Top Banner

of 65

Về một phương pháp giải toán sơ cấp.pdf

Oct 31, 2015

Download

Documents

1110004
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • I HC THI NGUYN

    TRNG I HC KHOA HC

    Bi c Dng

    V MT PHNG PHP GII TON S CP

    Chuyn ngnh:Phng Php Ton S Cp

    M s: 60 46 0113

    LUN VN THC S TON HC

    Ngi hng dn khoa hc

    GS.TSKH. H Huy Khoi

    Thi Nguyn - 2012

    1S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 1Li cm n

    Lun vn c thc hin v hon thnh ti trng i hc Khoa hc

    - i hc Thi Nguyn di s hng dn khoa hc ca GS. TSKH. H

    Huy Khoi. Qua y, tc gi xin c gi li cm n su sc n thy gio,

    ngi hng dn khoa hc ca mnh, GS.TSKH. H Huy Khoi, ngi

    a ra ti v tn tnh hng dn trong sut qu trnh nghin cu ca

    tc gi. ng thi tc gi cng chn thnh cm n cc thy c trong khoa

    Ton - Tin hc trng i hc Khoa hc, i hc Thi Nguyn, to

    mi iu kin cho tc gi v ti liu v th tc hnh chnh tc gi hon

    thnh bn lun vn ny. Tc gi cng gi li cm n n gia nh, BGH

    trng THPT Yn Thy B-Yn Thy-Ha Bnh v cc bn trong lp Cao

    hc K4, ng vin gip tc gi trong qu trnh hc tp v lm lun

    vn.

    2S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 1Mc lc

    M u 3

    1 nh ngha v tnh cht ca s phc 5

    1.1 nh ngha . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.2 Tnh cht s phc . . . . . . . . . . . . . . . . . . . . . . . 6

    1.2.1 Cc tnh cht lin quan n php cng . . . . . . . 6

    1.2.2 Cc tnh cht lin quan n php nhn . . . . . . . 6

    1.3 Dng i s ca s phc . . . . . . . . . . . . . . . . . . . 7

    1.3.1 nh ngha v tnh cht . . . . . . . . . . . . . . . . 7

    1.3.2 Gii phng trnh bc hai . . . . . . . . . . . . . . . 10

    1.3.3 ngha hnh hc ca cc s phc v modun . . . . 12

    1.3.4 ngha hnh hc ca cc php ton i s . . . . . 13

    1.4 Dng lng gic ca s phc . . . . . . . . . . . . . . . . . 15

    1.4.1 Ta cc trong mt phng . . . . . . . . . . . . . 15

    1.4.2 Ta cc ca s phc . . . . . . . . . . . . . . . . 16

    1.4.3 Cc php ton s phc trong ta cc . . . . . . 16

    1.4.4 ngha hnh hc ca php nhn . . . . . . . . . . 17

    1.4.5 Cn bc n ca n v . . . . . . . . . . . . . . . . . 17

    1.5 Bi tp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    2 S dng s phc trong gii ton s cp 25

    2.1 S phc v cc bi ton hnh hc . . . . . . . . . . . . . . . 25

    2.1.1 Mt vi khi nim v tnh cht . . . . . . . . . . . . 25

    2.1.2 iu kin thng hng , vung gc v cng thuc

    mt ng trn . . . . . . . . . . . . . . . . . . . . 30

    2.1.3 Tam gic ng dng . . . . . . . . . . . . . . . . . 31

    2.1.4 Tam gic u . . . . . . . . . . . . . . . . . . . . . 33

    3S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 22.1.5 Hnh hc gii tch vi s phc . . . . . . . . . . . . 35

    2.1.6 Tch thc ca hai s phc . . . . . . . . . . . . . . 39

    2.1.7 Bi tp . . . . . . . . . . . . . . . . . . . . . . . . . 43

    2.2 S phc v cc bi ton i s , lng gic . . . . . . . . . 45

    2.2.1 Cc bi ton lng gic . . . . . . . . . . . . . . . 45

    2.2.2 Cc bi ton i s . . . . . . . . . . . . . . . . . . 52

    2.2.3 Bi tp . . . . . . . . . . . . . . . . . . . . . . . . . 54

    2.3 S phc v cc bi ton t hp . . . . . . . . . . . . . . . 55

    Kt lun 62

    Ti liu tham kho 63

    4S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 3M U

    1. L do chn ti

    Trong chng trnh ton hc cp THPT s phc c a vo ging

    dy phn gii tch ton lp 12. Ton b phn s phc mi ch a ra

    nh ngha s phc v mt vi tnh cht n gin ca n. ng dng s

    phc trong gii ton mi ch dng li mt vi bi tp hnh hc n gin.

    Nhm gip cc em hc sinh kh gii c ci nhn ton din hn v s phc,

    c bit s dng s phc gii mt s bi ton s cp: hnh hc, i

    s, t hp, lng gic nn ti chn ti lun vn: V mt phng

    php gii ton s cp.

    2. Mc ch nghin cu

    H thng ha cc dng bi tp hnh hc, i s, t hp, lng gic c

    gii bng phng php s phc ng thi nm c mt s k thut tnh

    ton lin quan.

    3. Nhim v ti

    a ra nh ngha v tnh cht ca s phc. c bit s dng s phc

    gii mt s dng ton: hnh hc, i s, t hp, lng gic.

    4. i tng v phm vi nghin cu

    Nghin cu cc bi ton hnh hc, i s, t hp, lng gic trn tp

    hp s phc v cc ng dng lin quan.

    Nghin cu cc ti liu bi dng hc sinh gii, k yu hi tho chuyn

    ton, t sch chuyn ton...

    5. ngha khoa hc v thc tin ca ti

    To c mt ti ph hp cho vic ging dy, bi dng hc sinh

    trung hc ph thng. ti ng gp thit thc cho vic hc v dy cc

    chuyn ton trong trng THPT, em li nim am m sng to trong

    vic dy v hc ton.

    6. Cu trc lun vn

    Lun vn gm 3 chng

    Chng 1: nh ngha v tnh cht ca s phc

    Chng 2: Cc dng biu din s phc

    Chng 3: S dng s phc trong gii ton s cp

    5S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 4Do thi gian v khi lng kin thc ln, chc chn bn lun vn khng

    th trnh khi nhng thiu st, tc gi rt mong nhn c s ch bo tn

    tnh ca cc thy c v bn b ng nghip, tc gi xin chn thnh cm n!

    Thi Nguyn, nm 2012

    Tc gi

    6S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 5Chng 1

    nh ngha v tnh cht ca s phc

    1.1 nh ngha

    Gi thit ta bit nh ngha v cc tnh cht c bn ca tp s thc RTa xt tp hp

    R2 = R R = {(x, y) |x, y R } .Hai phn t (x1, y1) v (x2, y2) bng nhau khi v ch khi{

    x1 = x2

    y1 = y2

    Cc php ton cng v nhn c nh ngha trn R2 nh sau :

    z1 + z2 = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) R2.v

    z1.z2 = (x1, y1) . (x2, y2) = (x1x2 y1y2, x1y2 + x2y1) R2.vi mi z1 = (x1, y1) R2 v z2 = (x2, y2) R2. Phn t z1 + z2 gi ltng ca z1, z2 , phn t z1.z2 R2 gi l tch ca z1, z2.Nhn xt

    1) Nu z1 = (x1, 0) R2 v z2 = (x2, 0) R2 th z1z2 = (x1x2, 0).2))Nu z1 = (0, y1) R2 v z2 = (0, y2) R2 th z1z2 = (y1y2, 0).nh ngha 1.1.1. Tp hp R2 cng vi php cng v nhn gi l tp sphc, k hiu C. Mi phn t z = (x, y) C c gi l mt s phc.

    K hiu C ch tp hp C\ {(0, 0)} .

    7S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 61.2 Tnh cht s phc

    1.2.1 Cc tnh cht lin quan n php cng

    Php cng cc s phc tha mn cc iu kin sau y

    Tnh giao hon : z1 + z2 = z2 + z1 vi mi z1, z2 C.Tnh kt hp :(z1 + z2) + z3 = z1 + (z2 + z3) vi mi z1, z2, z3 C.Phn t n v : C duy nht mt s phc 0 = (0, 0) C z+ 0 = 0 + zvi mi z = (x, y) C.Phn t i : Mi s phc z = (x, y) C c duy nht s phc z =(x,y) C sao cho z + (z) = (z) + z = 0.

    1.2.2 Cc tnh cht lin quan n php nhn

    Php nhn cc s phc tha mn cc iu kin sau y

    Tnh giao hon:z1z2 = z2z1 vi mi z1, z2 C.Tnh kt hp:(z1z2)z3 = z1(z2z3) vi mi z1, z2, z3 C.Phn t n v: C duy nht s phc 1 = (1, 0) C tha mn z.1 =1.z = z. S phc 1 = (1, 0) gi l phn t n v vi mi z C.Phn t nghch o:Mi s phc z = (x, y) C,z 6= 0 c duy nht sphc z1 = (x,, y,) C sao cho z.z1 = z1z = 1 s phc z1 = (x,, y,)gi l phn t nghch o ca s phc z = (x, y) C.

    Ly tha vi s m nguyn ca s phc z C c nh ngha nhsau z0 = 1 ; z1 = z ; z2 = z.z ,v zn = z.z...z

    n l n

    vi mi s nguyn n > 0

    v zn = (z1)n vi mi s nguyn n < 0.Mi s phc z1, z2, z3 C v mi s nguyn m,n ta c cc tnh cht

    sau

    1) zm.zn = zm+n;

    2)zm

    zn= zmn;

    3) (zm)n = zmn;

    4) (z1z2)n = zn1 z

    n2;

    5)

    (z1z2

    )n=zn1zn2

    ;

    Khi z = 0 ta nh ngha 0n = 0 vi mi s nguyn n > 0.

    8S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 7Tnh phn phi : z1 (z2 + z3) = z1z2 + z1z3 vi mi z1, z2, z3 C.Trn y l nhng tnh cht ca php cng v php nhn,thy rng tp

    hp C cc s phc cng vi cc php ton trn lp thnh mt trng.

    1.3 Dng i s ca s phc

    1.3.1 nh ngha v tnh cht

    Mi s phc c biu din nh mt cp s sp th t, nn khi thc

    hin cc bin i i s thng khng c thun li. l l do tm

    dng khc khi vit

    Ta s a vo dng biu din i s mi. Xt tp hp R{0} cng viphp ton cng v nhn c nh ngha trn R2.

    Hm s

    f : R R {0} , f (x) = (x, 0)l mt song nh v ngoi ra (x, 0) + (y, 0) = (x+ y, 0) v (x, 0).(y, 0) =

    (xy, 0).

    Ngi c s khng sai lm nu ch rng cc php ton i s trn

    R {0} ng nht vi cc php ton trn R; v th chng ta c th ngnht cp s (x, 0) vi s x, vi mi x R. Ta s dng song nh trn v khiu (x, 0) = x.

    Xt i = (0, 1) ta c

    z = (x, y) = (x, 0) + (0, y) = (x, 0) + (y, 0).(0, 1)

    = x + yi = (x, 0) + (0, 1).(y, 0)

    T trn ta c mnh

    Mnh 1.3.1. Mi s phc z = (x, y) c th biu din duy nht di

    dng

    z = x+ yi

    Vi x, y R.H thc i2 = 1 c suy ra t nh ngha php nhn i2 = i.i =

    (0, 1).(0, 1) = (1, 0) = 1.

