Top Banner

of 40

WEEK 7- Defleksi Beban Merata n PUNTIRAN

Jul 07, 2018

Download

Documents

Aria Ardiansyah
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    1/40

    Mekanika Kekuatan Material

    Defleksi Batang Dengan Beban

    Terdistribusi Merata

    Dr. Arhami, S.T, M.T,

     JTM –  UNSYIAH

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    2/40

     

    w

    Kurva Defleksi

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    3/40

    Example:

    Misalkan suatu konstruksi batang ditumpu sederhana ABdengan panjang L mendapat beban terdistribusi merata

    sebesar w  per satuan panjang, seperti yang ditunjukkan

    pada Gambar 1.a.

    Tentukan: a). Persamaan kurva defleksi

    b). Defleksi maksimum max 

    c). Sudut kemiringan A dan B Pada tumpuan

    A dan B. (Kekakuan fleksural = EI)

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    4/40

    wL

    DBB

    R A

    R B

    wx

    x Mx 

    R B

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    5/40

     

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    6/40

    Solution:

    Dari geometri gambar dan penjumlahan momen bisadiketahui reaksi pada A:

    0 A

     M 

    0)()2

    (   L

     R LwL  B

    )()

    2

    (   L R L

    wL  B

     B R L

     L

    wL)

    2(

    2

    wL R B

    0

     y F 

    0 B A

      RwL R

    02

    wLwL R A

    2

    wLwL R A

    2

    wL R A

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    7/40

    Misalkan suatu penampang X  pada jarak x dari B. Kita bisacari momen bending pada penampang ini:

    22

    2wxwLx M  X 

    0 X  M 

    0)2()(  X  B   M  xwx x R

    )2

    ()(  xwx x R M   B X 

    (1)

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    8/40

    Dengan demikian, momen bending pada satu titik X :

    Dengan mengintegrasikan persamaan ini satu kali, maka akan

    diperoleh:

     X  M dx

     yd  EI 

    2

    2

    22

    2

    2

    2 wxwLx

    dx

     yd  EI 

    1

    32

    64C 

    wxwLx

    dx

    dy EI 

    (2)

    (3)

    dimana C1 adalah konstanta integrasi pertama.

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    9/40

    Kondisi batas:

    Kita tahu bahwa x  = L / 2, maka dy/dx = 0. Substitusikan harga-harga kondisi batas ini ke persamaan

    (3) di atas:

    1

    32

    64C 

    wxwLx

    dx

    dy EI 

    1

    32

    26240   C 

     Lw LwL

    1

    33

    48160   C 

    wLwL

    24

    3

    1

    wLC 

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    10/40

    Substitusikan harga C1 ke persamaan (3):

    1

    32

    64C 

    wxwLx

    dx

    dy EI 

    2464

    332

    wLwxwLxdxdy EI 

    Kemiringan maksimum akan terjadi pada A dan B. Jadi kemiringan

    maksimum, substitusikan x = 0 ke persamaan (4).

    2464

    1   332 wLwxwLx

     EI dx

    dy x

    (4)

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    11/40

    24641

      332

    wLwxwLx EI dx

    dy x

    246

    0

    4

    01   332

    wLwwL

     EI  B  EI 

    wL

     B 24

    3

    Tanda negatif artinya tangen A dengan sudut AB adalah negatif

    atau berlawanan jarum jam.

    Karena simetri maka:

     EI 

    wL A

    24

    3

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    12/40

    • Dengan mengintegrasikan persamaan (3) di atas sekali

    lagi, maka diperoleh persamaan defleksi batang:

    21

    43

    2412C  xC wxwLx y EI 

    2

    343

    242412

    C  xwLwxwLx

     y EI 

    Kondisi batas:

    Kita tahu bahwa pada x = 0 maka y = 0. Dengan mensubstitusikan

    harga-harga ini ke persamaan (5), kita peroleh C2 = 0.

    242412

    343  xwLwxwLx y EI 

    (5)

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    13/40

    Persamaan defleksi pada sembarang bagian pada batang AB.

