Top Banner
ETH Library Two-dimensional acetylenic scaffolding extended donor-substituted perethynylated dehydroannulenes, charge-transfer chromophores, and cascade reactions Doctoral Thesis Author(s): Kivala, Milan Publication date: 2007 Permanent link: https://doi.org/10.3929/ethz-a-005565057 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection . For more information, please consult the Terms of use .
305

Two-dimensional acetylenic scaffolding - Research Collection

Mar 17, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Two-dimensional acetylenic scaffolding - Research Collection

ETH Library

Two-dimensional acetylenicscaffoldingextended donor-substituted perethynylateddehydroannulenes, charge-transfer chromophores,and cascade reactions

Doctoral Thesis

Author(s):Kivala, Milan

Publication date:2007

Permanent link:https://doi.org/10.3929/ethz-a-005565057

Rights / license:In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.For more information, please consult the Terms of use.

Page 2: Two-dimensional acetylenic scaffolding - Research Collection

Diss. ETH Nr. 17593

Two-Dimensional Acetylenic Scaffolding: Extended Donor-

Substituted Perethynylated Dehydroannulenes, Charge-Transfer Chromophores, and Cascade Reactions

A dissertation submitted to the

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

Milan Kivala

M. Sc, Institute of Chemical Technology, Prague, Czech Republic

born 10.5.1979

citizen of Czech Republic

accepted on the recommendation of

Prof. Dr. François Diederich, examiner

Prof. Dr. Bernhard Jaun, co-examiner

Zurich 2007

Page 3: Two-dimensional acetylenic scaffolding - Research Collection
Page 4: Two-dimensional acetylenic scaffolding - Research Collection
Page 5: Two-dimensional acetylenic scaffolding - Research Collection
Page 6: Two-dimensional acetylenic scaffolding - Research Collection

Acknowledgements

The amount of work described in this doctoral thesis would not have been possible without

the support and help of many people and I would like to thank them:

Prof. Dr. François Diederich for giving me the opportunity as well as a great deal of freedom

to pursue my doctoral research in his group and who also provided a superb and stimulating

scientific environment. Last but not least I would like to thank him for offering me to

continue in the research in his group even after finishing my thesis. I really appreciate that.

Prof. Dr. Bernhard Jaun who accepted the co-examination of my thesis and always readily

answered my NMR-related questions.

Prof. Dr. Corinne Boudon, Dr. Jean-Paul Gisselbrecht, and Prof. Dr. Maurice Gross who

carried out an enormous amount of electrochemical measurements of my compounds and

who were always ready to answer my numerous question and to consider my suggestions.

Paul Seiler who solved many X-ray crystal structures of my compounds, grew successfully

some of the most resistant crystals and was always ready for a passionate discussion about

diverse topics. Thank you!

Prof. Dr. Georg Gescheidt and Tsvetanka Stanoeva who performed initial EPR investigations

of the compounds described in this doctoral thesis.

Prof. Dr. Ivan Biaggio for preliminary NLO investigations.

Dr. Heinz Rüegger for his patience during the NMR investigations of the enigmatic diplatina-

dehydro[14]annulene. In this respect I also thank to Prof. Dr. Antonio Togni, Prof. Dr. Paul

Pregosin, and Prof. Dr. Hansjörg Grützmacher for stimulating discussions about missing

counterions.

Dr. Walter Amrein, Oswald Greter, Oliver Scheidegger, Louis Bertschi, and Rolf Häfliger

who measured with high throughput numerous mass spectra.

Page 7: Two-dimensional acetylenic scaffolding - Research Collection

Brigitte Brandenberg who performed some special NMR measurements for me.

Dr. Carlo Thilgen for his help with various things, especially the IUPAC nomenclature.

Irma Näf'for her kindness and ready help in all administrative problems.

My special thanks belong to the crew of G304, Dr. Marine Nieckowski, Dr. Christine Crane,

Dr. Fraser Hof, Agnieszka Kraszewska, Brian Frank, and Philipp Kohler for creating a

relaxed atmosphere and taking care of musical background in our lab. From various reasons I

do not forget Dr. Corinne Baumgartner, Dr. Filip Bures, Dr. Vito Convertino, Dr. Henry

Dube, Dr. Sara Eisler, Dr. José Lorenzo Alonso Gomez, Anna Hirsch, Dr. Tsuyoshi

Michinobu, Dr. Nicolle Moonen, Dr. Severin Odermatt, Dr. Philippe Reutenauer, Dr. Eliane

Schweizer, Anna Vogt, Dr. Matthijs ter Wiel and many others that somehow contributed to

the friendly atmosphere in the Diederich group.

Ceské obëdové skupinë v celé s Janem Duchkem patfi mé vfelé diky za pravidelné ozivovâni

mého ponëkud zapadlého vlastenectvi a cetné diskuse nejen o chemii.

Mym rodicûm Alenë Kivalové aMilanu Kivalovi dëkuji za jejich shovivost pfi mych ranych

chemickych experimentech v dëtském pokoji, stejnë tak jako za vsestrannou a nikdy

neutuchajici podporu nejen pfi studiu.

A v neposledni fade mé svycarské rodinë, Lt. a Eseli (+Kalinka a Bruno), patfi hluboké diky

za bezmeznou podporu a porozumëni v casech dobrych i zlych. Lt. mûj milovany, dëkuji Ti

zavsechno(MOC)!

Page 8: Two-dimensional acetylenic scaffolding - Research Collection

Parts of this work have been published or presented at national and international conferences

or will be submitted:

Publications:

M. Kivala, T. Michinobu, B. Frank, T. Stanoeva, G. Gescheidt, in preparation. One-Electron

Reduced and Oxidized Stages of Donor-substituted Cyanobutadienes with Different

Molecular Architectures.

M. Kivala, F. Diederich, Pure & Appl. Chem. 2007, 80, 411-427. Conjugation and

Optoelectronic Properties ofAcetylenic Scaffolds and Charge-Transfer Chromophores.

P. Reutenauer, M. Kivala, P. D. Jarowski, C. Boudon, J.-P. Gisselbrecht, M. Gross, F.

Diederich, Chem. Commun. 2007, 4898-4900. New Strong Organic Acceptors by

Cycloaddition ofTCNE and TCNQ to Donor-substituted Cyanoalkynes.

M. Kivala, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, F. Diederich, Chem. Commun.

2007, 4731-4733. A Novel Reaction of 7,7,8,8-Tetracyanoquinodimethane (TCNQ): Charge-

Transfer Chromophores by [2+2] Cycloaddition withAlkynes.

M. Kivala, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, F. Diederich, Angew. Chem.

2007, 119, 6473-6477; Angew. Chem. Int. Ed. 2007, 46, 6357-6350. Charge-Transfer

Chromophores by Cycloaddition-Retro-electrocyclization: Multivalent Systems and Cascade

Reactions.

M. Kivala, F. Mitzel, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, F. Diederich, Chem.

Asian J. 2006, 1, 479-489. Two-Dimensional Acetylenic Scaffolding: Extended Donor-

SubstitutedPerethynylatedDehydroannulenes.

Presentations and Posters:

Poster presentation at the 12th International Symposium on Novel Aromatic Compounds

(ISNA-12), Awaji Island, Japan, 22-27 July 2007. Milan Kivala, Corinne Boudon, Jean-Paul

Page 9: Two-dimensional acetylenic scaffolding - Research Collection

Gisselbrecht, Maurice Gross, François Diederich. Charge-Transfer Chromophores by

Cycloaddition-Retro-electrocyclization: Multivalent Systems andNovel Cascade Reactions.

Poster presentation at the 2nd MRC Graduate Symposium, ETH Zürich, Switzerland, 27th

June 2007. Milan Kivala, Corinne Boudon, Jean-Paul Gisselbrecht, Maurice Gross, François

Diederich. Charge-Transfer Chromophores by Cycloaddition-Retro-electrocyclization:

Multivalent Systems andNovel Cascade Reactions.

Poster presentation at the 11th International Symposium on Novel Aromatic Compounds

(ISNA-12), St. John's, Newfoundland, Canada, 14-18 August, 2005. Milan Kivala, Frieder

Mitzel, Paul Seiler, François Diederich. Two-Dimensional Acetylenic Scaffolding: Synthesis

and Properties ofExtendedDehydrofnjannulenes.

Poster presentation at the NRP 47 Spring School on Supramolecular Chemistry, Murten,

Switzerland, 11-15 April 2005. Milan Kivala, François Diederich. Two-Dimensional

Acetylenic Scaffolding: Synthesis ofExtendedDehydrofnjannulenes.

Page 10: Two-dimensional acetylenic scaffolding - Research Collection

Table of Contents

Page 11: Two-dimensional acetylenic scaffolding - Research Collection
Page 12: Two-dimensional acetylenic scaffolding - Research Collection

TABLE OF CONTENTS I

SUMMARY V

ZUSAMMENFASSUNG XI

1 INTRODUCTION 1

1.1 Highly Conjugated Organic Molecules - Organic Electronics 3

1.1.1 Molecular Construction Kit for Acetylenic Scaffolding 3

1.2 Carbon-Rich Sheets and Macrocycles 6

1.2.1 Dehydroannulenes, Radialenes, Radiaannulenes 7

1.2.2 Carbon-Rich Metallamacrocycles 10

1.3 Strong Organic Acceptors - Cyanocarbons 13

1.3.1 Tetracyanoethene (TCNE) 13

1.3.2 7,7,8,8-Tetracyanoquinodimethane (TCNQ) and Related Compounds 15

1.3.3 Charge-Transfer Complexes of Cyano-Based Electron Acceptors 19

1.4 Charge-Transfer Chromophores Featuring New Powerful Organic Acceptors 20

1.4.1 Cyanoethynylethenes (CEEs) 21

1.4.2 Donor-Substituted l,l,4,4-Tetracyanobuta-l,3-dienes (TCBDs) 25

1.5 Outline of the Thesis 26

2 DONOR-SUBSTITUTED PERETHYNYLATED DEHYDROANNULENES 29

2.1 Introduction and Retrosynthesis 31

2.2 Synthesis 32

2.2.1 (Z)-Bisdeprotected TEEs 32

2.2.2 i\f,iV-Diisopropylanilino-Substituted Dehydroannulenes 35

2.3 X-ray Crystallographic Analysis of a Dehydro[18]annulene 40

2.4 UV/Vis Spectroscopy 41

2.5 Electrochemistry 45

2.5.1 (Z)-Bisdeprotected TEEs 45

2.5.2 i\f,iV-Diisopropylanilino-Substituted Dehydroannulenes 47

2.6 i\f,iV-Dialkylanilino-Substituted Diplatina-dehydro[14]annulene 51

2.6.1 Synthesis and X-ray Crystal Structure 51

2.6.2 Characterization 55

2.7 Conclusion 61

3 MULTIVALENT CHARGE-TRANSFER CHROMOPHORES AND

CASCADE REACTIONS 63

Page 13: Two-dimensional acetylenic scaffolding - Research Collection

3.1 Introduction 65

3.2 Synthesis of Alkyne Precursors 66

3.2.1 Zero Generation (GO) 66

3.2.2 First Generation (Gl) 69

3.3 Syntheses of Multivalent TCBD Derivatives 73

3.4 UV/Vis Spectroscopy 78

3.5 Electrochemistry 81

3.5.1 Oligoalkyne Precursors 81

3.5.2 jV,jV-Dihexylanilino-substitutedTCBDs 82

3.6 Novel Cascade Reactions 87

3.6.1 UV/Vis Spectroscopy and Electrochemistry 92

3.7 Conclusion and Outlook 95

4 NEW TRANSFORMATIONS OF 7,7,8,8-TETRACYANO-QUINODIMETHANE 99

4.1 Introduction 101

4.2 Synthesis 101

4.3 X-ray Structure Analysis 105

4.4 UV/Vis Spectroscopy 107

4.5 Electrochemistry 112

4.6 Conclusion 114

4.7 Towards New Organic Super-Acceptors - Future Prospects 115

5 EXPERIMENTALPART 119

5.1 Materials and General Methods 121

5.2 Experimental Procedures 123

6 REFERENCES 185

7 APPENDIX 209

7.1 X-ray Crystallographic Data 211

7.2 Abbreviations and Symbols 275

Page 14: Two-dimensional acetylenic scaffolding - Research Collection

Summary

Page 15: Two-dimensional acetylenic scaffolding - Research Collection
Page 16: Two-dimensional acetylenic scaffolding - Research Collection

Summary VII

This doctoral thesis describes an exciting journey through novel molecular architectures in

two dimensions that are constructed by acetylenic scaffolding. This journey includes

following milestones:

i. Synthesis and investigation of extended perethynylated dehydroannulenes featuring

intense intramolecular charge-transfer (CT) interactions,

ii. Preparation and electrochemical investigation of dendritic multivalent CT

chromophores acting as powerful electron reservoirs,

iii. Development of an unprecedented cascade reactions of polyynes for the construction

of conjugated [AB]-type oligomers,

iv. Investigation of hitherto unexplored [2+2] cycloaddition of 7,7,8,8-

tetracyanoquinodimethane (TCNQ) with alkynes giving access to a new family of

non-planar CT chromphores.

In Chapter 1, a molecular construction kit for acetylenic scaffolding is introduced with an

emphasis on its application to the construction of carbon-rich macrocyclic systems such as

perethynylated dehydroannulenes. An overview of strong organic acceptors featuring

strongly electron-withdrawing nitrile functionality (cyanocarbons) is given, followed by a

survey of the most relevant investigations in this interdisciplinary field. Finally, charge-

transfer chromophores incorporating powerful organic acceptors such as cyanoethynylethenes

(CEEs) and l,l,4,4-tetracyanobuta-l,3-dienes (TCBDs) are discussed.

Chapter 2 presents the synthesis and properties of a family of novel perethynylated, N,N-

diisopropylanilino-substituted dehydroannulenes. Starting from (Z)-bis(N,N-

diisopropylanilino)-substituted tetraethynylethene (TEE), perethynylated octadehydro[12]-

and dodecadehydro[18]annulenes were prepared by oxidative Hay coupling. The

dodecadehydro[18]annulene bearing six peripheral iV,iV-diisopropylanilino substituents was

characterized by X-ray crystallography. Oxidative Hay coupling of (Z)-bisdeprotected

elongated building block 1, after alkyne deprotection, afforded the unprecedented expanded

hexadecadehydro[20]annulene 2 and tetracosadehydro[30]annulene 3 decorated and

stabilized by peripheral electron-donating iV,iV-diisopropylanilino groups. UV/Vis

spectroscopy furnished evidence for strong intramolecular CT interactions between the

peripheral electron-donating anilino groups and the central electron-deficient cores. These

interactions seem to be more effective in the [4n + 2] than in the [4n] 7i-electron

Page 17: Two-dimensional acetylenic scaffolding - Research Collection

VIII Summary

chromophores. Electrochemical studies of the newly prepared dehydroannulenes

demonstrated the electron-accepting power of their all-carbon cores. Careful analysis

provided indications that the antiaromatic systems are more readily reduced than the aromatic

counterparts.

A novel, iV,iV-diisopropylaniline-substituted diplatina-dehydro[14]annulene featuring a

[Cu2(//-Cl)] bridge within the macrocyclic framework was prepared. Despite much effort, the

exact nature of this bimetallic complex still remains elusive.

(/-Pr)2N N(/-Pr)2

Chapter 3 reports on the application of [2+2] cycloaddition between tetracyanoethenene

(TCNE) and donor-substituted alkynes, followed by electrocyclic ring opening of the initially

formed cyclobutenes, to the construction of dendrimer-type, multivalent CT chromophores

that are capable of taking up an exceptional number of electrons under electrochemical

conditions, thereby acting as a type of molecular batteries. TCNE addition, having the

character of a "click"-reaction, afforded dendrimer-like TCBD derivatives such as 4 in an

excellent yield of 86%.

Page 18: Two-dimensional acetylenic scaffolding - Research Collection

Summary IX

Detailed electrochemical investigation revealed general redox characteristics of multivalent

donor-substituted TCBDs.

i. All iV,iV-dialkylanilino moieties in the multivalent systems are oxidized in a single

reversible multi-electron transfer, denoting that they all behave as independent redox

centers. As an example, dendritic 4 is oxidized in a unique 12-electron transfer step at

+0.89 V.

ii. Each TCBD moiety accommodates two electrons. Consequently, a large number of

reversible electron uptakes, centered on the dicyanovinyl units, are observed. For

example, dendritic 4 with twelve TCBD moieties accepts 24 electrons in two

reversible 12-electron reduction steps within an exceptionally narrow potential range

between -0.70 V and -1.10 V.

Furthermore, we found C=C bonds adjacent to the electron-accepting TCBD units to be

activated for the [2+2] cycloaddition to the strong electron donor tetrathiafulvalene (TTF).

This result led to the construction of a new class of conjugated [AB]-type oligomers via a

cascade of sequential TCNE/TTF additions to end-capped polyynes, controlled by the

electronic properties of the reacting C=C bonds. In this cascade, 1,2-di( 1,3-dithiol-2-

ylidene)ethane fragments are the donor parts activating adjacent triple bonds for TCNE

Page 19: Two-dimensional acetylenic scaffolding - Research Collection

X Summary

addition, whereas TCBD moieties provide the activation for TTF addition. This research

culminated in a one-pot, eight-step, five-component domino reaction, with the formation of a

single product.

Chapter 4 describes the synthesis of a series of novel donor-acceptor molecules, featuring

intense low-energy intramolecular charge-transfer bands, by hitherto unexplored

regioselective [2+2] cycloaddition between 7,7,8,8-tetracyanoquinodimethane (TCNQ) and

iV,iV-dialkylanilino-substituted alkynes. The electronic properties of these non-planar CT

chromophores were investigated by means of UV/Vis spectroscopy and cyclic voltammetry

(CV) as well as rotating disc voltammetry (RDV).

NMe2

Page 20: Two-dimensional acetylenic scaffolding - Research Collection

Zusammenfassung

Page 21: Two-dimensional acetylenic scaffolding - Research Collection
Page 22: Two-dimensional acetylenic scaffolding - Research Collection

Zusammenfassung XIII

In dieser Doktorarbeit wird eine aufregende Reise durch neuartige zweidimensionale

Molekülarchitekturen, basierend auf Acetylengerüsten, beschrieben. Dabei werden folgende

Meilensteine beschritten:

i. Synthese und Untersuchung ausgedehnter perethinylierter Dehydroannulene mit dem

Fokus auf starken intramolekularen Charge-Transfer-(CT)-Wechselwirkungen.

ii. Darstellung und elektrochemische Untersuchung dendritischer multivalenter CT-

Chromophore, welche als leistungsstarke Elektronen-Reservoirs fungieren.

iii. Entwicklung einer bislang beispiellosen Kaskadenreaktion von Polyinen für die

Konstruktion konjugierter [AB]-01igomere.

iv. Untersuchung einer bisher unerforschten [2+2]-Cycloaddition von 7,7,8,8-

Tetracyanchinodimethan (tetracyanoquinodimethane, TCNQ) mit Alkinen, welche

einen Zugang zu einer neuen Klasse nicht-planarer CT-Chromophore eröffnet.

In Kapitel 1 wird ein molekularer Bausatz für Acetylengerüste mit Schwerpunkt auf der

Verwendung in der Konstruktion kohlenstoffreicher Makrocyclen, wie perethinylierte

Dehydroannulene, eingeführt. An eine Übersicht über starke organische Akzeptoren mit

Betonung auf der stark elektronenziehenden Nitrilfunktion (Cyankohlenstoffe) schliesst sich

eine Zusammenfassung über die wichtigsten Untersuchungen auf diesem interdisziplinärem

Gebiet an. Abschliessend werden Charge-Transfer-Chromophore diskutiert, welche

leistungsstarke organische Akzeptoren wie Cyanoethinylethene (CEE) und 1,1,4,4-

Tetracyanobuta-l,3-diene (TCBD) enthalten.

Die Synthese und Eigenschaften einer Gruppe neuer perethinylierter iV,iV-Diisopropylanilin-

substituierter Dehydroannulene werden in Kapitel 2 vorgestellt. Ausgehend von (Z)-Bis(N,N-

diisopropylanilin)-substituiertem Tetraethinylethen (TEE) wurden mittels oxidativer Hay-

Kupplung perethinylierte Octadehydro[12]- und Dodecadehydro[18]annulene hergestellt.

