Top Banner
niversity Ghent 2015-2016 eactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)
60

University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

Jan 18, 2018

Download

Documents

Rhoda Miles

University Ghent Reactortheory: Partim I History of nuclear fission
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

1

Reactortheory: Partim IG. Janssens-Maenhout

Lecture 1 (24/09/2015)

Page 2: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Greet Maenhout (UGENT- European Commission/JRC)greet.maenhout@ugent,be or [email protected] , 0039 0332 78 5831 (or 0039 3348013556)

ExercisesM. Vanderhaegen: discussed during the course/ by email

Exam: written 3hr

theory: 12pt: closed books (no ref. mat.)exercise: 8pt: open book (using ref. mat.)

Lectures: on Thursday afternoons 13:00 Partim I: 24/09 (S9); 15/10 (B913); 22/10; 05/11; 26/11; 3/12

Partim II: 01/10, 08/10, 29/10, 19/11, 10/12SCK.CEN Study trip/ Practicum: 12/11

Traineeship possibilities – JRC – Ispra (https://ec.europa.eu/jrc/en/research-topic/nuclear-safeguards-and-security)BNEN master after master (http://academy.sckcen.be)ESARDA course (https://esarda.jrc.ec.europa.eu/)

Page 3: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

History of nuclear fission

Page 4: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Physical characteristics of a nucleus

Chemistry Nuclear physics radius atom: 10E-10m nucleus: 10E-14m

boundary vague clear, Volume~A

model cloud droplet model

proton p

neutron n

elektron e-

1u= 1.7 E-27kg

1.007 1.008 0.00055

1e-= 1.6 E-19 C

+1 0 -1

In a nucleus:

Nuclide X or A = (atomic) mass number

Z : for the chemical element Z = proton number A=Z+N = neutron number

Isotopes : nuclides with same Z : U-233, U-235, U-238,…

Page 5: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

5

Eka-rhenium = Neptunium Eka-osmium = Plutonium

Glenn Seaborg (father of radio-

chemistry)

Periodic Table

Page 6: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Nuclides Chart

N=ZHeavy nucleimore neutrons

decay

decay -emitters

Page 7: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Radioactive decay

Radioactive decay : instable nuclei (in energy state, above their ground energy state) and

decay by emitting , n

time constant for decaying = Decay constant

After a Half life T1/2 only half of the original nuclei number remainedActivity = desintegration / second of the radioactive nuclide

1 Curie = activity of 1 g radium

)(BqNA BqECi 107.31

2N

example

Ground state

Excited states

Decay 1 with

Decay 2 withdttNtdN )()(

)exp()0()( tNtN

Page 8: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

8

Relation between Mass and Energy

Page 9: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Mass defect :

Nuclear forces: mass defect

kernmNmZmm np

Nuclear forces are min. 100 x stronger than electromagnetic forces:nuclear fission releases much more energy than chemical reaction

Binding energy :

MeVummmUm nH 4.1789.114392)( A23592

)(931).(. umMeVEB

Page 10: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Nuclear forces: binding energy

NucleonEB ..

A

B.E. steadily increasing

Fe-56max.

fusion fission

Heavy nuclei fission spontaneously:

No natural nuclide with Z²/A>50

Page 11: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Nuclear forces: Bethe-Weiszäcker (emp.) mass formula

4/35

2

431332

21)(21..

Aa

AZAa

AZ²aAaAaEB /

/MeV

Volume term Coulomb term pairing term surface term asymmetric term

Coulombterm ~ 3/1

2

000 4²~

4.

AZ

re

RZeZe

Asymmetric term ~ Bv. He-4, C-6A

ZAZA 2)2(

Pairing term

Z pair A pair N pair = +1 P=155 Z pair A impair N impair = 0 P=53

Z impair A impair N pair = 0 P=50 Z impair A pair N impair = -1 P=4

Page 12: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Nuclear forces: empirical mass formula

3/23/2

4

3

4313

015.022

2max

2142..

AA

AaaAZif

AZa

AZa

ZEB

/

Good agreement between measured mass defect and the mass defect calculated with the empirical mass formulafor heavy nuclei.

