Top Banner
Wide band RF CMOS circuit design techniques SSCS DLP, Fort Collins Domine Leenaerts Semiconductors, The Netherlands
87

Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Mar 20, 2018

Download

Documents

trinhphuc
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Wide band RF CMOS circuit design techniques

SSCS DLP, Fort Collins

design techniques

Domine Leenaerts

Semiconductors, The Netherlands

Page 2: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Content

• Why wide band RF design?• How to make a wide band LNA?• What about the wide band Rx

architecture?architecture?• What about the technology?• Conclusions

Page 3: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

History: SpeakEasy project (1992)

• Large scale military software defined radio

• motivated in large part by the communications interoperability problems that resulted from different branches of the military services having different branches of the military services having dissimilar (non-interoperable) radio systems

• ten different radio waveforms in software on a single platform operating in frequency bands between 2 and 2000 MHz

• Operated initially at the TMS320C40 processor

RJ Lackey and DW Upmal, "Speakeasy: The Military So ftware Radio," IEEE Communications Magazine, May 199 5

Page 4: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

History: SpeakEasy project (1992)

LNA ADC

PA DAC

µPLNA ADC

PA DAC

µP

TM

S32

0C40

TM

S32

0C40

Final result in 1994:

several hunderd processors and the ‘radio’ filled the back of a truck

Page 5: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Today: 10 different standards?

There is a convergence of standards ongoing, but st ill…

Page 6: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Today: 10 different standards?

Frequency (GHz)

Page 7: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Today in industry

WCDMA/HSDPA/HSUPA/EGPRS, Skyworks

130nm cmos

ISSCC 2009

Page 8: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Today in industry

WCDMA/HSPA/EGPRS+ GPS and Rx diversity

WCDMA:4-LNA Primary Rx (2 SAW-less)

WCDMA:3-LNA diversity

Quad-Band GSM/EDGE (800-900-1800-1900)

0.18um CMOS ISSCC 2009

Quad-Band GSM/EDGE (800-900-1800-1900)

Qualcomm

Page 9: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Today in industry

HSUPA+BT+FM in 65nm CMOSSource: www.broadcom.com

Page 10: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Today in industry

• Industrial focus is on– Multi-band / multi-mode– Selectivity at RF

• Front-end module by means of antenna filters• Front-end module by means of antenna filters• Selective LNA’s• LO generation per mode or band

Page 11: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Software-defined radio (SDR)

• Based on signal processing– A/D requirements– Digital processing

LNA ADC

PA DAC

µPLNA ADC

PA DAC

µP

Page 12: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Use Reconfigurable radio instead

• Analog selectivity– A/D requirements more relaxed– Wide-band RF front-end– Digitally assisted radio / FE module– Digitally assisted radio / FE module

IQ-DAC

IQ-ADC

TX-filter

RX-filter

LO generation XO

radio

CAL

switc

h

FE module

BB

-MA

C p

roce

ssor

Dig

ital b

acke

ndIQ-DAC

IQ-ADC

TX-filter

RX-filter

LO generation XO

radio

CAL

switc

h

FE module

BB

-MA

C p

roce

ssor

Dig

ital b

acke

nd

Page 13: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Need of Wide-band RF front-ends

• First attempts were made by the development of UWB chipsets– 3 – 10 GHz– Started in 2003 with LNA design (see ISSCC – Started in 2003 with LNA design (see ISSCC

2004)

• Now focus on reconfigurable front-ends for 0 – 5 GHz operation– Started around 2005 (see ISSCC 2006)

Page 14: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Wide band LNA: What’s the problem?

Impedance match

Z

deliavsis PPZZ ,,* =⇒=

Z

Noise matchopts ZZ =

ZZiZs

Zi is mainly capacitive

Zopt

Im(Zopt ) is inductive in nature

How to obtain power match and noise match over wide bandwidth?

Page 15: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

What is the problem?