    9S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 8Biu thc x + yi c gi l biu din i s (dng) ca s phc z =

    (x, y). V th ta c th vit C ={x+ yi |x R, y R , i2 = 1}. T

    gi ta k hiu z = (x, y) bi z = x + yi. S thc x = Re(z) c gi l

    phn thc ca s phc z, y = Im(z) c gi l phn o ca z. S phc

    c dng yi , y R gi l s thun o, s phc i gi l s n v o.T cc h thc trn ta d dng c cc kt qu sau:

    a) z1 = z2 khi v ch khi Re(z1) = Re(z2) v Im(z1) = Im(z2).

    b) z R khi v ch khi Im(z) = 0.c) z C\R khi v ch khi Im(z) 6= 0.S dng dng i s, cc php ton v s phc c thc hin nh sau:

    Php cng

    z1 + z2 = (x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i C.

    D thy tng hai s phc l mt s phc c phn thc l tng cc phn

    thc, c phn o l tng cc phn o:

    Re(z1 + z2) = Re(z1) + Re(z2);

    Im(z1 + z2) = Im(z1) + Im(z2).

    Php tr

    z1 z2 = (x1 + y1i) (x2 + y2i) = (x1 x2) + (y1 y2)i C.Ta c

    Re(z1 z2) = Re(z1) Re(z2);Im(z1 z2) = Im(z1) Im(z2).

    Php nhn

    z1.z2 = (x1 + y1i).(x2 + y2i) = (x1x2 y1y2) + (x1y2 + x2y1) i C.Ta c

    Re(z1z2) = Re(z1) Re(z2) Im(z1) Im(z2);Im(z1z2) = Im(z1) Re(z2) + Im(z2) Re(z1).

    Mi s thc , s phc z = x+ yi, z = (x+ yi) = x+ yi C ltch ca mt s thc vi mt s phc. Ta c cc tnh cht sau

    10S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 91) (z1 + z2) = z1 + z2;

    2) 1(2z) = (12)z;

    3)(1 + 2)z = 1z + 2z.

    Ly tha ca s i

    Cc cng thc cho s phc vi ly tha l s nguyn c bo ton i

    vi dng i s z = x+ yi. Xt z = i, ta thu c

    i0 = 1 ; i1 = i ; i2 = 1 ; i3 = i2.i = i

    i4 = i3.i = 1; i5 = i4.i = i ; i6 = i5.i = 1; i7 = i6.i = i

    Ta c th tng qut cc cng thc trn i vi s m nguyn dng n

    i4n = 1 ; i4n+1 = i ; i4n+2 = 1 ; i4n+3 = iV th in {1 , 1 ,i , i} vi mi s nguyn n > 0. Nu n l s

    nguyn m ta c:

    in =(i1)n

    =

    (1

    i

    )n= (i)n .

    S phc lin hp

    Mi s phc z = x+ yi u c s phc z = x yi, s phc c gil s phc lin hp hoc s phc lin hp ca s phc z.

    Mnh 1.3.2. 1) H thc z = z ng khi v ch khi z R;2)Mi s phc z ta lun c ng thc z = z;

    3)Mi s phc z ta lun c z.z l mt s thc khng m ;

    4)z1 + z2 = z1 + z2 (s phc lin hp ca mt tng bng tng cc s phc

    lin hp);

    5)z1.z2 = z1.z2(s phc lin hp ca mt tch bng tch cc s phc lin

    hp);

    6)Mi s phc z khc 0 ng thc sau lun ng z1 = z1;

    11S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 10

    7)

    (z1z2

    )=

    z1z2, z2 6= 0 (lin hp ca mt thng bng thng cc lin

    hp);

    8)Cng thc Re(z) =z + z

    2v Im(z) =

    z z2i

    , ng vi mi s phc

    z C.

    Ghi ch

    a) phn t nghch o ca s phc z C c th c tnh nh sau1

    z=

    z

    z.z=

    x yix2 + y2

    =x

    x2 + y2 yx2 + y2

    i.

    b) S phc lin hp c s dng trong vic tm thng ca hai s phc

    nh sau:

    z1z2

    =z1.z2z2z2

    =(x1 + y1i) (x2 y2i)

    x22 + y22

    =x1x2 + y1y2x22 + y

    22

    +x1y2 + x2y1x22 + y

    22

    i.

    Modun ca s phc

    S |z| = x2 + y2 c gi l modun ca s phc z = x+ yi.Mnh 1.3.3. 1) |z| 6 Re(z) 6 |z| v |z| 6 Im(z) 6 |z|;2) |z| > 0 , z C,ngoi ra |z| = 0 khi v ch khi z = 0;3) |z| = |z| = |z|;4) z.z = |z|2 ;5)|z1z2| = |z1| . |z2| (m un ca mt tch bng tch cc m un);6) |z1| |z2| 6 |z1 + z2| 6 |z1|+ |z2|;7)z1 = |z|1 , z 6= 0;

    8)

    z1z2 = |z1||z2| , z2 6= 0 (m un ca mt tch bng tch cc m un);

    9)|z1| |z2| 6 |z1 z2| 6 |z1|+ |z2| .

    1.3.2 Gii phng trnh bc hai

    By gi chng ta c th gii phng trnh bc hai vi h s thc:

    ax2 + bx+ c = 0 , a 6= 0

    12S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 11

    trong trng hp bit thc = b2 4ac nhn gi tr m.Bng cch bin i, d dng a phng trnh v dng tng ng

    sau

    a

    [(x+

    b

    2a

    )2+4a2

    ]= 0.

    Do (x+

    b

    2a

    )2 i2

    (2a

    )2= 0.

    V th

    x1 =b+ i

    2a, x2 =

    b i2a

    .

    Cc nghim trn l cc s phc lin hp ca nhau v ta c th phn tch

    thnh tha s nh sau

    ax2 + bx+ c = a (x x1) (x x2) .

    By gi chng ta xt phng trnh bc hai tng qut vi h s phc

    az2 + bz + c = 0 , a 6= 0

    S dng cc bin i i s nh trng hp phng trnh bc hai vi h

    s thc ta c:

    a

    [(z +

    b

    2a

    )2+4a2

    ]= 0.

    ng thc trn tng ng vi(z +

    b

    2a

    )2=

    4a2

    hoc (2az + b)2 = .

    Vi = b2 4ac cng c gi l bit thc ca phng trnh bc hai.t y = 2az + b phng trnh trn c rt gn v dng

    y2 = = u+ vi

    13S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 12

    vi u,v l cc s thc

    Phng trnh trn c li gii

    y1,2 = (

    r + u

    2+ (sgn v)

    r u

    2i

    ),

    Vi r = || ,v sgnv l du ca s thc vNghim ban u ca phng trnh l:

    z1,2 =1

    2a(b+ y1,2) .

    Ta c mi lin h gia cc nghim v h s:

    z1 + z2 = ba, z1.z2 =

    c

    a.

    Khi phn tch ra tha s

    az2 + bz + c = a (z z1) (z z2).

    Nh vy cc tnh cht trn c bo ton khi cc h s ca phng trnh

    thuc trng s phc C.

    1.3.3 ngha hnh hc ca cc s phc v modun

    ngha hnh hc ca s phc

    Chng ta nh ngha s phc z = (x, y) = x + yi l mt cp s thc

    sp th t (x, y) RR, v th hon ton t nhin khi xem mi s phcz = x+ yi l mt im M(x, y) trong khng gian R R.

    Xt P l tp hp cc im ca khng gian

    vi h trc ta xOy

    v song nh : C P , (z) = M (x, y) .im M(x; y)c gi l dng hnh hc ca s phc z = x + yi. S

    phc z = x + yi c gi l ta phc ca im M(x; y). Chng ta k

    hiu M(z) ch ta phc ca imM l s phc z.

    Dng hnh hc ca s phc lin hp z ca s phc z = x + yi l im

    M (x,y) i xng vi M(x, y) qua truc ta Ox.

    14S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 13

    Dng hnh hc ca s i -z ca s phc z = x+yi l imM (x,y)i xng vi M(x, y) qua gc ta .

    Song nh t tp R ln trc Ox ta gi l trc thc, ln trc Oy ta gil trc o.

    Khng gian

    cng vi cc im c ng nht vi s phc gi l

    khng gian phc.

    Ta cng c th ng nht cc s phc z = x+ yi vi vc t v = OM, vi M(x, y) l dng hnh hc ca s phc z.

    Gi V0 l tp hp cc vc t c im gc l gc ta O. Ta c th nh

    ngha song nh : C V0 , (z) = OM = xi + yj , vi i , j l ccvc t n v trn trc ta Ox, Oy.

    ngha hnh hc ca modun

    Xt s phc z = x + yi biu din hnh hc trong mt phng lM(x, y).

    Khong cch clit OM cho bi cng thc

    OM =

    (xM xO)2 + (yM yO)2.

    V th OM =x2 + y2 = |z| = |v | m un |z| ca s phc z = x + yi

    l di ca on thng OM hoc l ln ca vc t v = xi + yj .

    Ch

    a) Mi s thc dng r, tp hp cc s phc c m un r tng ng

    vi ng trnC (O; r) tm O bn knh r trong mt phng.

    b) Cc s phc z vi |z| < r l cc im nm bn trong ng trnC(O; r). Cc s phc z vi|z| > r l cc im nm bn ngoi ng trnC(O; r).

    1.3.4 ngha hnh hc ca cc php ton i s

    a) Php cng v php tr

    Xt hai s phc z1 = x1 + y1i v z2 = x2 + y2i tng ng vi hai vc

    t v1 = x1i + y2j v v2 = x2i + y2j .

    15S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 14

    Tng ca hai s phc l

    z1 + z2 = (x1 + x2) + (y1 + y2) i.

    Tng hai vc t

    v1 +v2 = (x1 + x2)i + (y1 + y2)j .

    V th z1 + z2 tng ng viv1 +v2 .

    Hon ton tng t i vi php tr

    Hiu ca hai s phc l

    z1 z2 = (x1 x2) + (y1 y2) i.

    Hiu hai vc t

    v1 v2 = (x1 x2)i + (y1 y2)j .

    V th z1 z2 tng ng vi v1 v2 .

    Ch

    Khong cch gia M1 (x1, y1) v M2 (x2, y2) bng m un ca s phc

    z1 z2 hoc di ca vc t v1 v2 . Vy :

    M1M2 = |z1 z2| = |v1 v2 | =

    (x2 x1)2 + (y2 y1)2.

    b) Tch ca s thc v s phc

    Xt s phc z = x + yi tng ng vi vc t v = xi + yj . Nu l s thc , th tch s thc z = x + yi tng ng vi vc tv = x

    i + y

    j .

    Ch : Nu > 0 th vc tv v v cng hng v |v | = |v |,

    nu < 0 th vc tv v v ngc hng v |v | = |v |. Tt nhin

    = 0 th v = 0 .

    16S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 15

    1.4 Dng lng gic ca s phc

    1.4.1 Ta cc trong mt phng

    Xt mt phng ta vi M(x, y) khng trng gc ta . S thc

    r =x2 + y2 gi l bn knh cc ca imM . Gc nh hng t [0, 2pi)

    gia vc tOM vi chiu dng ca trc ta Ox gi l argumen cc ca

    im M . Cp s (r, t) gi l ta cc ca im M . Ta s vit M (r, t).Ch hm s

    h : R R\ {(0, 0)} (0,)x [0, 2pi) , h ((x, y)) = (r, t)l song nh.