Das Dodecadehydro[18]annulen mit sechs peripheren jV,jV-Diisopropylanilin-Substituenten

wurde mit Hilfe einer Röntgenkristallstruktur charakterisiert. Oxidative //ay-Kupplung von

zweifach entschütztem Baustein 1 liefert die beispiellosen Verbindungen

Hexadecadehydro[20]annulen 2 und Tetracosadehydro[30]annulen 3, welche mit peripheren

Page 23: Two-dimensional acetylenic scaffolding - Research Collection

XIV Zusammenfassung

elektronenschiebenden JV,iV-Diisopropylanilin-Gruppen versehen sind und damit stabilisiert

werden. UV/Vis-Spektroskopie erbringt den Beweis für starke intramolekulare CT-

Wechselwirkungen zwischen den peripheren Anilin-Gruppen und dem zentralen

elektronenarmen Kern. Diese Wechselwirkung scheint bei Chromophoren mit [4n + 2] %-

Elektronen ausgeprägter zu sein als bei jenen mit [4n] 71-Elektronen. Elektrochemische

Studien der neuentwickelten Dehydroannulene demonstrieren das Vermögen der

kohlenstoffreichen Kerne zur Elektronenaufnahme. Eine sorgfältige Analyse führt zur

Annahme, dass antiaromatische Systeme leichter reduziert werden können als aromatische.

Ein neues jV,jV-Diisopropylanilin-substituiertes Diplatin-dehydro[14]annulen mit einer

[Cu2(//-Cl)]-Brücke im makrocyclisehen Gerüst wurde hergestellt. Trotz intensiver

Bemühungen konnte die exakte Struktur dieses bimetallischen Komplexes nicht geklärt

werden.

(j-Pr)2N N(/-Pr)2

Kapitel 3 beschreibt die [2+2]-Cycloaddition zwischen Tetracyanethen (TCNE) und donor-

substituierten Alkinen, gefolgt von elektrocyclischer Ringöffnung des zunächst gebildeten

Cyclobutens. Sie findet Anwendung in der Konstruktion dendrimerer, multivalenter CT-

Chromophore, welche in der Lage sind, eine ausserordentliche Anzahl an Elektronen

aufzunehmen und somit als molekulare Batterien zu fungieren. Die Addition von TCNE, die

den Charakter einer Click-Reaktion zeigt, liefert dendrimere TCBD-Derivate wie 4 in

ausgezeichneter Ausbeute von 86%.

Page 24: Two-dimensional acetylenic scaffolding - Research Collection

Zusammenfassung XV

(CeH13)2N

NC. XN,

(CeH13)2N N(CeH13)2

N(C6H13)2

Detaillierte elektrochemische Untersuchungen verdeutlichten das allgemeine Redox-

Verhalten multivalenter, donor-substituierter TCBDs.

i. Alle iV,iV-Dialkylanilin-Gruppen eines multivalenten Systems werden in einem

einzigen reversiblen Multielektronen-Transfer oxidiert, wobei sie jeweils ein

einzelnes unabhängiges Redoxzentrum darstellen. Dendritisches 4 wird z. B. in

einem einzigen 12-Elektron-Transfer bei +0.89 V oxidiert.

ii. Jede TCBD-Einheit nimmt zwei Elektronen auf. Demzufolge wird eine grosse

Anzahl an reversiblen Elektronen-Aufnahmen, lokalisiert an den Dicyanvinyl-

Einheiten, beobachtet. So nimmt z. B. dendritisches 4 mit zwölf TCBD-Gruppen 24

Elektronen in zwei reversiblen 12-Elektron-Reduktionsschritten in einem

ausserordentlich schmalen Potentialbereich zwischen -0.70 V und -1.10 V auf.

Des Weiteren stellten wir fest, dass C=C-Bindungen in Nachbarschaft zu

elektronenziehenden TCBD-Einheiten für eine [2+2]-Cycloaddition mit dem ausgeprägten

Elektronendonor Tetrathiafulvalen (TTF) aktiviert sind. Dieses Ergebnis führte zur

Konstruktion einer neuen Klasse konjugierter [AB]-01igomere über eine Kaskade von

abwechselnden TCNE/TTF-Additionen an endständig geschützte Polyine, kontrolliert durch

Page 25: Two-dimensional acetylenic scaffolding - Research Collection

XVI Zusammenfassung

die elektronischen Eigenschaften der reagierenden C=C-Bindungen. In dieser Abfolge

agieren die l,2-Di(l,3-dithiol-2-yliden)ethan-Fragmente als Donoren und aktivieren die

benachbarten Dreifachbindungen für die Addition von TCNE, während die TCBD-Einheiten

die Aktivierung für die TTF-Addition verursachen. Diese Untersuchungen gipfeln in einer

achtstufigen Eintopf-Dominoreaktion, in der ein einziges Produkt gebildet wird.

Kapitel 4 beschreibt die Synthese einer Serie von Donor-Akzeptor-Molekülen mittels bislang

unerforschter regioselektiver [2+2]-Cycloaddition zwischen 7,7,8,8-Tetracyanchinodimethan

(7,7,8,8-tetracyanoquinodimethane, TCNQ) und jV,jV-Dialkylanilin-substitutierten Alkinen,

gefolgt von einer Ringöffnung des dabei gebildeten Cyclobutens. Insbesondere werden die

intensiven intramolekularen Charge-Transfer-Banden diskutiert. Die elektronischen

Eigenschaften dieser nicht-planaren CT-Chromophore wurden mittels UV/Vis-

Spektroskopie, cyclischer Voltammetrie (CV) sowie Voltammetrie mit rotierender

Scheibenelektrode (RSV) untersucht.

NC CNNMe2

Page 26: Two-dimensional acetylenic scaffolding - Research Collection

1 Introduction

Page 27: Two-dimensional acetylenic scaffolding - Research Collection
Page 28: Two-dimensional acetylenic scaffolding - Research Collection

Introduction 3

1.1 Highly Conjugated Organic Molecules - Organic Electronics

Over the past 20 years, highly conjugated organic molecules featuring unique structural and

optoelectronic properties have been recognized as promising candidates for use in next-

generation electronic and optoelectronic devices [1-6]. Compared to their inorganic

counterparts, organic materials are of particular attraction due to the ease of structural tuning

to enhance specific properties for specialized applications, their superior processibility, and

last but not least, low costs of their fabrication [7,8]. Suitably modified organic materials can

be processed by a multitude of different methods, the most important of which are vapor

deposition and solution-based processes, such as spin-coating and various printing techniques

[9]. The most important applications for such 7i-conjugated materials include organic thin

film transistors (OTFTs) [10-12], light-emitting diodes (OLEDs) [13-15], photovoltaic cells

[16-19], sensors [20], and data recording and storage [21,22]. Photoreceptors in xerography

using organic photoconducting materials have already established wide markets of copying

and laser printers. OLEDs have also found practical applications in small displays such as

mobile phones, digital cameras, and are expected to expand their markets to flatpanel

televisions and lighting in the future.

Among a large number of 7i-conjugated systems that have been incorporated into such

devices till today, e.g. functionalized acenes [23], oligothiophenes [24], polycyclic aromatic

hydrocarbons (PAHs) [25], and fullerene-based materials [26], architectures based on

acetylenic scaffolding represents the most prominent class of compounds [3,27]. Their

structural rigidity and electronic communication, which is basically unperturbed by

conformational effects, together with their ready accessibility via advanced metal catalyzed

cross-coupling reactions [28,29] make them highly attractive components for the construction

of conjugated scaffolds.

1.1.1 Molecular Construction Kit for Acetylenic Scaffolding

Twenty years ago, in 1987, the Diederich group started a research program in acetylene

chemistry with the aim to synthesize acetylenic molecular carbon ätiotropes. While the goal

of preparing and isolating new stable acetylenic forms of carbon, cyclo[«]carbons, in

macroscopic quantities still remains elusive [30,31], the initial objective led to a fascinating

journey into acetylenic scaffolding. A diverse library of differentially protected and

Page 29: Two-dimensional acetylenic scaffolding - Research Collection

4 Introduction

functionalized carbon-rich building blocks was developed and applied to the assembly of

various acetylenic frameworks via acetylenic couplings (Fig. 1.1) [28,29]:

(£)-1,2-Diethynylethene 1,3-Diethynylallene

// \\Tetraethynylallene (£)-1,4-Diethynylbutatnene

Fig. 1.1. Carbon-rich building blocks for acetylenic scaffolding.

//

/// X

Tetraethynylbutatnene

(£)-l,2-Diethynylethenes (DEEs, (E)-hex-3-ene-l,5-diynes) and tetraethynylethenes

(TEEs, 3,4-diethynylhex-3-ene-l,5-diynes) (Fig. 1.1) proved to be the most versatile

building blocks for acetylenic scaffolding. The first TEE derivative,

tetrakis(phenylethynyl)ethene, was reported almost 40 years ago, in 1969, by Hori

and co-workers [32]. Later, Hauptmann [33] and co-workers and Hopf and co¬

workers [34] prepared other phenylated TEE derivatives. However, the preparation of

the parent TEE remained elusive until 1991 when the synthesis was accomplished by

Diederich and co-workers [35]. Since then, versatile synthetic protocols enabled the

preparation of a variety of TEE derivatives featuring various substitution pattern

[36-38] that were applied in the construction of well-defined carbon-rich molecular

architectures and advanced functional materials [39-42]. The following examples

nicely illustrate the synthetic potential of TEE building blocks (Fig. 1.2).

Monodisperse 7i-conjugated poly(triacetylene) (PTA) oligomers 1 extending up to 18

nm in length (24-mer) and featuring high stability, combined with excellent

solubilities in aprotic solvents, were prepared by a fast and efficient "statistical"

deprotection-oxidative Hay oligomerization protocol [43,44]. A series of

organometallic Pt(II)-bridged TEE oligomers 2 extending to a length of 12 nm was

prepared. In these rods, the Pt-C(sp) bonds lack any 7i-character and therefore the

metal ions act as true insulating centers [45]. The synthesis of a new polymer bearing

lateral donor-acceptor-substituted (£)-diethynylethene chromophores 3 was

accomplished by ring-opening metathesis polymerization (ROMP). The soluble

Page 30: Two-dimensional acetylenic scaffolding - Research Collection

Introduction 5

polymer with an average of 40 monomeric units forms good optical-quality films,

with the third-order susceptibility^ at a fundamental wavelength of 1907 nm being

100 times greater than that of fused silica [46]. TEE-based molecular switches 4 with

up to eight different states, six of which are independently addressable by light or

proton stimuli, were also developed [47,48].

Me2(f-Bu)SiO

OSi(f-Bu)Me2

1 /?= 1,2,4,6,8,12,16,24

Si(/-Pr).

Si(/-Pr)3

02N

OSi(f-Bu)Me2Me2N

(>-Pr)3Si

Fig. 1.2. Examples of carbon-rich architectures based on DEEs and TEEs.

Si(/-Pr)3

Formal extension of the central olefinic core in DEEs and TEEs leads to 1,3-

diethynylallenes (DEAs, hepta-3,4-diene-l,6-diynes) and 1,1,3,3-tetraethynylallenes

(3,5-diethynylhepta-3,4-dien-l,6-diynes) (Fig. 1.1). While 1,1,3,3-tetraethynylallenes

still remain elusive due to the extreme dimerization tendency of the unprotected aliène

moiety, methods for the preparation of DEAs have been established [49,50]. A

racemic mixture of DEAs was used for the preparation - via oxidative

oligomerization - of chiral, unsaturated alleno-acetylenic macrocycles 5 and 6 (Fig.

1.3) [51]. Other acetylenic allenophanes have been reported by Krause and co¬

workers and Fallis and co-workers [52,53], however, compound 5 is the first alleno-

acetylenic macrocycle without aromatic rings in the backbone. It exists as seven

stereoisomers, two pairs of enantiomers and three achiral diastereoisomers, which

could all be isolated as pure compounds.

Page 31: Two-dimensional acetylenic scaffolding - Research Collection

6 Introduction

Fig. 1.3. Shape persistent chiral alleno-acetylenic macrocycles 5 and 6 [51].

iii. Further expansion of the central cumulenic fragment leads to 1,4-diethynyl- and

1,1,4,4-tetraethynylbutatrienes (Fig. 1.1) that are accessible by transition-metal

mediated dimerization of appropriate 1,1-dibromoolefins [54,55]. Diederich and co¬

workers found that cis-trans isomerization of differentially substituted 1,1,4,4-

tetraethynylbutatrienes is remarkably facile, with barriers to rotation in the range of

those for peptide bond isomerization (AG#~20 kcal mol-1)! Barriers to rotation of

1,4-diethynylbutatrienes are higher (AG#~25 kcal moP1), allowing in some cases the

isolation of pure diastereoisomers [56].

1.2 Carbon-Rich Sheets and Macrocycles

The preparation of bulk quantities of fullerenes in 1990 initiated interest in the preparation of

novel carbon allotropes [57]. The fully controlled assembly of highly conjugated all-carbon

expanded sheets or even networks by means of advanced organic synthesis still attracts

interest [31,58-60]. Graphyne (7) and graphdiyne (8) (Fig. 1.4), theoretical carbon allotropes

composed of sp- and sp2-hybridized carbon atoms, are the subject of intensive research at the

interface between synthetic, theoretical, and physical organic chemistry as well as materials

science. The highly unsaturated networks are predicted to feature a variety of desirable

materials properties, such as high-temperature stability, a band gap (1.2 eV) lower than that

of polyacetylene, and the ability to intercalate Na+ and K+ ions without interlayer distortion

Page 32: Two-dimensional acetylenic scaffolding - Research Collection

Introduction 7

[61-64]. Despite these predicted advantageous properties, a suitable synthetic route for the

preparation of 7 or 8 has not been found.

7 8

Fig. 1.4. Theoretical all-carbon networks graphyne (7) and graphdiyne (8) featuring

dehydrobenzo[12]annulene and dehydrobenzo[18]annulene units, respectively.

As benzene is considered to be the smallest unit of graphite,

hexadehydrotribenzo[12]annulene can be regarded as the smallest unit of graphyne (Fig. 1.4).

From this reason, investigation of theoretical network properties via substructures based on

similar structural motifs, i.e. dehydrobenzoannulenes (DBAs) [65,66] and dehydroannulenes

[67-70], has prooved successful. Additionally, other acetylenic macrocycles [71-74] are

intensively studied both experimentally and theoretically to further enhance the

understanding of aromaticity/antiaromaticity and, in general, ^-conjugation in unsaturated

macrocyclic systems [75-79]. Furthermore, with their extended 7i-chromophores, a number

of representatives feature interesting optoelectronic properties, such as high second- and

third-order optical nonlinearities [80,81]. Also, some of them act as potent receptors, such as

for fullerenes showed in elegant work by Oda and co-workers [82].

1.2.1 Dehydroannulenes, Radialenes, Radiaannulenes

The name annulenes (lat. annulus = ring) was suggested for all conjugated monocyclic

polyenes, irrespective of their properties or ring size, by Sondheimer in the early 1960s

[67,83]. The ring size is indicated by prefixing to the annulene a number enclosed in square

brackets. There are also other cyclic analogues wherein one or more double bonds have been

replaced by triple bonds; these compounds are described as dehydroannulenes. According to

Page 33: Two-dimensional acetylenic scaffolding - Research Collection

8 Introduction

HückePs rule [84-86], they can be classified as aromatic or antiaromatic, provided they

contain [4n + 2] or [4n] % electrons (n = an integer), respectively. However, the

aromaticity/antiaromaticity of these conjugated systems is still an intensely investigated and

debated area of chemisty. This issue has been addressed on two fronts. Classically,

experimental observations, based mainly on *£! NMR data [87], provide strong evidence for

the existence of ring currents in most dehydroannulenes and DBAs. More recently,

theoretical work, specifically the calculations of nucleus-independent chemical shifts (NICS)

[88,89], has improved the understanding of this fundamental yet elusive property of these

macrocycles.

Over the past decade, the Diederich group applied TEE building blocks to the construction of

novel families of acetylenic macrocycles such as perethynylated dehydroannulenes [90-93],

perethynylated expanded radialenes [91,94-96], and radiaannulenes combining the structural

features of both dehydroannulenes and expanded radialenes [93,97] (Fig. 1.5). With their

numerous sp-hybridized carbon atoms, the all-carbon cores of these systems feature potent

electron-accepting properties.

radiaannulene

Fig. 1.5. Carbon-rich macrocycles, perethynylated dehydroannulene, perethynylated expanded radialene,

and radiaannulene derived from TEE.

Page 34: Two-dimensional acetylenic scaffolding - Research Collection

Introduction 9

Among the first derivatives prepared were the deep-purple-colored per(silylethynylated)

octadehydro[12]annulene 9a, with an antiaromatic macrocyclic perimeter as revealed by

UV/Vis and !H NMR spectroscopy, and its larger, yellow-colored aromatic counterpart,

dodecadehydro[18]annulene 10a (Fig. 1.6) [90,91]. Furthemore, electrochemical studies

showed that the antiaromatic 9a undergoes two stepwise one-electron reductions more readily

than the aromatic chromophore 10a. This redox behavior was explained by the formation of

an aromatic [4n + 2] 7i-electron dianion from 9a, whereas 10a loses its aromaticity upon

reduction. X-ray crystallographic analyses of 9a and 10a revealed perfectly planar annulene

frameworks.

Later, the terminally iV,iV-dimethylanilino (DMA)-substituted derivatives 9b and 10b were

synthesized [92,93] (Fig. 1.6) as well as series of anilino-substituted expanded radialenes [96]

and radiaannulenes [93,97]. The combined investigation of all three classes of anilino-

substituted acetylenic macrocycles demonstrated three beneficial effects obtained upon

introduction of the peripheral 7i-electron donor groups:

i. The solubility of the compounds is enhanced,

ii. The electron-deficient all-carbon cores are stabilized against nucleophilic attack and

cycloadditions,

iii. Intense bathochromically shifted charge-transfer (CT) bands result from strong

intramolecular CT interactions between these groups and the electron-accepting all-

carbon cores.

R R

R R

9a = Si(/-Pr)3 10a = Si(/-Pr)3

9b = |-<{ ^NMe2 10b = l~£ ^—HMe2

Fig. 1.6. Per(silylethynylated) and 7V,7V-dimethylanilino-substituted octadehydro[12]annulenes 9 and

dodecadehydro[18]annulenes 10.

Page 35: Two-dimensional acetylenic scaffolding - Research Collection

10 Introduction

The Diederich group also prepared a new tris(tetrathiafulvaleno)dodecadehydro[18]annulene

11 bearing six peripheral w-hexyl substituents by oxidative Glaser-Hay cychzation of

desilylated tetrathiafulvalene (TTF) derivative 12 (Scheme 1.1) [98]. In contrast to the

oxidative couplings of cz's-bisdeprotected TEEs [90-93], the formation of cyclic dimers was

not observed. Apparently, annellation of the five-membered TTF rings prevents the large

distortion of the inner C(sp)-C=C bond angles that is necessary for formation of the strained

cyclic dimer, as revealed by X-ray crystallographic analysis of per(silylethynyl)ated

octadehydro[12]annulene [91]. According to both *H NMR and UV/Vis spectroscopic

studies, the macrocycle shows no aggregation in solution. The intense violet color of 11 is

accordingly assigned to an intramolecular charge-transfer transition rather than to an

intermolecular one. This nonaggregating behavior strongly contrasts that of TTF-annulenes

containing peripheral carboxylic ester substituents (COOwBu, COOwOct) prepared by lyoda

and co-workers [99] undergoing % stacking in benzene and toluene. These peripheral groups

extend and render the 7i-conjugated perimeter more electron-deficient, and may additionally

facilitate the aggregation by intermolecular dipolar C=0 C=0 interactions.

R R

w

Si(/-Pr)3

Si(/-Pr)3

S S

R = nHex

Scheme 1.1. Synthesis of tris(tetrathiafulvaleno)dodecadehydro[18]annulene 11. a) «Bu4NF, THF, 0 °C;

b) CuCl, TMEDA, CH2C12, 02, 0 °C, 47% (yield over two steps) [98].

