Top Banner
Verification of SubDyn and HydroDyn Results Summery Evan Gaertner
13

Verification of SubDyn and HydroDyn Results Summery Evan Gaertner.

Dec 17, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Verification of SubDyn and HydroDyn Results Summery Evan Gaertner.

Verification of SubDyn and HydroDyn

Results Summery

Evan Gaertner

Page 2: Verification of SubDyn and HydroDyn Results Summery Evan Gaertner.

Case 1: MonopileDistributed Buoyancy

0 20 40 60 80-0.5

0

0.5

Time (s)

Buo

yanc

y F

orce

, X

(kN

/m) HydroDyn

0 20 40 60 80-0.5

0

0.5

Time (s)

Buo

yanc

y F

orce

, X

(kN

/m) Analytical

0 20 40 60 80-0.5

0

0.5

Time (s)

% D

iffer

ence

Z = -20

Z = -16

Z = -12Z = -8

Z = -4

Z = 0

0 20 40 60 80-0.5

0

0.5

Time (s)

Buo

yanc

y F

orce

, Y

(kN

/m) HydroDyn

0 20 40 60 80-0.5

0

0.5

Time (s)

Buo

yanc

y F

orce

, Y

(kN

/m) Analytical

0 20 40 60 80-0.5

0

0.5

Time (s)

% D

iffer

ence

Z = -20

Z = -16

Z = -12Z = -8

Z = -4

Z = 0

0 20 40 60 80-0.5

0

0.5

Time (s)

Buo

yanc

y F

orce

, Z

(kN

/m) HydroDyn

0 20 40 60 80-0.5

0

0.5

Time (s)

Buo

yanc

y F

orce

, Z

(kN

/m) Analytical

0 20 40 60 80-0.5

0

0.5

Time (s)

% D

iffer

ence

Z = -20

Z = -16

Z = -12Z = -8

Z = -4

Z = 0

Page 3: Verification of SubDyn and HydroDyn Results Summery Evan Gaertner.

Case 2: TripodBuoyancy

Distributed Buoyancy:

A) Horizontal (Member 45)

B) Vertical, Tapered (Member 46)

C) Angled (Member 20)

Tripod: Total BuoyancyFBx [N]

FBy [N]

FBz [N]

MBx [Nm]

MBy [Nm]

MBz [Nm]

HydroDyn -1.113E+02 2.930E-02 2.829E+06 -1.346E+00 7.741E+02 4.194E-02OTC: HydroDyn* 0 0 7.330E+06

OTC: STAR-CCM+* 0 0 7.460E+06

* Includes joint overlap

Page 4: Verification of SubDyn and HydroDyn Results Summery Evan Gaertner.

0 20 40 60 80-0.5

0

0.5

Time (s)

Buo

yanc

y F

orce

, Z

(kN

/m) HydroDyn

0 20 40 60 80

1.1372

1.1372

1.1372

1.1372

1.1373

x 104

Time (s)

Buo

yanc

y F

orce

, Z

(kN

/m) Analytical

0 5099.5

100

100.5

Time (s)

% D

iffer

ence

X = -6.201, Y = -10.74X = -9.9213, Y = -8.592

X = -13.6416, Y = -6.444

X = -17.3619, Y = -4.296

X = -21.0822, Y = -2.148X = -24.8025, Y = 0

0 20 40 60 80-0.5

0

0.5

Time (s)

Buo

yanc

y F

orce

, Z

(kN

/m) HydroDyn

0 20 40 60 80

1.762

1.764

1.766

1.768x 10

5

Time (s)

Buo

yanc

y F

orce

, Z

(kN

/m) Analytical

0 20 40 60 8099.5

100

100.5

Time (s)

% D

iffer

ence

Z = -34.7133Z = -34.2083

Z = -33.7033

Z = -33.1983

Z = -32.6933Z = -32.1883

Case 2: TripodDistributed Buoyancy

Horizontal Vertical, Tapered Angled

0 20 40 60 801.3768

1.3769

1.3769x 10

4

Time (s)

Buo

yanc

y F

orce

, Z

(kN

/m) HydroDyn

0 20 40 60 80

1.3773

1.3774

1.3774

1.3774

1.3774x 10

4

Time (s)

Buo

yanc

y F

orce

, Z

(kN

/m) Analytical

0 20 40 60 80

-0.4

-0.2

0

0.2

0.4

Time (s)

% D

iffer

ence

Z = -19.6538Z = -17.723

Z = -15.7923

Z = -13.8615

Z = -11.9308Z = -10

Page 5: Verification of SubDyn and HydroDyn Results Summery Evan Gaertner.

Case 3: JacketTotal Buoyancy

Jacket: Total BuoyancyFBx

[kN]FBy

[kN]FBz

[kN]MBx

[kNm]MBy

[kNm]MBz

[kNm]External 0 0 -1.96E+04 0 0 0Internal 0 0 -1.86E+04 0 0 0

Total 0 0 -3.81E+04 0 0 0Total

(H. SongNo Overlap)

0 0 3.88E+03

Hyd

roD

yn

Page 6: Verification of SubDyn and HydroDyn Results Summery Evan Gaertner.