    Gc ta O l im duy nht sao cho r = 0 , argumen t ca gckhng c nh ngha.

    Mi im M trong mt phng , c duy nht giao im P ca tia vi

    ng trn n v gc O. im P ging nh argument cc t. S dngnh ngha hm sin v cos ta c

    x = r cos t , y = r sin t.

    V th ta d dng c ta Cc ca mt im t ta cc

    Ngc li, xt im M(x, y). Bn knh cc l r =x2 + y2. Ta xc

    nh argument cc trong cc trng hp sau

    a)Nu x 6= 0 , t tan t = yx

    ta suy ra

    t = arctany

    x+ kpi

    Vi

    k =

    0 khi x > 0 , y > 01 khi x < 0 , y R2 khi x > 0 , y < 0

    b)Nu x = 0 v y 6= 0 th

    t =

    pi

    2khi y > 0

    3pi

    2khi y < 0

    17S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 16

    1.4.2 Ta cc ca s phc

    Mi s phc z = x+ yi ta c th vit di dng cc

    z = r (cos t + i sin t) ,

    vi r [0,) v t [0, 2pi) l ta cc dng hnh hc ca s phcz.

    Argument cc ca dng hnh hc ca s phc z c gi l argument

    ca z, k hiu l arg z. Bn knh cc ca dng hnh hc ca s phc z

    bng m un cua z. Khi z 6= 0 m un v argument ca z c xc nhmt cch duy nht.

    Xt z = r (cos t + i sin t) v t = t + 2kpi vi k l s nguyn th

    z = r (cos (t 2kpi) + i sin (t 2kpi)) = r (cos t+ i sin t) .Mi s phc z c th biu din nh z = r (cos t+ i sin t) vi r > 0 vt R. Tp hp Arg z = {t = t + 2kpi , k Z} c gi l arguent mrng ca s phc z.

    V th, hai s phc z1, z2 6= 0 c dngz1 = r1 (cos t1 + i sin t1) v z2 = r2 (cos t2 + i sin t2)

    bng nhau khi v ch khi r1 = r2 v t1 t2 = 2kpi, vi k l s nguyn.Ch Cc dng sau nn nh

    1 = cos0 + i sin 0 , i = cospi

    2+ i sin

    pi

    2

    1 = cospi + i sin pi , i = cos3pi2

    + i sin3pi

    2.

    1.4.3 Cc php ton s phc trong ta cc

    Php nhn Gi s rng

    z1 = r1 (cos t1 + i sin t1) v z2 = r2 (cos t2 + i sin t2)

    th

    z1z2 = r1r2 (cos (t1 + t2) + i sin (t1 + t2)) .

    18S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 17

    Ly tha ca mt s phc (De moirve) Cho z = r (cos t+ i sin t) ,

    n N, ta czn = rn (cosnt+ i sinnt) .

    Php chia Gi s rng

    z1 = r1 (cos t1 + i sin t1) v z2 = r2 (cos t2 + i sin t2)

    thz1z2

    =r1r2

    (cos (t1 t2) + i sin (t1 t2)) .

    1.4.4 ngha hnh hc ca php nhn

    Xt

    z1 = r1 (cos t1 + i sin t

    1)

    v

    z2 = r2 (cos t2 + i sin t

    2) .

    Biu din hnh hc ca chng lM1(r1, t1) , M2(r2, t

    2). Gi P1 , P2 ln

    lt l giao im ca C(O, 1) vi cc tia (OM1 v (OM2 . Ly P3 C(O, 1)vi argument cc l t1+t

    2v chnM3 (OP3 sao cho OM3 = OM1.OM2.

    Ly z3 c ta M3. im M3 (r1r2, t1 + t

    2) l dng hnh hc z1.z2

    Ly A l dng hnh hc ca s phc 1 . V

    OM3OM1

    =OM2

    1 OM3

    OM2=OM2OA

    v M2OM3 = AOM1 nn hai tam gic M2OM3 v AOM1 ng dng.

    Khi biu din dng hnh hc ca mt thng ch rng dng hnh hc

    caz3z2

    l im M1.

    1.4.5 Cn bc n ca n v

    Cho s nguyn dng n > 2 v s phc z0 6= 0, ging nh trn trngs thc, phng trnh

    Zn z0 = 0

    19S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 18

    c s dng nh ngha cn bc n ca s z0. V vy mi mt gi tr Z

    tha mn phng trnh trn l mt cn bc n ca z0.

    nh l 1.4.1. Cho z0 = r (cos t + i sin t) l s phc vi r > 0 v

    t [0, 2pi) S phc z0 c n cn bc n phn bit cho bi cng thc

    Zk =nr

    (cos

    t + 2kpin

    + i sint + 2kpi

    n

    )vi k = 0, n 1.

    Chng minh:S dng dng cc ca s phc vi argument xc nh

    Z = (cos+ i sin) . Theo nh ngha Zn = z0 hay

    n (cosn+ i sinn) = r (cos t + i sin t) .

    Ta c n = r v n = t + 2kpi vi k Z . V th = nr vk =

    t

    n+ k.

    2pi

    nvi k Z. Do nghim ca (1) l

    Zk =nr

    (cos

    t + 2kpin

    + i sint + 2kpi

    n

    )vi k Z.

    Nhn thy rng 0 6 0 < 1... < n1 , v th cc s k , k {0, 1...., n 1} chnh l cc argument v k = k. Ta c n gi tr cn phnbit ca z0:Z0, Z1 , ...., Zn1 . Cho k l s nguyn v r {0, 1, ..., n 1},th r ng d vi k theo modn. Khi k = nq + r Z v

    k =tn

    + (nq + r)2pi

    n=tn

    + r2pi

    n+ 2qpi = r + 2qpi.

    Nhn thy Zk = Zr do

    {Zk : k Z} = {Z0 , Z1, ..., Zn1} .Vy c chnh xc n gi tr phn bit ca cn bc n.

    Biu din hnh hc cc gi tr ca cn bc n l cc nh ca mt n gic

    u ni tip trong ng trn c tm l gc ta , bn knh l nr.

    20S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 19

    Ta chng minh iu trn nh sau, k hiu M0,M1, ...,Mn1 l ccim c ta phc Z0 , Z1, ..., Zn1. V OMk = |Zk| = n

    r vi k

    {0, 1, ..., n 1} nn cc im Mk nm trn ng trn C (O, rn). Bn

    cnh , s o ca cung MkMk+1 bng

    argZk+1 argZk = t + 2 (k + 1) pi (t + 2kpi)

    n=

    2pi

    n,

    vi k {0, 1, ...., n 2} v s o cung Mn1M0 l 2pin

    = 2pi (n 1) 2pin.

    V tt c cc cung M1M2, ...,Mn1M0 u bng nhau nn a gicM0M1...Mn1 l a gic u.

    Cn bc n ca n v

    Cc nghim phng trnh Zn 1 = 0 c gi l cc cn bc n can v.V 1 = cos0 + i sin 0 nn t cng thc cn bc n ca s phc ta c

    cn bc n ca n v

    k = cos2kpi

    n+ i sin

    2kpi

    n, k {0, 1, ..., n 1} .

    C th ta c

    0 = cos 0 + i sin 0 = 1;

    1 = cos2pi

    n+ i sin

    2pi

    n= ;

    2 = cos4pi

    n+ i sin

    4pi

    n= 2;

    . . .

    n1 = cos2 (n 1) pi

    n+ i sin

    2 (n 1)pin

    = n1.

    Tp hp{

    1, , 2, ..., n1}k hiu Un. Ta c tp hp Un c sinh bi

    , mi phn t ca Un l mt ly tha ca .

    Ging nh trc, biu din hnh hc cc cn bc n ca mt s phc l

    cc nh ca mt a gic u n cnh, ni tip trong ng trn n v m

    c mt nh l 1. Ta xt mt vi gi tr ca n

    21S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 20

    i) vi n = 2, phng trnh Z2 1 = 0 c cc nghim 1 v 1 y lcc cn bc hai ca n v

    ii) vi n = 3, phng trnh Z31 = 0 c cc nghim cho bi cng thc

    k = cos2kpi

    3+ i sin

    2kpi

    3

    vi k {0, 1, 2} .V th

    0 = 1 , 1 = cos2pi

    3+ i sin

    2pi

    3= 1

    2+ i

    3

    2,

    v

    2 = cos4pi

    3+ i sin

    2pi

    3= 1

    2 i

    3

    2.

    y l cc nh ca tam gic u ni tip ng trn C (O, 1) .

    iii) vi n = 4 ,cc cn bc 4 l

    k = cos2kpi

    4+ i sin

    2kpi

    4

    vi k {0, 1, 2, 3} .C th nh sau

    0 = 1 , 1 = cospi

    2+ i sin

    pi

    2= i

    2 = cospi + i sin pi = 1 , 3 = cos3pi2

    + i sin3pi

    2= i.

    Ta c

    U4 ={

    1, i, i2, i3}

    = {1, i,1,i} .Biu din hnh hc ca cc cn bc bn l cc nh ca hnh vung ni

    tip ng trn C (O, 1)c mt nh l 1.

    Cn k Un c gi l cn nguyn thy nu mi s nguyn dngm < n ta c mk 6= 1.Mnh 1.4.2. 1) Nu n|q , mi nghim ca phng trnh Zn 1 = 0l nghim ca phng trnh Zq 1 = 0;

    22S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 21

    2) Nghim chung ca phng trnh Zm 1 = 0 v Zn 1 = 0 l ccnghim ca phng trnh Zd 1 = 0; vi d = gcd(m,n) (d:c chung lnnht), Um Un = Ud;

    3)Cc nghim nguyn thy ca phng trnh Zm 1 = 0 l

    k = cos2kpi

    m+ i sin

    2kpi

    m;

    vi 0 6 k 6 m v gcd (k,m) = 1.

    Mnh 1.4.3. Nu Un l mt cn nguyn thy ca n v th ttc cc nghim ca phng trnh Zn 1 = 0 l r, r+1 , ..., r+n1 vi rl s nguyn dng ty .

    Mnh 1.4.4. Cho 0 , 1 , ...., n1 l cc cn bc n ca n v . Vimi s nguyn dng n ta lun c h thc

    n1j=0

    kj =

    {n, n|k ;0, n 6 |k.

    Mnh 1.4.5. Cho p l s nguyn t v = cos2pi

    p+ i sin

    2pi

    p. Nu

    a0 , a1 , ..., ap1 l cc s nguyn khc khng ,h thc

    a0 + a1+ ...+ ap1p1 = 0

    ng khi v ch khi a0 = a1 = ... = ap1.

    1.5 Bi tp

    Bi 1 Cho cc s phc z1 = (1, 2) , z2 = (2, 3) , z3 = (1 1) hytnh cc tng sau:a) z1 + z2 + z3 ; b) z1z2 + z2z3 + z3z1 ; c) z1z2z3 ;

    d) z21 + z22 + z

    23 ; e)

    z21 + z22

    z22 + z23

    ; f)z1z2

    +z2z3

    +z3z1.