Zs Zs

Wide band impedance match

Zs

Narrow band impedance match

Zs Zs

smRgF

142

αγ+≥

NF >> 3dB

s

s

QR

LF

ω3

21+≥

Zs

Ls

gss

gs

smin sC

sLC

LgZ

1++≈

Page 16: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Possible solution

Zs

filter

Wide band impedance match using filter as impedance converter

Zs

Ls

Page 17: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

The first attempts

ISSCC2004: Ismail

Band-pass LC matching network

ISSCC2004: Bevilacqua

Band-pass LC matching network

Both are bulky due to # integrated inductorsand single-ended input/output

NF: 5.5dB (3-8GHz) NF: 4.5dB (2-10GHz)

Page 18: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Other possible solution

ZZs

min g

Z1≈

Zs

Ls

( )CGOQR

LF

s

s ++≥ ω3

21

Note: inherent single-to-differential conversion

min g

Z1≈

Page 19: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

‘Second’ Generation

90nm CMOS

NF: 4.5dB (0.8-5GHz)

ISSCC 2006

decouple the noise and input impedance matchbut still bulky

Page 20: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Next generation: starting point

Simultaneous:• Single-to-Differential• Balanced Gain• Broadband input

vout+ -• Broadband input

match ( ~1/gmCG )• Noise Canceling• Distortion Canceling

[Blaakmeer et al. ESSCIRC `07]

RS

vsvin

+

-

CG CS

IBias

Page 21: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

LNA: noise canceling

200Ω 50Ω

Noise canceled, signal amplified at differential output

vin

+

-Ibias

in

50Ω

20mS

80mS

vs

Page 22: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

LNA: limited bandwidth

→ CLoad < 80 fF4 @ Ω200 ==

⋅=

CGV,

SCGV,CG

A

RAR

• Limited bandwidth at output CG-stage:

• Inductive peaking required– Contrasts aim: no on-chip inductors

Solution: don’t make voltage gain @ RF!

→ CLoad < 80 fF

GHz 10 2

1 =⋅⋅⋅

= π LoadCG3dB- CR

f

Page 23: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Solution: insert mixer

IF: Capacitanceno problem

Mixer: Low-Z input

Z4·Z

RS

vs

RF: no high-Z nodes

Mixer: Low-Z input

Low-Z

LO

gm

4·gm

IBias

Page 24: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Solution: insert mixer

WIF+ IF-

Z4·Z

R

3·R

3·C

C

gm·vrf4·gm·vrf

vs

RS

W4·WLO+ LO-

vrf+

-

‘CG’

‘CS’

Page 25: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Solution: noise cancellation @ IF

WIF+ IF-

Z4·Z

R

3·R

3·C

C

gm·vrf4·gm·vrf

vs

RS

W4·WLO+ LO-

vrf+

-

‘CG’

‘CS’

Page 26: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

BLixer: IQ balanced

LO Q-

IF Q+ IF Q-

4·ZZ

LO I+ LO I- LO Q+

IF I-IF I+

I-Mixer Q-Mixer

LO Q-

IF Q+ IF Q-

4·ZZ

LO I+ LO I- LO Q+

IF I-IF I+

I-Mixer Q-Mixer

BalunLNAMixer →Blixer

4·i

LO Q+

vs

RS

IBias

i 4·i

LO Q+

vs

RS

IBias

i

Page 27: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

BLixer: 50% duty cycle

LO Q-

IF Q+ IF Q-

4·ZZ

LO I+ LO I- LO Q+ LO Q-

IF Q+ IF Q-

4·ZZ

LO I+ LO I- LO Q+ LO Q-

IF Q+ IF Q-

4·ZZ

LO I+ LO I- LO Q+ LO Q-

4·i

LO I+ LO I- LO Q+

vs

RS

IBias

i

LO Q-

4·i

LO I+ LO I- LO Q+

vs

RS

IBias

i

LO Q-

4·i

LO I+ LO I- LO Q+

vs

RS

IBias

iLO Q+

LO I+

LO Q-

LO I-

Page 28: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

BLixer: 25% duty cycle

LO Q-

IF Q+ IF Q-

4·ZZ

LO I+ LO I- LO Q+ LO Q-

IF Q+ IF Q-

4·ZZ

LO I+ LO I- LO Q+ LO Q-

IF Q+ IF Q-

4·ZZ

LO I+ LO I- LO Q+ LO Q-

4·i

LO I+ LO I- LO Q+

vs

RS

IBias

i

LO Q-

4·i

LO I+ LO I- LO Q+

vs

RS

IBias

i

LO Q-

4·i

LO I+ LO I- LO Q+

vs

RS

IBias

iLO Q+

LO I+

LO Q-

LO I-

Page 29: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

BLixer: silicon

Baseline65nm CMOS1.2V supply

OSC

IN IF OutLbias

OSC

IF I+LO gen + buf

1.4 mm

Active area< 0.02 mm2IN

IF I+IF I-

IF Q+IF Q-

Supply & Biasing

LO gen + buf

Core + IF-bufBiasing

1.4 mm

[Blaakmeer et al. ISSCC ‘08]