    2424121

      343

     xwLwxwLx EI 

     y

    Defleksi maksimum terdapat pada titik tengah batang. Dengan

    mensubstitusikan harga x = L/2 ke persamaan (6) defleksimaksimal:

    (6)

    224224212

    1   343

     LwL Lw LwL

     EI 

     y

    4838496

    1   444

    )2/max(

    wLwLwL

     EI  y  L x

     EI 

    wL y

    384

    5   4

    max

    Tanda negatif menunjukkan defleksi mempunyai arah ke bawah

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    14/40

     

    :

     EI 

    wL y

    384

    5   4

    max

     EI 

    wL

    384

    5   4

     L= 6 m = 6 x  103 mm

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    15/40

    Mekanika Kekuatan Material

    PUNTIRAN 

    (Torsion)

    Dr. Arhami, S.T, M.T,

     JTM –  UNSYIAH

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    16/40

    Objective:

    Setelah mengikuti materi kuliah puntiran ini, mahasiswa

    diharapkan;

    Dapat memahami prinsip-prinsip puntiran.

    Mampu memecahkan persoalan-persoalan elemen

    mesin yang menerima beban puntir.

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    17/40

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    18/40

    Many machine parts are loaded in torsion, either totransmit power  (like a driveshaft or an axle shaft in a

    vehicle) or to support a dynamic load (like a coil spring

    or a torsion bar).

    Power transmission parts are typically circular solid

    shafts or circular hollow shafts because these shapes are

    easy to manufacture and balance, and because the

    outermost material carries most of the stress.

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    19/40

     Torsi

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    20/40

    Poros yang mengalami torsi.

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    21/40

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    22/40

    Deformations of a circular bar in

    pure torsion.

    Since every cross section of the bar is identical, and

    since every cross section is subjected to the same

    internal torque T, we say that the bar is in pure torsion. 

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    23/40

     

    Area a

    r

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    24/40

     

    Shear Strains at the Outer Surface 

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    25/40

    The magnitude of the shear strain at the outer surface ofthe bar, denoted max

    where max  is measured in radians, bb’ is the distance through

    which point b moves, and ab is the length of the element

    (equal to dx). With r denoting the radius of the bar, we can

    express the distance bb’ as rd  , where d also is measuredin radians. Thus, the preceding equation becomes

    ab

    bb'

    max

    dx

    rd max

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    26/40

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    27/40

    In the special case of pure torsion, the rate of twist isequal to the total angle of twist divided by the length L,

    that is, = /L. Therefore, for pure torsion only, we obtain

    For interior elements with an interior cylinder of radius r

    are also in pure shear with the corresponding shear

    strains given by the equation

     L

    r max

    maxmaxr  6

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    28/40

     

    Outer Surface Inner Surface

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    29/40

    Circular Tubes 

    in which r 1 and r 2 arethe inner and outer radii,

    respectively, of the tube. 

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    30/40

     

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    31/40

    The magnitudes of the shear stresses can be determined

    from the strains by using the stress-strain relation for the

    material of the bar. If the material is linearly elastic, we

    can use Hooke’s law in shear  

    in which G is the shear modulus of elasticity and is the

    shear strain in radians. Combining this equation with the

    equations for the shear strains (Eq. 4 and 6), we get;

    G

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    32/40

    in which max  is the shear stress at the outer surface of the

    bar (radius r), is the shear stress at an interior point (radius

    r), and is the rate of twist. (In these equations, has

    units of radians per unit of length.) 

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    33/40

    The Torsion Formula 

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    34/40

     

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    35/40

    To determine this resultant, we consider an element of

    area dA located at radial distance from the axis of the

    bar (Fig. 3-9). The shear force acting on this elementis equal to dA, where is the shear stress at radius r. 

    The resultant moment (equal to the torque T ) is the

    summation over the entire cross-sectional area of all

    such elemental moments:

    IP  is the polar moment of inertia of the circular cross section. 

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    36/40

    For a circle of radius r and diameter d, the polar

    moment of inertia is

    An expression for the maximum shear stress can be

    obtained by rearranging Torsion equation, as follows:

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    37/40

    Typical units used with the torsion formula are as

    follows.

    In SI, the torque T is usually expressed in newton meters

    (Nm), the radius r in meters (m), the polar moment of

    inertia IP  in meters to the fourth power (m4

    ), and the shearstress in pascals (Pa).

    If USCS units are used, T is often expressed in pound-feet

    (lb-ft) or pound-inches (lb-in.), r in inches (in.), IP  in inches

    to the fourth power (in.4

     ), and in pounds per square inch(psi).

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    38/40

    Substituting r = d/2 and IP = d 4/32 into the torsion

    formula, we get the following equation for the maximum

    stress:

    The shear stress at distance from the center of the bar is 

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    39/40

    Reference

     James M. Gere. 2004. Mechanics of Material. 6th Edition.

    Thomson Learning, Inc.

  • 8/18/2019 WEEK 7- Defleksi Beban Merata n PUNTIRAN

    40/40