For light nuclei and for magic nuclei, which are more stable: The shell model is more appropriate than the droplet model.

Page 13: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Fission and Fusion Reactions

)1(3,205421 0

001

10

13654

9842

10

23592

eVMeVQnXeMonU

fission

fusion

)1(6.17111 4

210

21

31

MeVMeVQHenHH

Page 14: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Nuclear reaction

4 Conservation laws

Conservation of number of nucleons

Conservation of electric charge

Conservation of momentum

Conservation of energy

Nuclear reactions and energy

dcbadcba ),(or

2331232::),( 23390

23290 nucleonsThnTh

UpnNp 23892

23893 ),( ),(235

92 fnUThnTh 23390

23290 ),(

19293::),( 23892

23893 chargeUpnNp

Page 15: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Mechanism to fission nucleus

Droplet model

If the nucleus deforms with contraction

then the nucleus fissions by repulsion of Coulomb forces

Page 16: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Fission threshold

Fission threshold:

minimal excitation energy

Q-value:

reaction energy

abd EEE

ac EEQ

Page 17: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Q-value of a nuclear reaction:

Q>0: exothermal reaction

Q<0: endothermal reaction

Examples: fission (reaction)

fusion (reaction)

chemical reaction

Nuclear reactions and energy: Q-value

22 )()( cmmcmmQ dcba

MeVQnDT 20

MeVQnXeMonU 200421 00

01

10

13654

9842

10

23592

eVQCOOC 422

Page 18: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Fission mechanism: fission parameter

Fission parameter x: = ratio Z² / (50A)

1. if (deformation remains constant and x increases) then E decreases2. if (A is large and x constant) then the impact of A is small

3. The height of fission threshold ~ deformation energy (surfaceterm+Coulombterm); experimentally determined as

AZ

MeVEd

²36.019

)( Z even A even N even = 0 Z even A odd N odd = 0.4

Z odd A odd N even = 0.4 Z odd A even N odd = 0.7

Bi-209 Th-232 U-235 U-238 Pu-239 Fm-254 x=0.66 x=0.70 x=0.72 x=0.71 x=0.74 x=0.79

Page 19: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Fission induced by absorbing neutrons

Heavy nuclei fission if excitation energy Ex > threshold Ed

Addition of excitation energy: with a neutron, approaching the nucleus and having the neutron taken up.

If (binding energy of latest n En (= 7 MeV) >

threshold energy (for U-235 (Z²/A=36) Ed =6 MeV)

then fission

QAZAZAZ

AZnAZ

),,(),(),()1,(

)1,(),(

2211*

*

Page 20: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Excitation energy of nucleus

Excitation energy = binding energy of last neutron absorbed

4/3

543/4

3313/1

232

1

4/34/315

22

4

3/13/13

3/23/221

1

)²/2(1²

)1(

211

21)1(

)1(²)1(

),.(.)1,.(.)(931)(

AaAZaAZaAaa

AAa

AZA

AZAa

AAZaAAaa

AZEBAZEBmmmMeVE

AA

AnAn

0.5MeV~33.5’A-3/4N even: ’=-1 ; N odd ’=+1

Page 21: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Thermal and fast fissioning

Thermal fissionable nuclide: if En Ed then the absorption of a thermal n suffices for fission (e.g. U233, U235, Pu239)

Fast fission: if En< Ed then additional energy is needed for excitation, for which n receives additional kinetic energy

Conservation of momentum

Energy

kinetic threshold energy: (Ed - En ) (A+1) /A

vMm

mV

nKEA

AmvA

A

mvMm

MVMmmvEK

1

²²².).(

21

21

21

21

Page 22: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Fissile / fertile

Non-fissile nuclide not fissionable by thermal n, but possibly by fast n with KE > Ed

(fast fission)

Fissile nuclide is a thermally fissionable nuclide

(fissionable by thermal n with KE < 0.5eV )

U-233, U-235, Pu-239, …

Fertile nuclide: absorption of thermal n leads to a fissile nuclide, so that absorption of a second n induces fission U-238, Th-232, Pu-240, …

Page 23: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Experimental results of nuclear fission reactions