Page 30: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

BLixer: measured results[d

B]

-20

-10

0

10

20GC

NF

20GC

Wide band behavior at RF

RX-frequency [GHz]1 10

-30

-20S11

fIF [MHz]10 100

[dB

]

0

5

10

15

500

GC

NF… and at IF/BB

Page 31: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

BLixer: measured results

• Linearity:– IIP3 @ RF: -3 dBm ( 5.2 & 5.7GHz, fLO = 4.6 GHz )

– IIP2 @ RF: +20 dBm ( 2.4 & 5.7GHz, fLO = 3.2 GHz )

– IIP2 (Mix-leak.) >+40 dBm (5.7 & 5.8GHz, fLO:0.5 - 7 GHz)LO

• Quadrature accuracy:– Phase error < 3°– Gain error < 1dB

• LO leakage < -50 dBm

Page 32: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

What about inverters?

Cesd

VSS

INV1X6RF

VBDVBD10

12

14

gain

, NF

, S11

[dB

]GaNFS11

VSS

VDD

outin

VBD

VBS

VSS

VDD

outin

VBD

VBS

-2

0

2

4

6

8

10

0 5 10 15 20 25

frequency [GHz]

gain

, NF

, S11

[dB

]

Page 33: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

What about inverters?

Add package:

HVQFN

2

4

6

8

10

12

14

gain

, NF

, S11

[dB

]

GaNFS11Ga_packageNF_packageS11_package

Cesd

VSS

INV1X6HVQFNRF LNA

-2

0

2

0 5 10 15 20 25

frequency [GHz]

Page 34: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

What about inverters?

2

4

6

8

10

12

14

gain

, NF

, S11

[dB

]

Ga_packageNF_packageS11_packageGA_PANF_PAS11_PA

Cesd

VSS

INV1X6HVQFNRF

INV

1X10

PA

LNA

-2

0

2

0 5 10 15 20 25

frequency [GHz]

Page 35: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

‘Inverter-only’ LNA

INV

1X10

PA INV1X0.5

No inductors!

Add additional stage and feedback in LNA

Cesd

VSS

INV1X6HVQFNRF

LNA

INV1X4

Page 36: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

‘Inverter-only’ LNA

5

10

15

20

gain

, NF

, S11

[dB

]

GA_PANF_PAS11_PAGA_FBNF_FBS11_FB

-20

-15

-10

-5

0

0 5 10 15 20 25

frequency [GHz]

gain

, NF

, S11

[dB

]

Page 37: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

‘Inverter-only’ PA

INV

1X6

PALNA

No inductors!

Cesd

VSS

INV1X4 HVQFN

RFINV1X4 INV1X10

Add additional stages and feedback in PA

Page 38: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

‘Inverter-only’ PA

5

10

15

20ga

in, S

22 [d

B]

GpS22

-20

-15

-10

-5

0

0 5 10 15 20 25

frequency [GHz]

gain

, S22

[dB

]

Page 39: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

RF front-end only with inverters!RF I/O

Noi

se F

igur

e [d

B]

Measured NF of front-end in BG1

Measured NF of front-end in BG6

Noi

se F

igur

e [d

B]

Measured NF of front-end in BG1

Measured NF of front-end in BG6

radio65nm (LP) CMOS

Frequency [Hz]

Noi

se F

igur

e [d

B]

Simulated NF of LNA only

Measured NF of LNA only

Frequency [Hz]

Noi

se F

igur

e [d

B]

Simulated NF of LNA only

Measured NF of LNA only

[Leenaerts et al. ISSCC ‘09]

Page 40: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

• We can make wide band LNA’s, but what about the receiver?

Page 41: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

What about the RX architecture?

• Commodity is to use passive mixers– Inherently wide band nature as they act as

switch only– Can be made very linear– Can be made very linear

• Followed by analogue wide band BB filters– Tunable in filter order, bandwidth

Page 42: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

‘Classical’ ZIF architecture

ISSCC 2009: IMEC, SDR in 45nm CMOS

Page 43: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

... but how to handle interferers?

Nonlinear !!

Wide band at RF give rise to interference issuesISSCC 2009: Ru, SDR in 65nm CMOS

Page 44: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

... but how to handle interferers?

and ‘square-wave’ LO results in harmonic mixing

Page 45: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

... but how to handle interferers?

