Top Banner
Status and Future Challenges of CFD for Liquid Metal Cooled Reactors IAEA Fast Reactor Conference 2013 Paris, France 5 March 2013 Ferry Roelofs [email protected] V.R. Gopala K. Van Tichelen X. Cheng E. Merzari W.D. Pointer
31

Voorblad presentatie

Jan 11, 2017

Download

Documents

vantu
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Voorblad presentatie

Status and Future Challenges of CFD

for Liquid Metal Cooled Reactors

IAEA Fast Reactor Conference 2013

Paris, France

5 March 2013

Ferry Roelofs

[email protected]

V.R. Gopala

K. Van Tichelen

X. Cheng

E. Merzari

W.D. Pointer

Page 2: Voorblad presentatie

2 Paris • 5 March 2013

Contents

• Introduction

• Computational Fluid Dynamics

• Thermal-Hydraulics Challenges in Design and Safety

• Liquid Metal Turbulence

• Core Thermal Hydraulics

• Pool Thermal Hydraulics

• System Dynamics

• Summary

• Acknowledgement

Page 3: Voorblad presentatie

3 Paris • 5 March 2013

Introduction Background

• Nuclear power plays and probably will play

important role in energy production

• Large role is attributed world-wide to fast

reactors

• Thermal-hydraulics is considered as key

issue

– Overview by Denis Tenchine in NE&D (2010)

– Overview by K. Velusamy (2010)

– Many subjects involve application of CFD

Page 4: Voorblad presentatie

4 Paris • 5 March 2013

Computational Fluid Dynamics

Page 5: Voorblad presentatie

Computational Fluid Dynamics

Paris • 5 March 2013

approximation

ph

ys

ics

co

mp

ute

r p

ow

er

DNS

LES

Hybrid

RANS/LES

(U)RANS

calculation

DNS LES Hybrid (U)RANS

System Thermal

Hydraulics

STH

Page 6: Voorblad presentatie

6 Paris • 5 March 2013

Thermal-Hydraulics Challenges in

Nuclear Design and Safety

Page 7: Voorblad presentatie

1

2 3

4 3

TH Challenges in Design and Safety

7 Paris • 5 March 2013

1

2

3

4

Core

Reactor Vessel

Heat Transfer System

Heat Transport System

Page 8: Voorblad presentatie

1

TH Challenges in Design and Safety Core

8 Paris • 5 March 2013

1 Core

Levels:

- Complete Core

- Fuel Assembly

- Subchannel

- Molten Core

Page 9: Voorblad presentatie

2

TH Challenges in Design and Safety Reactor Vessel / Pool

9 Paris • 5 March 2013

2 Reactor Vessel

- Core outlet region

- Temperature stratification &

fluctuations

- Gas entrainment

- Fission product transport

- Forced-natural convection

Page 10: Voorblad presentatie

3 3

TH Challenges in Design and Safety Heat Transfer System

10 Paris • 5 March 2013

3 Heat Transfer System

- Efficiency

- Integrity

- Correlations

Page 11: Voorblad presentatie

4

TH Challenges in Design and Safety Heat Transport System

11 Paris • 5 March 2013

4 Heat Transport System

- 3D effects

- Coupling STH-CFD

Page 12: Voorblad presentatie

12 Paris • 5 March 2013

Liquid Metal Thermal-hydraulics

Page 13: Voorblad presentatie

Liquid Metal Thermal-Hydraulics Heat transfer for low Prandtl number fluids

13 Paris • 5 March 2013

• Issue with Low Prandtl number fluids

– Existing (U)RANS engineering turbulence

models all use Reynolds analogy for

coupling temperature and velocity fields

– Not valid for fluids with low Prandtl

numbers (e.g. liquid metals)

source: R. Stieglitz (KIT)

Viscous boundary layer

Thermal boundary layer

Ratio thermal/viscous

Reynolds analogy th=

Page 14: Voorblad presentatie

Liquid Metal Thermal-Hydraulics Heat transfer for low Prandtl number fluids

14 Paris • 5 March 2013

Velocity

Temperature (Pr = 1) Temperature (Pr = 0.01)

Field Scales Boundary

Layer

Velocity Small Thin

Temperature (Pr = 1) Small Thin

Temperature (Pr = 0.01) Large Thick

Page 15: Voorblad presentatie

Liquid Metal Thermal-Hydraulics Improvement of (RANS) models

15 Paris • 5 March 2013

• Implemented in cooperation between CD-adapco, NRG and model developer

Sasa Kenjeres (TU Delft) in STAR-CCM+ β-version

• Challenge: Derive a model for use in all flow regimes simultaneously

2

3210 i

u

j

ij

u

j

ji

uu

i gCx

UuC

x

TuuCCu

AHFM: Kenjeres &

Hanjalic (2005)

Flow

Regime Gr(Pr, Re)

(velocity) Heat transfer

Existing

Models

AHFM

Kenjeres

2000

AHFM

Kenjeres

2005

Natural Low Conduction &

Buoyancy -

+ (air)

- (LM)

+ (air)

+ (LM)

Mixed Intermediate Mixed - - +

Forced High Convection o/+ - +

stability

Careful selection

of model constants

Page 16: Voorblad presentatie

16 Paris • 5 March 2013

Core Thermal-hydraulics

Page 17: Voorblad presentatie

Core Thermal-Hydraulics Subchannel

17 Paris • 5 March 2013

• 7 pin rod bundle – Code independence (STAR-CCM+ vs. OpenFOAM)

