Top Banner
Understanding variations in Robot Welding Challenges and Pitfalls Towards Proactive Control of both Weld Quality & Productivity P. Hammersberg 1,a , H. Olsson 1,b 1 Chalmers University of Technology, Dep. of Material and Manufacturing Tech., SE-412 96 Göteborg, Sweden 2 Volvo Construction Equipment AB, SE-671 27 Arvika, Sweden a [email protected], b [email protected] using Lean Six Sigma principle: Customer based operational development
30

Understanding variations in Robot Welding

Nov 05, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Understanding variations in Robot Welding

Understanding variations in Robot Welding

Challenges and Pitfalls

TowardsProactiveControlofbothWeldQuality& Productivity

P.Hammersberg1,a,H.Olsson1,b1 ChalmersUniversityofTechnology,Dep.ofMaterialandManufacturingTech.,SE-41296Göteborg,Sweden2VolvoConstructionEquipmentAB,SE-67127Arvika,[email protected],[email protected]

usingLeanSixSigma

principle:Customerbasedoperationaldevelopment

Page 2: Understanding variations in Robot Welding

Probleminanutshell:

Howtocontroltheweldingprocesssoproductdevelopmentdaretoreducemargins?

Page 3: Understanding variations in Robot Welding

ExploringtheMAGweldingsystem

Remaining1. Mappingrelevantprocessfactors(p-diagram) à 24factors2. Qualitativefiltering(usingexperts) à 11

factors3. Quantitativescreeningexperiment(Saturated211-7=16runs) à 5factors

Surprisingscreeningresult:Allparametersrelatedtoweldingbeam(I,U,wirefeed,speed,etc.)definingtheWPS,wereoflessimportant fortheweldingdimensionsthantheweldinggeometry:steelplatesandweldinggunangles

Page 4: Understanding variations in Robot Welding

ResearchQuestion:Ifthetraditionalbeamparameters(U,I,speed,threadfeed,etc.)

(normallyusedcontroleverything:productivity,metallurgyandoutgoinggeometryandquality)(withanormallyFIXEDweldinggeometryforplateandweldgunangles)

isoflessimportancethantheWELDINGANGLESforthefinalBEADSHAPEandQUALITY

Woulditthanbepossibleto:1. FirstsettheWPS-parameterstoreachnominalmetallurgyandproductivity

• WPS15*forthe5mmFilletWeldofinterest• includingadjustingcorrespondingU,I,travellingspeed,wirefeed,etc.

2. Shapetheweldbeadgeometryusingthesteelplateandweldgunangles?

ResearchAnswer:YES!

sofar….andthisprobablymeansalotofmoneyintheend

*15m/minwirefeed

Page 5: Understanding variations in Robot Welding

Potentialresult

TodayssituationFactors

controlling Productivity Welddimension

Workorder

Weldbeam Tradeoff 2Weld

geometry Almost fixed:PBorPA 1

Tomorrowsdecoupled/uncoupled*situation:- towardsfunctionalindependence

Factorscontrolling Productivity Weld

dimension Workorder

Weldbeam

Factorset1 1

Weldgeometry

Factorset2 2

Axiomaticprocessdesign,HouseofQualitythinking(QFD)

*)Suh,NamPyo.(2001).“Axiomaticdesign,advancesandapplications”

Page 6: Understanding variations in Robot Welding

WebToeRadius[mm]

Penetration[mm]

Beadthickness

WeldingGeometryControlFactors(x’s)

andBeadQualityResponses (y’s)

Gap[0mm,2mm]

Up(+)/Downslope(-)[-10°,20°]

GunangletoWebPlate[35°,55°]

Webplatetovertical[35°,55°]

Gunangleaboveunwelded seam[80°,120°]

Platethickness[10mm,40mm]

FlangeToeRadius[mm]

DeviationfromFlat[mm]

y =f(xi)

Page 7: Understanding variations in Robot Welding

Process / Product

LCL

UCL

Target

USL

LSL

Ratherthanqualitybyinspectionsandpost-processing…Whencontrollimits(---)arewider

thanspecificationlimits(---)Increasedcostfromwaste&rework

andall-partinspection

Inspectionandpost-processingaddCOST

Page 8: Understanding variations in Robot Welding

Process / Product

LCL

UCL

Target

USL

LSL

…qualityshouldbecontrolledonxfactorsupstream

Control factors

DrivingprincipleinQuality(robust)Engineering:Monitory,controlx!

