σ lo = lo

    L

    A pac"age of sol*tions to spot welds

     θ = − arctan σ ui −  σ uo + σ li −  σ lo

    Stress solver 

     σ uo =  σ uo + 2  σ ui −  σ lo1

    T T σ + σ + σ + σ

     σ ui = σ li = uo ui li lo1T  σ + 2  σ li −  σ uo

    1

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    9/67$

    5inite element model Stress solver 

    Diameter of the spo"e pattern C*gget diameter Diameter of the central eam element C*gget diameter 

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    10/67

    K2

    0

    0

    #/

    Application of the stress solver  Stress solver 

    Tale #. Stress intensity factors F : and F :: at the leading verte? and F ::: at theside verte? of the weld spot+ all in CKmm + *nder tensile0shear force 5# "C

    with n*gget diameter d& mm and sheet thic"ness t# mm

    A*thors

    !oo" I2J+ Analytic appro?imation

    RadaE and SonsinoI2J+ 56

    Smith and

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    11/67##

    Application of the stress solver  Stress solver 

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    12/67

    πdt 

    + 2

    2

    + + )

     ρ πdt 

    + + + 24 4

    #2

    :nterface0force0ased estimations Stress solver 

    R*pp et al.-

    6addo?-

     σ r =

     σ r =

     F  x  M  y

    +#.L%2 K 2dt 

    2 F  x  M  y

    πdt t w

    6O

    5O 5y6y

    5? 6?

    Sheppard-  σ ij = F ij

    ωt #+

    P

     M ij

    t i β+ F  Ai

    t i2'i+ j = #+2)

    Zhang-  σ r = 1 F  M 1 F  z πdt πdt 2 πd 2

    ' F = 2 2 F  x2 + F  y2 4 M =  M  x + M  y

     σ k =1 F 

    πdt '#+

    + #$ t  M L π

    ) + 2 '#+2

    π

    ρ) + 1 F  z 

    πd 2'#+

    &d 

    t 2π

    ρ)

     K  I = F 2  M & 2 F  z 

    2πd t πdt t πd t  K  II =

    2 F 

    πd t  K  III =

    2 F 2 2 M  z 

    πd t πd t 

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    13/67

    2

    #

    Tensile0shear  Stress form*las

     σ r =#.2% F 

    dt '  σ r = 1 F 

    πdt )

     σ k =#.2% F 

    dt 

    t '#+ /.1/ )

    ρ

     K eq =/.$1 F 

    d t  K eq = ±  K  I 2 + K  II 

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    14/67#1

    >at0profile

     σ r = /.%aM t dtA

    Stress form*las

     σ k = /.%aM t 

    dtA

    t '#+ /.1% )

    ρ

     K eq =/.$2aM t 

     Ad t 

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    15/67

    J

    #&

    Do*le0c*p Stress form*las

     σ r =#.2% F 

    dt 'cos  θ +

    /./$L D

    t sin  θ )

     σk

    =

    #.2% F 

    dt Icos

     θ +

    /./$L D

    t sinθ

    + '/.1/cos  θ +/./1&L D

    t sin  θ )

    ρ

     K eq =

    /.#L F 

    d t 

    2  D2 2

    '1.%&/cos θ + /.#/& 2 sin θ  t  D

    + /.2L# sin 2  θ )#K 2t 

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    16/67

    cos φ sin2 θ J#K 2+

    #

    Do*le03 Stress form*las

     σ r

    =

    #.2% F 

    dt Isin  φ cos  θ +η'b − d )

    1t cos  φ sin  θ J

    1t  φ = arctan

    η'b − d ) tanθ

     σ k =#.2% F 

    dt 

    t I'#+ /.2L2 ) sin  φ cosθ ρ

    + η'b − d )1t 

    '#+ /. t ρ

    ) cos  φ sin  θ J

    1t '#+ /.2L2 t K ρ ) φ = arctanη'b − d )'#+ /. t K ρ ) tanθ

     K eq =

    /.% F 

    d t  Isin2 φ cos2 θ + η 2 'b − d )2 2

    #2t 2

     φ / or πK2So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    17/67

    2 2

    #%

    Do*le03 Stress form*las

     σ r =#.2% F 

    dt 

    Isin  φ cos  θ +η'b − d )

    1t 

    cos  φ sin  θ J '#)