    Bi 2 Gii cc phng trnh sau :a) z + (5, 7) = (2, 1) ; b) (2, 3) + z = (5,1) ;c) z. (2, 3) = (4, 5) ; d)

    z

    (1, 3) = (3, 2)

    23S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 22

    Bi 3 Gii cc phng trnh sau trn tp Ca) z2 + z + 1 = 0 ; b) z3 + 1 = 0 .

    Bi 4 Cho z0 = (a, b) C . Tm s phc z tha mn z2 = z0.Bi 5 Tm cc s thc x, y trong cc trng hp sau:

    a) (1 2i)x+ (1 + 2i) y = 1 + i ; b) x 33 + i

    +y 33 i = i ;

    c) (4 3i)x2 + (1 + 2i)xy = 4y2 12x2 +

    (3xy 2y2) i .

    Bi 7 Tnh :a) (2 i) (3 + 2i) (5 4i) ; b) (2 4i) (5 + 2i) + (3 + 4i) (6 i) ;

    c)

    (1 + i

    1 i)16

    +

    (1 i1 + i

    )16; d)

    (1 + i3

    2

    )6+

    (1 i7

    2

    )6;

    e)3 + 7i

    2 + 3i+

    5 8i2 3i .

    Bi 8 Tnh:a) i2000 + i1999 + i201 + i82 + i47 ; b)En = 1 + i+ i

    2 + ...+ in , 1 6 n N;c) i1.i2.i3...i2000 ; d) i5 + (i)7 + (i)13 + i100 + (i)94 .Bi 9 Tm tt c cc s phc z 6= 0 tha mn z + 1z R.Bi 10Chng minh rng:

    a) E1 =(

    2 + i

    5)7

    +(

    2 i

    5)7 R ;

    b) E2 =

    (19 + 7i

    9 i)n

    +

    (20 + 5i

    7 + 6i

    )n R .

    Bi 11 Cho z C tha mn z3 + 1z3 6 2 .Chng minh rngz + 1z 6 2 .Bi 12 Tm cc s phc z tha mn |z| = 1 v z2 + z2 = 1.Bi 13Tm cc s phc z tha mn 4z2 + 8 |z|2 = 8.Bi 14Tm cc s phc z tha mn z3 = z.

    Bi 15 Cho z C vi Re (z) > 1 .Chng minh rng 1z 12 < 12 .Bi 16 Cho a, b, c l cc s thc v = 12 + i

    32 .Tnh tng(

    a+ b + c2) (a+ b2 + c

    ).

    Bi 17 Chng minh cc ng thc sau :

    24S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 23

    a) |z1 + z2|2 + |z2 + z3|2 + |z3 + z1|2 = |z1|2 + |z2|2 + |z3|2 + |z1 + z2 + z3|2 ;b) |1 + z1z2|2 + |z1 z2|2 =

    (1 + |z1|2

    )(1 + |z2|2

    );

    c) |z1 + z2 + z3|+ |z1 + z2 + z3|+ |z1 z2 + z3|+ |z1 + z2 z3| == 4

    (z21+ z22+ z23) .Bi 18 Tm tt c cc s nguyn dng n sao cho :(

    1 + i32

    )n+

    (1 i3

    2

    )n= 2.

    Bi 19 Cho z1, z2, z3 l cc s phc tha mn |z1| = |z2| = |z3| = R > 0.Chng minh rng :

    |z1 z2| . |z2 z3|+ |z3 z1| . |z1 z2|+ |z2 z3| . |z3 z1| 6 9R2 .

    Bi 20 Cho z1, z2, ..., zn l cc s phc tha mn

    |z1| = |z2| = ... = |z3| = r > 0.chng minh rng :

    E =(z1 + z2) (z2 + z3) ... (zn1 + zn) (zn + z1)

    z1z2...zn.

    Bi 21 (Bt ng thc Hlawas) Cho z1, z2, z3 l cc s phc. Chng

    minh rng :

    |z1 + z2|+ |z2 + z3|+ |z3 + z1| 6 |z1|+ |z2|+ |z3|+ |z1 + z2 + z3| .

    Bi 22 Cho x1, x2 l nghim phng trnh x2 x+ 1 = 0. Hy tnh :

    a)x20001 + x20002 ; b) x

    19991 + x

    19992 ; c)x

    n1 + x

    n2 , n N.

    Bi 23 Tm dng ta cc ca cc s phc sau:

    a) z1 = 6 + 6i

    3 ; b) z2 = 14

    + i

    3

    4; c) z3 = 1

    2 i

    3

    2;

    d) z4 = 9 9i

    3 ; e) z5 = 3 2i ; f) z6 = 4i .Bi 24 Tm dng ta cc ca cc s phc sau:a) z1 = cos a i sin a , a [0, 2pi) ;b) z2 = sin a+ i (1 + cos a) , a [0, 2pi) ;c) z3 = cos a+ sin a+ i (sin a cos a) , a [0, 2pi) ;d) z4 = 1 cos a+ i sin a , a [0, 2pi) .Bi 25 S dng dng cc ca s phc,hy tnh cc tng sau:

    25S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 24

    a)

    (1

    2 i

    3

    2

    )(3 + 3i)

    (2

    3 + 2i)

    ; b) (1 + i) (2 2i) ;

    c) 2i(4 + 4

    3i)

    (3 + 3i) ; d) 3 (1 i) (5 + 5i) .Bi 26 Hy tm modun v argument ca cc s phc z:

    a) z =

    (2

    3 + 2i)8

    (1 i)6 +(1 + i)6(

    2

    3 2i)8 ;

    b) z =(1 + i)4(

    3 i)10 + 1(

    2

    3 + 2i)4 ;

    c) z =(

    1 + i

    3)n

    +(

    1 i

    3)n

    .

    Bi 27 Tm cn bc hai ca cc s phc sau:

    a) z = 1 + i ; b) z = i ; c) z =12

    +i2

    ;

    d) z = 2(

    1 + i

    3)

    ; e) z = 7 + 24i ;Bi 28 Tm cn bc ba ca cc s phc sau:a) z = i ; b) z = 27 ; c) z = 2 + 2i ;d) z =

    1

    2 i

    3

    2; e) z = 18 + 26i .

    Bi 29 Tm cn bc bn ca cc s phc sau:a) z = 2 i

    12 ; b) z =

    3 + i ; c) z = i ;

    d) z = 2i ; e) z = 7 + 24i .Bi 30 Gii cc phng trnh sau:a) z3 125 = 0 ; b) z4 + 16 = 0 ;c) z3 + 64i = 0 ; d) z3 27i = 0 ;Bi 31 Gii cc phng trnh sau:a) z7 2iz4 iz3 2 = 0 ; b) z6 + iz3 + i 1 = 0 ;c) (2 3i) z6 + 1 + 5i = 0 ; d) z10 + (2 + i) z5 2i = 0 .

    26S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 25

    Chng 2

    S dng s phc trong gii ton scp

    2.1 S phc v cc bi ton hnh hc

    2.1.1 Mt vi khi nim v tnh cht

    Khong cch gia hai im

    Gi s cc s phc z1 v z2 c biu din hnh hc l cc im M1 v M2khi khong cch gia hai im M1 v M2 c cho bi cng thc

    M1M2 = |z1 z2|on thng, tia, ng thng

    ChoA v B l hai im phn bit, trong mt phng phc c ta l a

    v b. Ta ni im M c ta z nm gia A v B nu z 6= a , z 6= b vh thc sau tha mn

    |a z|+ |z b| = |a b| .Ta s dng k hiuAM B.Tp hp (AB) = {M : AM B} c gi l on thng m xc nhbi imA v B.

    Tp hp [AB] = (AB) {A,B} c gi l on thng ng xc nhbi imA v B.

    nh l 2.1.1. Gi s A(a), B(b) l hai im phn bit. Khi cc

    trnh by di y l tng ng

    1)M (AB) ;2)C s thc dng k sao cho z a = b (k z) ;

    27S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 26

    3)C s thc t (0, 1) sao cho z = (1 t) a+ tb; vi z l ta phcca M.

    nh l 2.1.2. Gi s A(a), B(b) l hai im phn bit. Khi cc

    trnh by di y l tng ng

    1) M (AB;2)C s thc dng t sao cho z = (1 t) a+ tb, vi z l ta phc caM ;

    3) arg (z a) = arg (z b) ;4)

    z ab a R

    +.

    nh l 2.1.3. Gi s A(a), B(b) l hai im phn bit. Khi cc

    trnh by di y l tng ng

    1) M nm trn ng thng AB;

    2)z ab a R;

    3)C s thc t sao cho z = (1 t) a+ tb;4)

    z a z ab a b a = 0;

    5)

    z z 1a a 1b b 1 = 0.

    Chia on thng theo mt t s

    Cho hai im A(a), B(b) phn bit. Mt im M(z) nm trn ng

    thng AB chia onAB theo t s k R\ {1} khi h thc vc t sautha mn:

    MA = k.MB.

    S dng ta h thc trn c th vit a z = k (b z) hoc(1 k) .z = a k.b. V th ta c

    z =a kb1 k .

    Khi k < 0 im M nm trn on thng ni A v B. Nu k (0, 1), thM (BA\ [AB] .Trng hp cn li k > 1 th M (AB\ [AB]

    28S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 27

    Gc nh hng

    Nh li rng, mt tam gic c nh hng nu nh cc nh ca n

    c ch r th t. Tam gic c hng dng nu hng cc nh ngc

    chiu kim ng h, hng ngc li l hng m. Ly M1 (z1) v

    M2 (z2) l hai im phn bit khc gc ta trong mt phng phc.

    Gc M1OM2 c gi l nh hng nu cc im M1 v M2 c th t

    thun chiu kim ng h.

    Mnh 2.1.4. S o gc nh hng M1OM2 bng

    argz2z1.

    nh l 2.1.5. Cho ba im phn bit M1 (z1) , M2 (z2) , M3 (z3). S

    o gc nh hng M2M1M3 l

    argz3 z1z2 z1 .

    Gc gia hai ng thng

    Cho bn im Mi (z1) , i {1, 2, 3, 4}. S o gc xc nh bi ngthng M1M3 v M2M4 bng

    argz3 z1z4 z2

    hoc

    argz4 z2z3 z1 .

    Php quay mt im Xt gc v s phc cho bi = cos + i sin

    Ly z = r (cos t+ i sin t) l s phc v M l biu din hnh hc .

    Dng tch z = r (cos (t+ ) + i sin (t+ )) , ta c |r| = r varg (z) = arg z + .

    Gi M l biu din hnh hc ca z, ta thy rng im M l nh ca Mqua php quay tm O ( gc ta ) gc quay l .

    Mnh 2.1.6. Gi s im C l nh ca B qua php quay tm A gc

    quay . Nu a, b, c l cc ta ca A,B,C phn bit th:

    c = a+ (b a) vi = cos + i sin.

    29S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 28

    Bi ton 1 Cho ABCD v BNMK l hai hnh vung khng trng

    nhau . E l trung im ca AN,F l hnh chiu vung gc ca B ln

    ng thng CK. Chng minh rng E,F,B thng hng.