• One solution is to use band-pass filters– Need tunable BP, difficult at RF

• Other solution is to NOT make (too much) gain at RFgain at RF

ESSCIRC 2001: Leenaerts, 180nm CMOS

Page 46: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

… but harmonic mixing remains

harmonic rejection mixer removes 3*LO and 5*LO

Amplitude weighting

Phase shifting

Emulate sine-wave LO

ISSCC 2001: Weldon

Page 47: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

… but how to make accurate?2

ISSCC 2009: Ru

41=2x5 + 3x7 +2x529=3x5 + 2x7

41/29 = 1.4138 and = 1.4142, so error is 0.03%2

2-stage poly phase network

Page 48: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

And the result …

65nm CMOS

Page 49: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

… but what about other interferers?

• Harmonic mixing helps only for interferers which are at harmonics of the used LO frequency

• How do we improve robustness against • How do we improve robustness against other interferers?– Make notch at RF

Page 50: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Notch at RF by translational loop

Darabi, ISSCC 2007

Page 51: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Notch at RF by translational loop

Darabi, ISSCC 2007

Impact on NF of LNA is 3dB, so activate filter only in presence of interferer

Page 52: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Some conclusions

• Wide Band CMOS design is possible– Convergence towards a receiver comprising

wide band LNA, passive mixers and BB filteringfiltering

– Additional tricks added to cope with interference are still needed

• But which technology is favorable?

Page 53: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

What about the technology?

Does CMOS scaling improves wide band behavior?

• Technology RF performance– 180nm, 90nm, 65nm, 45nm

• UWB CMOS circuits – 90nm, 65nm, 45nm (and SiGe BiCMOS)

• UWB receiver design– 65nm, 45nm

Page 54: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Used technology• All experiments have been done in a low

standby power process node, i.e. LP CMOS

CMOS 90nm 65nm 45nm

Lgate [um] 0.1 0.06 0.04

Vdd [V] 1.2 1.2 1.1

Iem,M1,minW [mA@110 C]

0.21 0.11 0.07

#metal 6 + ALU 7 + ALU 7 + ALU

Page 55: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Technology

distance

ArearoC εε=

Page 56: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Some definitions

• Cut-off frequency ft– unity gain current frequency for short-circuited output

gg

mT C

gf

π2~ input capacitance

• Voltage gain bandwidth fa– Frequency for 3-dB DC voltage gain drop, calculated

for a resistive load making the DC voltage gain 2x

dddc

mA CA

gf

π2~ output capacitance

Page 57: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Some definitions

• 1-dB minimum Noise Figure frequency (fNF1dB)– frequency for which this NF is still reached assuming

optimum NF matching

• Finger width Wf– Folded device finger width: Wf = W/FOLD – Folded device finger width: Wf = W/FOLD

Page 58: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Difference schematic - layout

• Schematic– MOS model takes into account naked device

behavior.

• Layout• Layout– parasitics due to metal connections,

especially CO-M1– metal layers to fulfill current reliability

Layout has major impact in deep sub-micron

Page 59: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Difference schematic - layout100

GH

z

80

60

50

no interconnect

• NMOS device• L = 0.18 um• W = 32 um• contact = 2• @ fold = 8

f T G

Hz

Folding factor

1 102 3 4 6 8 20 30

50

40

30

with interconnect–– fT =70 GHzfT =70 GHz–– fT =60 GHzfT =60 GHz

gate

p+ guard-ring

gate

S S S S SD D D D

Page 60: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Comparison of this effect

• For both devices: single finger, double gate contact– Purple: schematic (naked

device)– Blue: layout extraction

• Serious impact of metallization

90nm W/L = 0.12um/0.1um

0

10

20

30

40

50

60

70

80

90

ft [G

Hz]

• Serious impact of metallization– 90nm: 70%– 65nm: 55%

0

0.001 0.01 0.1 1

drain current [m A]

65nm W=0.12um L=0.06um

0

10

20

30

40

50

60

70

80

90

0.001 0.01 0.1 1

drain current [mA]

ft [G

Hz]

Page 61: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

65/45nm: ft obtained after layout

65nm L=0.06um

60

80

100

120

ft [G

Hz] W=0.12um

W=1um

45nm L=0.04um

150

200

250

ft [G

Hz] W=2um

W=10um

(Wf = 0.5 um for 1 and 10 um)

0

20

40

0,001 0,01 0,1 1 10 100

drain current [mA]

ft [G

Hz]

W=10um

65nm LP: ft naked device: 160GHz

0

50

100

0.001 0.01 0.1 1 10 100

drain current [mA]

ft [G

Hz]

W=10um

(Wf = 0.5 um for 2 and 10 um)