     σ k =#.2% F 

    dt 

    t I'# + /.2L2 ) sin  φ cos  θ + ρ

    η'b − d )

    1t 

    t '#+ /. ) cos  φ sin  θ J '2)

    ρ

    56-

     K eq =/.% F 

    d t Isin φ cos θ +

     @. '#)

     η 2 'b − d )22

    #2t cos2 φ sin2 θ J#K 2

    @. '2) @. ')

    ')

    Spo"e pattern N Stress solver 

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    18/67

    #L

    5atig*e test data condensation Stress form*lasacross different specimens

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    19/67

    #$

    So*rces of scatter of fatig*e data Stress form*las

    Local geometry:

    - Sheet thickness t;

    - Spot diameter d;

    - Notch radius ρ.

    Material:

    - Composition;

    - Micro-structure;

    - Dislocation density.

    Welding effects:

    - esidual stress;

    - Material inhomogeneity;

    - Welding defects.

    Load!"oundary condition:

    - Stress ratio R;

    - Definition of failure;

    - #est conditions.

    5

     C

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    20/67

    2/

    =ptimiOation of spot weld distri*tion Stress form*las

    • Dura"ility reser$e for e$ery spot %eld:

     R = −∆ F d t 

     N K mm K 2

    • Critical spot %elds:

    Spot %elds %ith R

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    21/67

    +

    2#

    Stress distri*tion aro*nd Strain ga*ge techni@*e

    a spot or similar weld∞

     σ ij 'r +  θ ) = σ / + ∑I An 'r ) cos'n  θ )n=#

    + n 'r ) sin'n  θ )J

     σ ij 'r +  θ ) =

     +

     +

     σ ij# 'r ) −  σ ij 'r )2 σ ij# 'r ) + σ ij 'r )

    2

     σ ij2 'r ) −  σ ij1 'r )2

     σ ij2 'r ) + σ ij1 'r )2

    cosθ

    cos2 θ

     sinθ

      sin2 θ

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    22/67

    22

     Con0destr*ctive testing

    of spot weldsStrain ga*ge techni@*e

    •:nside stress at n*gget edge is decisive.

    •The stress is inaccessile to meas*re.

    •Destr*ctive meas*res may e ta"en.

    •Con0destr*ctive method is desired.

    Strain ga*ge

     C*gget :nside stress

    Strain ga*ge

    Destr*ctive-';apan)

    Strain ga*ge

    >ole'B6W+ Qermany)

    Removed 'BA6+ Qermany)

    Strain ga*ge

     Con0destr*ctive-

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    23/67

    ′   ′

    #2'#−  ν )d +   ′

    I'   ′

    ρt ′  ′ ′ ′

    2 2 ′ ′

    2

    A strain ga*ge sol*tion

    to spot0welded lap EointStrain ga*ge techni@*e

     σr

    =

      αr Ed  !

    2'# −  ν 2 )d I'2d  !

    − d )εuo

    − 1εuo

    J

      εuo = 'εuo2 − εuo ) K ∆ x

     α Ed t  K  I =  I ! 2 GI

    'd  ! − 2d ) & 2t 

    2 Jεuo − εuoH

     K  II =2  α  II Ed  ! t 2d  ! − d '#−  ν 2 )d L

    +t 

    $ &

    ε)εuo − uo J

    2

     σ k =   αk Ed  !2'#−  ν 2 )d 

    G'2d  ! − d )εuo − 1εuo + #1 π

    I'd  ! − 2d )εuo − εuo + I'2d  ! − d )εuo − 1εuo J2 + I'd  ! − 2d )εuo − εuo J2 JH

     J =  α  J Etd  !2#$2'# −  ν )d GI'2d  ! − d )εuo − 1εuo J2 + I'd  ! − 2d )εuo − εuo J2H

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    24/67

    2 K2

    21

    ,irt*al testing Strain ga*ge techni@*e

    εuo = 'εuo2 − εuo ) K ∆ x

    Tale 1. (S!s determined y the strain ga*ge sol*tion in the virt*al

    testing ',T) compared with their finite element '5) res*lts for a tensile0shear specimen with d& mm+ t# mm and ρ/.2 mm *nder tensile0

    shear force of 5#/// C4 stresses are in CKmm + S:5s in CKmm and ;0

    integral in CKmm

    σr  F : F ::   σ" ;0:ntegral

    Strain ga*ge sol*tion %1.& %%.$ #/./ 22.# /./L$

    5inite element sim*lation %1.1 %%.$ #/./ 22.& /./L$

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    25/67

    2&

    6onitoring (S!s

    Strain ga*ge sol*tion

    Strain ga*ge techni@*e

    σr σ" F : F :: ;

    t+*+5

    Strain ga*ge apparat*s

    5

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    26/67

    2

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    27/67

    2%

    (imitations

    •The res*lts presented are mainly valid for rittle fract*re+ high0cycle

    fatig*e and high0speed crash of spot welds.