    Gii

    Xt khng gian phc gc F cc trc ta CK v FB vi FB l trc

    o. Lyc, k, bi l ta cc im C,B,K vi c, k, b R. Php quay tmB gc quay =

    pi

    2bin im C thnh im A v th A c ta l

    a = b (1 i) + ci . Tng t N l nh ca im B gc quay = pi2v

    c ta phc l

    n = b (1 + i) ki.Trung im E ca on thng AN c ta phc l

    e =a+ n

    2= b+

    c k2

    i.

    Vy E nm trn ng thng FB, ta c pcm.

    Bi ton 2 Cho t gic ABCD , trn cc cnh AB,BC,CD,DA ta ln

    lt dng v pha ngoi ca t gic cc hnh vung c tm O1, O2, O3, O4phn bit. Chng minh rng O1O3O2O4 v O1O3 = O2O4.

    Gii LyABMM , BCNN , CDPP , DAQQ ln lt l cc hnh vungc tm O1, O2 , O3 , O4.

    im M l nh ca A qua php quay tm B gc quay = pi2 ; v th

    m = b+ (a b) i.Tng t

    n = c+ (b c) i , p = (c d) i , q = a+ (d a) i.T ta c

    o1 =a+m

    2=a+ b+ (a b) i

    2, o2 =

    b+ c+ (b c) i2

    o3 =c+ d+ (c d) i

    2, o4 =

    d+ a+ (d a) i2

    .

    30S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 29

    Vo3 o1o4 o2 =

    c+ d a b+ i (c d a+ b)a+ d b c+ i (d a b+ c) = i iR

    nn O1O3O2O4 .Ngoi ra o3 o1o4 o2

    = |i| = 1nn O1O3 = O2O4 .

    Bi ton 3 V pha ngoi tam gic ABC ta dng cc tam

    gicABR,BCP,CAQ sao cho

    PBC = CAQ = 45o

    BCP = QCA = 30o

    ABR = RAB = 15o

    Chng minh rng QRP = 90o v RQ = RP.

    Gii

    Xt mt phng phc vi gc ta l R, gi M l hnh chiu vung gc

    ca P ln BC.

    T MP = MB vMC

    MP=

    3 ta c

    pmbm = i v

    cmpm = i

    3

    V th

    p =c+

    3b

    1 +

    3+

    b c1 +

    3i.

    Tng t

    q =c+

    3a

    1 +

    3+

    a c1 +

    3i.

    im B c c t im A bng cch quay quanh R mt gc = 150o v

    th

    b = a

    (

    3

    2+

    1

    2i

    ).

    31S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 30

    S dng bin i i s ta cp

    q= i iR, v th QRPR. Ngoi ra

    |p| = |iq| = |q| nn QR = PR. pcm

    2.1.2 iu kin thng hng , vung gc v cng thuc mtng trn

    Xt bn im phn bit Mi (zi) , i {1, 2, 3, 4}

    Mnh 2.1.7. Cc im M1,M2,M3 thng hng khi v ch khi

    z3 z1z2 z1 R

    .

    Mnh 2.1.8. ng thng M1M2 vM3M4 vung gc khi v ch khi

    z1 z2z3 z4 iR

    .

    Mnh 2.1.9. Bn im phn bit M1 (z1) ,M2 (z2) ,M3 (z3) ,M4 (z4)

    thng hng hoc cng nm trn mt ng trn khi v ch khi

    k =z3 z2z1 z2 :

    z3 z4z1 z4 R

    S k c gi l t s kp ca bn im

    M1 (z1) ,M2 (z2) ,M3 (z3) ,M4 (z4) .

    Ch 1) cc im M1 (z1) ,M2 (z2) ,M3 (z3) ,M4 (z4) thng hng khi v

    ch khi

    z3 z2z1 z2 R

    vz3 z4z1 z4 R

    .

    2) Cc im M1 (z1) ,M2 (z2) ,M3 (z3) ,M4 (z4) nm trn mt ng trn

    khi v ch khi

    k =z3 z2z1 z2 :

    z3 z4z1 z4 R

    viz3 z2z1 z2 / R v

    z3 z4z1 z4 R.

    32S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 31

    2.1.3 Tam gic ng dng

    Xt su im A1 (a1) , A2 (a2) , A3 (a3) , B1 (b1) , B2 (b2) , B3 (b3) trong

    mt phng phc. Ta ni rng tam gic A1A2A3 v B1B2B3 ng dng

    vi nhau nu gc Ak bng gc Bk , k {1, 2, 3} .

    Mnh 2.1.10. Tam gic A1A2A3 v B1B2B3 ng dng v c cng

    hng khi v ch khi:

    a2 a1a3 a1 =

    b2 b1b3 b1 .

    Mnh 2.1.11. Tam gic A1A2A3 v B1B2B3 ng dng v c ngc

    hng khi v ch khi:

    a2 a1a3 a1 =

    b2 b1b3 b1

    .

    Bi ton 1 Trn cc cnh AB,BC,CA ca tam gic ABC ta dng cc

    tam gic ng dng v c cng hngADB,BEC,CFA. Chng minh

    rng tam gic ABC v tam giac DEF c cng trng tm.

    Gii V cc tam gic ADB,BEC,CFA ng dng v c cng hng nn

    d ab a =

    e bc b =

    f ca c = z

    T y ta c

    d = a+ (b a)z , e = b+ (c b) z , f = c+ (a c) z.Suy ra

    d+ e+ f

    3=a+ b+ c

    3.

    Vy tam gic ABC v tam giac DEF c cng trng tm.

    Bi ton 2 Cho tam gic ABC trung im cc cnh AB,BC,CA ln

    lt l M,N,P . Trn ng trung trc ca cc on thng

    [AB] , [BC] , [CA] cc im A,B,C c chn pha trong tam gic sao

    cho

    33S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 32

    MC

    AB=NA

    BC=PB

    CA.

    Chng minh rng tam gic ABCvABC c cng trng tm.Gii T

    MC

    AB=NA

    BC=PB

    CA.

    Ta c tan(C AB) = tan(ABC) = tan(CBA). V th tam gicAC B,BAC,CBA ng dng vi nhau . p dng kt qu bi trn tac li gii .

    Bi ton 3 Cho tam gic ABO u vi tm S, tam gic u khc

    ABO c cng hng vi tam giac ABO v S 6= A, S 6= B . Gi M vN ln lt l trung im AB v AB. Chng minh rng tam gic SBMv SAN ng dng.

    ( 30th IMO-Shortlist)

    Gii

    Gi R l bn knh ng trn ngoi tip tam gic ABO v

    = cos2pi

    3+ i sin

    2pi

    3.

    Xt mt phng phc vi gc S sao cho O nm trn chiu dng ca trc

    thc. Ta ca cc im O,A,B l R,R,R2.

    Xt R + z l ta ca B khi ta A l R z. Ta trungim M,N l

    zM =zB + zA

    2=R2 +R z

    2=R(2 + ) z

    2=R z

    2=(R + z)

    2.

    v

    zN =zA + zB

    2=R+R + z

    2=R (+ 1) + z

    2=R2 + z

    2=z R

    2=R z2 .

    Khi ta c

    zB zSzM zS =

    zA zSzN zS

    R + z(R+z)

    2

    =R zRz2

    . = 1 ||2 = 1.

    Vy gic SBM v SAN ng dng v ngc hng.

    34S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 33

    2.1.4 Tam gic u

    Mnh 2.1.12. Gi s z1, z2, z3 l ta cc nh ca tam gic

    A1A2A3. Khi cc khng nh sau tng ng:

    1) A1A2A3 l tam gic u;

    2) |z1 z2| = |z2 z3| = |z3 z1| ;3) z21 + z

    22 + z

    23 = z1z2 + z2z3 + z3z1;

    4)z2 z1z3 z2 =

    z3 z2z1 z2 ;

    5)1

    z z1 +1

    z z2 +1

    z z3 = 0 vi z =z1 + z2 + z3

    3;

    6)(z1 + z2 +

    2z3) (z1 +

    2z2 + z3)

    = 0 vi = cos2pi3 + i sin2pi3 ;

    7)

    1 1 1z1 z2 z3z2 z3 z1 = 0.

    Mnh 2.1.13. Gi s z1, z2, z3 l ta cc nh ca tam gic c

    hng dng A1A2A3. Khi cc khng nh sau tng ng:

    1) A1A2A3 l tam gic u;

    2) z3 z1 = (z2 z1) vi = cospi3

    + i sinpi

    3;

    3) z2 z1 = (z3 z1) vi = cos5pi3

    + i sin5pi

    3;

    4) z1 + z2 + 2z3 = 0 vi = cos

    2pi

    3+ i sin

    2pi

    3.

    Mnh 2.1.14. Gi s z1, z2, z3 l ta cc nh ca tam gic c

    hng m A1A2A3. Khi cc khng nh sau tng ng :

    1) A1A2A3 l tam gic u;

    2) z3 z1 = (z2 z1) vi = cos5pi3

    + i sin5pi

    3;

    3) z2 z1 = (z3 z1) vi = cospi3

    + i sinpi

    3;

    4) z1 + 2z2 + z3 = 0 vi = cos

    2pi

    3+ i sin

    2pi

    3.

    Mnh 2.1.15. Gi s z1, z2, z3 l ta cc nh ca tam gic u

    A1A2A3. Khi cc khng nh sau tng ng :

    1) A1A2A3 l tam gic u;

    2) z1z2 = z2z3 = z3z1;

    35S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 34

    3) z21 = z2z3 v z22 = z1z3.

    Bi ton 1 V pha ngoi tam gic ABC dng ba tam gic u c

    hng dng AC B,BAC,CBA. Chng minh rng cc trng tm caba tam gic l cc nh ca mt tam gic u.

    (Napoleons problem)

    Gii Gi a, b, c l ta ba nh A,B,C. S dng mnh trn ta c

    a+ c+ b2 = 0 , b+ a+ c2 = 0 , c+ b+ a2 = 0 (1)

    Vi a, b, c ,l ta cc im A, B, C . Trng tm cc tam gicAC B,BAC,CBA c ta l

    a =1

    3(a + b+ c) , b =

    1

    3(a+ b + c) , c =

    1

    3(a+ b+ c).

    Ta s kim tra c + a+ b2 = 0. Tht vy

    (c + a+ b2

    )= (a+ b+ c) + (a + b+ c) + (a+ b + c) 2

    =(b+ a+ c2

    )+(a+ c+ b2

    )+(c+ b+ a2

    )= 0.

    .

    Bi ton 2 Trn cc cnh ca tam gic, v pha ngoi ta dng ba a

    gic u n cnh. Tm tt c cc gi tr ca n sao cho tm ca cc hnh n

    gic l cc nh ca mt tam gic u.

    (Balkan Mathematical Olympiad-Shortlist)

    Gii Xt A0, B0, C0 l trng tm ca cc n gic trn cc cnh

    BC,CA,AB S o cc gc AC0B , BA0C , AB0C l2pi

    nK hiu a , b , c , a0 , b0 , c0 l ta cc im A,B,C,A0, B0, C0. S

    dng cc cng thc php quay ta c

    a = c0 + (b c0) ;b = a0 + (c a0) ;c = b0 + (a b0) ;

    36S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 35

    Suy ra

    a0 =b c1 , b0 =

    c a1 , c0 =

    a b1 .