1.2.2 Carbon-Rich Metallamacrocycles

Highly conjugated, organometallic oligomers and polymers continue to be investigated for

potential use as advanced materials with desirable electronic and optical properties [100]. In

particular, Pt(II) (7-acetylides as structural elements have received considerable attention in

this regard from both applied and fundamental standpoints [101]. Incorporation of a Pt(II)

Page 36: Two-dimensional acetylenic scaffolding - Research Collection

Introduction 11

center into a conjugated system allows triplet-state emission, thus making Pt(II)-alkynyl

oligomers and polymers ideal for use in organic optoelectronic devices such as photocells or

light emitting diodes [102]. Two factors dominate the properties of transition metal a-

acetylide complexes, namely electronic interraction between metal center and alkynyl ligand

as well as electronic derealization through the transition-metal fragment. This was recently

quantified in a Pt(II)-alkynyl charge-transfer (CT) system by Marder and co-workers to be

only slightly less efficient than a benzene moiety [103]. However, the postulation of strong

ground-state-7i-conjugation across Pt(II)-(7-acetylide fragments is in sharp contrast to the

findings by Diederich and co-workers, who did not see any experimental evidence for such

7i-conjugation in compounds 2 (Fig. 1.2) [45].

14

Fig. 1.7. Examples of platina(II)-dehydrobenzoannulenes (DBAs), 13 and 14, prepared by Haley and co¬

workers [104].

A variety of Pt(II)-containing macrocyles have been prepared and studied since the 1990s by

a number of research groups. Haley and co-workers prepared via a selective Sn

transmetallation and amine-mediated oxidative addition a series of platina(II)-

dehydrobenzoannulenes such as 13 and 14. The electronic derealization in both sets of

macrocycles was discussed by comparison of the UV/Vis spectra with their purely

hydrocarbon DBA analogues (Fig. 1.7) [104]. The Diederich group applied TEE bulding

blocks and ^ra«s-bis(triethylphosphine)platinum fragments to the construction of linear and

cyclic architectures such as molecular square 15 (Fig. 1.8) [105]. Tykwinski and co-workers

developed a simple and general protocol providing easy access to chiral Pt(II)-containing

molecules such as 16 by ligand exchange between ^ram,-Pt(H)-acetylide complexes and the

chiral diposphine ligands (R,R)- and (^^-chiraphos [106] (Scheme 1.2).

Page 37: Two-dimensional acetylenic scaffolding - Research Collection

12 Introduction

15

Fig. 1.8. Platina(II) molecular square 15 synthetized by Diederich and co-workers [105].

(S,S)-chiraphos

Ph VaPh2P PPh2

Ph Ph2P' *PPh2 Ph

16

Scheme 1.2. Conversion of an achiral platinum <r-acetylide complex into chiral metallamacrocycle 16 by

ligand exchange developed by Tykwinski and co-workers [106].

Page 38: Two-dimensional acetylenic scaffolding - Research Collection

Introduction 13

1.3 Strong Organic Acceptors - Cyanocarbons

Cyanocarbons are a class of organic compounds containing enough strongly electron-

withdrawing nitrile functionality {Hammett constant oj,(CN) = 0.56 [107]) to fundamentally

alter their chemical and physical properties [108].

1.3.1 Tetracyanoethene (TCNE)

Tetracyanoethene (TCNE), the simpliest of the percyanoalkenes, was prepared in the early

1950s by Cairns and co-workers at the DuPont company by Cu-mediated reduction of

dibromomalononitrile [109]. The four powerful accepting CN groups render the olefinic

C=C bond of TCNE highly electrophilic, hence, it reacts readily with many nucleophiles

(alcohols, amines, and thiols), forms rapidly cycloadducts with various alkenes, inserts into

carbon-hydrogen bonds in ketones and arènes, and transition metal-carbon bonds. The rich

chemistry of TCNE was compiled in three excellent reviews by Fatiadi in the late 1980s

(Scheme 1.3) [110-112].

NC

|1XN

JNC CN

TCNE

OMeMe0

CN

[2+2]

c[4+2]

H20

H2S

H20/H202

-CN

-CN

CN

CN

CN

CN

CN

NCX5H

TNC CN

NC CN

NH,

O

NC-y\^CNNC CN

Scheme 1.3. Examples of TCNE chemistry [110].

TCNE is amenable to thermal [2+2] cycloadditions with electron-rich alkenes via

nonconcerted, zwitterionic mechanism to yield cyclobutane derivatives (Scheme 1.4). The

Page 39: Two-dimensional acetylenic scaffolding - Research Collection

14 Introduction

existence of a zwitterionic intermediate is supported by a strong rate-dependency on solvent

polarity, incomplete stereochemical information transfer, and trapping of the zwitterionic

intermediate as demonstrated by Huisgen and co-workers and others [113-115].

MeO

1

Scheme 1.4.

NC CN

TNC CN

TCNE

MeCk NC

NC

O'CN

CN

NC.

NC

charge-transfercomplex

"OMe

XN

'eCN

zwittenon

MeO.CN

-CN

-CN

CN

cycloadduct

The zwitterionic mechanism for the [2+2] cycloaddition of TCNE and electron-rich methyl

vinyl ether proposed by Huisgen and co-workers [114].

Accordingly, thermal [2+2] cycloadditions of tetracyanoethene (TCNE) with electron-rich

alkynes yield cyclobutenes which in isolated cases have been shown to undergo retro-

electrocyclization under formation of l,l,4,4-tetracyanobuta-l,3-dienes (TCBDs). Such a

transformation was first reported by Ficini and co-workers for the reaction of acrylonitriles

with jV,jV-diethylaminoprop-l-yne [116]. The very first example of thermal TCNE [2+2]

cycloaddition with electron-rich alkynes was described by Bruce and co-workers for the

series of cyclopentadienylalkynyl-ruthenium and -osmium complexes [117]. Later, a variety

of organic and organometallic TCBD-containing molecules have been reported and some of

them have been investigated as second-order nonlinear optical (NLO) materials (Scheme 1.5)

[118-121].

NC XN

NC CN

TCNE

EDG

NC

NC4

NC-TA

NCEDG

NC XN

EDG

Scheme 1.5. Reaction between TCNE and an alkyne substituted with an electron-donating (EDG) group to

afford l,l,4,4-tetracyanobuta-l,3-dienes (TCBDs).

TCNE undergoes two reversible one-electron reduction steps at +0.18 and -0.85 V (in

CH2C12 +0.1 M «Bu4NPF6 vs. SCE (saturated calomel electrode))1 [122]. Because of its easy

reduction, TCNE forms a number of stable CT complexes and salts with various electron

Potentials reported against SCE can be converted, for the sake of comparison, from calibration against SCE to

the Fc+/Fc reference by subtracting a value of 500 mV; this conversion represents an approximation [42].

Page 40: Two-dimensional acetylenic scaffolding - Research Collection

Introduction 15

donors featuring interesting materials properties {vide infra). Encouraged by the attractive

properties of TCNE, a large number cyano-based acceptors were prepared to date [108,123].

1.3.2 7,7,8,8-Tetracyanoquinodimethane (TCNQ) and Related Compounds

7,7,8,8-Tetracyanoquinodimethane (TCNQ) was for the first time reported by Acker and co¬

workers at the Du Pont company in the early 1960s [124,125]. The product of Knoevenagel

condensation of malononitrile with cyclohexane-l,4-dione is converted via bromination-

dehydrobromination procedure in the presence of pyridine to TCNQ (Scheme 1.6). TCNQ is

a stable crystalline yellow-brown substance melting at 296 °C and subliming readily above

250 °C.

NC CN NC CN NC CN

9 A 9 ' 9 A

9NC CN NC CN NC CN

TCNQ

Scheme 1.6. Synthesis of TCNQ by Acker and co-workers, a) CH2(CN)2; b) Br2, pyridine, 80% [ 125].

Similarly to TCNE, the presence of four powerful electron-accepting cyano groups

determines the reactivity of TCNQ. Hence, nucleophilic addition reactions, addition

reactions proceeding via one-electron transfer steps as well as formation of radical-ion salts

with many organic and inorganic electron donors, some of them exhibiting high electric

conductivity {vide infra), were observed [126].

The simplest example of a 1,6-addition, a characteristic reaction of TCNQ, is the reduction

by thiophenol, mercaptoacetic acid, or hydriodic acid with formation of p-

phenylenedimalononitrile (TCNQH2). Halogens add in a 1,6-manner to TCNQ only in the

presence of catalysts such as tetramethylammonium chloride or triethylamine [125]. N,N-

dimethylaniline was also found to form a 1,6-addition product with TCNQ. Certain primary

and secondary amines react with TCNQ to give product in which one or two cyano groups

are replaced by the amine [127]. When electron-rich olefins are mixed with TCNQ, charge-

transfer complex formation and spontaneous polymerizations are often observed. For

example, TCNQ copolymerizes spontaneously and alternatingly with styrene (Scheme 1.7)

[128].

Page 41: Two-dimensional acetylenic scaffolding - Research Collection

16 Introduction

[H]

NC. XN

1,6-addition

Cl2, Me4NCI

1,6-addition

PhNMe2

1,6-addition

R2NH

-HCN

substitution

Ph

CN/=,

CN

CNN—'

CN

TCNQH2

CN

ci-

CN

CN—

CN

CI

CN CN

CNN—'

CN

NC

NC

NR2

CN

R,NH

-HCN

NC

NC

NR2

NR2

polymerization

CN/=s

CN

CN CN Ph

Scheme 1.7. Examples of TCNQ chemistry [126].

TCNQ refluxed in MeCN with o-quinodimethane (17) generated in situ from 1,4-dihydro-

2,3-benzoxanthiin-3-oxide (18) reacted in a [4+2] fashion at the more electron-deficient

exocyclic double bond to give spiro compound 19 (Scheme 1.8a) [129,130]. When TCNQ

interacts with 2,2-diphenylmethylenecyclopropane (20), the cycloaddition product 21 is

formed in 60% yield (Scheme 1.8b) [131].

ŒO A, MeCN

^0

18

b)

D>=<Ph

Ph

20

Scheme 1.8. Cycloadditions of TCNQ.

Back in the early 1970s, Hagihara and co-workers reported the reactions of Pt(II) (7-alkynyls

with TCNQ to give intensively colored products that were described as charge-transfer

Page 42: Two-dimensional acetylenic scaffolding - Research Collection

Introduction 17

complexes [132]. However, one of these products was later shown to be the buta-l,3-dienyl

derivative 22 apparently resulting from [2+2] cycloaddition of TCNQ to the alkyne moiety

(Scheme 1.9) [133]. Nevertheless, at that time no special attention was paid to this finding

and the reaction was not further investigated.

?Me3 TCNQMe — Pt — Me

PMe,

Scheme 1.9. Reaction between /ra«s-bis(trimethylphospWne)dialkynylplatinum(II) and TCNQ to yield the

buta-l,3-dienyl derivative 22 [132,133].

Another interesting reaction was described in 1994, triethylamine reacted with TCNQ in

chloroform to yield zwitterionic adduct 23 [134]. TCNQ abstracts protons from

triethylamine yielding the enamine and TCNQH2. Subsequent elimination of HCN from the

initial addition product results in the formation of 23 (Scheme 1.10).

NC^ .CN

+ HCN

Scheme 1.10. Reaction of TCNQ with triethylamine to yield zwitterion 23 [134].

TCNQ undergoes two reversible one-electron reduction steps at +0.25 and -0.31 V (in

CH2CI2 +0.1 M «BU4NPF6 vs. SCE) [122]. Clearly the Coulomb repulsion in dianions is

minimized when the electrons are delocalized over extended % systems. Similarly to TCNE,

TCNQ forms stable CT complexes with various electron donors (vide infra).

Three general synthetic approaches have been used for the modification of the acceptor

structure: (i) ring substitution with the aim of tuning the redox behavior through careful

choice of substituents, (ii) introduction of heteroatoms or heterocyclic rings into the TCNQ

skeleton in order to increase inter- and intra-molecular interactions which enhance the

dimensionality of the corresponding CT complexes, and (iii) extension of the % system which

leads to a lowering of the intramolecular Coulomb repulsion in the charged species [135].

Page 43: Two-dimensional acetylenic scaffolding - Research Collection

18 Introduction

A whole series of substituted TCNQ derivatives were synthesized by Wheland and co¬

workers at the Du Pont company [136]. Some of the TCNQ analogues, in particular 2,3,5,6-

tetrafluoro-7,7,8,8-quinodimethane (F4-TCNQ; £red,i = +0.53 V, Ereda = +0.02 V in MeCN vs.

SCE), and 2,5-dicyano-7,7,8,8-tetracyanoquinodimethane (TCNQ(CN)2; £red,i = +0.65 V,

Ered,2 = +0.09 V in MeCN vs. SCE) have been shown to be much stronger electron acceptors

than the parent compound (Fig. 1.9) [137]. Taking into account the chemical analogy

between C=0 and C=C(CN)2 and between C=C(CN)2 and C=N-CN, Hünig reported the

iV,iV-dicyanoquinone diimines (DCNQs) as a new class of powerful electron acceptors (Fig.

1.9) [138]. Over the last two decades, a variety of novel cyano-based acceptors featuring

extended % systems such as 9,9,10,10-tetracyano-2,6-naphtoquinodimethane (TNAP) [139],

7,7,7,7-tetracyano-4,4-diphenoquinodimethane (TCNDQ) [140], or 11,11,12,12-tetracyano-

9,10-anthraquinodimethane (TCAQ) [141] and many other derivatives were synthesized (Fig.

1.9) [142]. However, some of these acceptors were not stable or were unable to form stable

crystalline CT complexes. Very recently, 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane

(F2-HCNQ) (Fig. 1.9), a superb electron acceptor was reported [143]. F2-HCNQ is a much

stronger acceptor than F4-TCNQ, exhibiting two reversible one-electron reductions at

£red,i = +0.87 V and £red;2 = +0.28 V in MeCN vs. Ag/AgCl, respectively.2

NC^ ^CN

NC^ XN

F2-HCNQ DCNQI

NCk ^CN

Fig. 1.9. Selected examples of modified cyano-based electron acceptors.

Potentials reported against Ag/AgCl can be converted from calibration against Ag/AgCl to the Fe /Fc

reference by subtracting a value of 440 mV; this conversion represents an approximation [ 144].

Page 44: Two-dimensional acetylenic scaffolding - Research Collection

Introduction 19

1.3.3 Charge-Transfer Complexes of Cyano-Based Electron Acceptors

Shortly after Wudl and co-workers reported the synthesis of the strong electron donor

tetrathiafulvalene (TTF) (Fig. 1.10) [145], the highly conducting charge-transfer (CT)

complex TCNQ-TTF was prepared by Perlstein and co-workers [146]. The room-

temperature conductivity (a= 500-1000 Q_1 cm1) of this CT complex increases dramatically

upon cooling, rising as high as 104Q_1cm_1 near 60 K [123,147], high enough to be

considered as "organic metal".3 However, those values were strongly dependent on the

quality of the crystalline material [148].

Stimulated by these findings, a large number of conducting CT complexes featuring both

modified acceptor (Fig. 1.9) and donor (Fig. 1.10) moieties have been prepared and studied to

date [135,149] with the hope for high-temperature superconductivity in these materials.

Although this goal still remains elusive, a number of compounds with remarkable properties

have been synthesized. For example, hexamethylenetetrathiafulvalene (HMTTF) forms CT

salts with both TCNQ and its tetrafluoroderivative F4-TCNQ (Fig. 1.10). As revealed by

solid state UV/Vis spectroscopy, HMTTF-TCNQ is a mixed-valence metal with low degree

of charge transfer, whereas the stronger electron affinity of F4-TCNQ causes the charge

transfer in HMTTF- TCNQ-F4 to be complete, making it an insulator [150]. Replacing sulfur

atoms in HMTTF with the larger and more polarizable selenium atoms afforded

hexamethylenetetraselenafulvalene (HMTSF). Its CT salt with TCNQ is one of the most

conducting materials at room temperature known, reaching a= 2178 Q_1 cm-1, that remains

highly conducting to the temperatures as low as 1 K [151]. In 2001, Tanaka an co-workers

reported a single-component molecular metal, [Ni(tmdt)2] (tmdt,

trimethylenetetrathiafulvalenedithiolate) displaying room-temperature conductivity

a= 400 ß_1 cnT1 [152]. Tetrakis(dimethylamino)ethylene (TDAE) (Fig. 1.10) [153] was

found to form both 1:1 and 1:2 electron transfer salts with TCNE and TCNQ in high yield,

however, their conducting properties were not reported [154].

In the 1980s, Miller and co-workers discovered the first organic-containing molecule-based

magnet, [Fem(C5Me5)2]*+[TCNE]*~, that was found to order as a ferromagnet below a critical

temperature, Tc of 4.8 K [155]. Since then, several magnetic species of general formula

[Mni(C5Me5)2]*+[Ar (M = Fe, Cr, Mn; A = TCNE, TCNQ) were prepared [156]. As

V°(C6H6)2 is isoelectronic with d5 Mnn(C5Me5)2 the reaction of V°(C6H6)2 with TCNE was

3For comparison öcu (298 K) = 6 x 105 IT1 ot1 [146].

Page 45: Two-dimensional acetylenic scaffolding - Research Collection

20 Introduction

attempted. [VI(C6H6)2]+[TCNE]* was not isolated, however, a magnet of composition

V(TCNE)XXCH2C12) (x~2, y~l/2) was identified [157]. Although this material was

extremely water and air sensitive, it displayed magnetic ordering below its thermal

decomposition temperature (-350 K), and had a critical temperature ca. 400 K. Recently, a

family of molecule-based magnets of general formula M[TCNQL (M = Mn, Fe, Co, Ni) has

been synthesized [158]. Magnetic ordering was observed for all materials with Tc values

between 8 K (M = Ni) and 60 K (M = Mn).

C>=<) (X>=<X> Ol>=<0 >=<^S S^ v-^-S S^-7 ^^Se Se-7 Me2N NMe2

TTF HMTTF HMTSF TDAE

>=< x h I >=< x>

[Ni(tmdt)2]

Fig. 1.10. Examples of electron donors for molecular-based organic metals.

1.4 Charge-Transfer Chromophores Featuring New Powerful

Organic Acceptors

Molecular and polymeric highly conjugated donor-acceptor (D-A)-substituted organic

chromophores have attracted much attention due to their highly polarized structures resulting

in efficient second- and third-order nonlinear optical (NLO) effects [159-161]. Tunig the

physical properties to enhance specific NLO effects by simply modifying the chemical

structure represents a significant advantage of using organic chromophores. It is well-known

that the molecular first-order hyperpolarizability iß) depends not only on the strength of the

donor and acceptor groups, but also on the nature of the 7i-conjugated spacer through which

they interact. While well-defined guidelines to enhance ß were established, definite

principles for achieving high molecular second-order hyperpolarizability if) and high bulk

NLO susceptibilities are still being pursued [162,163].

Page 46: Two-dimensional acetylenic scaffolding - Research Collection

Introduction 21

1.4.1 Cyanoethynylethenes (CEEs)

A new class of intramolecular charge-transfer (CT) chromophores was prepared in the

Diederich group by decorating the TEE framework (Fig. 1.1) with strong electron donors,

such as iV,iV-dimethylanilino (DMA), and acceptors, such as 4-nitrophenyl moieties [38,162].

As some of these compounds were shown to feature high second- and third-order optical

nonlinearities, attention was subsequently turned to increasing the strength of the electron

acceptors to further enhance the NLO properties.