    •5or *ltimate fail*re+ low0cycle fatig*e and low0speed crash+ the res*lts

    are hardly applicale altho*gh they not necessarily always fail.

    •The material heterogeneity+ resid*al stress and defects d*e to welding

    are not considered.

    •The res*lts are primarily linear sol*tions and large deformation+ finite

    strain and large plasticity are not considered.

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    28/67

    2L

    6otivation and =Eective

    6otivation-

    A*tomotive str*ct*res with a large n*mer of spot welds

    need simplified finite element modeling of spot welds.

    A *niform spot weld model is desired for oth C,> and fatig*e sim*lations.

    =Eective-

    Development of a simplified spot weld model capale of 

    delivering reliale nat*ral fre@*ency and modes

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    29/67

    2$

    Test

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    30/67

    /

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    31/67

    #

    Simplified Spot Weld 6odel

    Beam element

    O

    y

    ?

    Rigid ar element 'RB2)

    :ndependent nodes

    Dependent nodes

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    32/67

    0 0

    0 01

    &

    %

    0 0

    2

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    33/67

    0 0

    &

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    34/67

    #

    1

    O

    Damping

    in

    6ode Type ?peri.

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    35/67

    dudt 

    &

    6ass 0 Spring System for Analysis

    ,iration

    d2

    u M e 2 + Redt  + K eu = F  A cos ωt 

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    36/67

    val*ation of Damping ,al*e

    !rinciple of f*ll width at half ma?im*m

    for eval*ating damping val*es M e

    d 2 u2

    dt + Re

    du

    dt + K e u = F  A cos ω t 

    u A =  F  A

    2 ω  Re + 'ω M e − K eω

    ) 2

    d =

     " 2 − " #

     " /

    #

    = z 2 − z # = = # Re

     K e M eDamping val*e

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    37/67

    t

    l

    =

    =

    %

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    38/67

    L

    sim*lations.

    The model is validated y the co*pon and component tests.

    The same model may also e *sed for fatig*e predictions with additional

    data recovery.

    A*tomatic generation of the model is s*pported at least y preprocessors li"e ACSA and 6D:CA.

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    39/67

    $

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    40/67

    1/

    ;oint Type in

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    41/67

    1#

    !rinciple of SSZK6SZ 6ethod

    σst2

    Q!0force

    σs#

    t#

    t2#

    σs22

    σs2#

    t#

    !roced*re-#) :dentification of weld line2) Definition of critical locations) Determination of line forces1)

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    42/67

    12

    Determination of (ine 5orces Based on Qrid0!oint5orces 'Codal 5orces)

    Averaged over lements

     Codes

    Averagedon Codes

    (ine forces and moments

    6ethod of Dong+Battelle

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    43/67

    1

    (ine 5orces Averaged over lements

    (inearly distri*ted line force f  to e determined y grid0

     point forces 5 C-

    ,N',N/

    /

    ,N00

    Qrid !oint

    '

    Weld line

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    44/67

    # 2

    # 2

    11

    Total Q!05orces Weighted y lement (ength

    l5 = 5 ⋅ # C+# C+total l + l

    l/

    N

    ,Ntotal1,N/2,N02,N'

    l5 = 5 ⋅ 2 C+2 C+total l + l

    l0

    /'

    0

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    45/67

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    46/67

    '&

    1

    ,alidation of (ine 5orce

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    47/67

    1%

    ,alidation of (ine 5orce

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    48/67

    d t2

    2

    1L

    Derivation of Str*ct*ral Stresses according to Zhang'SSZ)

    f  m @

     σ  !