    Tam gic A0B0C0 u khi v ch khi

    a20 + b20 + c

    20 = a0b0 + b0c0 + c0a0

    Thay cc gi tr a0 , b0 , c0 ta c

    (b c)2 + (c a)2 + (a b)2 =(b c) (c a) + (c a) (a b) + (a b) (b c) .

    ng thc trn tng ng vi(1 + + 2

    ) [(a b)2 + (b c)2 + (c a)2

    ]= 0.

    Suy ra 1 + + 2 = 0 2pin

    =2pi

    3ta c n = 3. Vy n = 3 tha mn yu

    cu bi.

    2.1.5 Hnh hc gii tch vi s phc

    Phng trnh ng thng phng trnh ca ng thng trong mt

    phng phc l

    .z + z + = 0

    vi C, R v z = x+ yi C.Mnh 2.1.16. Cho hai ng thng d1 v d2 c phng trnh

    1.z + 1.z + 1 = 0 v 2.z + 2.z + 2 = 0

    ng thng d1 v d2 l:

    1) song song khi v ch khi11

    =22

    ;

    2) vung gc khi v ch khi11

    +22

    = 0;

    3) Ct nhau khi v ch khi116= 22

    ;

    37S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 36

    Phng trnh ng thng xc nh bi hai im: Phng trnh

    mt ng thng c xc nh bi hai im

    P1 (z1) , P2 (z2) l z1 z1 1z2 z2 1z z 1 = 0.

    Din tch tam gic

    nh l 2.1.17. Din tch tam gic A1A2A3 vi ta cc nh z1, z2, z3bng modun ca s

    i

    4

    z1 z1 1z2 z2 1z3 z3 1 .

    H qu Din tch tam gic nh hng A1A2A3 vi ta cc nh

    z1, z2, z3 l

    area [A1A2A3] =1

    2Im (z1z2 + z2z3 + z3z1) .

    Bi ton 1 Cho tam gic A1A2A3 v cc im M1,M2,M3 nm trn

    ng thng A2A3, A3A1, A1A2. Gi s rng M1,M2,M3 chia on thng

    [A2A3] , [A3A1] , [A1A2] theo t s 1, 2, 3. Chng minh rng :

    area [M1M2M3]

    area [A1A2A3]=

    1 123(1 1) (1 2) (1 3) .

    Gii Ta cc im M1,M2,M3 l:

    m1 =a2 1a1

    1 1 ,m2 =a3 2a1

    1 2 ,m3 =a1 3a2

    1 3p dng cng thc (2) ta c

    38S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 37

    area [M1M2M3] =1

    2(m1m2 +m2m3 +m3m1)

    =1

    2

    ((a2 1a3) (a3 2a1)

    (1 1) (1 2) +(a3 2a1) (a1 3a2)

    (1 2) (1 3)+

    (a1 3a2) (a2 1a3)(1 3) (1 1)

    )=

    1 123(1 1) (1 2) (1 3)area [A1A2A3]

    Ch Cng thc dng (3) ta suy ra nh l Menelaus :Cc im

    M1,M2,M3 thng hng khi v ch khi 123 = 1 tng ng vi:

    M1A2M1A3

    .M2A3M2A1

    .M3A1M3A2

    = 1.

    Bi ton 2 Cho a, b, c l ta cc nh A,B,C ca mt tam gic. Bit

    rng |a| = |b| = |c| = 1 v tn ti gc (

    0,pi

    2

    )sao cho

    a+ b cos + c sin = 0. Chng minh rng

    1 < area [ABC] 6 1 +

    2

    2.

    Gii Ta c

    1 = |a|2 = |b cos + c sin|2 = (b cos + c sin) (b cos + c sin)= |b|2 cos2 + |c|2 sin2 + (bc+ bc) sincos= 1 +

    b2 + c2

    bcsincos.

    T trn ta c b2 + c2 = 0 nn b = ic. p dng h thc (2) ta c

    39S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 38

    area [ABC] =1

    2

    Im (ab+ bc+ ca)=

    1

    2

    Im [(b cos c sin) b+ bc c (b cos + c sin)]=

    1

    2

    Im (cos sin bc sin bc cos + bc)=

    1

    2

    Im [bc (sin + cos) bc] = 12

    Im [(1 + sin + cos) bc]=

    1

    2(1 + sin + cos) Im

    (bc)

    =1

    2(1 + sin + cos) Im (icc)

    =1

    2(1 + sin + cos) Im (i) = 1

    2(1 + sin + cos)

    =1

    2

    [1 +

    2

    (2

    2sin +

    2

    2cos

    )]=

    1

    2

    (1 +

    2 sin( +

    pi

    4

    ))Ta thy rng

    pi

    4< +

    pi

    4 abc ;b) a.MB.MC + b.MC.MA+ c.MA.MA > abc .Bi 12 Cho tam gic nhn ABC c cnh BC = a, CA = b, AB = c.P l

    46S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 45

    mt im bt k trong mt phng tam gic. Chng minh rng:

    a.PB.PC + b.PC.PA+ c.PA.PA = abc

    khi v ch khi P trng vi trc tm ca tam gic ABC.

    Bi 13 Cho tam gic ABC c trng tm G. Gi R,R1, R2, R3 ln lt l

    bn knh ng trn ngoi tip tam gic ABC,GBC,GCA,GAB.

    Chng minh rng R1 +R2 +R3 > 3R .

    2.2 S phc v cc bi ton i s , lng gic

    2.2.1 Cc bi ton lng gic

    Bi ton 1 Chng minh rng

    cospi

    11+ cos

    3pi

    11+ cos

    5pi

    11+ cos

    7pi

    11+ cos

    9pi

    11=

    1

    2.

    Gii: t z = cospi

    11+ i sin

    pi

    11ta c

    z + z3 + z5 + z7 + z9 =z11 zz2 1 =

    1 zz2 1 =

    1

    1 z .

    Ta chng minh kt qu sau.

    Nu z = cos t+ i sin t v z 6= 1 th Re(

    1

    1 z)

    =1

    2Tht vy

    1

    1 z =1

    1 (cos t+ i sin t ) =1

    (1 cos t) i sin t=

    1

    2 sin2 t2 2i sin t2cos t2=

    1

    2 sin t2(sint2 i cos t2)

    =sin t2 + i cos

    t2

    2 sin t2=

    1

    2+ i

    cos t22 sin t2

    .

    Suy ra Re

    (1

    1 z)

    =1

    2.

    47S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 46

    Bi ton 2 Tnh tch

    P = cos20o.cos40o.cos80o

    Gii:t z = cos20o + i sin 20o ta c z9 = 1v z = cos20o - i sin 20ov

    cos20o =z2 + 1

    2z, cos40o =

    z4 + 1

    2z2, cos80o =

    z8 + 1

    2z4.

    nn

    P =

    (z2 + 1

    ) (z4 + 1

    ) (z8 + 1

    )8z7

    =

    (z2 1) (z2 + 1) (z4 + 1) (z8 + 1)

    8z7 (z2 1)=

    z16 18 (z9 z7) =

    z7 18 (1 z7) =

    1

    8

    .

    Cch gii 2

    sin 20o.P = sin 20o.cos20o.cos40o.cos80o

    =1

    2sin 40o.cos40o.cos80o

    =1

    4sin 80o.cos80o =

    1

    8sin 160o =

    1

    8sin 20o.

    Vy P =1

    8.

    Bi ton 3 Cho x, y, z l cc s thc tha mn sinx+ sin y + sin z = 0

    v cosx + cosy + cosz = 0.

    Chng minh rng : sin 2x+sin 2y+sin 2z = 0 v cos2x+cos2y+cos2z = 0

    Gii: t z1 = cosx + i sinx , z2 = cosy + i sin y , z3 = cosz + i sin z , ta

    c z1 + z2 + z3 = 0 v |z1| = |z2| = |z3| = 1 . T yz21 + z

    22 + z

    23 = (z1 + z2 + z3)

    2 2 (z1z2 + z2z3 + z3z1)= 2z1z2z3

    (1

    z1+

    1

    z2+

    1

    z3

    )= 2z1z2z3 (z1 + z2 + z3)

    = 2z1z2z3 (z1 + z2 + z3) = 0

    Suy ra ( cos2x + cos2y + cos2z) + i (sin 2x+ sin 2y + sin 2z) = 0 .

    T y ta c iu phi chng minh.

    48S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 47

    Bi ton 4 Chng minh rng

    cos210o + cos250o + cos270o =3

    2.

    Gii t z = cos10o + i sin 10o ta c z9 = i

    cos10o =z2 + 1

    2z, cos50o =

    z10 + 1

    2z5, cos70o =

    z14 + 1

    2z7.

    ng thc cn chng minh tng ng vi(z2 + 1

    2z

    )2+

    (z10 + 1

    2z5

    )2+

    (z14 + 1

    2z7

    )2=

    3

    2.

    hay

    z16 + 2z14 + z12 + z24 + 2z14 + z4 + z28 + 2z14 + 1 = 6z14

    z28 + z24 + z16 + z12 + z4 + 1 = 0.S dng z8 = 1 ta thu c

    z16 + z12 z10 z6 + z4 + 1 = 0 (z4 + 1) (z12 z6 + 1) = 0

    (z4 + 1

    ) (z18 + 1

    )z6 + 1

    = 0.

    Khng nh c chng minh.

    Bi ton 5 Gii phng trnh

    cosx+ cos2x cos3x = 1.

    Gii t z = cosx+ i sinx ta c

    cosx =z2 + 1

    2z, cos2x =

    z4 + 1

    2z2, cos3x =

    z6 + 1

    2z3.

    phng trnh tr thnh

    49S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 48

    z2 + 1

    2z+z4 + 1

    2z2 z

    6 + 1

    2z3= 1

    z4 + z2 + z5 + z z6 1 2z3 0 (z6 z5 z4 + z3)+ (z3 z2 z + 1) = 0 (z3 + 1) (z3 z2 z + 1) = 0 (z3 + 1) (z 1)2 (z + 1) = 0

    .

    v z = 1 z = 1 , z3 = 1 nn

    x {2kpi |k Z} , x {pi + 2kpi |k Z} , x {pi + 2kpi

    3|k Z

    }.

    hp cc nghim ta c

    x {kpi |k Z} , x {

    2k + 1

    3pi |k Z

    }.

    Bi ton 6 Tnh tng S =nk=1

    qk. cos kx v T =nk=1

    qk. sin kx .

    Gii Ta c

    1 + S + iT =nk=1

    qk (cos kx+ i sin kx ) =nk=1

    qk (cosx+ i sinx)k

    =1 qn+1 (cosx+ i sinx)n+1

    1 q cosx iq sinx=

    1 qn+1 [cos (n+ 1)x+ i sin (n+ 1)x]1 q cosx iq sinx

    =

    [1 qn+1 cos (n+ 1)x iqn+1 sin (n+ 1)x] [1 q cosx+ iq sinx]

    q2 2q cosx+ 1 .

    v th

    1 + S =qn+2 cosnx qn+1 cos (n+ 1)x q cosx+ 1

    q2 2q cosx+ 1T =

    qn+2 sinnx qn+1 sin (n+ 1)x+ q sinxq2 2q cosx+ 1 .

    50S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 49

    Ch Khi q = 1 ta c h thc quen thuc

    nk=1

    cos kx =sin nx2 cos

    (n+1)x2

    sin x2v

    nk=1

    sin kx =sin nx2 sin

    (n+1)x2

    sin x2.