The first class of newly developed, potent electron acceptors are the cyanoethynylethenes

(CEEs) of which only two derivatives had been reported previously by Hopf and Dulog and

co-workers [164,165]. CEEs are hybrid derivatives combining the synthetic versatility of

TEEs for the construction of 7i-conjugated scaffolds with the powerful electron-accepting

properties of cyanoalkenes such as TCNE. Since strongly electrophilic TCNE and TCNQ

readily form CT complexes with various electron donors {vide supra), Hopf and co-workers

investigated the ability of CEEs 24 to form such complexes with TTF [166,167]. However, a

product of [2+2] cycloaddition with subsequent electrocyclic ring opening of the initially

formed cyclobutene 25 was isolated instead of the expected CT complex upon heating of

CEEs 24 with TTF in toluene (Scheme 1.11a). Hirsch and co-workers observed a similar

reaction between l,6-dicyano-l,3,5-hexatriyne (26) and TTF to give adduct 27 (Scheme

1.11b) [168].

a)

CN

NC f=\

A, toluene

[2+2]'

NC

R

CN

v<O

s

s

s^

#

24 TTF R = CN, CECPh, COOEt, H 25

b)

NC- -CNTTF

[2+2]NC-

26

27

Scheme 1.11. Thermal [2+2] cycloaddition of TTF to electrophilic, cyano-substituted alkynes, followed by

retro-electrocyclization of the intermediately formed cyclobutene [166-168].

Page 47: Two-dimensional acetylenic scaffolding - Research Collection

22 Introduction

Initially, Diederich and co-workers prepared silylated CEEs such as 28a-c (Fig. 1.11) and

extended CEE dimers such as 28d [169]. A dramatic increase in electron-acceptor strength

was observed upon replacement of one RC=C- by an isoelectronic N=C- group (average

anodic shift of the first reduction potential: 380 mV) or upon substituting RC=C-C-C=CR by

NC-C-CN moieties (average anodic shift of the first reduction potential: 830 mV!). Thus,

dimer 28d (ü^i = -0.57 V in CH2CI2 vs. Fc+/Fc) approaches the acceptor strength of TCNE

{vide supra). CEEs are highly reactive, electrophilic compounds that readily undergo

conjugate additions with nucleophiles such as amines and alcohols. Further functionalization

of CEEs with DMA donor groups afforded more stable chromophores such as 29a-d (Fig.

1.12) featuring exceptionally strong intramolecular CT interactions resulting in intense,

strongly bathochromically shifted CT bands in the UV/Vis spectra [170,171].

,Si(/-Pr)3 (/-Pr)3Su_

NC

(/-Pr)3Si Si(/-Pr)3 Si(/-Pr): Si(/-Pr)3

28a

Ered 1 -1 58 V

28b

Ered 1 -1 25 V

28c

Ered1-0 72V

Fig. 1.11.

(,-Pr)3Si

NC. XN

Si(/-Pr)3

NC CN

28d

£red i -0 57 V

Examples of silylated monomelic and dimeric CEEs 28a-d. Given are the reversible first one-

electron reduction potentials EKdA (V) in CH2C12 (+0.1 M «Bu4NPF6) vs. Fc+/Fc) [169].

Pronounced quinoid character {&) of the DMA moieties, as revealed by X-ray

crystallography, confirms the efficient intramolecular CT from the donor to the acceptor

moieties. From the comprehensive investigation of the CEE chromophores, an important

lesson was learnt about the conjugation effects in strong CT chromophores and useful

guidelines for tuning the band gaps of such systems were obtained [171]. For molecules

possessing strong electron acceptor and donor units, it is incorrect to evaluate the efficiency

of 7i-conjugation from the bathochromic shift of the CT band in the UV/Vis spectrum.

Page 48: Two-dimensional acetylenic scaffolding - Research Collection

Introduction 23

Rather, ground-state data such as NMR chemical shifts, bond length alternation and quinoidal

character of aromatic rings in X-ray crystal structures, redox potentials, or theoretical

calculations need to be used to evaluate this efficiency [172,173]. It was observed for the

donor-substituted CEEs that more extensive donor-acceptor conjugation can lead to larger

band gaps [171,172]. Smaller optical gaps (more bathochromically shifted CT bands) are

obtained by reducing the donor-acceptor conjugation through introduction of spacers such as

alkenes or alkynes. The UV/Vis data correlate perfectly with the electrochemical data: at

strong donor-acceptor conjugation, the HOMO (highest occupied molecular orbital) of the

donor is lowered and the LUMO (lowest unoccupied molecular orbital) of the acceptor

raised, thus giving a large optical gap. This is less the case at weaker conjugation (e.g. in the

presence of larger spacers between donor and acceptor), where HOMO and LUMO resemble

those in the free components.

Me2N Me,N

NMe,

Me2N

NC XN

NMe,

29a

Eredli-0 85V

im 591 nm(2 10 eV)

29b

Êred 1 -1 38 V

563 nm (2 20 eV)

29c

Ered|1 -1 31 V

Am 524 nm (2 37 eV)

Me2N

NCL ^CN

NC CN

29d

Ered1-0 74V

NMe,

Fig. 1.12. Examples of DMA-substituted monomelic and dimeric CEEs 29a-d. Given are the reversible

first one-electron reduction potentials !?redl (V) in CH2C12 (+0.1 M «Bu4NPF6 vs. Fc+/Fc) and the

maxima of the CT bands 2^^ (nm and eV) in CHC13 [171].

Page 49: Two-dimensional acetylenic scaffolding - Research Collection

24 Introduction

This was nicely confirmed in a study of a series of donor-acceptor (D-A) chromophores

30-35 in which the unsaturated spacer between DMA donor and C(CN)2 acceptor moieties

was systematically varied (Fig. 1.13) [174]. NMR and IR data (stretching frequency of the

CN groups v(C=N)) as well as the high quinoid character {&) of the DMA rings in the crystal

structures of chromophores 30-35 evidence efficient D-A conjugation in the ground state.

The UV/Vis spectra of the chromophores feature intense bathochromically shifted CT bands

with the lowest energy transitions and the smallest optical gap being measured for the two-

dimensionally extended chromophores 35a and 35b with multiple D-A conjugation

pathways. In the series of 30b, 31b, 33b, and 34b where the spacer is gradually extended, the

electrochemical HOMO-LUMO gap, calculated as the difference between first oxidation and

reduction potentials (A^o^i-Erecu)), decreases steadily from 1.94 V (30b) to 1.53 V (34b).

This decrease is a direct consequence of a reduction in the D-A conjugation with increasing

spacer length (vide supra).

Fig. 1.13. A new class of DMA-substituted CEEs 30-35 to explore the donor-acceptor conjugation and

NLO properties as a function of the spacer between donor and acceptor moieties [ 174].

All of the CT chromophores described above are thermally stable, some of them up to

250 °C. Most of them can be sublimed undecomposed, thus allowing thin film formation by

vapor-phase deposition for nanoscale science applications [22]. The third-order NLO

properties of donor-substituted CEEs 29a-d [175,176] as well as donor-acceptor

chromophores 30-35 [177] were investigated. Degenerated four-wave mixing (DFWM)

experiments revealed extraordinarily large nonlinearities, relative to the small molecular mass

of these chromophores, that are within a factor of 50 from the predicted fundamental limit

[178]. Appealing NLO properties together with their environmental stability make these

compounds very promising for applications in optoelectronic devices.

Page 50: Two-dimensional acetylenic scaffolding - Research Collection

Introduction 25

1.4.2 Donor-Substituted 1,1,4,4-Tetracyanobuta-1,3-dienes (TCBDs)

Thermal [2+2] cycloaddition of TCNE with electron-rich metal acetylides, followed by retro-

electrocyclization to give organometallic TCBD derivatives had been reported by Bruce and

co-workers already in the early 1980s (vide supra) [117,120], however, there has been almost

no systematic study on the corresponding reaction with electron-rich alkynes [119,121].

Recently, the Diederich group introduced a new class of powerful charge-transfer (CT)

chromophores, donor-substituted l,l,4,4-tetracyanobuta-l,3-dienes (TCBDs) such as 36-38

(Fig. 1.14), accessible in often quantitative yields in an atom-economic synthesis [179] by

formal [2+2] cycloaddition between TCNE and donor-substituted alkynes [180,181].

Donor-substituted TCDBs are thermally stable up to 300 °C, as determined by

thermogravimetric analysis (TGA), and can be sublimed without decomposition. Despite the

nonplanarity of these chromophores, as revealed by detailed X-ray crystallographic analysis,

efficient CT interactions are observed. High quinoid character (&) of the DMA rings as well

as intense bathochromically shifted CT bands featuring maxima between 450 and 800 nm

further support the effectiveness of the intramolecular CT. Observed large third-order optical

nonlinearities together with high stability and easy accessibility of donor-substituted TCBDs

make them attractive for fabrication of optoelectronic devices [176,180]. Although

substituted with DMA-donor, the TCBD moiety remains a potent electron acceptor; the first

one-electron reduction of 36 occurs at -0.69 V in CH2CI2 vs. Fc+/Fc. Particularly remarkable

are the electrochemical properties of oligomeric donor-substituted TCBD 39 (Fig. 1.14) that

undergoes six reversible one-electron reduction steps, each centered on a dicyanovinyl

moiety, in the narrow potential range between -0.69 and -1.69 V [181]. Note that the six

reduction steps of fullerene C6o in MeCN/toluene occur in much wider potential range

between -0.98 and -3.26 V vs. Fc+/Fc [182].

Page 51: Two-dimensional acetylenic scaffolding - Research Collection

26 Introduction

Me,N

NC ^CN

NC "CN ^" ^NMe2

36 (97%)

£red ! -0 69 V

Amax 570 nm (2 18 eV)

Me2N

Me2N

37(100%)

Ered ! -1 06 V

470 nm (2 64 eV)

NC CN ^ NMe2

38 (96%)

Ered ! -0 89 V

/Imax 526 nm (2 36 eV)

6n13.l2

(C6H13)2N

NfCeH!

39 (86%)

Ered1-0 69V, Ered6-169V

A„ 590nm(2 10eV)

Fig. 1.14. Examples of donor-substituted TCBDs 36-39. Given in parentheses are the yields of [2+2]

cycloaddition of TCNE to donor substituted alkynes, the reversible first one-electron reduction

potentials Eieil (V) in CH2C12 vs. Fc+/Fc, and the maxima of the CT bands À^^ (nm and eV) in

CH2C12[181].

1.5 Outline of the Thesis

Perethynylated donor-substituted dehydroannulenes represent an interesting class of carbon-

rich macrocycles featuring appealing optoelectronic properties as revealed by foregoing

studies. In view of the previous findings, even larger acetylenic macrocycles were targeted in

the first part of the thesis to:

l.

ii.

iii.

iv.

probe the limits of acetylenic scaffolding

expand the knowledge of 7i-conjugation in acetylenic macrocyclic chromophores

enhance the understanding of aromaticity/antiaromaticity in macrocyclic systems

eventually generate novel optoelectronic properties

Page 52: Two-dimensional acetylenic scaffolding - Research Collection

Introduction 27

Moreover, incorporation of a Pt(II) center into a conjugated macrocyclic framework to yield

new types of metalla-dehydroannulenes was attempted. The results of this initial research are

described in Chapter 2.

As shown previously, the fast addition of tetracyanoethene (TCNE) to iV,iV-dialkylanilino-

substituted alkynes at room temperature had the character of a "click"-reaction, yielding

donor-substituted l,l,4,4-tetracyanobuta-l,3-dienes (TCBDs) in an atom-economic way with

near quantitative yields. The capability of the trimeric TCBD derivative 39 to readily

undergo six one-electron reduction steps in the narrow potential range of 1.0 V under

electrochemical conditions initiated the search for larger dendritic systems incorporating a

large number of donor-substituted TCBD units. These systems were expected to act as

powerful electron reservoirs. Syntheses of such dendrimer-type, multivalent charge-transfer

chromophores, capable of taking up an exceptional number of electrons and their

electrochemical investigation are described in Chapter 3.

Furthermore, the TCBD moiety remains a powerful electron acceptor despite dialkylanilino-

donor substitution. As such it could either form charge-transfer (CT) complexes with strong

electron donor tetrathiafulvalene (TTF), in analogy to TCNE, or activate the adjacent CC

triple bond for [2+2] cycloaddition to TTF as previously observed in the case of

cyanoethynylethenes (CEEs) and oc,co-dicyanopolyynes. When complementary, successive

cycloadditions of polyynes to both TCNE and TTF could afford a new type of conjugated

[AB]-type oligomers and polymers. Investigations in this direction are described in Chapter

3 as well.

Although the chemistry of 7,7,8,8-tetracyanoquinodimethane (TCNQ) has been thoroughly

explored since its discovery in the early 1960s, its reactivity towards alkynes remained

unexplored. Namely, it possesses two strongly electron-deficient CC double bonds that

could, in analogy to tetracyanoethene (TCNE), undergo thermal [2+2] cycloaddition with

donor-substituted alkynes to yield a new class of charge-transfer (CT) chromophores. We

were interested whether TCNQ is capable to undergo such a transformation with N,N-

dialkylanilino-substituted alkynes. Investigations in this direction are described in Chapter 4.

Page 53: Two-dimensional acetylenic scaffolding - Research Collection
Page 54: Two-dimensional acetylenic scaffolding - Research Collection

2 Donor-Substituted Perethynylated

Dehydroannulenes

Page 55: Two-dimensional acetylenic scaffolding - Research Collection
Page 56: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 31

2.1 Introduction and Retrosynthesis

More than 10 years ago, per(silylethynylated) antiaromatic octadehydro[12]annulene 9a and

its antiaromatic counterpart dodecadehydro[18]annulenes 10a were synthesized in the

Diederich group by oxidative acetylenic coupling of (Z)-bisdeprotected TEEs. However, (Z)-

bisdeprotected TEEs, required for the oxidative macrocyclization, had only been available via

a tedious multistep synthesis including several rather unstable intermediates [90,91], which

prevented the synthesis of functionalized derivatives of 9a and 10a. A recently developed

photochemical access to (Z)-bisdeprotected TEE building blocks enabled for the very first

time the preparation of iV,iV-dimethylanilino (DMA)-substituted perethynylated

octadehydro[12]annulene 9b and dodecadehydro[18]annulenes 10b described in Chapter 1

[92,93]. With ready synthetic availability of the corresponding TEE building blocks, the

construction and spectroscopic investigation of hitherto unprecedented dialkylanilino-

substituted hexadecadehydro[20]annulene 40 and tetracosadehydro[30]annulene 41 became

feasible (Scheme 2.1).

Taking advantage of symmetry, the proposed synthesis of extended donor-substituted

dehydroannulenes 40 and 41 is rather straightforward (Scheme 2.1). Splitting of the all-

carbon perimeters in 40 and 41 into symmetric subunits yields elongated TEE derivatives that

should be easily accessible via (Z)-TEE derivative using well established protocols for

acetylenic construction that include [28]:

i. Hay coupling - oxidative acetylenic coupling of two terminal alkynes in the presence

of catalytic amounts of bidentate ligand jV,jV,jV,jV-tetramethylethylenediamine

(TMEDA), copper(I) chloride, and O2 in acetone or CH2CI2 - commonly referred to

as "standard Hay conditions" [183].

ii. Cadiot-Chodkiewicz heterocoupling - involves terminal alkyne and 1-haloalkyne in

the presence of an amine {e.g. «BuNH2) and catalytic amounts of copper(I) salt

[184,185]. Also, a [PdCl2(PPh3)2] and copper(I) chloride mediated protocol involving

1-iodoalkyne and terminal alkyne was reported [186].

iii. Sonogashira cross-coupling - [PdCl2(PPh3)2] and copper(I) iodide mediated coupling

between aryl or vinyl halides and terminal alkynes in the presence of an amine

[29,187].

Page 57: Two-dimensional acetylenic scaffolding - Research Collection

32 Donor-Substituted Perethynylated Dehydroannulenes

Scheme 2.1. Proposed retrosynthesis of 7V,7V-dialkylanilino-substituted hexadecadehydro[20]annulene 40

and tetracosadehydro[30]annulene 41.

2.2 Synthesis

2.2.1 (Z)-Bisdeprotected TEEs

The preparation of previously described DMA-substituted octadehydro[12]annulene 9b and

dodecadehydro[18]annulenes 10b involved the photochemical E^Z isomerization of (£)-

bis(DMA)-substituted TEE 42 to (Z)-TEE 43 (Scheme 2.2) [92]. From the irradiated

(medium-presure Hg lamp, 125 W) Et2Û solutions of 42, ca. 40% (Z)- and 50% of the

recovered (£)-isomer were isolated. Subsequently, 43 was silyl-deprotected with «Bu4NF

and subjected to macrocyclization by oxidative Hay coupling in acetone to yield 9b and 10b

[93].

Page 58: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 33

However, on the larger scale required for the synthesis of the targeted expanded [20]- and

[30]annulene perimeters, the separation of 42 and 43 was rather tedious and low-yielding due

to limited stability of (Z)-isomer 43 during column chromatography (SiÛ2). Furthermore,

purification of larger amounts of starting (£)-bis(DMA)-substituted TEE 42, formed by

Sonogashira cross-coupling, required repetitive column chromatography which also led to

substantial losses of material. Therefore, a novel TEE derivative with enhanced stability,

bearing bulkier, sterically better protecting anilino donor groups was sought.

Scheme 2.2.

(/-Pr)3Si

Si(/-Pr)3

48

NH2 NH(/-Pr)

a) ^^ b)

N(/-Pr)2(/-Pr)3Si

Si(/-Pr)3

44 R = N(/-Pr)242 R = NMe2

(>-Pr)3Si

(,-Pr)3Si

45 R = N(/-Pr)243 R = NMe2

Synthesis of (it)-bis-(7V,7V-diisopropylaniline)-substituted TEE 44 and photochemical E —> Z

isomerization to give (Z)-TEE 45. a) 2-Iodopropane, Na2C03, EtOH, 30 h, 80 °C, 71% (46);

b) 2-iodopropane, Na2C03, EtOH, 46 h, 80 °C, 31% (47); c) [PdCl2(PPh3)2], Cul, (/-Pr)2NH,

21 h, 20 °C, 69% (44); d) hv, Et20, 2 h, 20 °C, 49% (45), 48% (44).

iV,iV-dihexylanilino residues did not prove to be very useful since separation of the (£)- and

(Z)-isomers formed by photoisomerization was not possible on a preparative scale due to

their similar polarity [93]. The positive influence of Si(/'-Pr)3 groups on the thermal stability

of substituted TEE derivatives has been reported [36]. This phenomenon was ascribed to the

"insulating effect" of the bulky Si(/'-Pr)3 groups that prevent close contact between the most

reactive all-carbon portions of neighboring TEE molecules in the solid state. By analogy,

novel iV,iV-diisopropylanilino-substituted TEE derivatives were introduced.

Page 59: Two-dimensional acetylenic scaffolding - Research Collection

34 Donor-Substituted Perethynylated Dehydroannulenes

Fig. 2.1. ORTEP plot of one of the two independent molecules in the X-ray crystal structure of 44;

arbitrary numbering, H-atoms are omitted for clarity. Atomic displacement parameters at 220 K

are drawn at the 30% probability level. Selected bond lengths [Â]: C(l)-C(l)#l 1.365(5), C(l)-

C(2) 1.430(4), C(2)-C(3) 1.200(4), C(3)-C(4) 1.429(4), C(4)-C(5) 1.400(4), C(5)-C(6) 1.377(4),

C(6)-C(7) 1.407(4), C(7)-N(10) 1.380(3), C(7)-C(8) 1.406(4), C(8)-C(9) 1.376(4), C(4)-C(9)

1.389(4), N(10)-C(ll) 1.479(4), C(ll)-C(12) 1.537(5), C(l)-C(17) 1.429(4), C(17)-C(18)

1.203(4), Si(l)-C(18) 1.831(3). Selected bond angles [°]: N(10)-C(ll)-C(12) 113.8(3), C(14)-

N(10)-C(ll) 115.7(2), C(3)-C(2)-C(l) 175.9(3), C(18)-C(17)-C(l) 178.4(3). Selected torsion

angles [°]: C(6)-C(7)-N(10)-C(14) = -12.4(4)°, C(8)-C(7)-N(10)-C(ll) = -26.9(4)°. The sum

of the three bond angles at N(10) = 358.9°.