45nm LP: ft naked device: 270 GHz

Page 62: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Comparison for ft: scaling helps

W=10um, FOLD=20

150

200

250

ft [G

Hz] 90nm

0

50

100

150

0.1 1 10 100

drain current [mA]

ft [G

Hz] 90nm

65nm45nm

Page 63: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

65nm: influence of finger-width

65nm: W=10um, L=0.06um

200.0

250.0

300.0

350.0

freq

uenc

y [G

Hz] ft

fa_2

0.0

50.0

100.0

150.0

200.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Wf = W/FOLD [um]

freq

uenc

y [G

Hz]

fa_2

fNF1dB

fmax

fcross

seems optimal layout includes only M1

Page 64: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

RF performance incl. all layout effect

CMOS ft [GHz] fa [GHz fNF1dB [GHz] Wf opt.

180nm 41 39 10 ≈ 3

90nm 80 72 40 ≈ 1.790nm 80 72 40 ≈ 1.7

65nm 120 110 44 ≈ 1

45nm 200 130 53 ≈ 0.67

Wf/Lmin ≈ 16

Page 65: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

How realistic is peak ft, fa?

• Peak values are normally reached for Vgs close to Vdd– happens for instance in cross-coupled diff pair

in most VCO topologiesin most VCO topologies

• But what happens in more realistic situations, e.g. Vgs = 1/2Vdd?– e.g. situation in frequency divider, LNA, …

Page 66: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

How realistic is peak ft, fa?

90nm, W=1um, L=0.1um

60

70

80

90

freq

uenc

y [G

Hz]

38%

0

10

20

30

40

50

60

0.1 1 10

Vgs [V]

freq

uenc

y [G

Hz]

ft

faVgs=1.2V

Vgs=0.6V

38%

Page 67: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

How realistic is peak ft, fa?

CMOS 90nm 65nm 45nm

Naked device

115 160 270

Vgs=Vdd 80 / 72 120 / 110 200 / 130

Vgs=1/2Vdd 49 / 38 51 / 41 47 / 28

x / y = ft / fa [GHz / GHz]

Page 68: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Scaling and wide band RF

• LNA performance• Frequency divider performance• Dual band receiver in 65nm• Dual band receiver in 45nm• Dual band receiver in 45nm

Page 69: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

A CMOS wide band LNA

Vdd

OUT-VB

IN

0

OUT+Vss

Transformer:• Single-ended differential• Impedance matching• Voltage feedback

[ISSCC2007, Lee et al.]

Resistor:• Current feedback

Page 70: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

A CMOS wide band LNA: 65nm

Gain: 11dB

3-dB BW: 7.5GHz

NF: 2.5dB

iIP2: +25dBm

[ISSCC2007]

Page 71: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

A CMOS wide band LNA: 45nm

NF

Gv

S11

Gain: 8dB

3-dB BW: 11GHz

NF: 3dB

iIP2: +25dBm

S11

Page 72: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

CMOS LNA: comparison

• Input device (for roughly same gm)– W/L 90nm: 200/0.1 um/um– W/L 65nm: 240/0.06 um/um– W/L 45nm: 200/0.04 um/um

x2

x1.25– W/L 45nm: 200/0.04 um/um

Vdd

OUT-VB

IN

OUT+Vss

0

Page 73: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

CMOS LNA: comparison

LNA 90nm 65nm 45nm

Gv [dB] 9 11 10

BW [GHz] 7.5 7.5 11

NF [dB] 2.5 2.5 3

iIP2 [dBm] +15 +25 +25

iIP3 [dBm] 0 +12 +6

Pdiss [mW] 18 20 30

Page 74: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

CMOS LNA versus BiCMOS

NF

S21

S11 (measured on PCB)

[dB]

S11(chip)

NF

S21

S11 (measured on PCB)

[dB]

S11(chip)

[ISSCC2005]

S12

[GHz]

S12

[GHz]

LNA 65nm SiGe 0.25um

Gv [dB] 11 20

BW [GHz] 7.5 12

NF [dB] 2.5 3

iIP2 [dBm] +25 +25

iIP3 [dBm] +12 +10

Pdiss [mW] 20 12

Page 75: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

65nm and 45nm divider chainVDD

out0

out90

out180

out270

VDD

out0

out90

out180

out270

÷2in

out0out180

CLK

CLKb

Vbias

VSS

CLK

CLKb

Vbias

VSS

Page 76: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

divider measurements

-10

0

10P

in [d

Bm

]