Page 9: Understanding variations in Robot Welding

Step1:IdentifyProductionSet-up

A. IdentifySet-up:• MAGwelding• Filletweld:

• 5mmthick(a)• 2mmpenetration(i)

• WPS15[wirefeedm/min]• Solidwire• Robotequipment• Etc.

B. Optimizeproductivity

Page 10: Understanding variations in Robot Welding

Step2:Buildpredictionmodels:yi =f(xj)usingdesignofexperiments(DOE)

Controlfactors(x) Outputresponses(y)

Page 11: Understanding variations in Robot Welding

Step2a:Selectexperimentaldesign

Run Thickness[mm]Up(+)/Down(-)slope[°]

Gunangelabove

unweldedseam[°]

WebPlateto

Horizontal[°]

GunangletoWebPlate[°] Gap[mm]

ToeradiusonFlange[mm]

ToeradiusonWeb[mm]

PenetrationdepthWeb

[mm]

PenetrationdepthFlange[mm] a-dim[mm]

Deviationfromflat[mm] Voltage[V] Current[A]

Wirefeed[m/min]

1 10 5 120 35 35 22 40 -10 120 55 35 13 40 -10 100 35 55 24 10 20 80 35 55 15 10 20 100 55 35 06 10 -10 120 45 55 07 40 20 80 45 35 28 10 -10 80 55 45 29 40 5 80 55 55 010 40 20 120 35 45 011 25 -10 80 35 35 012 25 20 120 55 55 213 25 5 100 45 45 1

DSDthickplate

InDSD:#runs=2x#factors+1**)PricewinningdesignofexperimentmethodologyfromBRADLEYJONESandCHRISTOPHERJ.NACHTSHEIMin2012

Forexample:a. Useaclassicalsequentialscreeningapproachor,b. DefinitiveScreeningDesign(DSD)estimatinguptosecond-ordereffects-

curvature – withoutcorrelations

Page 12: Understanding variations in Robot Welding

Distributions

Page 13: Understanding variations in Robot Welding

Input Control Factor DistributionsThickness [mm]

5

10

15

20

25

30

35

40

45

50

Up (+) / Down(-) slope [°]

-15

-10

-5

0

5

10

15

20

25

30

Gun angel above unwelded seam [°]

80

90

100

110

120

Web Plate to vertical [°]

35

40

45

50

55

Gun angle to Web Plate [°]

35

40

45

50

55

60

65

Gap [mm]

0

1

2

3

Ouput Respons DistributionsFlange Toe Radius [mm]

0

LSL

0,5

1

1,5

2

2,5

3

Web Toe Radius [mm]

0

LSL

1

2

3

4

5

Penetration [mm]

0

1

LSL

3

4

5

6

7

Bead Thickness [mm]

LSL

Target

5,5

6

6,5

Deviation from Flat [mm]

-2

-1

LSL

Target

USL

1

2

3

x’s:

Balanceddesign– alllevelsofthex’susedequallymanytimes

y’s:

Experimentalresult– rangeoftheresponsescovertheactualtargetrangeforallresponses.Potentialprocesswindowexist

Page 14: Understanding variations in Robot Welding

Ouput Respons DistributionsFlange Toe Radius [mm]

0

LSL

0,5

1

1,5

2

2,5

3

Web Toe Radius [mm]

0

LSL

1

2

3

4

5

Penetration [mm]

0

1

LSL

3

4

5

6

7

Bead Thickness [mm]

LSL

Target

5,5

6

6,5

Deviation from Flat [mm]

-2

-1

LSL

Target

USL

1

2

3

Input Control Factor DistributionsThickness [mm]

5

10

15

20

25

30

35

40

45

50

Up (+) / Down(-) slope [°]

-15

-10

-5

0

5

10

15

20

25

30

Gun angel above unwelded seam [°]

80

90

100

110

120

Web Plate to vertical [°]

35

40

45

50

55

Gun angle to Web Plate [°]