(JE)-Bis-(jV,jV-diisopropylaniline)-substituted 44 was prepared in 69% yield by Sonogashira

cross-coupling of TEE 48, which is readily available by a short synthetic route [36], with 4-

iodo-iV,iV-diisopropylaniline (47) (Scheme 2.2). The latter was not available by one-pot

dialkylation of 4-iodoaniline with 2-iodopropane in ethanol in the presence of Na2CC>3, but

required the isolation of the intermediate 4-iodo-JV-isopropylaniline (46) which was subjected

to the second alkylation (22% yield over the two steps). It is to be mentioned, that one-pot

dialkylation of 4-iodoaniline with 2-iodopropane was not possible even under harsh

conditions in polar aprotic solvents such as MeCN and DMF. Irradiation of 44 in Et20 (2.5

um) with a medium-pressure Hg lamp (125 W) for 2 h at 20 °C provided a mixture of (£)-

and (Z)-isomer which was readily separated by column chromatography (SiÛ2;

hexanes/EtOAc 20:1), yielding 45 (49%) along with starting material 44 (48%).

Gratifyingly, no signs of decomposition were observed during workup and purification of 45.

Both compounds 44 and 45 are air- and light-stable orange solids. However, slow

isomerization was observed when CH2C12 solution of 45 was exposed to light.

Page 60: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 35

Upon slow evaporation of a hexane solution, is-configured TEE 44 formed single crystals

suitable for X-ray crystallographic analysis (Fig. 2.1). The compound crystallizes in the

tri clinic space group P 1 with two molecules in the unit cell. The torsion angles C(Ph)-

C(Ph)-N-C(z-Pr) in two independent molecules are -26.9, -12.4° and -0.1, 35.4°,

respectively. The angles at the nitrogen atoms sum to 358.9 and 351.6°, indicating a very

weak degree of pyramidahzation at these atoms. The Si(/'-Pr)3 groups of both independent

molecules show static and dynamic disorder which could not be resolved.

Removal of the Si(/'-Pr)3 groups in 45 with «BU4NF in moist THF at 0 °C, followed by

Cadiot-Chodkiewicz coupling with an excess of l-bromo-2-(triisopropylsilyl)ethyne (49)

[188] in dry DMF, furnished the elongated TEE derivative 50 in a good yield (57%) as an air-

and light-stable deep-red solid (Scheme 2.3).

45 50

Scheme 2.3. Synthesis of elongated TEE derivative 50. a) «Bu4NF, THF, 20 min, 0 °C; b) CuCl, «BuNH2,

NH2OHHCl, l-bromo-2-(triisopropylsilyl)ethyne (49), DMF, 26 h, 20 °C, 57% (50) (yield

over two steps).

Desilylated TEE species can be handled without problems in solution, however, they

deteriorate rapidly in neat form. Hence, they were not characterized and were always freshly

prepared before their use in subsequent reactions.

2.2.2 /V,/V-Diisopropylanilino-Substituted Dehydroannulenes

Deprotection of 45 with «Bu4NF in moist THF was immediately followed, without any

further purification, by oxidative Hay coupling in acetone (ca. 1.0 um) at 20 °C (Scheme

2.4). Inorganic salts were removed by filtration through a plug (SiÛ2; CH2CI2) and solvents

removed in vacuo to leave deep-purple solid. MALDI-TOF (matrix: DCTB) mass

spectrometric analysis of the crude product mixture indicated the formation of

octadehydro[12]annulene 51 and dodecadehydro[18]annulene 52 (in 1:1 relative ratio) in

addition to smaller quantities of higher macrocyclic oligomers {i.e. tetra-, penta-, and

Page 61: Two-dimensional acetylenic scaffolding - Research Collection

36 Donor-Substituted Perethynylated Dehydroannulenes

hexamer) (Fig. 2.2). Interestingly, in the case of DMA-substituted 9b and 10b higher

macrocyclic oligomers were not observed [93]. Whereas the two macrocycles 51 (26%) and

52 (46%>) were readily separated by column chromatography (SiÛ2; CffeCb/EtOAc

99:1 —» 98:2), attempts to isolate the higher oligomers were not successful. Macrocyclization

performed at higher concentrations of deprotected 45 did not increase the yield (MALDI-

TOF) of higher macrocyclic oligomers. Moreover, a substantial amount of polymeric

material was formed.

(/-Pr)2N^

N(/-Pr)2

Scheme 2.4. Synthesis of 7V,7V-diisopropylanilino-substituted 51 and 52. a) «Bu4NF, THF, 15 min, 0 °C; b)

CuCl, TMEDA, air, acetone, 2 h, 20 °C, 26% (51), 46% (52) (yields over two steps).

Both dehydroannulenes 51 and 52 are deep-purple metallic solids that are readily soluble in

common organic solvents. Antiaromatic, strained 51 could be stored in CH2CI2 solution at -

20 °C for months, but deteriorates readily as a solid at 20 °C. On the other hand,

dehydro[18]annulene 52 did not show any signs of decomposition when kept as a solid at

20 °C over the period of months. In comparison to the previously reported synthesis of N,N-

dimethylanilino-substituted dehydroannulenes 9b (2% yield) and 10b (22% yield) [92,93],

the yields of both jV,jV-diisopropylanilino-substituted macrocycles 51 (26%>) and 52 (46%>)

Page 62: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 37

obtained under similar conditions were significantly improved. Better solubility facilitated

their purification and, as demonstrated by the substantially higher yield of strained 51, the

bulkier iV,iV-diisopropylanilino substituents provided much higher stability to the delicate all-

carbon chromophores {vide supra).

51

dimer

52

trimer tetramer penîamer hexamer

^^W^v^W.-.1-1^ ^'wWomv-^^Aw^wW^^^^^.^w^W.

IbOO 2000 2S00 30(

^n/to£_3Si3/lSLj.n/pdaLa/I to* Mon Aug 23 12 49 03 300'

Fig. 2.2. MALDI-TOF mass spectrum (matrix: DCTB) of the crude reaction mixture after oxidative Hay

coupling of bisdeprotected TEE derivative 45.

The Si(z'-Pr)3 protecting groups in the elongated TEE derivative 50 were removed with

«BU4NF in moist THF at 0 °C, and the free bis(buta-l,3-diyne) was subjected to oxidative

Hay coupling without further purification (Scheme 2.5). The crude mixture obtained in the

macrocyclization was examined by MALDI mass spectrometry (matrix: DCTB) which

indicated formation of macrocycles 40 and 41 (in 1:2 relative ratio), but not of any higher

cyclic oligomers. Separation by column chromatography (SiÛ2; hexanes/Et20 1:1) afforded

dehydro[20]annulene 40 (6%) and dehydro[30]annulene 41. The latter was further purified

by size exclusion chromatography (Bio-Beads SX-3; THF) to give pure 41 in 13% yield.

Both macrocycles are only sparingly soluble in hexanes/Et20 (1:1); nevertheless, this is the

only solvent mixture that gave reasonable chromatographic separation of 40 and 41. The

solubility problems during purification are presumably a major reason for the low yields of

the isolated pure dehydroannulenes.

Page 63: Two-dimensional acetylenic scaffolding - Research Collection

38 Donor-Substituted Perethynylated Dehydroannulenes

(;-Pr)2N N(;-Pr)2

Scheme 2.5. Synthesis of 7V,7V-diisopropylanilino-substituted 40 and 41. a) «Bu4NF, THF, 15 min, 0 °C; b)

CuCl, TMEDA, air, acetone, 2 h, 20 °C, 6% (40), 13% (41) (yields over two steps).

Both macrocycles 40 and 41 were obtained as deep-purple metallic solids that are readily

soluble in chlorinated organic solvents. The stability of the rather strained

dehydro[20]annulene 40 is limited, and it decomposes even in CH2CI2 solution kept at -

20 °C; after several weeks, black insoluble material of unknown composition is obtained. In

contrast, dehydro[3OJannulene 41 shows higher stability and can be kept in the solid state at

20 °C for a couple of days without significant signs of decomposition.

The identity of 40 and 41 was confirmed by high-resolution MALDI-FT mass spectrometry

(matrix: DCTB) and *£! and 13C NMR spectroscopy (Fig. 2.3). During the characterization of

all four donor-substituted dehydroannulenes 40, 41, 51, and 52 by *£! NMR spectroscopy in

CDCI3, no concentration dependence of the chemical shifts of the aromatic protons was

observed. This indicates the absence of self-association within the studied concentration

Page 64: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 39

range (1.0 x 10^-5.0 x 103

m), in agreement with the electronic absorption behavior which

obeys the Lambert-Beer law {vide infra).

lonSpec HiResMALDIFile FTM13291 trans

Milan Kivala/Dsedench - MK 173/05 dim - DCTB mix

Mode Positive

Scans 1

Date 20 OCT 2005

Time 1144 02

Scale 501958

M+1041

520

[M+K]+

9821000 11"

250 300 350 400 450 500 550 600 650 700 750

Mass/Charge

850 900 950 1000 1050 1100

b)

lonSpec HiResMALDIFite FTM13292d trans

Milan Kivala/Diedench MK 173/05 tnm - DCTB n

Mode Positive

Scans 1

Date 20 OCT-2005

Time 11 51 26

Scale 19 2059

[M1+1562

> 742j

809 867 911935 9861014 10741107 11441187 1229 1286,308 1358 M03

1462 1, 1599 1673

1600

Fig. 2.3. HR-FT-MALDI mass spectrum (matrix: DCTB) of A^,A^-diisopropylanilino-substituted 40 and 41.

a) 40: 1040.5769 ([M]+, C76H72N4+, calc. 1040.5752); b) 41: 1560.8599 ([M\+, C114H108N6+, calc.

1560.8630).

Page 65: Two-dimensional acetylenic scaffolding - Research Collection

40 Donor-Substituted Perethynylated Dehydroannulenes

2.3 X-ray Crystallographic Analysis of a Dehydro[18]annulene

Single crystals of [18]annulene 52 suitable for X-ray crystallographic analysis were obtained

by very slow evaporation of a CH2Cl2/hexane solution at 20 °C. The compound crystallizes

in the triclinic space group P 1 with one macrocycle and one CH2CI2 molecule in the

asymmetric unit. The central core of 52 (C(l) to C(18)) is practically planar with a maximum

deviation from the corresponding mean plane of ca. 0.12 Â (Fig. 2.4). The phenyl rings, on

the other hand, are all twisted with respect to this plane with torsion angles of 14.7° (C(96) to

C(101)), 15.5° (C(36) to C(41)), 25.2° (C(81) to C(86)), 42.1° (C(66) to C(71)), 63.7° (C(21)

to C(26)), and 68.8° (C(51) to C(56)).

V C93

r\C91 *

cai

C90L r-X°

\ j \ C84

C89 h*—^* C85

CI 08 r,1

C82<—<C81

Ossi /C86„,> -Qc

, »C77

\ N72 C70

J H »ÎlC7AC69\ \%

1:\^ «8^ c^C75 C67

C60 Vi/ N57

*- T\C58C62 \

/ C50C52 J".»/

L /c56

C59

Fig. 2.4. ORTEP plot of 52; arbitrary numbering, H-atoms and solvent molecule are omitted for clarity.

Atomic displacement parameters at 223 K are drawn at the 30% probability level. Selected bond

lengths [Â]: C(l)-C(2) 1.387(5), C(2)-C(3) 1.416(5), C(3)-C(4) 1.214(5), C(4)-C(5) 1.350(5),

C(5)-C(6) 1.221(5), C(6)-C(7) 1.410(5), C(7)-C(8) 1.390(4), C(2)-C(34) 1.414(5), C(34)-C(35)

1.214(5), C(35)-C(36) 1.420(5). Selected bond angles [°]: C(2)-C(l)-C(18) 120.1(3), C(l)-

C(2)-C(3) 120.3(3), C(4)-C(3)-C(2) 179.1(4), C(3)-C(4)-C(5) 179.9(4), C(5)-C(6)-C(7)

175.9(3), C(65)-C(64)-C(8) 168.6(3). The torsion angles C(Ph)-C(Ph)-N-C(/-Pr) vary between

-32.7° (C(23)-C(24)-N(27)-C(31)) and +27.5° (C(98)-C(99)-N(102)-C(103)). The sums of the

three bond angles at the nitrogen atoms range between 357.9° (N(102)) and 359.8° (N(42)).

Page 66: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 41_

A detailed analysis suggests that this twisting may be caused, at least partly, by weak

intermolecular C-H 71 interactions involving C-H residues of phenyl rings and acetylenic

moieties of neighboring molecules [189] Two such interactions, between the phenyl ring

C(51) to C(56) (showing the largest rotation out of the macrocyclic plane), and a neighboring

molecule in the crystal packing of 52 are shown in Fig 2 5 As a result, H(53) undergoes two

short contacts to the carbon atoms of the triple bond C(9')-C(10') in the macrocyclic core,

and H(52) makes two short contacts to the exocyclic triple bond C(64')-C(65') The

corresponding C H distances range from 2 66 to 3 01 Â, and the C H-C angles from 125°

to 157° (note that the H-positions used for the present analysis are based on stereochemical

considerations with C-H distances of 1 085 Â) The torsion angles C(Ph)-C(Ph)-N-C(z-Pr)

vary between -32 7° (C(23)-C(24)-N(27)-C(31)) and +27 5° (C(98)-C(99)-N(102)-

C(103)) Pyramidalization of the nitrogen atoms is not significant This is expressed by the

sums of the three bond angles at these nitrogen atoms, ranging from 357 9° (N(102)) to

359 8° (N(42)) Interestingly, one of the exocyclic C=C-C(sp2) moieties, namely C(65)-

C(C64)-C(8), is considerably bent, based on its bond angle of 168 6°, presumably due to the

above mentioned C-H n interactions and additional crystal packing effects (Fig 2 5)

Fig 2 5 Arrangement of neighboring molecules in the crystal packing of 52 showing intermolecular C-

H k interactions

2.4 UV/Vis Spectroscopy

In previous work [92,93], it had been observed that the replacement of terminal silyl groups

in dehydroannulenes 9a and 10a by iV,iV-dialkylanilino donor groups resulted in dramatic

spectral changes New intense, longer-wavelength absorptions appeared in the UV/Vis

Page 67: Two-dimensional acetylenic scaffolding - Research Collection

42 Donor-Substituted Perethynylated Dehydroannulenes

spectra of 9b and 10b that were identified as charge-transfer (CT) bands resulting from

intramolecular charge-transfer from the peripheral electron-donating anilino groups into the

electron-accepting all-carbon core.

The UV/Vis spectra of the newly prepared donor-substituted dehydroannulenes 40, 41, 51,

and 52 were recorded in CH2C12 at 298 K (Fig. 2.6).

150000 t

! ' I ' I ' ! ' ! ^ l ' l

300 400 500 600 700 800 900

/. / nm

Fig. 2.6. UV/Vis spectra of dehydroannulenes 40, 41, 51, and 52 in CH2C12 at 298 K.

At first sight, the spectra of all macrocycles are dominated by an intense, broad CT band at

/îmax = 552 ± 2 nm, with end absorptions around 800 nm (1.55 eV). Interestingly, this band is

more intense in the spectrum of dodecadehydro[18]annulene 52 (ÂmeiX = 553 nm (2.24 eV),

e= 136100 ivf1 cnT1) than in the spectrum of the more extended

tetracosadehydro[30]annulene 41 (>^ax = 554 nm (2.24 eV), £ = 89800 m_1 cm-1). The band

is clearly weakest in the spectra of hexadecadehydro[20]annulene 40 (>4max=552nm

(2.24 eV), £=41100 ivf1 cnT1) and octadehydro[12]annulene 51 (;Ux = 550nm (2.25 eV),

e= 34400 ivf1 cm-1). In agreement with the concentration-independent NMR spectra (vide

supra), no deviations from the Lambert-Beer law were observed within the studied

concentration range (2 x 10~6-2 x 10~5 m) indicating that the macrocycles are unable to

undergo any kind of self-aggregation in CH2CI2 solution.

In comparison to the jV,jV-dimethylanilino-substituted analogues 9b, and 10b [92,93], the

longest-wavelength absorption maxima of 51 and 52 are bathochromically shifted by more

Page 68: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 43

than 30 nm, presumably due to the stronger electron-donating ability of N,N-

diisopropylanilino groups [162]

300

zuuuuu -

; i 51

1 } 51 acidified

\

i'

11

51 neutralizedf-rt

oz

150000- I

i' 52 acidified

y~^- - 52 neutralized

100000-

/' A

/' Ait *\

l

/ V i'

i i1\ / *\\ y \

' A

50000 -

f \' j i \

0-1 '

i \i .' -. \x' "'"-•, \

—i—~• ~

i '— i*~-*'' "'"'i1* "r"' 1

400 500 600

< / nm

700 800 900

Fig 2 7 UV/Vis spectra of 51 and 52 in CH2C12 recorded neat, after acidification with/»-toluenesulfonic

acid, and after re-neutralization with tnethylamine

The charge-transfer character of the longest-wavelength absorption bands in all four

dehydroannulenes was confirmed in protonation-deprotonation experiments Upon

acidification of the CH2CI2 solutions with /»-toluenesulfonic acid, the color changes from

purple to yellow The intense bands at 2^^ = 552 ± 2 nm disappear nearly completely, and

the new absorptions are substantially hypsochromically shifted Neutralization with

triethylamine regenerates nearly quantitatively the original spectra (Figs 2 7, 2 8, and 2 9)

These protonation-deprotonation experiments not only confirm the CT character of the

longest-wavelength bands but also provide some information about at the chromophoric

properties of the perethynylated dehydroannulenes, undisturbed by donor-acceptor

interactions The two [4n + 2] 71-electron systems clearly show a different spectral behavior

than the two [4n] 71-electron systems In the case of the [4n] 71-chromophores 40 and 51,

broadened bands are generated upon protonation, with first stronger maxima around 400 nm

In contrast, the spectra of the protonated [4n + 2] 71-electron chromophores 41 and 52 feature

highly structured, very intense bands with the longest-wavelength maximum of 41

(^max = 471nm (2 63 eV), e= 96300 ivT1 cirf1) appearing at lower energy than in the

spectrum of 52 (/^ax = 441 nm (2 81 eV), e= 186000 ivT1 cnT1) The spectra of protonated

Page 69: Two-dimensional acetylenic scaffolding - Research Collection

44 Donor-Substituted Perethynylated Dehydroannulenes

51 and 52 expectedly resemble those previously recorded for protonated 9b and 10b,

respectively [93]

300

1ouuuu -

; 40

I 40 acidified

120000-

i ;. 40 neutralized

41

'* J '_ _

41 acidified

41 neutralized

_90000 - ';' 7

J\ '/

' '

ft "s.

i i r \

/ \ ' i / \* 60000 -

\ \ X! A \

\""""

\.~"

>\ ,--vi" '*""•', \

30000 -v-i--'

'^ \

0-1

^

*i

^i ' i

400 500 600

1 / nm

700 800 900

Fig 2 8 UV/Vis spectra of 40 and 41 in CH2C12 recorded neat, after acidification with/»-toluenesulfonic

acid, and after re-neutralization with tnethylamine

Fig 2 9 A solution of dehydro[30]annulene 41 in CH2C12 (1), upon addition of/»-toluenesulfonic acid (2),

and after re-neutralization with tnethylamine (3)

The nature of the conjugated macrocyclic 7i-electron perimeter seems also to influence the

efficiency of the intramolecular charge-transfer interaction, as expressed by the intensity of

the CT band (Fig 2 6) If this efficiency would solely be determined by the extension of the

macrocyclic, electron-accepting perimeter and the number of donor-acceptor paths, the

intensity of the CT band would increase in the sequence [12]annulene 51 < [18]annulene 52 <

[20]annulene 40 < [30]annulene 41 Experimentally, however, the intensity of the CT band

Page 70: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 45

of the two [4n + 2] perimeters 41 and 52 is much higher than the intensity of the band of the

two [4n] perimeters 40 and 51. At present, we do not have any plausible explanation for this

quite unprecedented finding. Theoretical calculations might provide further insight into the

additional factors governing these electronic transitions.

2.5 Electrochemistry

The redox properties of jV,jV-diisopropylanilino-substituted dehydroannulenes 40, 41, 51, and

52 as well as their precursors 44, 45, and 50 were studied by cyclic voltammetry (CV) and

rotating disc voltammetry (RDV). The measurements were carried out in CH2CI2 with

«Bu4NPF6 (0.1 m) as the supporting electrolyte. All potentials are given vs. Fc+/Fc

(ferricinium/ferrocene couple) used as an internal reference and are uncorrected from ohmic

drop. The electrochemical investigations were performed by Gisselbrecht, Boudon and

Gross at the Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide, Université

Louis Pasteur in Strasbourg, France.