– Application of various RANS turbulence models confirms negligible influence

• 19 pin rod bundle – Grid independence (1M vs 5M vs 9M)

• Validation (Challenge) – JAEA experiments (large uncertainties → limited

validation)

– ANL reference 7 pin LES benchmark (ANL-SCK-NRG cooperation starting 2013)

– NRG reference 1 pin LES (under preparation)

– Experiments in NACIE and KALLA loops (2013-2014)

7 pin bundle LES (ANL)

Single pin LES preparation (NRG)

19 pin RANS (NRG)

Page 18: Voorblad presentatie

Core Thermal-Hydraulics Fuel Assembly

• Numerical evaluation of performance of

spacer designs

– Pressure drop

– Clad temperatures

– Local velocities

– Cross flow

18 Paris • 5 March 2013

ALFRED FA (SRS)

Evaluation of spacer performance (NRG)

Page 19: Voorblad presentatie

Core Thermal-Hydraulics Fuel Assembly

• LES reference data (ANL)

– 7 Pin Bundle

– 19 Pin Bundle

– 37 Pin Bundle

– 217 Pin Bundle

• Validation of RANS and low

resolution approaches

– Pressure drop

• Improvement of correlations

• Extending applicability range of

correlations

– Velocity and it’s fluctuations

19 Paris • 5 March 2013

217 pin sodium bundle LES (ANL)

Page 20: Voorblad presentatie

Core Thermal-Hydraulics Fuel Assembly

20 Paris • 5 March 2013

Approach Traditional CFD LRGR CFD

Mesh

Solve All (Flow, bulk turbulence,

boundary layers,

secondary flows)

Main flow

characteristicts

Bulk turbulence

Sub Grid Model To consider

Page 21: Voorblad presentatie

Core Thermal-Hydraulics Complete Core

21 Paris • 5 March 2013

Complete geometry

Identify representative

block within complete

geometry

Section of geometry

Setup of numerical grid for

representative block

Detailed CFD-simulation

of representative block

Extraction of CG-Forces

employing CFD results

Complete geometry

Setup coarse mesh for

complete geometry

Simulation of complete

geometry

employing CGCFD

Parameterization

of CG-Forces

Page 22: Voorblad presentatie

22 Paris • 5 March 2013

Pool Thermal-hydraulics

Page 23: Voorblad presentatie

Pool Thermal-Hydraulics Fundamental Validation

• Triple Jet (Nam & Kim, 2004)

– LES & RANS

• Double Jet: MAX facility (ANL)

– Design support by LES

– Validate LES and RANS with

experimental results

23

LES of Triple parallel jet

experiments by Nam & Kim (2004)

MAX facility and design support (ANL)

Page 24: Voorblad presentatie

Pool Thermal-Hydraulics Integral Simulation

24 Paris • 5 March 2013

Democritos Water Mock-up

(VKI)

MYRRHA Design

(SCK)

ESCAPE LBE Mock-up

(SCK) Scaling simulations

Full scale – velocity scale – Froude scale

• Simulation of integral pool system

– Challenge: Validation with experimental campaign (water and

liquid metal)

Page 25: Voorblad presentatie

Pool Thermal-Hydraulics Gas Entrainment

• Determination of flow patterns in SFR upper

plenum to analyse gas entrainment risk

• From URANS to LES modeling approaches

• From single phase to multiphase

• Modeling core outlet and large components

25 Paris • 5 March 2013

Multiphase LES in TRIO-U (Tenchine, 2010)

URANS (NRG)

Page 26: Voorblad presentatie

26 Paris • 5 March 2013

System Dynamics

Page 27: Voorblad presentatie

System Dynamics

• Code Coupling

– ATHLET – OpenFOAM (KIT)

– Phenix natural convection test

– Pool in OpenFOAM

27 Paris • 5 March 2013

ATHLET nodalization and 3D pool snapshot from OpenFOAM (KIT)

Page 28: Voorblad presentatie

System Dynamics

• Code Coupling

– CATHARE – TRIO_U (CEA)

– Phenix natural convection test

– Dedicated post-processing tools enabling 3D visualization

(using 3D glasses) of sodium flow patterns in reactor pool

28 Paris • 5 March 2013

Page 29: Voorblad presentatie

29 Paris • 5 March 2013

Summary

Page 30: Voorblad presentatie

30 Paris • 5 March 2013

Summary & Conclusions

• Status of CFD developments and future challenges:

– Liquid metal turbulence

• Heat transport modelling for RANS and LES

• Thermal fluctuation prediction for thermal fatigue evaluation

• Flow induced vibrations of e.g. a fuel pin

– Core thermal hydraulics

• Wire wrap fuel assembly simulation and validation

• Low resolution CFD modelling of a fuel assembly to assess blockage scenarios

• Coarse Grid CFD development to allow modelling a complete core

– Pool thermal hydraulics

• Fundamental validation using separate effect facilities, e.g. multiple jets

• Pool modelling validation using prototypical scaled down facilities

• Gas entrainment modelling and validation

• Seismic evaluations including liquid metal sloshing

– System dynamics.

• Coupling of STH and CFD

Page 31: Voorblad presentatie

Acknowledgements

• Colleagues at

– NRG

– SCK•CEN

– KIT

– ANL

• Denis Tenchine and his colleagues at CEA!

31 Paris • 5 March 2013