Experimental observations of a nuclear fission reaction:

a. Direct release: - 2 primary fission products with high Ex - 2-3 prompt neutrons (1.E-12s after fission) - prompt -photons (1.E-8s after fission)

b. Indirect release: primary fission products decay to second- ary fission products with - - decay: n p + - + - delayed neutrons, fraction 0.2% - 0.6%

Summarising: a fission reaction creates:

1. fission products, 2. energy, 3. prompt n, 4. delayed n

_

Page 24: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Experimental results: 1. Fission products

Yield: asymmetric fission

Remark:

- symmetric fission: rare

- Peaks at A=140 and A=95

- Z2/A only left peakA shifts to higher A

- If KE of n sym. fission more probable

- Evolution towards stable nucleithrough av. 3 decay (+)

U-235 Pu-239

Page 25: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Experimental results: 2. Energy released at fission

Energy Released

Kinetic energy of fission products

Energy of neutronsprompt -radiationFission products‘decay - - radiation - - radiation - Neutrino‘s

Secondary –radiationSecondary -radiation

168 MeV

5 MeV

7 MeV

8 MeV 7 MeV 12 MeV

(2 ~ 4 MeV)(3 ~ 6 MeV)

Total 200 MeV

Range (in U+air)

<0.01cm prompt

>10 cm prompt 100 cm prompt

<0.1 cm delayed100 cm delayed>100cm delayed

100 cm delayed<0.1cm delayed

About 1 gram fissile material supplies 1 MWth per day

Page 26: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Experimental results: 3. Fission neutrons

With the fission neutrons n we can control a chain reaction

Total number of free n: depends on - excitation energy Ex - deformation of the nucleus - fission products

Averaged total free n /fission:

Types of free n: - prompt n (fraction > 99%) - delayed n (fraction = 0.65%)

X-A(E)=0,X-A+aX-AE

2.9Pu-239

2.4U-2350

~1/8 ~1/7 E>1MeV ~1/15 E<1MeVa (1/MeV)

Page 27: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Experimental fission results: 3 Prompt fission neutrons

Kinetic energy of prompt n shows a continuous spectrum.

Fission spectrum (E)spectrum of which (E)dE represents the fraction of n with energy between E and E+dE.

properties of (E):

Independent of:- X-A- K.E. of n

max(E=0.72MeV)

E 2 MeV

cEbEa sinhexp

Page 28: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

28

Einstein – Slizard:

Chain reaction

Basis for criticality: 1 neutron keeps reactions ongoing

System/mixture can be: subcritical: decliningcritical: stablesupercritical: exponentially growing

Chain Reaction

Page 29: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

29

History of Nuclear Non-ProliferationFrom Einstein to Eisenhower

If the idea of world government is not realistic, then there is only one realistic view of our future: wholesale destruction of man by man A. Einstein

Page 30: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Mean neutron cycle: six factors model

Effective multiplication factor keff : number of thermal n

re-absorbed in fissile material after a mean cyclefthpLfLek

keff < 1 keff = 1 ke>1

Subcritical Supercritical mixture mixture

Critical mixture

Production factor

Fast fission factor

Fast neutron leakage

Resonance escape probability

Thermal neutron leakage

Thermal utilization factorfLp

L

th

f

Page 31: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

31

n-leak

used n

2.4 kg 16 kg

Moderator: water

water left n-poison: B

geometry size mass

Water-reflector More leaking n N poisoning

Controlling a mixture of nuclear material around criticality

Page 32: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

fast reactor: c = Na, Pb, PbBi s = Fe f = UO2, PuO2

The reactor as critical mixture: composition

coolant cstructure-material sfuel with

fissile material f

Fuel pin

thermal reactor: c = H2O, D2O, gas (CO2, He) s = Zr f = UO2,MOX m= H2O, C, D2O

moderator m

Page 33: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

33

Chicago Pile 1

Rods were manually lifted on 2/12/42 9:45

History of nuclear fission reactors

Page 34: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Four generations of nuclear power plants

I

1942Prototype reactors:Chicago Pile

1,Dresden,Magnox

II

1965commercial

reactors:LWR

CANDUWWERRBMK...