2.5.1 (Z)-Bisdeprotected TEEs

The iV,iV-diisopropylanilino substituted TEEs 44, 45, and 50, similar to the corresponding

iV,iV-dimethylanilino derivatives 42 and 43 [42], gave well resolved voltammograms (Table

2.1). They undergo two reduction steps, the first one being a reversible one-electron transfer

followed by an irreversible multielectron step close to the electrolyte discharge. Oxidation

occurs in a single reversible two-electron transfer on the two iV,iV-diisopropylanilino groups.

In the case of the iV,iV-dimethylanilino derivatives 42 and 43, the oxidation peak current ratio

IpJIpn is beyond unity for low scan rates, and reaches unity for scan rates higher than 1 V s_1.

This behavior is characteristic for an electrochemical-chemical mechanism (EC), with the

generated oxidized species undergoing a chemical reaction. On the other hand, for the N(z-

Pr)2 derivatives, no follow-up chemical reaction could be observed on the time scale of CV.

It seems that replacing of the methyl groups with isopropyl chains stabilizes the

electrogenerated dicationic species.

Page 71: Two-dimensional acetylenic scaffolding - Research Collection

46 Donor-Substituted Perethynylated Dehydroannulenes

Table 2.1. Electrochemical data of 7V,7V-dialkylanilino-substituted TEEs 42-45, and 50 observed by cyclic

voltammetry (CV) and rotating disk voltammetry (RDV) in CH2C12 (+ 0.1 M «Bu4NPF6). All

potentials are given vs. ferricinium/ferrocene (Fc+/Fc) couple used as internal standard.

CV

E° [Vf A£p [mVf EP [Vf

RDV

Em [V]d Slope [mV]e

42 +0.35 70

-1.98 80

43 +0.35 80

-1.98 80

44 +0.32 100

-1.98 80

45 +0.33 95

-1.98 70

50 +0.38 60

+0.33 60

-1.62 75

-^pc'-^pa/'-^^ where Epc and £pa cc)rrespon

-2.50

-2.53

-2.27

+0.38 (2e~) 70

-1.98 (le) 70

+0.38 (2e~) 100

-1.98 (le) 70

+0.35 (2e~) 75

-1.98 70

+0.38 (2e~) 100

-2.00 (2e~) 70

-1.63 (le")-2.17

60

120

A£p = Eox-Eied, where the subscripts ox and red refer to the conjugated oxidation and reduction steps,

respectively. CEP = irreversible peak potential. dEn2 = half-wave potential. eSlope = slope of the linearized plot of

E versus \og[II(I\^-I)\, where 4m is the limiting current and / the current.

Optically transparent thin-layer electrode (OTTLE) studies of the first reduction steps for 44

and 45 gave nice spectral evolutions with well-defined isosbestic points (Fig. 2.10). The

reversibility of the process could be confirmed, as the initial spectrum could be recovered

quantitatively after re-oxidation. Time-resolved OTTLE spectra during the oxidation of 44

and 45 clearly indicate that the generated dications are unstable and undergo a chemical

reaction. However, the spectra observed for the dication of species 44 and 45 are identical,

with absorption bands at 456, 487, and 777 nm (Fig. 2.11). Reduction of the electrogenerated

species could not regenerate quantitatively the initial spectrum. Only 70% of the initial

spectrum could be recovered for 44. In contrast, the final spectrum of 45 after reduction

shows only one main band at 482 nm that is typical for the (£)-derivative 44. It is clear that

although the generated dication is not very stable, an electrochemically induced isomerization

occurs during the oxidation of 45 generating the more stable (£)-isomer 44. Such

isomerization had been observed in the case of bis(4-nitrophenyl)-substituted TEEs [190].

Page 72: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 47

a) b)483 484

Fig. 2.10. Time resolved UV/Vis spectra during the first reduction step of 44 (a) and 45 (b) in CH2C12 (+

0.1 M «Bu4NPF6) in an OTTLE cell.

a) b)

Fig. 2.11.

' / nm

456

Time resolved UV/Vis spectra during the first oxidation step of 44 (a) and 45 (b) in CH2C12 (+

0.1 M «Bu4NPF6) in an OTTLE cell. Black line: initial spectrum; red line: oxidized species;

green line: final spectrum after oxidation and reduction.

2.5.2 /V,/V-Diisopropylanilino-Substituted Dehydroannulenes

The increased stability of A^V-diisopropylanilino-substituted dehydro[12]annulene 51

allowed for the first time the exploration of the redox properties of a donor-substituted

antiaromatic 7i-system (Table 2.2, Fig. 2.12a). Thus, macrocycle 51 was reduced in two

reversible one-electron steps (-1.14 and -1.48 V) and oxidized in two two-electron oxidation

steps, at +0.24 and +0.40 V. Aromatic dodecadehydro[18]annulene 52 was reduced in two

one-electron reversible steps at -1.31 and -1.63 V, the third reduction being an irreversible

Page 73: Two-dimensional acetylenic scaffolding - Research Collection

48 Donor-Substituted Perethynylated Dehydroannulenes

multielectron step (Fig. 2.12b). Only one oxidation could be observed. This oxidation is

irreversible at scan rates below 0.1 V s_1, and becomes reversible at scan rates higher than

5 V s_1, indicative of an electrochemical-chemical (EC) oxidation mechanism. The

comparison of the peak amplitude obtained by CV and the limiting currents observed by

RDV for the first reduction and the first oxidation indicates that the oxidation involves only

three electrons. No additional signal is observed for the remaining iV,iV-diisopropylanilino

group. It is not excluded that electrode inhibition, or low solubility of the generated trication

in CH2CI2 precludes the observation of the expected further oxidation.

Table 2.2. Electrochemical data of 7V,7V-diisopropylanilino-substituted dehydroannulenes 40, 41, 51, and

52 observed by cyclic voltammetry (CV) and rotating disk voltammetry (RDV) in CH2C12 (+

0.1 M «Bu4NPF6). All potentials are given vs. ferricinium/ferrocene (Fc+/Fc) couple used as

internal standard.

CV RDV

E° [Vf A£p [mV]6 ep [vr £1/2 [V]rf Slope [mV]'

+0.64/ +0.67g

60 +0.35 80

-0.98 -1.02

-1.18 -1.21

+0.40

-1.20

-1.35

-1.63

100 +0.44 (2e~) 100

60 +0.24 (2e0 60

70 -1.17 (le") 80

80 -1.52 (le") 75

+0.37 +0.30 (3e~) 85

70 -1.32 (le") 60

80 -1.65 (lei 60

40

41

51

52

+0.34

+0.40

+0.24

-1.14

-1.48

-1.31

-1.63

-2.43

aE° = (Epc+Epa)/2, where Epc and Epa correspond to the cathodic and anodic peak potentials, respectively.

bAEp = Eox-Erild, where the subscripts ox and red refer to the conjugated oxidation and reduction steps,

respectively. CEP = irreversible peak potential. dEV2 = half-wave potential. eSlope = slope of the linearized plot of

E versus log^/^im,-/)], where Ilim is the limiting current and / the current. ^Small amplitude signal. *Not a well

defined wave due to electrode inhibition during oxidation.

Antiaromatic iV,iV-diisopropylanilino-substituted hexadecadehydro[20]annulene 40 undergoes

film formation during electrochemical investigations. Nevertheless, reproducible

voltammograms could be obtained for the first scan on newly polished electrodes. The

observed peak potentials under these conditions are listed in Table 2.2. Oxidation occurs in

Page 74: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 49

two steps, the first one being reversible for scan rates higher than 1 V s_1. The second

oxidation is irreversible and of a small amplitude. It was demonstrated by RDV that the first

oxidation gave a well-defined wave, whereas the second step was inhibited by an insulating

film formation. Such behavior may explain the small amplitude of the signal observed by

CV. The reductions of 40 are not well resolved, but the observed potentials are consistent

with the structure of the studied species.

a) b)

-10 -0 5 0 0

ElVvs Fc*/Fc —

-10 -0 5 0 0

ElVvs Fc*/Fc -

Fig. 2.12. Cyclic voltammetry (CV) of 7V,7V-diisopropylanilino-substituted dehydro[12]annulene 51 (a) and

dehydro[18]annulene 52 (b), in the presence of ferrocene on a glassy carbon working electrode in

CH2C12 (+ 0.1 M «Bu4NPF6) at scan rate v = 0.1 V s"1.

By cyclic voltammetry, aromatic macrocycle 41 undergoes one irreversible oxidation as well

as several small-amplitude reduction steps. The peak currents as well as the peak potentials

are scan-dependent due to film formation on the electrode surface. Reproducible

voltammograms could only be observed for the first scan carried out on a newly polished

electrode. The observed peak potentials under these conditions are listed in Table 2.2. The

single oxidation signal observed may correspond to the oxidation of the six N,N-

diisopropylanilino substituents. Indeed, comparison with the behavior of the corresponding

precursor 50 - oxidized in a two-electron step - shows a similar oxidation potential. It seems

that the substituents are not conjugated with the central all-carbon core and as such behave as

independent redox centers.

As a general trend in the whole series of currently studied compounds, one can see that the

first oxidation potential is quite similar and characteristic for the oxidation of an N,N-

diisopropylanilino group as observed previously [190]. These substituents behave as quite

Page 75: Two-dimensional acetylenic scaffolding - Research Collection

50 Donor-Substituted Perethynylated Dehydroannulenes

independent redox centers, being only slightly affected by the electron-acceptor character of

the remaining conjugated core. This is a sign for weak conjugative coupling between donor

and acceptor moieties [171,181].

In contrast, comparison of the first reduction potentials shows that an extension of the

electron-accepting acetylenic 7t-system, from 45 to 50, from 51 to 40, and from 52 to 41

provokes an anodic shift for the first reduction potential, which is expected. Also, increasing

the number of electron-donating jV,jV-diisopropylanilino substituents (51 vs. 52 and 40 vs.

41), shifts the first reduction potential to more negative values. The reduction potentials of

iV,iV-diisopropylanilino-substituted compound 51 and 52 are shifted towards more negative

values by 150 to 200 mV in comparison to their Si(/'-Pr)3-substituted analogues 9a and 10a

[191], thus indicating the electron-donating effects of the iV,iV-diisopropylanilino groups

(Table 2.2).

A careful analysis of the observed influence of the electron-donating anilino groups on the

first reduction potentials of 40, 41, 51, and 52 provides a deeper insight into the

antiaromatic/aromatic characteristics of the studied dehydroannulenes. Going from

antiaromatic 51 to aromatic 52, the number of electron-donating iV,iV-diisopropylanilino

groups is increasing from four to six (similarly going from 40 to 41). On account of this fact,

it is quite difficult to quantify the potential shift corresponding to one electron-donating

substituent. However, an average value may be obtained. Indeed, previous studies showed

that for dehydroannulene 10b (-1.36 V in THF), bearing six peripheral iV,iV-dimethylanilino

substituents [93], compared to Si(/'-Pr)3-substituted analog 10a (-1.12 V in THF) [91], a

240 mV shift was observed. That means, if additive, a ca. 40 mV cathodic shift by replacing

one Si(/'-Pr)3 group by one iV,iV-dialkylanilino substituent. Similar evolutions between 51

bearing four electron-donating anilino groups and its silylated counterpart 9a gave a cathodic

shift of 150 mV that is in a good agreement with a 40 mV cathodic shift per one N,N-

dialkylanilino group. Taking into account the estimated value of 40 mV, increasing the

number of donor substituents by two, when going from 51 to 52, should shift the potential to

more negative values by about 80 mV. However, the experimentally found (CV) difference

between the first reduction potentials of 51 and 52 equals to 170 mV, which is much larger

than the expected value. Even though the data for 40 and 41 are rather scarce, the effect of

iV,iV-dialkylanilino substituents is expected to be the same. Comparing the first reduction

potentials of 40 and 41 gives a difference of 220 mV (although CVs are not reversible).

Based on the above-mentioned considerations, the difference between dehydroannulenes 40

and 41 should again only be about 80 mV (effect of two additional anilino groups).

Page 76: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 51_

Therefore, it seems that the antiaromaticity of 40 and 51, and the aromaticity of 41 and 52

provide an explanation for the observed reduction behavior: it is easier to inject an electron

into the antiaromatic [4n] 7i-electron perimeters than into the aromatic [4n + 2] systems [191].

2.6 /V,/V-Dialkylanilino-Substituted Diplatina-dehydro[14]annulene

We have previously shown that TEE derivatives can act as efficient T/Migands and form

linear and cyclic platina(II) (7-acetylide complexes [45,105]. An easy, high-yielding access

to (Z)-bis-(jV,jV-diisopropylaniline)-substituted 45 stimulated our interest in preparation and

exploration of hitherto unprecedented donor-substituted perethynylated platina-

dehydroannulenes. Furthermore, transition metal (7-acetylide complexes could act as

precursors for the selective preparation of conjugated acetylenic macrocycles as described by

Bauerle and co-workers for thiophene-derived macrocycles [192]. Indeed, transition metal

units can be expelled by means of an oxidizing agent (e.g. I2) under simultaneous C-C bond

formation.

2.6.1 Synthesis and X-ray Crystal Structure

Deprotection of 45 with «BU4NF in moist TF£F was immediately followed, without any

purification, by Cu(I)-catalyzed reaction with cz's-[Pt(dppp)Cl2] (53) in diisopropylamine for

24 h at 50 °C [193] (Scheme 2.6). A brownish precipitate formed upon standing of the

mixture for 24 h at -20 °C was suspended in CH2C12, and undissolved impurities were

removed by filtration. The crude product was purified by multiple crystallizations from

CHCI3 solution by diffusion of EtOAc vapors at 20 °C to give orange needles suitable for X-

ray crystallographic analysis.4 Rather surprisingly, the X-ray crystal structure shows N,N-

diisopropylaniline-substituted diplatina-dehydro[14]annulene featuring a [Cu2(//-Cl)] bridge

within the macrocyclic framework 54 (Fig. 2.13). The compound crystallizes in the

monoclinic space group P2\ln with two independent macrocycles 54 and at least three CHCI3

molecules in the unit cell. The N(/'-Pr)2 groups are partly disordered in both independent

molecules, the CHC13 molecules exhibit static and dynamic disorder as well. The final

difference map exhibits ca. 50 electron-density peaks between 1.0 and 1.7 e Â~3, and ca. 100

Attempted purification of the crude product by column chromatography using various solvents failed due to

strong adsorption of the product on the Si02 or A1203 support.

Page 77: Two-dimensional acetylenic scaffolding - Research Collection

52 Donor-Substituted Perethynylated Dehydroannulenes

peaks between 0.5 and 1.0 e  3. Clearly, many of these peaks must result from disordered

solvent molecules, however, clear assignment could not be made.

45 54

Scheme 2.6. Synthesis of 7V,7V-diisopropylaniline-substituted diplatina-dehydro[14]annulene 54. a)

«Bu4NF, THF, 15 min, 0 °C; b) c/s-[Pt(dppp)Cl2] (53), Cul, (/-Pr)2NH, 24 h, 50 °C, ca. 14%

(54) (yield over two steps).

The cyclic framework in 54 addopts a boat-like conformation with the expected cis-

arrangement of the ligands in an almost square-planar coordination sphere around the Pt

atoms. Bond lengths and angles around the respective platinum cores are all within the range

typically found for related cz's-bis(acetylide)-Pt complexes (Fig. 2.13) [194,195]. It is

noticeable that ^-alkyne coordination to the copper atoms results in C=C bond lengthening

from 1.20 Â in the parent TEE derivative 45 to the values ranging from 1.22 to 1.24 Â in 54.

This elongation is ascribed to the character of the 7^-alkyne-copper bond consisting of two

components. The first component is (7-donation of electron density from a filled 7i-orbital of

the alkyne to a suitable empty d-orbital of the transition metal, whereas the second

component involves the back-donation of electron density from a filled d-orbital of copper to

an empty 7i*-orbital on the alkyne. Similar effects have been observed by Lang and co¬

workers in the series of bis(alkynyl)titanocene-based organometallic 7i-tweezers [196]. Both

copper atoms are in planar trigonal environments defined by the chlorine atom and the

midpoints of the two respective acetylenic fragments. Thus, the sums of the three bond

angles at Cu(15) and Cu(17) are 359.9 and 359.8°, respectively. The Cu-C(sp) distances

vary between 2.07 and 2.15 Â. The Cu(15)-Cu(17) distance of 2.58 Â might be considered

just short enough for the existence of some direct bonding (rvdw(Cu) = 1.40 Â [196]),

however, we do not have any proof that this is actually the case (vida infra) [197-199]. For a

detailed view of the bonding situation around the Cu atoms in 54, see Fig. 2.14.

Page 78: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 53

Fig. 2.13. ORTEP plot of one of the two independent molecules in the X-ray crystal structure of 54;

arbitrary numbering, H-atoms are omitted for clarity. Atomic displacement parameters at 223 K

are drawn at the 30% probability level. Selected bond lengths [Â]: Pt(l)-C(2) 2.019(10), C(2)-

C(3) 1.242(12), C(3)-C(4) 1.420(12), C(4)-C(5) 1.382(12), C(ll)-C(12) 1.358(13), C(12)-

C(13) 1.442(13), C(13)-C(14) 1.228(12), C(14)-Pt(l) 2.026(10), C(2)-Cu(15) 2.153(9), C(3)-

Cu(15) 2.086(8), C(6)-Cu(15) 2.097(9), C(7)-Cu(15) 2.131(9), C(9)-Cu(17) 2.139(9), C(10)-

Cu(17) 2.066(9), C(13)-Cu(17) 2.099(9), C(14)-Cu(17) 2.128(9), Cu(15)-Cu(17) 2.576(16),

Cu(15)-Cl(16) 2.266(2), Cl(16)-Cu(17) 2.276(3). Selected bond angles [°]: C(2)-Pt(l)-C(14)

87.7(4), Cu(15)-Cl(16)-Cu(17) 69.11(7), C(3)-Cu(15)-C(2) 34.0(3), C(6)-Cu(15)-C(7) 33.9(3),

C(10)-Cu(17)-C(9) 34.2(3), C(13)-Cu(17)-C(14) 33.8(3).

At first sight, the obtained X-ray crystal structure of diplatina-dehydro[14]annulene 54 seems

to be readily explained. The initially formed diplatina-dehydro[14]annulene framework

chelated Cu(I) that was used as a catalyst (Cul) in the reaction, and subsequently anion

exchange of iodide for chloride anion occurred (chloride anions are released in the course of

the reaction from cz's-[Pt(dppp)Cl2] (53)) (Scheme 2.6). However, upon detailed analysis the

first problem appears. Namely, if we assume that the copper atoms still have oxidation

number +1, the Pt atoms +2, and the bridging chloride anion is in its normal oxidation state -

1, then the whole complex 54 should be charged (+1). In that case, one additional anion must

compensate this charge. Nevertheless, in the X-ray crystal structure of 54 such an anion was

not found in the proximity of the copper atoms (in a radius of ca. 4 Â).

Page 79: Two-dimensional acetylenic scaffolding - Research Collection

54 Donor-Substituted Perethynylated Dehydroannulenes

Fig. 2.14. Bonding situation around the copper atoms in 54 with selected bond lengths (Â) and angles (°).

For this phenomenon three possible explanations appear:

i. Both copper atoms are in a mixed-valence state Cu(I)/Cu(0), and the whole species is

a radical. This would be analogous to Cu(I)/Cu(II) mixed-valence pairs that have

been already described [200-203].

ii. The missing anion is a bridging hydride that could not be localized by X-ray

crystallographic analysis. There are only a few examples of copper(I) hydrides in the

literature [204-207].

iii. Some other, however, yet elusive explanation.

The explanation where the anticipated hydride originates from, could be as follows. It is well

known, that during the palladium-catalyzed reactions (Sonogashira, Heck reaction) the

required Pd(0) active species can be formed from Pd(II) precursor {e.g. [PdCl2(PPh3)2]) in

situ. There have been proposed various mechanisms for the in situ reduction of Pd(II) to

Pd(0) [208]. In one of the proposed pathways, the base (aliphatic amine) acts as a reducing

agent (Scheme 2.7). Due to similarity in the chemistry of Pd and Pt, this mechanismus is

likely to operate also in the reaction system used in the synthesis of 54 (Scheme 2.6).