    Tht vy

    nk=1

    cos kx =cosnx cos (n+ 1)x (1 cosx)

    2 (1 cosx)

    =2 sin x2 sin

    (2n+1)x2 2 sin2 x2

    4 sin2 x2

    =sin (2n+1)x2 sin x2

    2 sin x2=

    sin nx2 cos(n+1)x

    2

    sin x2.

    vnk=1

    sin kx =sinnx sin (n+ 1)x+ sinx

    2 (1 cosx)

    =2 sin x2cos

    x2 2 sin x2cos (2n+1)x2

    4 sin2 x2

    =cosx2 cos (2n+1)x2

    2 sin x2=

    sin nx2 sin(n+1)x

    2

    sin x2.

    Bi ton 7 Cho cc im A1, A2, ...., A10, c xp theo th t v cch

    u nhau trn ng trn bn knh R. Chng minh rng

    A1A4 A1A2 = R.

    Gii t z = cospi

    10+ i sin

    pi

    10khng mt tnh tng qut ta cho R = 1.

    Ta cn ch ra 2 sin3pi

    10- sin

    pi

    10= 1.

    Trong trng hp tng qut z = cos a+ i sin a th sin a =z2 1

    2iz. ng

    thc cn chng minh trn tr thnh

    2z6 12iz3

    z2 12iz

    = 1 z6 z4 + z2 1 = 2iz3

    . V z5 = i nn z8 z6 + z4 z2 + 1 = 0. ng thc ny ng v(z8 z6 + z4 z2 + 1) (z2 + 1) = z10 + 1 = 0 v z2 + 1 6= 0

    51S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 50

    Bi ton 8 Chng minh rng

    cospi

    7 cos 2pi

    7+ cos

    3pi

    7=

    1

    2. (

    5thIMO)

    Gii t z = cospi7 + i sinpi7 ta c z

    7 + 1 = 0 Do z 6= 1 v z7 + 1 =(z + 1)

    (z6 z5 + z4 z3 + z2 z + 1) = 0 nn z6 z5 + z4 z3+ =

    0 z (z2 z + 1) = 11 z3 .

    Ta c cospi

    7 cos 2pi

    7+ cos

    3pi

    7= Re

    (z3 z2 + z) .

    Ta chng minh kt qu sau.

    Nu z = cos t+ i sin t v z 6= 1 th Re(

    1

    1 z)

    =1

    2Tht vy

    1

    1 z =1

    1 (cos t+ i sin t ) =1

    (1 cos t) i sin t=

    1

    2 sin2 t2 2i sin t2cos t2=

    1

    2 sin t2(sint2 i cos t2)

    =sin t2 + i cos

    t2

    2 sin t2=

    1

    2+ i

    cos t22 sin t2

    .

    Suy ra Re

    (1

    1 z)

    =1

    2.

    Bi ton 9 Chng minh rng:trung bnh cng ca cc s k sin ko

    (k = 2, 4, . . . , 180) l cot 1o.

    (1996 USA Mathematical Olympiad)

    Gii: t z = cos t+ i sin t ta c ng thc

    z + 2z2 + ...+ nzn = (z + ...+ zn) +(z2 + ...+ zn

    )+ ...+ zn

    =1

    z 1[(zn+1 z)+ (zn+1 z2)+ ...+ (zn+1 zn)]

    =nzn+1

    z 1 zn+1 z(z 1)2 ,

    52S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 51

    t y ta thu c hai ng thc

    nk=1

    k cos kt =(n+ 1) sin (2n+1)t2

    2 sin t2 1 cos (n+ 1) t

    4 sin2 t2. (1)

    vnk=1

    k sin kt =sin (n+ 1) t

    4 sin2 t2 n cos

    (2n+1)t2

    2 sin t2. (2)

    S dng h thc (2) ta thu c

    2 sin 2o + 4 sin 4o + ....+ 178 sin 178o = 2 (sin 2o + 2 sin 2.2o + ...+ 89 sin 89.2o)

    = 2

    (sin 90.2o

    4 sin2 1o 90 cos 179

    o

    2 sin 1o

    )= 90 cos 179

    o

    sin 1o= 90 cot 1o.

    Suy ra

    1

    90(2 sin 2o + 4 sin 4o + ....+ 178 sin 178o + 180 sin 180o) = cot 1o.

    Khng nh c chng minh.

    Bi ton 10 Cho n l s nguyn dng. Tm s thc ao v

    akl , k, l = 1, n , k > l tha mn

    sin2 nx

    sin2 x= a0 +

    16l6k6n

    aklcos2 (k l)x;

    vi mi s thc x 6= mpi , m Z .

    Gii: S dng ng nht thc

    S1 =nj=1

    cos2jx =sinnx cos (n+ 1)x

    sinx

    S2 =nj=1

    sin 2jx =sinnx sin (n+ 1)x

    sinx

    Ta thu c

    S21 + S22 =

    (sinnx

    sin

    )2.

    53S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 52

    mt khc

    S21 + S22 = (cos2x+ cos4x+ ...+ cos2nx)

    2 +

    (sin 2x+ sin 4x+ ...+ sin 2nx)2

    = n+

    16l6k6n(cos2kx cos 2lx+ sin 2kx sin 2lx)

    = n+

    16l6k6ncos2 (k l)x;

    .

    nh vy a0 = n , akl = 2 , 1 6 l < k 6 n.

    Bi ton 11 Tnh cc tng sau vi = 30o

    i) 1 +cos

    cos+cos (2)

    cos2+cos (3)

    cos3+ ...+

    cos ((n 1) )cosn1

    ;

    ii) coscos + cos2cos (2) + cos3cos (3) + ...+ cosncos (n).

    Bi ton 12 Chng minh rng

    1 + cos2n(pin

    )+ cos2n

    (2pin

    )+ ...+ cos2n

    ((n1)pi

    n

    )= n.4n (2 + Cn2n)

    vi mi s nguyn dng n > 2 .Bi ton 13 Cho s nguyn p > 0. Tm cc s thc a0, a1, ..., ap viap 6= 0 sao cho

    cos 2p = a0 + a1 sin2 + ...+ ap.

    (sin2

    )pvi mi R.

    2.2.2 Cc bi ton i s

    Bi ton 1(Vit Nam 1996) Gii h phng trnh

    3x

    (1 +

    1

    x+ y

    )= 2

    7y

    (1 1

    x+ y

    )= 4

    2

    Gii Nhn thy x > 0, y > 0. tx = u,

    y = v. H cho tr thnh

    u

    (1 +

    1

    u2 + v2

    )=

    23

    v

    (1 1

    u2 + v2

    )=

    4

    27

    u+

    1

    u2 + v2=

    23

    (1)

    v 1u2 + v2

    =4

    27

    (2)

    54S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 53

    ly phng trnh th (2) nhn vi i sau cng vi phng trnh (1) ta

    c u+ iv +u ivu2 + v2

    =23

    + i4

    27

    ()t z = u+ iv th u2 + v2 = |z|2. Khi phng trnh (*) tr thnh

    z +z

    |z|2 =23

    + i4

    27

    z + 1z

    =23

    + i4

    27

    z2 (

    23

    + i4

    27

    )z + 1 = 0

    z = 13 2

    21+ i

    (2

    27

    2

    ).

    Suy ra

    (u, v) =

    (13 2

    21,2

    27

    2

    ).

    H cho c hai nghim

    (x, y) =

    ( 13 2

    21

    )2,

    (2

    27

    2

    )2 = (1121 4

    3

    7,22

    7 8

    7

    ).

    Bi ton 2 Gii h phng trnh{x3 3xy2 = 13x2y y3 =

    3

    Gii {x3 3xy2 = 13x2y y3 =

    3

    {x3 3xy2 = 13x2 (iy) + i3y3 = i

    3

    {x3 + 3x (iy)2 = 1

    3x2 (iy) + (iy)3 = i

    3

    {

    (x+ iy)3 = 1 i

    3 (1)

    3x2 (iy) + (iy)3 = i

    3 (2) .

    55S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 54

    t z = x+ iy t (1) ta c z3 = 1 i3 = 2 (cos (pi3)+ i sin (pi3))Suy ra

    z = 3

    2

    (cospi3 + 2kpi

    3+ i sin

    pi3 + 2kpi3

    )= 3

    2

    (cospi + 6kpi

    9+ i sin

    pi + 6kpi9

    )vi k = 0, 1, 2.

    T y ta c cc nghim ca h phng trnh cho l

    (x, y) =

    (3

    2cospi + 6kpi

    9,

    3

    2 sinpi + 6kpi

    9

    )vi k = 0, 1, 2.

    2.2.3 Bi tp

    Bi 1 Chng minh rng :

    a) cos2 + cos22 + ...+ cos2n =sin (n+ 1) cosn

    2 sin+n 1

    2;

    b) sin2 + sin2 2 + ...+ sin2 n =n+ 1

    2 sin (n+ 1) cosn

    2 sin;

    .

    Bi 2 Chng minh rng :

    a) cos2pi

    2n+ 1+ cos

    4pi

    2n+ 1+ cos

    6pi

    2n+ 1+ ...+ cos

    2npi

    2n+ 1= 1

    2;

    b) cospi

    16=

    2 +

    2 + 2

    2;

    c) sin2pi

    5=

    10 + 2

    5

    2.

    .

    Bi 3 Chng minh rng vi mi n chn (n = 2m),ta u c:

    cosn =

    cosn C2ncosn2 sin2 + C4ncosn4 sin4 ...+ (1)mCnn sinn .Bi 4 Chng minh rng :

    56S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 55

    a) sinpi

    2n+ 1sin

    2pi

    2n+ 1... sin

    npi

    2n+ 1=

    2n+ 1

    2n;

    b) cospi

    2n+ 1cos

    2pi

    2n+ 1...cos

    npi

    2n+ 1=

    1

    2n;

    c) sinpi

    2nsin

    2pi

    2n... sin

    (n 1) pi2n

    =

    n

    2n1;

    d) cospi

    2ncos

    2pi

    2ncos

    (n 1)pi2n

    =

    n

    2n1.

    Bi 5 Gii phng trnha) x5 + x4 + x3 + x2 + x+ 1 = 0 ;

    b) x5 + x4 + 2x3 + 3x2 + 4x+ 5 = 0 , 0 6= C .Bi 6 Chng minh rng vi mi n l (n = 2m+ 1),ta u c:

    sinn =

    C1ncosn1 sin C3ncosn3 sin3 + ...+ (1)m1Cn1n sinn3 cos3.

    Bi 7 Gii h phng trnh :x+

    3x yx2 + y2

    = 3

    y x+ 3yx2 + y2

    = 0.

    Bi 8 Gii h phng trnh :x

    (1 12

    3x+ y

    )= 2

    y

    (1 +

    12

    3x+ y

    )= 6.

    2.3 S phc v cc bi ton t hp

    Bi ton 1 Tnh tng

    3n1k=0

    (1)k C2k+16n 3k.

    57S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 56

    Gii Ta c3n1k=0

    (1)k C2k+16n 3k =3n1k=0

    C2k+16n (3)k =3n1k=0

    C2k+16n

    (i

    3)2k

    =1

    i

    3

    3n1k=0

    C2k+16n

    (i

    3)2k+1

    =1

    i

    3Im(

    1 + i

    3)6n

    =1

    i

    3Im[2(cos

    pi

    3+ i sin

    pi

    3

    )]6n=

    1

    i

    3

    [26n (cos2pin+ i sin 2pin)

    ]= 0.