Case 4: MonopileMorison LoadsCurrent: Linear velocity distribution from 0 to 2 m/s at MSL

0 20 40 60 80-0.5

0

0.5

Time (s)

Dyn

. P

ress

. F

orce

, X

(kN

/m)

HydroDyn

0 20 40 60 80-0.5

0

0.5

Time (s)

Dyn

. P

ress

. F

orce

, X

(kN

/m)

Analytical

0 20 40 60 80-0.5

0

0.5

Time (s)

% D

iffer

ence

Z = -20

Z = -16

Z = -12Z = -8

Z = -4

Z = 0

0 20 40 60 80-0.5

0

0.5

Time (s)

Iner

tial F

orce

, X

(kN

/m) HydroDyn

0 20 40 60 80-0.5

0

0.5

Time (s)

Iner

tial F

orce

, X

(kN

/m) Analytical

0 20 40 60 80-0.5

0

0.5

Time (s)

% D

iffer

ence

Z = -20

Z = -16

Z = -12Z = -8

Z = -4

Z = 0

0 20 40 60 80

0

2000

4000

6000

8000

Time (s)

Dra

g F

orce

, X

(K

N/m

)

HydroDyn

0 20 40 60 80

0

2000

4000

6000

8000

Time (s)

Dra

g F

orce

, X

(K

N/m

)

Analytical

0 20 40 60 80

0

2

4

6

x 10-6

Time (s)

% D

iffer

ence

Z = -20Z = -16

Z = -12

Z = -8

Z = -4Z = 0

Page 7: Verification of SubDyn and HydroDyn Results Summery Evan Gaertner.

Case 5: MonopileMorison LoadsRegular Waves: T = 10s, Hs = 6m

0 20 40 60 80-0.5

0

0.5

Time (s)

Dyn

. P

ress

. F

orce

, X

(kN

/m)

HydroDyn

0 20 40 60 80-0.5

0

0.5

Time (s)

Dyn

. P

ress

. F

orce

, X

(kN

/m)

Analytical

0 20 40 60 80-0.5

0

0.5

Time (s)

% D

iffer

ence

Z = -20

Z = -16

Z = -12Z = -8

Z = -4

Z = 0

0 20 40 60 80

-1000

0

1000

Time (s)

Dra

g F

orce

, X

(K

N/m

)

HydroDyn

0 20 40 60 80

-1000

0

1000

Time (s)

Dra

g F

orce

, X

(K

N/m

)

Analytical

0 20 40 60 80

-5

0

5

x 10-3

Time (s)

% D

iffer

ence

Z = -20Z = -16

Z = -12

Z = -8

Z = -4Z = 0

0 20 40 60 80

-2

0

2

x 104

Time (s)

Iner

tial F

orce

, X

(kN

/m) HydroDyn

0 20 40 60 80

-2

0

2

x 104

Time (s)

Iner

tial F

orce

, X

(kN

/m) Analytical

0 20 40 60 80-6

-4

-2

0

2

4x 10

-3

Time (s)

% D

iffer

ence

Z = -20Z = -16

Z = -12

Z = -8

Z = -4Z = 0

Page 8: Verification of SubDyn and HydroDyn Results Summery Evan Gaertner.

Case 6: MonopileMorison LoadsIrregular Waves: JONSWAP T = 10s, Hs = 8m

0 20 40 60 80-0.5

0

0.5

Time (s)

Dyn

. P

ress

. F

orce

, X

(kN

/m)

HydroDyn

0 20 40 60 80-0.5

0

0.5

Time (s)

Dyn

. P

ress

. F

orce

, X

(kN

/m)

Analytical

0 20 40 60 80-0.5

0

0.5

Time (s)

% D

iffer

ence

Z = -20

Z = -16

Z = -12Z = -8

Z = -4

Z = 0

0 20 40 60 80

-2

0

2

x 104

Time (s)

Dra

g F

orce

, X

(K

N/m

)

HydroDyn

0 20 40 60 80

-2

0

2

x 104

Time (s)

Dra

g F

orce

, X

(K

N/m

)

Analytical

0 20 40 60 80

-0.01

-0.005

0

0.005

0.01

Time (s)

% D

iffer

ence

Z = -20Z = -16

Z = -12

Z = -8

Z = -4Z = 0

0 20 40 60 80-4

-2

0

2

x 105

Time (s)

Iner

tial F

orce

, X

(kN

/m) HydroDyn

0 20 40 60 80-4

-2

0

2

x 105

Time (s)

Iner

tial F

orce

, X

(kN

/m) Analytical

0 20 40 60 80

-5

0

5

x 10-3

Time (s)

% D

iffer

ence

Z = -20Z = -16

Z = -12

Z = -8

Z = -4Z = 0

Page 9: Verification of SubDyn and HydroDyn Results Summery Evan Gaertner.