Page 80: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 55

HXG

EUH i

PdL2X2 — J\©„Pdl_2X HPdL2X PdL2 + HX

hgand N ß-hydride reductive

exchange Et2 elimination elimination

Pd(ll) Pd(ll) Pd(ll) Pd(0)

Scheme 2.7. In situ formation of Pd(0) by reduction of Pd(II) [208].

It should be mentioned at this point that the X-ray analysis was performed twice on different

crystals, leading to identical results. The intriguing bimetallic complex 54 was subjected to

further analyses to elucidate its character.

2.6.2 Characterization

The identity of 54 was confirmed by high-resolution MALDI-FT mass spectrometry (matrix:

3-HPA) (Fig. 2.15). Thus, a peak corresponding to the molecular ion [M]+ of 54 was

observed at mlz 2322.6327 (Ci22Hi24N4P4ClCu2Pt2+, calc. 2322.6362) followed by a fragment

peak at mlz 2223.7368 [M- CuCl]+ (Ci22Hi24N4P4CuPt2+, calc. 2223.7389). Also a very

weak signal belonging presumably to the protonated parent diplatina-dehydro[14]annulene

without the [Cu2(//-Cl)] bridge was found at mlz 2159.8379. The experimental mass spectra

were successfully simulated in order to exclude the doubts whether crystallographically

rather similar sulfide anion (S2~) does not play the role of the bridging ligand in the copper

bridge instead of the anticipated chloride (Cl~). According to the careful analysis of complex

isotopic patterns of the corresponding peaks, this hypothesis was excluded (Fig. 2.16). For

the sake of objectivity, it is necessary to mention a persistent peak of a complex isotopic

pattern at mlz 2413.5602 [M+ 91]+ whose origin has not been clarified so far. Although the

mass spectrometric analysis provided some additional information, the true character of 54

could not be elucidated.

Page 81: Two-dimensional acetylenic scaffolding - Research Collection

56 Donor-Substituted Perethynylated Dehydroannulenes

lonSpec HiResMALDIFile FTM14457 trans

Milan Kivala/Diedench - MK 206/061 - 3-HPA

|, 1844 7

1800 1850

_iL'

Mode Positive

Scans 1

HPK3T-

Date 17-FEB-2006

Time 09 50 03

Scale 59 0511

[M - CuCI]+2224

2413 6

2397 9> 2424 7

_ _i-L

2400 2450

745 1197

473 556595637 706 !791 867 935 1013 1089 i1220706!791 I 1358 14681

1821

1913

5 1845 ho

[MH - Cu2CI]+

2166

2056 2106

m

2323

+

[M + 91]

2414

23981

'

I '

1000 1500

Mass/Charge

Fig. 2.15. HR-FT-MALDI mass spectrum (matrix: 3-HPA) of 54, showing peaks of [M]+, [M- CuClf

[MH - Cu2Cl]+, and [M+ 91]+.

We analyzed the elemental composition of the crystaline solid of 54, for which the crystal

structure have been obtained, by combustion analysis. The measured values for C (calc.

59.29, found 59.28), H (calc. 5.06, found 4.81), and N (calc. 2.24, found 2.35) were in very

good agreement with the solvate structure 541.5 CHC13, as revealed by X-ray analysis.

However, for CI (calc. 7.79, found 4.69) the measured value is too low. Also, we determined

the Cu and Pt content in the crystaline solid of 54 in the laboratory of Prof. D. Günther

(Laboratorium für Anorganische Chemie, ETH Zürich) by inductively coupled plasma optical

emission spectroscopy (ICP-OES). However, the values determined for the sample digested

in HNO3/H2O2 did not meet the predictions for both Cu (calc. 5.08, found 5.62) and Pt (calc.

15.59, found 10.00). We hypothesize that co-crystallized disordered solutes that did not

appear in the X-ray crystallographic analysis {vide supra) cause the discrepancies between

experimental and predicted elemental composition.

The exist many methods how to prove the existence of transition metal hydride, the most

direct one being *H NMR spectroscopy [209]. Thus, 54 was examined by Dr. H. Rüegger at

the Laboratorium für Anorganische Chemie, ETH Zürich. Initially, the sample of 54 was

mesured in CDCI3 with a negative result. Since transition metal hydrides often behave as

acids, the choice of the solvent was not the best, due to the possible exchange of the

Page 82: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 57

anticipated H with deuteron from CDC13 or DC1. Nevertheless, no hydride signal was

observed even in aprotic solvents such as (CD3)2SO, CD3CN, and CD2CI2 (even at low

temperatures). The negative result is rather disappointing, however, in no case excluding the

existence of the anticipated IT". It is rather common for transition metal hydrides that they

cannot be detected by !H NMR techniques [209]. Interestingly, no additional signals except

those of 54, H20 and the solvent were observed in the corresponding 1H, 13C, 31P, and 195Pt

NMR spectra (vide infra).

a)

onSpec HiResMALDIFile FTM14457 trans

Vlila Kivala/Dieeferich MK 206/061 3 HPA

tooC122 H124 N4 CI Cü2 P4 Pt2 +1

Monoisotop c Mass 2319 63470

90 A+6 2315 6290 0 35

A+7 2316 6316 0 79

2317 6307 8 03

j A+9 2318 6330 24 32

BO !A+10 2319 6339 51 23

2320 6349 77 05

A+12 2321 6355 96 62

70A+13 2322 6362 100 00

A+14 2323 6S88~ mw~

A+15 2324 6375 71 50

A+16 2325 6382 50 89

60 A+17 2326 6392 32 02

2327 6400 18 42

A+19 2328 6410 9 53

A+20 2329 6420 4 48

50 A+21 2330 6432 1 91231

A+22 2331 6446 0 74

A+23 2332 6460 0 26

Mode Positive Date 17 FEB 2006

Scans 1 Time 09 50 03

Scale 237 5329

2322 2324

Mass/Charge

b)lonSpec HiResMALDIFile FTM14457 Irans

Milan Kivaia/Diedench MK 206/061 3 HPA

C122 H124 N4 Cu P4 Pt2 +1

MoriOisotopic Mass 2221 73625

A+6 2217 7306 0 56

A+7 2218 7332 1 26

A+8 2219 7324 12 71

A+9 2220 7347 38 80

A+10 2221 7362 74 18

A+11 2222 7377 96 50

A+12 2223 7389 100 00

A+13 2224 7402 S4 79

2225 7415 62 24

A+15 2226 7431 38 95

A+16 2227 7445 21 85

A+17 2228 7461 10 84

A+18 2229 7478 4 74

A+19 2230 7496 1 85

A+20 2231 7516 0 64

A+21 2232 7538 0 19

2223 737

2222 738

2218 731 1

2215 2220

Mode Positive Date 17 FFB 2006

Scans 1 Ttme 09 50 03

Scafe 59 0511

2225

Mass/Charge

2228 750

i

I 2229 766

_L_

2230

Fig. 2.16. HR-FT-MALDI mass spectrum (matrix: 3-HPA) of 54. a) molecular peak at mlz 2322.632 ([M]+,

Ci22Hi24N4P4ClCu2Pt2+, calc. 2322.6362) and simulated isotopic pattern; b) peak at mlz

2223.7368 ([M- CuCl]+, C^Hm^P^uPtz^ calc. 2223.7389) and simulated isotopic pattern.

Page 83: Two-dimensional acetylenic scaffolding - Research Collection

58 Donor-Substituted Perethynylated Dehydroannulenes

The 1H- and 13C-broadband decoupled 31P NMR spectrum (CD2C12) of 54 exhibits a single

peak at -10.72 ppm with a set of 195Pt satellites (\/(195Pt,31P) = 2339 Hz) (Fig. 2.17).

Accordingly, the 195Pt NMR spectrum (CD2CI2) shows a single peak at -4695 ppm with

1J(195Pt,31P) = 2322 Hz (Fig. 2.18).

31PNMR(202 5MHz,CD2CI2)

Fig. 2.17. 1H- and 13C-broadband decoupled 31P NMR spectrum (202.5 MHz, CD2C12) of 54 S= -10.72

ppm with a set of 195Pt satellites1J(195Pt,31P) = 2339 Hz.

As the existence of the anticipated hydride could not be demonstrated (NMR and IR

spectroscopy), the other hypothesis - mixed-valence state Cu(I)/Cu(0) - was examined in the

laboratory of deceased Prof. A. Schweiger (Laboratorium für Anorganische Chemie, ETH

Zürich). However, 54 proved to be EPR silent down to temperatures as low as 77 K. This

observation is consistent with the absence of broadened lines in the NMR spectra that would

be characteristic for a paramagnetic species. The absence of an EPR signal is rather unlikely

to be explained by very fast spin relaxation in 54.

To identify the redox behavior of the copper atoms, 54 was studied by cyclic voltammetry

(CV) and rotating disc voltammetry (RDV) in CH2C12 with «Bu4NPF6 (0.1m) as the

supporting electrolyte. All potentials are given vs. Fc+/Fc. The electrochemical

investigations were performed by Dr. J.-P. Gisselbrecht at the Laboratoire d'Electrochimie et

de Chimie Physique du Corps Solide, Université Louis Pasteur in Strasbourg, France.

Page 84: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 59

4 550 4600 4650 4700 4750 4800 ppra

Fig 2 18 195Pt NMR spectrum (53 8 MHz, CD2C12) of 54 8= -4695 ppm with1J(195Pt,31P) = 2322 Hz

CV gave only one poorly resolved reduction at -2 05 V (shoulder located on the solvent

discharge) that occurs on the TEE moieties In contrast, a first oxidation step is observed at

+0 29 V For this oxidation the peak current ratio (Ipc/Ipa) is smaller than unity at 0 1 V s*

By increasing the scan rate, the first oxidation became reversible (peak current ratio Ipc/Ipii

equals unity for scan rates higher than 1 Vs1) This behavior is characteristic for an

electrochemical-chemical mechanism (EC), with the generated oxidized species undergoing

a chemical reaction Further irreversible oxidation steps are observed at Eva = +1 00, +1 15,

and +1 20 V, respectively It should be noticed that on the reverse scan a "redissolution

peak" is observed at -0 13 V This peak is observed as soon as the potential is reverted after

the first irreversible peak (shown with an arrow, see Fig 2 19)

The first oxidation at +0 29 V seems to be due to the oxidation of the four N,N-

diisopropylanilino-substituents, whereas the oxidation at +1 00 V may involve the oxidation

of the platinum(II) centers as observed previously in DEE-Pt(II)-DEE species [210]

However, the presence of copper could not be demonstrated by its oxidation or reduction

Although Cu(I) is expected to be readily reducible, no such signal could be observed In

addition, during RDV carried out on a Pt working electrode, no copper deposit on the

electrode surface was observed within the applied potential range -0 50 to -1 80 V Such a

Cu(0) deposit formation might be expected for a reduction of Cu(I) to Cu(0) This finding

could result from the rather crowded situation around the copper atoms in 54 A similar

Page 85: Two-dimensional acetylenic scaffolding - Research Collection

60 Donor-Substituted Perethynylated Dehydroannulenes

effect has been described by Nierengarten and co-workers for dendrimers with an

electroactive bis(phenanthroline) copper(I) core [211]. Increasingly slow electron transfer

kinetics have been observed for large electroactive dendrimers. In some cases, the shielding

of the central core is so effective that Cu(I) could not be detected by classical CV

measurements.

ElVvs Fc/Fc

Fig. 2.19. Cyclic voltammetry (CV) of 7V,7V-diisopropylanilino-substituted 54 on a glassy carbon working

electrode in CH2C12 (+ 0.1 m «Bu4NPF6) at scan rate v = 0.1 V s"1.

In order to identify the potentials corresponding to the copper atoms in 54, the parent

diplatina-dehydro[14]annulene without the [Cu2(//-Cl)] bridge used as a reference would be

desirable. However, attempted decomplexation of copper(I) by reaction with an excess of

cyanide (KCN, «BU4NCN) yielded a complex mixture of products and the expected parent

diplatina-dehydro[14]annulene could not be isolated [212]. Attempted in situ

decomplexation by means of «BU4NCN directly in the electrochemical cell during the CV

measurement failed as well.

To gain further insight into the electronic properties of 54, the UV/Vis absorption spectrum

was recorded in CH2C12 at 298 K. The spectrum exhibits two lowest-energy absorption

maxima at /Uax = 421 nm (2.95 eV, e= 46000 M_1 cm-1) and /Lax = 466 nm (2.66 eV,

e= 34700 ivf1 cm-1), respectively (Fig. 2.20). Upon acidification of the CH2CI2 solution with

/»-toluenesulfonic acid, the intense band at Ämax = 466 nm disappears nearly completely,

whereas the band originally at >4max = 421nm is hypsochromically shifted to 396 nm.

Neutralization with triethylamine regenerates nearly quantitatively the original spectra.

According to this protonation experiment, the absorption band at Ämax = 466 nm could be

assigned to intramolecular charge transfer from the peripheral electron-donating anilino

Page 86: Two-dimensional acetylenic scaffolding - Research Collection

Donor-Substituted Perethynylated Dehydroannulenes 61

groups into the electron-accepting all-carbon perimeter, wehereas the band at Ämax = 421 nm

presumably results from metal-to-ligand charge-transfer (MLCT) interaction [45,105]

Eo

80000

60000

40000

20000 -

300

54

54 acidified

54 neutralized

400 500

/ I nm

600 700

Fig 2 20 UV/Vis spectra of 54 recorded neat, after acidification with /?-toluenesulfonic acid, and after re-

neutralization with tnethylamine

Despite all above mentioned efforts and numerous discussions with Prof. H. Grutzmacher;

Prof. A. Togni, and Prof. P. Pregosin from the Laboratorium fur Anorganische Chemie, ETH

Zurich, as well as with Prof. H. Lang from the Technische Universität Chemnitz, the true

character of rather enigmatic 54 could not be revealed Hence, no further investigations in

this direction were performed

2.7 Conclusion

By employing a photochemical route to (Z)-bisprotected donor-substituted TEEs, bis(7V,iV-

diisopropylanilino)-substituted TEE 45, with improved stability and solubility properties, was

prepared for the construction of large dehydroannulenes Yields in the macrocychzation of

45 to the perethynylated octadehydro[12]annulene 51 and dodecadehydro[18]annulene 52 are

significantly improved compared to the yields previously obtained in the synthesis of the

jV,jV-dimethylanilino-substituted dehydroannulenes 9b, and 10b This is readily explained by

the enhanced solubility and stability provided by the diisopropylamino compared to the

dimethylamino groups The first X-ray crystal structure of an anilino-substituted

Page 87: Two-dimensional acetylenic scaffolding - Research Collection

62 Donor-Substituted Perethynylated Dehydroannulenes

dehydro[18]annulene was obtained, revealing a practically planar macrocychc framework of

52. Pairs of macrocycles in the crystal lattice undergo multiple intermolecular C-H 7t

interactions involving the C-H residues of phenyl rings and acetylenic 7i-bonds. Oxidative

Hay coupling of elongated building block 50, after alkyne deprotection, afforded the

unprecedented expanded hexadecadehydro[20]annulene 40 and

tetracosadehydro[30]annulene 41 decorated and stabilized by peripheral electron-donating

iV,iV-diisopropylanilino groups. UV/Vis spectroscopy furnished evidence for strong

intramolecular charge-transfer interactions between the peripheral electron-donating anilino

groups and the central electron-deficient cores. These interactions seem to be more effective

within the [4n + 2] than in the [4n] 7i-electron chromophores. Electrochemical studies of the

newly prepared dehydroannulenes demonstrated the electron-accepting power of their all-

carbon cores. Careful analysis provided indications that the antiaromatic systems are more

readily reduced than the aromatic counterparts. The presented work clearly demonstrates

once more the power and versatility of TEE building blocks for the modular construction of

large, two-dimensional all-carbon sheets.

A novel jV,jV-diisopropylaniline-substituted diplatina-dehydro[14]annulene featuring [Cu2(//-

Cl)] bridge within the macrocychc framework 54 was prepared. Despite much effort, the

exact nature of this bimetallic complex still remains elusive.

Page 88: Two-dimensional acetylenic scaffolding - Research Collection

3 Multivalent Charge-Transfer

Chromophores and Cascade

Reactions

Page 89: Two-dimensional acetylenic scaffolding - Research Collection
Page 90: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 65

3.1 Introduction

In our earlier work, we showed that the fast [2+2] cycloaddition of TCNE to N,N-

dialkylanilino (DAA)-substituted alkynes, followed by electrocyclic ring opening of the

initially formed cyclobutenes, had the character of a "click"-reaction, affording DAA-

substituted l,l,4,4-tetracyanobuta-l,3-dienes (TCBDs) in an atom-economic way with near

quantitative yields (Chapter 1) [181]. Thus, the tris-TCBD derivative 39 was obtained from

the corresponding triyne in 86% isolated yield. The electrochemical properties of 39 were

remarkable in that it underwent six reversible one-electron reduction steps in CH2CI2, each

centered on a dicyanovinyl moiety, in the unprecedently narrow potential range of 1.0 V (Fig.

3.1). This finding stimulated our search for larger multivalent CT systems that could act as

powerful electron reservoirs.

N(C6H13)2

N(C6H13)2

(C6H13)2N

39 (86%)

E^-oesv.E^e-iesv

Fig. 3.1. Trimeric 7V,7V-dihexylanilino-substituted TCBD 39 capable of taking up six electrons in a narrow

potential range of 1.0 V under electrochemical conditions [181].

Compared to 39, we decided to use buta-l,3-diyne-l,4-diyl instead of ethyne-l,2-diyl

fragments to attach iV,iV-dihexylanilino (DHA) substituents to the central core in order to (i)

reduce steric crowding and (ii) enhance the distance between pairs of C(CN)2 moieties,

thereby bringing the individual reduction potentials even closer. The central core was also

systematically modified to maximize the number of attached electroactive TCBD moieties,

thereby increasing the charge-storage capacity of multivalent CT chromophores. Hence,

phenyl, 1,3,5-triphenylbenzene, hexaphenylbenzene, and triphenylamine cores were used in

the construction of such dendrimer-type, multivalent CT systems (Fig. 3.2).

Page 91: Two-dimensional acetylenic scaffolding - Research Collection

66 Multivalent Charge-Transfer Chromophores and Cascade Reactions

N(C6H13)2 N(C6H13)2

Fig. 3.2. Building blocks for the construction of dendrimer-type, multivalent CT systems acting as

powerful electron reservoirs.

3.2 Synthesis of Alkyne Precursors

3.2.1 Zero Generation (GO)

For the reasons mentioned above, we decided to use buta-1,3-diyne-1,4-diyl fragments to

attach electron-donating as well as solubility-ensuring iV,iV-dihexylanilino (DHA) groups to

the central core. The DHA-substituted oligoalkyne precursors should be readily accessible

via Sonogashira cross-coupling of 4-(buta-l,3-diyn-l-yl)-iV,iV-dihexylaniline (55) with the

corresponding iodinated core.

Since the stability of deprotected substituted buta-1,3-diynes is generally rather limited, 4-

(buta-l,3-diyn-l-yl)-iV,iV-dihexylaniline (55) was always freshly prepared before its use in

subsequent reactions from the corresponding triisopropylsilyl (TlPS)-protected derivative 56

by silyl-deprotection with «BU4NF in moist THF at 0 °C. Diyne 56 can be prepared in a good

yield by Hay oxidative coupling from 4-ethynyl-jV,jV-dihexylaniline (57) [93] and

(triisopropylsilyl)acetylene (Scheme 3.1).

(C6H13)2Na)

(C6H13)2N

57 56

55

R = Si(;-Pr)3 -1.,

R = H -J D>

Scheme 3.1. Synthesis of 4-(buta-l,3-diyn-l-yl)-A^-dihexylamline (55). a) CuCl, TMEDA, air, acetone,

7 h, 20 °C, 64% (56); b) «Bu4NF, THF, 20 min, 0 °C.