    Qeometry-

    Sheet thic"ness-

    Throat thic"ness-

    ;oint angle-

    Weld angle-

    Weld penetration rate-

    6odel siOe-

    t#+ t2aα

     β η  η = sin α  

     h#+ h2+ ht 2

    m2

    f 2

    @2

    t#

    h

     σ  ! 2#

     σ  ! 22α

    d

    aβ #

     σ  !#

    f #

    @#m#

    h2 h#

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    49/67

    1$

    Derivation of SSZ '?ample- σS2#)

    Simple eam theory-

     " m σ  ! = σ m + σ b = + 2

    ffective height-

    t = t 2# = a +  ηt 2 sin β

     sin α

    (ine force and moment-

     " = "  cos'  α  −  β ) − q sin'  α  −  β )m = m + %# [  "  sin'  α  −  β ) + q cos'  α  −  β )] − %2 [  "  cos'  α  −  β ) − q sin'  α  −  β )]

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    50/67

    =

    +

    &/

    Derivation of SSZ '?ample- σS2#)

     σ  ! 2# = " m

    + 2t  " cos'  α  −  β ) − q sin'  α  −  β )

    ηt sin β  a + 2

    sin α

     {m + %# [  "  sin'  α  −  β ) + q cos'  α  −  β )] − %2 [  "  cos'  α  −  β ) − q sin'  α  −  β )]}  2 ηt 2 sin β    a +    sin α  

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    51/67

     − −

    =

    2 sin α " 2 −2

     " 

    t 2 t #   − − σ  !

    Derivation of SSZ 'S#+ σS22 and σS)

    Similarly-

     σ  !# " #

    t #

      m# + q# ++

    t # t 2 a 2 tan α 2 sin α sin β   t #2

     σ  ! 22

    t '# − 2  η )m2 + q2 &2 + 2= −

    t # t #

    t # 2 tan α

       m + q & += −

     t 2

    a

    2 tan α 2 sin α sin'  α  −  β )   2

    t 2

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    52/67

    &2

    6SZ Cotch Stresses

    Analytic Appro?imation of Cotch ffects in Seam Welds yσsE- SSZ stresses

     σ k j = σ  ! j  ⋅ # + ! ⋅

      

    t  j  

     ρ  j  

    σ"E- 6SZ notch stresses 'appro?imate)

    ρ j - Cotch radi*sti - ffective thic"ness

    s - 5actor 

    Basis- .+ !aris+ !. and :rwin+ Q. #$L&. The stress analysis of crac"s >andoo"+

    !aris !rod*ctions :ncorporated and Del Research

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    53/67

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    54/67

    &1

    Determination of s05actor 

     σ k j = σ  ! j  ⋅ # + ! ⋅

      

    t  j  

     ρ  j  

    M0Eointsingle fillet

    =verlap Eoint B*tt Eoint M0Eointdo*le fillets

     ! #./ /.&L /.L& #./

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    55/67

    &&

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    56/67

    Applied5orceAmplit*de5 aICJ

    (

    &

    ?ample of 5atig*e Test

    /&3

    T0;oint 'Al*) 5ail*re criterion-(oad case-(oad angle- / 45/&'

    2 loss of stiffness 'piston stro"eU)

    that corresponds appro?imately

    to crac" initiation

    t

    /&'

    45/&0

    ?periment

    /&0

    /&3 /&4 /&( /&6

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    57/67

    AppliedloadinN C7raftamplitudein

    MS8-7er"spannungsamplitudeinM9a6SZStressin6!a

    M$/5/DQ1/

    #N/&

    #N/1

    M1&5$/DQ$/#N/

    M$/5/DQ%/

    M$/5$/DQ1/

    :AVDQ#//

    Sch%ingspiel*ahl N 5

    #N/1

    M$/5$/DQ1/

    :B:DQ%/

    :B:,S/%

    :B:,S#&

    M$/5$/DQ%/

    &%

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    58/67

    MS8-7er"spannungsamplitudeinM9a

    σ6SZin6!a

    σ6SZin6!aMS8-7er"spannungsamplitudeinM9a

    #N/

    &L

    6aster S0C

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    59/67

    N

    N

    &$

    Two Cew 6od*les in !rinciple

    SSZ06ethod-

    SSZ Stresses

    6SZ06ethod-

    SSZ Stresses

     Cotch 5actors

    from 565AT Standard

     Cotch 5actors

    from 6SZ0Appro?imation

    S0C

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    60/67

    /

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    61/67

    #

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    62/67

    Damage-

    B*tt;oint(ap;oint B*tt;oint(ap;oint B*tt;ointdo*leM0;oint

    do*leM0;oint

    do*leM0;oint

    (ap;ointTMK;oint TMK;oint TMK;oint

    2

    Application ?ample on

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    63/67

    Scenario Analysis 'M0;oint+ Single 5illet)