35

40

45

50

55

60

65

Gap [mm]

0

1

2

3

Highersettingsonthesetwo

Darkgreenisconnected– largeradiusontheflangealsogenerallygavehighradiusontheweb.

x’s:

Balanceddesign– alllevelsofthex’susedequallymanytimes

y’s:

Experimentalresult– rangeoftheresponsescovertheactualtargetrangeforallresponses.Potentialprocesswindowexist

Page 15: Understanding variations in Robot Welding

PredictiveModellingofResponseBehaviorone-by-oneExample:Penetration[mm](1of5outputs)

Page 16: Understanding variations in Robot Welding

5,05533333333333

+ 0,879 * Gap [mm] - 1

+ -0,8098 *Gun angel above unwelded seam [°] - 100

20

+ -0,4364 *Up (+) / Down (-) slope [°] - 5

15

+ Gap [mm] - 1 * Gap [mm] - 1 * -1,1323333333333

+ Gap [mm] - 1 *Up (+) / Down (-) slope [°] - 5

15* 0,77825

MultipleLinearRegressionof‘Penetration[mm]’

Page 17: Understanding variations in Robot Welding

MultipleLinearRegressionof‘Penetration[mm]’

Projectionoftheresponsesurface

Page 18: Understanding variations in Robot Welding

MultipleLinearRegressionof‘Penetration[mm]’

LSL

Penetrationvs.twooftheimportantx’s

Page 19: Understanding variations in Robot Welding

AlltogetherOptimalsettingswhenGapis….

Page 20: Understanding variations in Robot Welding

LSL

11,5

22,5

3

Pred

For

mul

a Fl

ange

Toe

R

adiu

s [m

m]

0,959241

LSL12345

Pred

For

mul

a W

eb T

oe R

adiu

s [m

m]

2,116754

1LSL

3456

Pred

For

mul

a Pe

netra

tion

[mm

]

3,26743

4LSL

Target5,5

USL6,5

Pred

For

mul

a Be

ad T

hick

ness

[m

m]

5,455627

-1,5-1

LSLTarget

USL1

1,52

2,5

Pred

For

mul

a D

evia

tion

from

Fl

at [m

m]

-0,05867

00,

250,

751

Des

irabi

lity

0,439824

0

0,5 1

1,5 2

0Gap [mm]

35 40 45 50 55

56,777778Web Plate tovertical [°]

-10 -5 0 5 10 15 20

-7,759601Up (+) / Down(-) slope [°]

80 90 100

110

120

120Gun angel aboveunwelded seam [°]

35 40 45 50 55

55,444444Gun angle toWeb Plate [°]

0

0,25 0,

5

0,75 1

Desirability

WithaGapof0mmDesirabilitybelowshowthatUp(+)/Down(-)slopeisthemostcriticalfactortokeepright.Togetherwithastrongpushwelding.

PushdownhillwhenGapissmall

ally’s

vs.allx’s

Page 21: Understanding variations in Robot Welding

LSL

11,5

22,5

3

Pred

For

mul

a Fl

ange

Toe

R

adiu

s [m

m]

1,564007

LSL12345

Pred

For

mul

a W

eb T

oe R

adiu

s [m

m]

3,110296

1LSL

3456

Pred

For

mul

a Pe

netra

tion

[mm

]

4,391701

4LSL

Target5,5

USL6,5

Pred

For

mul

a Be

ad T

hick

ness

[m

m]

5,381489

-1,5-1

LSLTarget

USL1

1,52

2,5

Pred

For

mul

a D

evia

tion

from

Fl

at [m

m]

-0,03529

00,

250,

751

Des

irabi

lity

0,629058

0

0,5 1

1,5 2

1Gap [mm]

35 40 45 50 55

56,777778Web Plate tovertical [°]

-10 -5 0 5 10 15 20

-0,002457Up (+) / Down(-) slope [°]

80 90 100

110

120

119,98446Gun angel aboveunwelded seam [°]

35 40 45 50 55

55,444444Gun angle toWeb Plate [°]

0

0,25 0,

5

0,75 1

Desirability

WithaGapof1mmStillsamefactorbutnotsocriticaltogetherwithastrongpushwelding.