Case 7: Natural Frequencies Monopile

Ansys[Hz]

SubDyn[Hz] Difference

1 0.290 0.288 -0.80%2 0.290 0.288 -0.80%3 2.365 2.361 -0.17%4 2.365 2.361 -0.17%5 6.126 6.134 0.12%6 6.126 6.134 0.12%7 7.111 7.106 -0.07%8 11.487 11.414 -0.64%9 11.687 11.731 0.37%

10 11.687 11.731 0.37%11 19.051 19.450 2.10%12 19.051 19.450 2.10%13 23.034 23.394 1.56%14 26.823 27.240 1.56%15 27.385 29.941 9.33%16 27.385 29.941 9.33%17 34.881 36.123 3.56%18 36.023 41.244 14.49%19 36.023 41.244 14.49%20 45.211 46.649 3.18%

Tripod

Ansys[Hz]

SubDyn[Hz] Difference

1 0.321 0.323 0.62%2 0.321 0.323 0.62%3 2.649 2.750 3.82%4 2.649 2.750 3.82%5 3.883 4.045 4.17%6 3.883 4.045 4.17%7 3.897 4.060 4.16%8 3.915 4.078 4.17%9 3.915 4.078 4.17%

10 3.935 4.099 4.17%11 4.309 4.493 4.26%12 4.602 4.799 4.29%13 4.602 4.799 4.30%14 5.589 5.719 2.33%15 6.004 6.262 4.30%16 6.004 6.262 4.30%17 6.193 6.447 4.11%18 6.941 7.230 4.17%19 6.941 7.231 4.18%20 7.324 7.637 4.27%

Jacket

Ansys[Hz]

SubDyn[Hz] Difference

1 2.676 2.650 -0.98%2 2.676 2.650 -0.98%3 4.826 4.813 -0.27%4 5.281 5.205 -1.44%5 7.484 7.337 -1.97%6 7.484 7.337 -1.97%7 8.285 8.128 -1.89%8 8.582 8.585 0.04%9 9.018 9.030 0.13%

10 9.575 9.583 0.08%11 9.575 9.583 0.08%12 10.201 10.213 0.12%13 10.947 10.972 0.23%14 11.317 11.137 -1.59%15 11.680 11.705 0.21%16 11.684 11.705 0.18%17 11.768 11.794 0.22%18 11.929 11.881 -0.40%19 11.929 11.881 -0.40%20 11.983 12.005 0.18%

To Transition PieceTo Tower TopTo Tower Top

Page 10: Verification of SubDyn and HydroDyn Results Summery Evan Gaertner.

Natural Frequencies, TripodTripod

Old New

Ansys[Hz]

SubDyn[Hz] Difference SubDyn

[Hz] Difference

1 0.321 0.323 0.62% 0.323 0.62%2 0.321 0.323 0.62% 0.323 0.62%3 2.649 2.750 3.82% 2.750 3.82%4 2.649 2.750 3.82% 2.750 3.82%5 3.883 4.045 4.17% 4.045 4.17%6 3.883 4.045 4.17% 4.045 4.17%7 3.897 4.060 4.16% 4.060 4.16%8 3.915 4.078 4.17% 4.078 4.17%9 3.915 4.078 4.17% 4.078 4.17%

10 3.935 4.099 4.17% 4.099 4.17%11 4.309 4.493 4.26% 4.493 4.26%12 4.602 4.799 4.29% 4.799 4.29%13 4.602 4.799 4.30% 4.799 4.30%14 5.589 5.719 2.33% 5.719 2.33%15 6.004 6.262 4.30% 6.262 4.30%16 6.004 6.262 4.30% 6.262 4.30%17 6.193 6.447 4.11% 6.447 4.11%18 6.941 7.230 4.17% 7.230 4.17%19 6.941 7.231 4.18% 7.231 4.18%20 7.324 7.637 4.27% 7.637 4.27%

Page 11: Verification of SubDyn and HydroDyn Results Summery Evan Gaertner.

Case 8: Reaction Loads

Ansys[N]

SubDyn[N] Difference

Monopile 8.5610E+06 8.5577E+06 0.04%Tripod 1.4972E+07 1.4729E+07 1.62%Jacket 5.7942E+06 5.6957E+06 1.70%

Under Self Weight

Page 12: Verification of SubDyn and HydroDyn Results Summery Evan Gaertner.

OC4 Paper: Jacket Masses

Figure 2: HydroDynMass (t)

RNA 350TowerJacket 671.6243

Page 13: Verification of SubDyn and HydroDyn Results Summery Evan Gaertner.

OC4 Paper: Jacket Masses

Figure 3: HydroDynMass (t)

Hydrodynamic added mass to MSL -3,883.8Water mass in free flooded legs to MSL 183Growth mass 189.84