    Bi ton 2 Tnh tng

    Sn =nk=0

    Ckn cos k

    vi [0, pi] .Gii Ta c t z = cos + i sin v Tn =

    nk=0

    Ckn sin k. Ta c

    Sn + iTn =nk=0

    Ckn (cos k + i sin k) =nk=0

    Ckn (cos + i sin)k

    =nk=0

    Cknzk = (1 + z)k . (1)

    Dng ta cc ca s phc 1 + z l

    1 + cos + i sin = 2 cos2

    2+ 2i sin

    2cos

    2

    = 2cos

    2

    (cos

    2+ i sin

    2

    ).

    V [0, pi] ng thc (1) tr thnhSn + iTn =

    (2cos

    2

    )n (cos

    n

    2+ i sin

    n

    2

    ).

    T y ta thu c

    Sn =(

    2cos

    2

    )ncos

    n

    2

    Tn =(

    2cos

    2

    )nsin

    n

    2.

    58S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 57

    Biton 3 Chng minh ng thc(C0n C2n + C4n ....

    )2+(C1n C3n + C5n ....

    )2= 2n.

    Gii t xn = C0n C2n + C4n .... v yn = C1n C3n + C5n ....ta c

    (1 + i)n = xn + iynLy modun hai v ta thu c |xn + iyn| = |(1 + i)n| = |1 + i|n = 2niu ny tng ng vi x2n + y

    2n = 2

    n. Khng nh c chng minh.

    Ch Ta c th xy dng cng thc tnh xn, yn nh sau

    (1 + i)n =(

    2(cos

    pi

    4+ i sin

    pi

    4

    ))n= 2

    n2

    (cos

    npi

    4+ i sin

    npi

    4

    ).

    Suy ra xn = 2n2 cos

    npi

    4v yn = 2

    n2 sin

    npi

    4.

    Biton 4 Chng minh ng thc

    Cmn + Cm+pn + C

    m+2pn + ... =

    2n

    p

    p1k=0

    (cos

    kpi

    p

    )ncos

    (n 2m) kpip

    .

    Gii Gi 0, 1, ..., p1 l cc cn bc p ca n v. Khi

    p1k=0

    mk (1 + k)n =

    nk=0

    Ckn(km0 + ...+

    kmp1

    ). (1)

    Ta c kt qu quen thuc sau:

    km0 + ...+ kmp1 =

    {p , p | (k m)0 , p 6 | (k m) .(2)

    Xt

    mk (1 + k)n

    =

    (cos

    2mkpi

    p i sin 2mkpi

    p

    )(2 cos

    kpi

    p

    )n(cos

    2nkpi

    p+ i sin

    2nkpi

    p

    )= 2n

    (cos

    kpi

    p

    )n(cos

    (n 2m) kpip

    + i sin(n 2m) kpi

    p

    )

    59S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 58

    S dng (1) v (2) d dng suy ra h thc cn chng minh.

    Ch : T trn ta c h thc lng gic th v sau :p1k=0

    (cos

    kpi

    p

    )nsin

    (n 2m) kpip

    = 0

    Bi ton 5 Cho an, bn, cn l cc s nguyn vian = C

    0n + C

    3n + C

    6n + ;

    bn = C1n + C

    4n + C

    7n + ;

    cn = C2n + C

    5n + C

    8n + ;

    Chng minh rng

    1) a3n + b3n + c

    3n 3anbncn = 2n;

    2)a2n + b2n + c

    2n anbn bncn cnan = 1.

    3) Hai trong ba s nguyn an, bn, cn bng nhau cn s th ba bng 1

    Gii 1) Gi l cn bc ba ca n v v khc 1. Ta c

    (1 + 1)n = an+bn+cn , (1 + )n = an+bn+cn

    2 ,(1 + 2

    )n= an+bn

    2+cn

    v th

    a3n + b3n + c

    3n 3anbncn = (an + bn + cn)

    (an + bn+ cn

    2) (an + bn

    2 + cn2n)

    = 2n (1 + )n(1 + 2

    )n= 2n

    (2)n ()n = 2n2) S dng ng thc quen thuc

    x3 + y3 + z3 3xyz = (x+ y + z) (x2 + y2 + z2 xy yz zx) .t h thc trn ta c

    a2n + b2n + c

    2n anbn bncn cnan = 1

    3)a2n + b2n + c

    2n anbn bncn cnan = 1

    (an bn)2 + (bn cn)2 + (cn an)2 = 2t ng thc ny suy ra:hai trong ba s an, bn, cn bng nhau v s th

    ba bng 1.

    Ch T bi ton 5 ta thu c

    an =1

    3

    [2n + cos

    npi

    3+ (1)n cos2npi

    3

    ]=

    1

    3

    (2n + 2cos

    npi

    3

    )bn =

    1

    3

    [2n + cos

    (n 2) pi3

    + (1)n cos(2n 4)pi3

    ]=

    1

    3

    (2n + 2cos

    (n 2)pi3

    )cn =

    1

    3

    [2n + cos

    (n 4)pi3

    + (1)n cos(2n 8)pi3

    ]=

    1

    3

    (2n + 2cos

    (n 4)pi3

    ).

    60S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 59

    D thy rng

    an = bn khi v ch khi n 1 mod (3) ;bn = cn khi v ch khi n 2 mod (3) ;cn = an khi v ch khi n 3 mod (3) .

    Bi ton 6 C bao nhiu s c n ch s chn t tp hp {2, 3, 7, 9} vchia ht cho 3?

    (Romanian Mathematical Regional Contest Trian Lalescu)

    Gii:Gi xn, yn, zn ln lt l s cc s nguyn c n ch s chn t tp

    hp {2, 3, 7, 9} v ln lt ng d vi 0, 1, 2 theo modun3. Ta cn tmcc gi tr xn .

    t = cos2pi

    3+ i sin

    2pi

    3, ta thy rng xn + yn + zn = 4

    n v

    xn + yn + 2zn =

    j1+j2+j3+j4=n

    2j1+3j2+7j3+9j4

    =(2 + 3 + 7 + 9

    )n= 1.

    hay xn 1 + yn + 2zn = 0. Ta thu c xn 1 = yn = zn = k. Khi 3k = xn + yn + zn 1 = 4n 1 dn nk = 13 (4

    n 1). Suy ra xn = k + 1 = 13 (4n + 2) .

    Bi ton 7 Cho s nguyn t n v cc s nguyn dng a1, a2, ..., am .

    Gi f (k) l s cc b m s (c1, c2, ..., cm) tha mn iu kin 0 6 ci 6 aiv c1 + c2 + ...+ cm k (modm). Chng minh rngf (0) = f (1) = ... = f (n 1) khi v ch khi n |aj vi j no thuc tp{1, 2, ...,m} .

    Gii Xt = cos2pin + i sin2pin . rng ng thc sau lun ng

    nk=1

    (X +X2 + ...+Xak

    )=

    16ck6ak

    Xc1+...+cn

    v

    f (0)+f (1)+...+f (n 1)n1 = 16ck6ak

    Xc1+...+cn =mk=1

    ( + 2 + ...+ ak

    )

    61S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 60

    suy ra f (0) = f (1) = ... = f (n 1) khi v ch khi f (0)+f (1)+...+f (n 1)n1 = 0. iu ny tng ng vi

    mk=1

    ( + 2 + ...+ ak

    )= 0

    tc l + 2 + ...+ ak = 0 vi j no thuc tp {1, 2, ...,m}

    Bi ton 8 Cho s nguyn t n v cc s nguyn dng a1, a2, ..., am.

    Gi f (k) l s cc b m s (c1, c2, ..., cm) tha mn iu kin 0 6 ci 6 aiv c1 + c2 + ...+ cm k (modm). Chng minh rngf (0) = f (1) = ... = f (n 1) khi v ch khi n |aj vi j no thuc tp{1, 2, ...,m} . (

    36thIMO)

    Gii Trng hp p = 2 l tm thng. Xt p > 3 v = cos2pi3 + i sin2pi3 .

    K hiu xj l s cc tp con vi tnh cht |B| = p v m (B) j (modp).Khi

    n1j=0

    xjj =

    BA,|B|=p

    m(B) =

    16c1

  • 61

    vi t [0, pi ]Bi ton 11 Chng minh ng thc sau

    1)C0n + C4n + C

    8n + ... =

    1

    4

    (2n + 2

    n2+1 + cos

    npi

    4

    ).

    (Romanian Mathematicanl Olympiad Second Round 1981)

    2)C0n +C5n +C

    10n + ... =

    1

    5

    2n +(

    5 + 1)n

    2n1cos

    npi

    5+

    (5 1

    )n2n1

    cos2npi

    5]

    Bi 12 Cho cc s nguyn An, Bn, Cn xc nh nh sauAn = C

    0n C3n + C6n ... ,

    Bn = C1n + C4n C7n + ... ,Cn = C

    2n C5n + C8n ... .

    Chng minh cc ng thc sau

    1) A2n +B2n + C

    2n AnBn BnCn CnAn = 3n;

    2) A2n + AnBn +B2n = 3

    n1.

    63S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 62

    Kt lun

    Lun vn trnh by hng tip cn mi mt s dng ton s cp

    bng cng c s phc.Cc kt qu chnh ca lun vn:

    S dng s phc gii ton hnh hc phng. S dng s phc gii mt s lp ton i s ,lng gic. S dng s phc gii mt s bi ton t hp.Hng nghin cu tip theo ca lun vn l tip tc p dng s phc

    gii cc bi ton:t mu, s hc, a thc , phng trnh hm.

    64S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 63

    Ti liu tham kho

    [1] Titu Andreescu, Dorin Andrica, Complexnumbes from A to...Z ,

    Birkhauser, 2006.

    [2] Bchanu, Internatoonal Mathematical Olympiads 1959 2000. Proplem.

    Solution. Results, Acdemic Distri Center, Free, USA, 2001

    [3] on Qunh , S phc vi Hnh hc phng, Nh xut bn gio dc,

    1998.

    [4] Nguyn Huy oan (Ch Bin), Gii tch 12, Nh xut bn gio dc,

    2008.

    [5] Nguyn Thy Thanh, C s l thuyt hm bin phc, Nh xut bn

    i hc quc gia H ni,2007

    65S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

    M unh ngha v tnh cht ca s phcnh nghaTnh cht s phcCc tnh cht lin quan n php cng Cc tnh cht lin quan n php nhn

    Dng i s ca s phcnh ngha v tnh chtGii phng trnh bc hai ngha hnh hc ca cc s phc v modun ngha hnh hc ca cc php ton i s

    Dng lng gic ca s phcTa cc trong mt phngTa cc ca s phc Cc php ton s phc trong ta cc ngha hnh hc ca php nhn Cn bc n ca n v

    Bi tp

    S dng s phc trong gii ton s cpS phc v cc bi ton hnh hcMt vi khi nim v tnh cht iu kin thng hng , vung gc v cng thuc mt ng trn Tam gic ng dng Tam gic u Hnh hc gii tch vi s phc Tch thc ca hai s phcBi tp

    S phc v cc bi ton i s , lng gicCc bi ton lng gic Cc bi ton i s Bi tp

    S phc v cc bi ton t hp

    Kt lun Ti liu tham kho