    Qood+ Cormal+ Bad Weld 7*ality

    !arameter-a0,al*e- a = λ 't # + t 2 ) K 2Weld angle- β = καWeld penetration- η

    Defa*lt ,al*e- λ = /+ κ = /+& η = /+

    ?treme ,al*es-/+& ≤  λ  ≤ /+%/%/+1 ≤  κ  ≤ /+/+# ≤  η  ≤ /+&

    d    η = sin α   t 2    Cormal Weld 7*ality Bad Weld 7*ality Qood Weld 7*ality

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    64/67

    1

    Scenario Analysis 'M0;oint+ Do*le 5illets)

    Qood+ Cormal+ Bad Weld 7*ality

    !arameter-

    a0,al*e #- a# = λ# 't # + t 2 ) K 2a0,al*e 2- a2 = λ2 't # + t 2 ) K 2

    Defa*lt ,al*e-λ# = /+λ2 = /+

    ?treme ,al*es-/+& ≤ λ# ≤ /+%/%

    /+& ≤ λ2 ≤ /+%/%Weld angle #-

    Weld angle 2-β# = κ#α β 2 = κ 2α

    κ# = /+& κ 2 = /+&

    /+1 ≤ κ# ≤ /+

    /+1 ≤  κ 2 ≤ /+

     Cormal Weld 7*ality Bad Weld 7*ality Qood Weld 7*ality

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    65/67

    βη

    t 2  

    &

    Scenario Analysis '=verlap ;oint)

    Qood+ Cormal+ Bad Weld 7*ality

    !arameter- Defa*lt ,al*e- ?treme ,al*es-

    a0,al*e-

    Weld angle-

    Weld penetration-

    a = λt 2  λ = /+ β = 1&°

      η = /

    /+& ≤  λ  ≤ /+%/%/° ≤  β  ≤ 1&° − /+2& ≤  η  ≤ /+2&

    (a ≤ t 2 cos β ) d    η =    

     Cormal Weld 7*ality Bad Weld 7*ality Qood Weld 7*ality

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    66/67

    Scenario Analysis 'B*tt ;oint)

    Qood+ Cormal+ Bad Weld 7*ality

    !arameter- Defa*lt ,al*e- ?treme ,al*es-

    Weld width- b = κt #  κ = #+/ /+L ≤  κ  ≤ 2+/Weld reinforcement- e = λ#t #   λ# = /  − /+2 ≤ λ# ≤ /+2Sheet offset- ' = λ2 't 2 − t # ) K 2 λ2 = #+/ '−#+/ ≤ λ2 ≤ #+/) PToe c*t depth-

    Root c*t depth-

    Toe c*r depth-

    Root c*t depth-

    %# = k #t #%2 = k 2t #% = k t 2%1 = k 1t 2

    k # = /+#k 2 = /+#k  = /+#k 1 = /+#

    /+2 ≥ k # ≥ /

    /+2 ≥ k 2 ≥ −/+#

    /+2 ≥ k  ≥ /

    /+2 ≥ k 1 ≥ −/+#

    P not a weld @*ality parameter 

     Cormal Weld 7*ality Bad Weld 7*ality Qood Weld 7*ality

    So*rce- SA !apers 2//#0/#0/12 and 2//&0/#0/$/&+ Detroit+ 3SA4 565AT 3ser 6eeting+ 6ay $0##+ 2//%+ Steyr+ A*stria

  • 8/18/2019 ZHANG-Æ£ÀÍÄ;ÃÐÔ-3

    67/67

    !otentials and (imitations of the 6ethod

    !otentials-

    • The SSZK6SZ method allows weld geometry to e considerede?plicitly in fatig*e assessment.

    • 5ail*re locations+ notaly+ at weld root and toe+ are clearly

    indicated y the SSZK6SZ stresses.

    • Weld @*ality can e eval*ated y scenario analysis in three

    classes of good+ normal and ad weld @*ality.

    (imitations-

    • 6SZ notch stresses are only appro?imations.

    • SSZK6SZ method is still not s*fficiently validated in 565AT.

    • The relation etween weld @*ality and weld geometry sho*ld e

    f*rther verified y e?periment or e?perience.