III

1995advanced reactors:

AP600System 80+

ABWREPR ...

IV

2020Future reactors:• economically performant• inherently safe (passive systems, operator-friendly)• minimal waste (with solution for HLR waste)• proliferation-resistent

Page 35: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Schematics: PWR: Pressurised Water Reactor

fuel:

cladding:moderator:

coolant:

UO2 , MOXU-235 3,2%ZrH2OH2O

efficiency=33% 4 circuitspprim= 150 bar, Tin=290°C, Tout=320°C

P / V = 100 MW/m³example T.M. I. ReactorSuccessor: APWR

Page 36: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Reactor vessel: internals

1 Control rod drive mechanism3 Vessel head 4 outlet (+ seal)6 Fuel assembly7 Internal basket (fuel support barrel)8 Bolds (fixing vessel head )10 Control rod cluster voor 1 bundel11 Reactor vessel12 Support plate 13 Guide thimbles for core instrumentation

14

Page 37: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Primaire circuit: Primary pump

1 Flywheel 2-3 Radial upper bearings4-5 Motor rotor and stator7 Radial lower bearing8 Seal No. 3 with controlled leak 9 Seal No. 2 with controlled leak 10 Pump axis11 Coolant inlet (thermal barrier)12 Orifice 13 Suction14-15 Motor 16 Seals17 Seal No. 1 with controlled leak 20-22 Metallic can protecting pump23 Diffuser

Page 38: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Primary Circuit: Pressurizer

To regulate 150 bar in the primary circuit

Page 39: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Primary circuit: Steam generator

1 Steam outlet2 Steam dryers (pos. entrainment)3 Upper shell4 Cyclone5 Moisture separator (scrubbers)6 Bottom shell 7 Bundle of steam generator tubes8 Support plates 9 Feedwater inlet 10 Lower tube sheet 11 Divider plate (separating primary water inlet and outlet)12 Outlet primary coolant 13 Inlet primary coolant

Page 40: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Heat transfer from primary circuit to secondary circuit

Page 41: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Cooling of secundary circuit

Page 42: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

BWR: Boiling Water Reactor

Fuel:

Cladding:Moderator:

Coolant:

UO2

U-235 2,6%ZrH2OH2O

Efficiency=33% 3 Circuitspprim= 70 bar, Tin=290°C, Tout=320°C

P / V = 60 MW/m³Successor: ABWR

Page 43: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

SGHWR: Steam Generating Heavy Water Reactor

Fuel:

Cladding:Moderator:

Coolant:

UO2

U-235 2,24%ZrD2OH2O

P / V = 15 MW/m³

Efficiency=32% Pressure Tubespprim= 60 bar, Tin=240°C, Tout=270°C

Page 44: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

CANDU: Canadian Deuterium Reactor

Fuel:

Cladding:Moderator:

Coolant:

UO2

U nat: U-235 0,7%ZrD2OD2O

P / V = 11 MW/m³Successor: CANDU-3

Efficiency=30% Pressure Tubespprim= 85 bar, Tin=270°C, Tout=300°C

Page 45: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Fuel:

Cladding:Moderator:

Coolant:

U MetalU MetalU nat.U nat.Magn.Ox.Magn.Ox.CCCOCO22

Magnox: Gas Cooled Graphite Reactor

P / V = 1 MW/m³

Efficiency=31% 14mx8m C-Blockpprim= 20 bar, Tin=200°C, Tout=370°C

Page 46: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

AGR: Advanced Graphite Reactor

Fuel:

Cladding:Moderator:

Coolant:

UO2U-235 2,3%aust. steelCCO2

P / V = 2,8 MW/m³

Efficiency=42% 9mx9m C-Blockpprim= 40 bar, Tin=450°C, Tout=670°C

CO2 gas evaporates water

steam drives turbine

Page 47: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

HTR: High Temperature Reactor

Fuel:

Cladding:Moderator:

Coolant:

UO2 - UCU-235 10%SiCCHe

P / V = 6,3 MW/m³Successor: MHTGR

Efficiency=40% 10mx6m C-Blockpprim= 50 bar, Tin=300°C, Tout=800°C

Page 48: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

FBR: Fast Breeding Reactor

Fuel:

Cladding: Moderator:

Coolant:

UO2 - PuO2

Pu-239 20%aust. steel----Na

P / V = 650 MW/m³Successor: EFR, BREST

Efficiency=43% Blancket enriched Upprim= 5 bar, Tin=500°C, Tout=600°C

Page 49: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

RBMK: Water Cooled Graphite Reactor

Fuel:

Cladding:Moderator:

Coolant:

UO2

U-235 2,0%ZrCH2O

P / V = 1,3 MW/m³

e.g. Tschernobyl Unit 4

Efficiency=31% 12mx7m C-Blockpprim= 70 bar, Tin=220°C, Tout=280°C

Page 50: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Nuclear Power Plants in Europe

LWR

WWERRBMK

GCR, FR,...

Page 51: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

51

Where to situate the Nuclear Power ?

Page 52: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

52

The Nuclear Club

Page 53: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Belgian Reactors

Nuclear share48%

Permanent shutdown

Page 54: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Reactor core: refueling

Pressurised Water Reactor: refueling after 12-18 months

RBMK large graphite watercooled reactor: online refueling

Fuel Assembly of a Pressurised Water Reactor

Page 55: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Reactor vessel : vertical cross section

1 Reactor vessel head bolt 2 Upper support plate3 1 of the 4 hot legs (outlet)4 Reactorsteel sample 5 radial support6 Control rod guiding tube 7 Spring to counteract lift force 8 O-ring for reactor vessel head9 Support column10 Lower control rod guiding tube 11 Support barrel 12 Core shell (+ rad. refl. / therm. shield)13 Lower support plate14 Diffuser plate (vortex)15 Secondary support

1

2

3

4

5

7

8

9

10

11

12

13

14

6

15

Page 56: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Reactor core : horizontal cross sectionPWR core

radial reflector (thermal shield)Support barrelReactor vessel

Zone 1: 1e cycle:Fresh fuel: UO2/MOX

Zone 2: 2e cycle

Zone 3: 3e cycle

With control rods

157 fuel assemblies

Page 57: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Reactor core: fuel assemblies configuration

Fuel assembly

(typical MOX: UO2 +PuO2)

17x17Pin lattice

o o oo o

o o o oo o

o o o o o o oo o o o

o o o oo o o o

o o o o o o oo o

o o o oo o

o o o

zone 1 nieuwe splijtstof UO2/MOX

zone 2 2e cyclus

zone 3 3e cyclus

o met controlestaven

o o oo o

o o o o o

o o x o o

o o o o o

o oo o o

zone 1 12 stiften 4.12 % Pu

zone 2 68 stiften 5.54 % Pu

zone 3 8.70 % Pu

o geleidingsbuis voor controlestaaf

x geleiding voor instrumentatiebuis

PWR core

Fresh fuel

2nd cycle fuel

3rd cycle fuel

pin

pin

Guiding tube for control rod

Guide thimble for core instrumentationWith control rods

Page 58: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Reactor core: fuel pin1

2

3

4

5

78

6

Pin of 9.5-12 mm thickness, 4m lengthUnder pressure (in cold condition 20-30 bar)Filled with He (heat conducting tracer gas)

1 Upper plug 2 Expansion room with spring3 Zircaloy cladding (0.5 mm)4 Isolating upper pellet5 Fuel pellets6 Isolating lower pellet 7 Supporting tube 8 Lower plug

Quality requires no leak (controlled by means of Sippingtest)

Page 59: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Reactor core: fuel assembly or fuel element

1 Control rod cluster 2 Control rods3 Head with spring4 Upper lattice5 Intermediate lattice support keeping fuel pins in position6 Guiding tube for control rods 7 Lower lattice8 Sole with damper

1

2

3 4

5

6

7 8

Page 60: University Ghent 2015-2016 Reactortheory: Partim I 1 Reactortheory: Partim I G. Janssens-Maenhout Lecture 1 (24/09/2015)

University Ghent 2015-2016 Reactortheory: Partim I

Example of Sellafield reprocessing plant: spent fuel storage

Reactor core: refueling