PushhorizontalwhenGapismedium

ally’s

vs.allx’s

Page 22: Understanding variations in Robot Welding

LSL

11,5

22,5

3

Pred

For

mul

a Fl

ange

Toe

R

adiu

s [m

m]

2,42022

LSL12345

Pred

For

mul

a W

eb T

oe R

adiu

s [m

m]

3,053831

1LSL

3456

Pred

For

mul

a Pe

netra

tion

[mm

]

5,43873

4LSL

Target5,5

USL6,5

Pred

For

mul

a Be

ad T

hick

ness

[m

m]

4,913004

-1,5-1

LSLTarget

USL1

1,52

2,5

Pred

For

mul

a D

evia

tion

from

Fl

at [m

m]

0,038164

00,

250,

751

Des

irabi

lity

0,815613

0

0,5 1

1,5 2

2Gap [mm]

35 40 45 50 55

55Web Plate tovertical [°]

-10 -5 0 5 10 15 20

8,4084818Up (+) / Down(-) slope [°]

80 90 100

110

120

86,192858Gun angel aboveunwelded seam [°]

35 40 45 50 55

55Gun angle toWeb Plate [°]

0

0,25 0,

5

0,75 1

Desirability

WithaGapof2mmTheprocesswindowchangetopullinguphillinsteadinordertokeepifthebeadgeometryrequirementsontarget.

PulluphillwhenGapisbig!

ally’s

vs.allx’s

Page 23: Understanding variations in Robot Welding

SimulationofprocesscapabilityusingMonteCarlo

Page 24: Understanding variations in Robot Welding

Addingrandomnoisetothepredictors…

Outgoingcapabilitycanbepredicted

Page 25: Understanding variations in Robot Welding

Modelverification

Page 26: Understanding variations in Robot Welding

Modelsaregoodcomparedwithreferencesampleforpenetration,a-dimandDeviationfromflat(lowerthree)

AndslightlyofffortheToeradii,whichneedsomefurtheranalysis.

Page 27: Understanding variations in Robot Welding

Conclusions

• ControlfactorsforProductivityandQualitycanpotentiallybeseparated:• Firstoptimizeprocessspeedandmetallurgy• ThenutilizethedegreesoffreedomintheRobotManipulatorsinordertosetweldinggeometryanglestoshapeBeadandcompensateforprocessvariations,thatis,varyingGAP,improvingrobustness

• Processwindowexiststomeetallrequirements• Atleastfora5mmFilletWeldweldedwithWPS15

• CostislimitedusingefficientDOEmethodologiesexploringtheexperimentalset-up

• 13+3samplesinordertoevaluate6controlfactors

• PITFALLS:Baddata!• Measurementnoise<30%oftolerances

• Ifthetoleranceofatoeradiusis0,3mmtheprecisionofthemeasuresneedstobe<0,1mm…• Fixedduringoff-lineset-upwithrepeatedmeasurements• On-line….hmmm

Page 28: Understanding variations in Robot Welding

Futurework

• Improverobustnesstoincomingvariationwithaself-adjustingweldingsystemusing:

• in-linemonitoringofincomingvariationinx’s• trailingmonitoringofoutgoinggeometry(laserscanning)• defineprocesswindowsusingpredictivemodelsfromoff-lineexperiments• utilising Machinelearningalgorithms–orinlineadjustment• 6-axisrobots

• PotentialreductionofQualityassessmentneeds• Increasedknowledgeofthecorrelationbetweenouterandinnerweldgeometrywouldreducetheneedtomonitorhard-to-measureparameters(…penetration…)

• Whymonitorthingsthatcanbepredicted…let’sconcentrateonthedifficultones…

Page 29: Understanding variations in Robot Welding

? & !

Page 30: Understanding variations in Robot Welding

References

• Suh,NamPyo.(2001).Axiomaticdesign,advancesandapplications.OxfordUniversityPress,NewYork.ISBN0-19-513466-4

• JonesB.,Nachtsheim C.J.,AClassofThree-LevelDesignsforDefinitiveScreeninginthePresenceofSecond-OrderEffects,JournalofQualityTechnology,Vol.43,No.1,January2011