65nm

-50

-40

-30

-20

0 5 10 15 20 25

input frequency [GHz]

Pin

[dB

m]

65nm

45nm

Page 77: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

divider measurements

CMOS 65nm 45nm

Self resonance 14GHz 18GHz

Max input freq. 18GHz 21GHz

Pin -14dBm -9dBm

Pdiss 18mW 24mW

Page 78: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

UWB transceiver in 65nm

TIA

TIA

LNA

VtoI

VtoI

BG

1 /

BG

3 ÷2

mat

chin

g

BB

out

Ext

. LO

TIA

TIA

LNA

VtoI

VtoI

BG

1 /

BG

3 ÷2

mat

chin

gm

atch

ing

BB

out

Ext

. LO

A

select

VC

OV

CO

VC

O

BG

1 /

BG

3X

mat

chin

g

PA

BB

in

Ext

. LO

Bias &

Control

A

select

VC

OV

CO

VC

OV

CO

VC

OV

CO

BG

1 /

BG

3X

mat

chin

gm

atch

ing

PA

BB

in

Ext

. LO

Bias &

Control

Page 79: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

UWB transceiver in 65nm

At mixer output, 3.2 -- 7.7 GHz< 2 dBTx output flatness

At mixer output, w/o PA4 %Tx output EVM

Two-tone: fin1=1.8 GHz, fin2=2.4 GHz+6 dBmRx IIP3

IF-input to mixer output, w/o PA+52 dBTx gain

fin= 4 GHz / 7 GHz5.0 / 5.5 dB Rx noise figure

Receiver52 mWDissipation @ 1.2V

Two-tone: fin1=2.4 GHz, fin2=5.2 GHz+25 dBmRx IIP2

Voltage gain, RF input to IF-output20 dBRx Gain

CommentValueParameter

At mixer output, 3.2 -- 7.7 GHz< 2 dBTx output flatness

At mixer output, w/o PA4 %Tx output EVM

Two-tone: fin1=1.8 GHz, fin2=2.4 GHz+6 dBmRx IIP3

IF-input to mixer output, w/o PA+52 dBTx gain

fin= 4 GHz / 7 GHz5.0 / 5.5 dB Rx noise figure

Receiver52 mWDissipation @ 1.2V

Two-tone: fin1=2.4 GHz, fin2=5.2 GHz+25 dBmRx IIP2

Voltage gain, RF input to IF-output20 dBRx Gain

CommentValueParameter

LNA/PA

ReceiverTransmitterLO generation

52 mW48 mW63 mW

Dissipation @ 1.2V ReceiverTransmitterLO generation

52 mW48 mW63 mW

Dissipation @ 1.2V

BB

filte

rs

LO

1mm

Page 80: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

UWB transceiver in 65nm

S21

NF band1

dB

NF band9

dB

S21

NF band1

dB

NF band9

dB

S11

MHz

dB

MHz

dB

S11

MHz

dB

MHz

dB

Page 81: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

UWB transceiver in 65nm

2nd harm.spurs

Band Group #1 Band Group #3

LOleakageleakage

Page 82: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

UWB receiver in 45nm

RF front-end

1mm

IF stage

LO stage

Bias

Page 83: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

UWB receiver in 45nm

10

12

14

16G

ain,

Noi

se [d

B]

-10.00

-5.00

0.00

S11

[dB

]

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

frequency [GHz]

Gai

n, N

oise

[dB

]

-25.00

-20.00

-15.00 S11

[dB

]

Page 84: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Comparison of 65nm-45nm RX

BB filter

65nm LP CMOS 45nm LP CMOS

Dies on scale : analog does not necessarily scale!

LNA

Page 85: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Comparison of 65nm-45nm RX

Rx performance

65nm 45nm

Gain [dB] 20 14

3-dB BW [GHz] 7 103-dB BW [GHz] 7 10

NF [dB] 5.5 7

iIP3 [dB] +5 0

iIP2 [dB] +25 +20

Pdiss [mW] 52 90

Page 86: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Where do we stand nowadays?

• Wide Band CMOS design is possible– Convergence towards a receiver comprising

wide band LNA, passive mixers and BB filtering– Additional tricks added to cope with interference – Additional tricks added to cope with interference

are still needed

• Impressive fT of naked device due to scaling does not tell the complete story– Layout influence becomes more and more

dominant

Page 87: Wide band RF CMOS circuit design techniquesewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdfWide band RF CMOS circuit design techniques SSCS DLP, Fort Collins ... WCDMA/HSPA/EGPRS+

Hope you learned something