Page 92: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 67

Starting from 1,3,5-triiodobenzene (58) [213], 1,2,4,5-tetraiiodobenzene (59) [214], and

hexaiodobenzene (60) [214], that were prepared according to literature procedures, a series of

DHA-substituted oligoalkyne precursors 61-64 were prepared by Sonogashira cross-coupling

with 55 (Scheme 3.2). Assembly of sterically rather congested 63 was accomplished via six¬

fold Sonogashira cross-coupling with hexaiodobenzene under modified conditions developed

by Haley and co-workers using {Pd[P(o-Tol)3]2} (65) and Cul as the catalytic system

[215,216]. The desired six-fold coupled product 63 could only be isolated in 6% yield along

with five-fold coupled material 64 (12%) in which the sixth iodine was displaced with a

hydrogen atom. Both compounds were obtained after repetitive column chromatography

(SiC>2; 3 x hexanes/CH2Cl2 4:1 —» 2:1) as stable deep-orange greasy solids.

In analogy, a series of electron-rich, DHA-substituted oligoalkynes with triphenylamine 66,

1,3,5-triphenylbenzene 67, and hexaphenylbenzene cores 68, were prepared in moderate to

good yields via Sonogashira cross-coupling from the corresponding iododerivatives, tris(4-

iodophenyl)amine (69) [217], l,3,5-tris(4-iodophenyl)benzene (70) [218], and hexakis(4-

iodophenyl)benzene (71) [219], respectively, that were readily accessible via literature

procedures (Scheme 3.3).

The identity of donor-substituted dendritic precursors 61-68 was confirmed by high-

resolution MALDI-FT mass spectrometry (matrix: DCTB) and JH and 13C NMR

spectroscopy and/or elemental analysis.

Page 93: Two-dimensional acetylenic scaffolding - Research Collection

68 Multivalent Charge-Transfer Chromophores and Cascade Reactions

(C6H13)2N

(C6H13)2N

N(C6H13);

N(C6H13)2

N(C6H13)2

(C6H13)2N

55

(C5H13)2N

(C5H13)2N

N(C6H13)2

N(C6H 13J2

63 R = |-

64 R = H

N(C6H13)2

= = <\ /^N(C5H13)2

Scheme 3.2. Synthesis of DHA-substituted oligoalkyne precursors 61-64. a) 1,3,5-Triiodobenzene (58),

[PdCl2(PPh3)2], Cul, (/-Pr)2NH, 22 h, 60 °C, 83% (61); b) 1,2,4,5-tetraiodobenzene (59),

[PdCl2(PPh3)2], Cul, (/-Pr)2NH, 24 h, 60 °C, 24% (62); c) hexaiodobenzene (60), {Pd[P(o-

Tol)3]2} (65), Cul, A^-methylpyrrolidone (NMP), Et3N, 16 h, 60 °C, 6% (63), 12% (64).

Page 94: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 69

66

a)(Ci Hi3)2N-f? = =

b)

55

x /hN(C6H13)2c)

Scheme 3.3. Synthesis of the DHA-substituted oligoalkyne precursors 66-68. a) Tris(4-iodophenyl)amine

(69), [PdCl2(PPh3)2], Cul, (/-Pr)2NH, 16 h, 20 °C, 100% (66); b) l,3,5-tris(4-

iodophenyl)benzene (70), [PdCl2(PPh3)2], Cul, (/-Pr)2NH, 14 h, 20 °C, 74% (67); c)

hexakis(4-iodophenyl)benzene (71), [PdCl2(PPh3)2], Cul, (/-Pr)2NH, 14 h, 50 °C, 54% (68).

3.2.2 First Generation (G1)

In order to (i) further increase the number of electroactive TCBD units per molecule and (ii)

enhance the distance between pairs of C(CN)2 moieties, a family of Gl dendritic N,N-

dihexylanilino (DHA)-substituted oligoynes featuring phenyl, 1,3,5-triphenylbenzene,

hexaphenylbenzene, and triphenylamine cores, respectively, was prepared. Dendrimers Gl

were synthesized by a convergent growth approach via iterative Sonogashira couplings and

silyl deprotections. Thus, synthesis of the dendritic precursor 72 started from 3,5-

diiodoaniline (73) [213] that was converted to a diethyltriazene 74 in 55% yield (mixture of

Page 95: Two-dimensional acetylenic scaffolding - Research Collection

70 Multivalent Charge-Transfer Chromophores and Cascade Reactions

ElZ isomers) by means of diazonium chemistry [215]. Pd-catalyzed alkynylation of triazene

74 with an excess of 4-(buta-l,3-diyn-l-yl)-iV,iV-dihexylaniline (55) afforded 75 in nearly

quantitative yield (95%). Alkynylated triazene 75 was converted to the corresponding

iodoarene 76 (50%) upon treatment with trimethylsilyl iodide, formed in situ from Nal and

Me3SiCl, in MeCN/CCl4 at 60 °C for 20 min [220]. As rather lipophilic 75 was nearly

insoluble in polar MeCN, it was essential to use an appropriate co-solvent. Although CC14 is

highly toxic and cancerogenic, it was found to be the best co-solvent giving the highest yield

of iododerivative 76. Subsequent Sonogashira cross-coupling with an excess of

(trimethylsilyl)buta-l,3-diyne produced the desired building block 72 in 83% yield (Scheme

3.4) [221].

NH,N3Et

3^2

73

b)

74

- Et2N3^.X / \\ //

75 76

^ /^N(C6H13)2

d),e)

Me?Si-

72R

Scheme 3.4. Synthesis of the DHA-substituted dendritic precursor 72. a) HCl, NaN02, Et20/THF/MeCN,

1.5 h, -5 °C, then K2C03, Et2NH, 3 h, 20 °C, 55% (74); b) 55, [PdCl2(PPh3)2], Cul, (/-Pr)2NH,

14 h, 20 °C, 95% (75); c) Nal, Me3SiCl, MeCN/CCL,, 20 min, 60 °C, 50% (76); d) 1,4-

bis(trimethylsilyl)buta-l,3-diyne, MeLiLiBr, THF, 3 h, 20 °C, then H+/H20; e) 55,

[PdCl2(PPh3)2], Cul, (/-Pr)2NH, 18 h, 20 °C, 83% (72) (yield over two steps).

Deprotection of 72 with «BU4NF in moist THF at 0 °C was immediately followed, without

any further purification, by Pd-catalyzed Sonogashira cross-coupling with 1,3,5-

triiodobenzene (58) [213] and 1,2,4,5-tetraiiodobenzene (59) [214] in diisopropylamine at

60 °C to afford dendrimer-like DHA-substituted systems 77 (46%) and 78 (25%),

respectively (Scheme 3.5).

Page 96: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 71

R

qR

Scheme 3.5. Synthesis of dendrimers 77 and 78. a) «Bu4NF, THF, 15 min, 0 °C; b) 1,3,5-triiodobenzene

(58), [PdCl2(PPh3)2], Cul, (/-Pr)2NH, 22 h, 60 °C, 46% (77); c) «Bu4NF, THF, 15 min, 0 °C;

d) 1,2,4,5-tetraiodobenzene (59), [PdCl2(PPh3)2], Cul, (/-Pr)2NH, 15 h, 60 °C, 25% (78); e)

«Bu4NF, THF, 15 min, 0 °C; f) C6I6 (60), {Pd[P(o-Tol)3]2} (65), Cul, NMP, Et3N, 20 h, 60 °C,

5% (79). Yields over two steps.

The identity of both 77 and 78 was unambiguously confirmed by high-resolution mass

spectrometry (MALDI-TOF; matrix: DCTB) and JH and 13C NMR spectroscopy.

SiMe-,

Page 97: Two-dimensional acetylenic scaffolding - Research Collection

72 Multivalent Charge-Transfer Chromophores and Cascade Reactions

SiMe3

Scheme 3.6. Synthesis of dendnmers 80 and 81. a) l,4-Bis(trimethylsilyl)buta-l,3-diyne, MeLiLiBr,

THF, 3 h, 20 °C, thenH+/H20; b) 69, [PdCl2(PPh3)2], Cul, (/-Pr)2NH, 13 h, 20 °C, 100% (82);

c) «Bu4NF, THF, 20 min, 0 °C; d) 76, [PdCl2(PPh3)2], Cul, (/-Pr)2NH, 15 h, 20 °C, 46% (80);

e) l,4-bis(trimethylsilyl)buta-l,3-diyne, MeLiLiBr, THF, 3 h, 20 °C, then H+/H20; f) 71,

[PdCl2(PPh3)2], Cul, (/-Pr)2NH, 14 h, 60 °C, 67% (83); g) «Bu4NF, THF, 20 min, 0 °C; h) 76,

[PdCl2(PPh3)2], Cul, (/-Pr)2NH, 14 h, 60 °C, 11% (81). Yields over two steps.

Page 98: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 73

In contrast, attempts to couple desilylated 72 to hexaiodobenzene (60) using {Pd[P(o-Tol)3]2}

(65) and Cul as the catalytic system failed to produce the desired six-fold coupled material

and homodimer 79 of 72 was isolated instead. Multiple attempts to construct dendrimer-like

(DHA)-substituted systems featuring triphenylamine, 1,3,5-triphenylbenzene, or

hexaphenylbenzene cores via Sonogashira cross-coupling of deprotected 72 with the

corresponding iodoarenes were unsuccessful as well.

On the other hand, some of the multiple transformations were successful and starburst-type

dendrimers 80 and 81 obtained. Thus, triiodotriarylamine 69 was cross-coupled with

(trimethylsilyl)buta-l,3-diyne to yield tris-alkynylated product 82 which after desilylation

and cross-coupling with 76 afforded 80 [221]. Similarly haxaiodinated hexaphenylbenzene

and (trimethylsilyl)buta-l,3-diyne reacted under cross-coupling conditions to provide

hexakis(buta-l,3-diyn-l-yl) derivative 83 which after silyl-deprotection and cross-coupling

with 76 produced target compound 81 (Scheme 3.6). As desilylated 82 and 83 deteriorate

slowly even in THF solution to produce dark insoluble oligomeric material, they must be

subjected to subsequent reactions immediately.

Dendrimers 80 and 81 were fully characterized by a complet set of spectral data as shown in

the Experimental Part. Mass spectra of 80 and 81, showing the correct molecular ion [M*~],

were obtained by MALDI-TOF mass spectrometry (matrix: DCTB).

3.3 Syntheses of Multivalent TCBD Derivatives

The dendrimer-type, DHA-substituted oligoalkyne precursors, prepared via iterative

Sonogashira couplings and silyl deprotections 61-68, 77, 78, 80, and 81 (vide supra), reacted

smoothly with tetracyanoethene (TCNE) in CH2CI2 at 20 °C to afford new multivalent TCBD

derivatives 84-94 (Scheme 3.7). Reaction yields are often nearly quantitative but can be

affected by steric factors. Whereas tris-butadiyne precursor 61 reacted at 20 °C in CH2C12 to

give corresponding oligomeric TCBD 84 in nearly quantitative yield (96%), the yield of the

six-fold addition product 87 was lower (77%), reflecting increased steric crowding in

hexakis-butadiyne precursor 63 (Fig. 3.3). Remarkably, twelve-fold addition of TCNE to

produce 94 with the hexaphenylbenzene core proceeded in a rather spectacular 86% yield

which means nearly quantitative conversion in each of the twelve concurrent

cycloaddition/retro-electrocyclization sequences (i.e. 98% yield for each TCNE addition). In

agreement with our previous observation [181], each buta-l,3-diynyl moiety of the

Page 99: Two-dimensional acetylenic scaffolding - Research Collection

74 Multivalent Charge-Transfer Chromophores and Cascade Reactions

corresponding precursor reacted exclusively with one equivalent of TCNE at the more

electron-rich C=C bond directly attached to the DHA substituent (even in the presence of an

excess of TCNE at elevated temperature).

Scheme 3.7. Reaction of oligomeric DHA-substituted alkynes with TCNE to yield oligomeric donor-

substituted TCBDs (general scheme), a) TCNE (1.0-2.5 equiv. per C=C bond), CH2C12, 10-

21h,20°C.

All donor-substituted TCBDs 84-94 are black solids, stable at ambient temperature and

exposed to laboratory atmosphere, and melt undecomposed above 100 °C. For an overview

of all dendritic, DHA-substituted TCBDs prepared and the corresponding yields of the [2+2]

cycloaddition/retro-electrocyclization sequences starting from the donor-substituted alkyne

precursors and TCNE, see Figs. 3.3-3.7.

Page 100: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 75

84 (96%) 85 (98%)

R - CgH-13

NR2

87 (77%)

Fig. 3.3. Donor-substituted oligomeric TCBDs 84-87. Given in parentheses are the yields of the [2+2]

cycloaddition/retro-electrocyclization sequences starting from the donor-substituted alkyne

precursors and TCNE.

Page 101: Two-dimensional acetylenic scaffolding - Research Collection

76 Multivalent Charge-Transfer Chromophores and Cascade Reactions

(C6H13)2N

cVf

CN„ „

NC CN 91 (74%)cnV ~"CN

N(C6H13)2

(C6H13)2N^\

N(C6H13)2

%^CN

92 (91 %)

Fig. 3.4. Donor-substituted dendritic (Gl) TCBDs 91 and 92 with the central phenyl core. Given in

parentheses are the yields of the [2+2] cycloaddition/retro-electrocyclization sequences starting

from the donor-substituted alkyne precursors and TCNE.

Page 102: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 77

NCk ^cn

(C6H13)2N

NC^ XN

Fig. 3.5.

N(C6H13)2

88(100%)

N(C6H13)2

(C6H13)2N

NC CN

N(C6H13)2

89(100%)

(C6H13)2N

MPCN

N(C6H13)2

N(C6H13)2

CN^ ^

NC CNCN

„ „

NC CN

Donor-substituted dendritic TCBDs featuring triphenylamine (88 and 93) and 1,3,5-

triphenylbenzene (89) cores. Given in parentheses are the yields of the [2+2] cycloaddition/retro-

electrocyclization sequences starting from the donor-substituted alkyne precursors and TCNE.

Page 103: Two-dimensional acetylenic scaffolding - Research Collection

78 Multivalent Charge-Transfer Chromophores and Cascade Reactions

N(C6H13)2

N(C6H13)2

90(91%)

Fig. 3.6. Donor-substituted dendritic TCBD 90 with the hexaphenylbenzene core. Given in parentheses is

the yield of the [2+2] cycloaddition/retro-electrocyclization sequence starting from the donor-

substituted alkyne precursor and TCNE.

3.4 UV/Vis Spectroscopy

The UV/Vis absorption spectra of newly prepared oligomeric donor-substituted TCBDs 84-

94 were recorded in CH2CI2 at 298 K to gain further insight into their electronic properties.

The electronic absorption spectra of 84-94 are dominated by intense, broad charge-transfer

(CT) bands accompanied by a long tail or shoulder reaching into the near infrared region,

resulting from different donor-acceptor (D-A) transitions as observed previously (Fig. 3.8)

[181].

In the series of oligomeric TCBDs with a phenyl core 84-87, the absorption maxima /Uax of

the most intense CT bands are only weakly influenced by changes in the substitution pattern

of the central phenyl core and the number of TCBD units. In contrast, the intensity of the CT

band reflects quite strongly the degree of symmetry of phenyl substitution. Thus, the

spectrum of tetrameric 85 with D4h symmetry displays a CT band with a /Uax of 470 nm

Page 104: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 79

(2.64 eV) and e of 189900 ivf1 cirf1. This lvalues is almost twice as large as that of trimeric

84 featuring Dm symmetry (/Uax = 460 nm (2.70 eV), £ = 114300 ivf1 cm-1) and exceeds even

that of D6h hexameric 87 (/^max = 476 nm (2.61 eV), £ = 110000 M_1 era"1) and pentameric 86

C^max = 473 nm (2.62 eV), £= 153300 ivf1 cm-1) of the lowest symmetry C2v. As expected,

the CT band of 87, featuring virtually three pairs of donor-substituted TCBD moieties in para

positions is bathochromically shifted (476 nm (2.61 eV)) from the band of trimeric 84 (460

nm, (2.70 eV)) featuring the three TCBD substituents in a meta arrangement. Similar effects

can be observed for 85 (470 nm (2.64 eV)) and 86 (473 nm (2.62 eV)) with respect to 84

(Fig. 3.8a).

94 (86%)

Fig. 3.7. Donor-substituted dendritic TCBD 94 with the hexaphenylbenzene core. Given in parentheses is

the yield of the [2+2] cycloaddition/retro-electrocyclization sequence starting from the donor-

substituted alkyne precursor and TCNE.

Page 105: Two-dimensional acetylenic scaffolding - Research Collection

80 Multivalent Charge-Transfer Chromophores and Cascade Reactions

a) b)

g 100000-

~i ' r

300 400

• /nm ' / nm

c)

.'> A89

160000 - '. V l 90

94

_

120000 -

3;

V-N 1

10 80000 -

"'1 'l

40000 -

0-

V"x

300 400 500 600 700

/ / nm

d)

300 400 500 600

/ / nm —

Fig. 3.8. UV/Vis spectra of oligomeric DHA-substituted TCBDs with the phenyl core 84-87 (a) and 91

and 92 (b), with the 1,3,5-triphenylbenzene 89 and hexaphenylbenzene core 90 and 94 (c), and

with the triphenylamine core 88 and 93 (d) in CH2C12 at 298 K.

Furthermore, increasing the generation number (GO —» Gl) when going from trimeric 84 to

91 (;Ux = 458nm (2.71 eV), e= 196400 vfl era"1) or from tetrameric 85 to 92

C^max = 457 nm (2.71 eV), e= 179600 NT1 cm-1), does not significantly influence the position

/îmax of the most intense CT bands. However, an additional, well resolved weak CT band of

lower energy appears in the spectra of extended 91 and 92 (Fig. 3.8b). It seems that the

relative arrangement of the iV,iV-dihexylamino-substituted TCBD units around the phenyl

connector (i.e. meta) is the major factor determining the character of the resulting CT bands.

The intensity £ of the CT bands is not proportional to the number of branches. Accordingly,

further expansion of the central 7i-conjugated branching unit, leading to the 1,3,5-

Page 106: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 81

triphenylbenzene core in 89 and hexaphenylbenzene core in 90 and 94 did not yield any

significant shift of the longest wavelength absorption maxima. Rather surprisingly, the

intensity e= 91400 M"1 cm"1 of the CT band at 456 nm (2.72 eV) of extended 94 featuring

twelve donor-substituted TCBD units on the periphery is much lower then that of less

extended 90 bearing only six TCBD units (e= 183700 M"1 cm"1) (Fig 3.8c).

Upon introduction of a central triphenylamine core, the character of the CT band changes

dramatically. The spectrum of 88 features a distinct CT band at nearly the same energy

C^max = 461 nm (2.76 eV), £= 157800 M"1 era"1) as trimeric 84, with an additional intense CT

band at 522 nm ((2.38 eV), e= 131100 M"1 cm"1). The extended TCBD 93 displays a very

intense CT band at 456 nm (2.72 eV) with e of 272300 M"1 cm"1, which is the most intense

CT band of all studied oligomeric TCBDs (Fig 3.8d).

3.5 Electrochemistry

The redox properties of dendrimer-like iV,iV-dihexylamino (DHA)-substituted TCBDs 84-94

as well as their precursors 61-68, 77, 78, 80, and 81 were studied by cyclic voltammetry

(CV) and rotating disc voltammetry (RDV). The measurements were carried out in CH2C12

with «Bu4NPF6 (0.1 m) as the supporting electrolyte. All potentials are given vs. Fc+/Fc

(ferricinium/ferrocene couple) used as an internal reference and are uncorrected from ohmic

drop. The electrochemical investigations were performed by Gisselbrecht, Boudon and

Gross at the Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide, Université

Louis Pasteur in Strasbourg, France.

3.5.1 Oligoalkyne Precursors

Oligoalkyne precursors 61-64, 67, 68, 77, 78, and 81 underwent film formation during

electrochemical investigations. Nevertheless, reproducible voltammograms could be

obtained on newly polished electrodes. Thus, a single oxidation (absence of any reduction on

the reverse scan) located on the iV,iV-dihexylanilino substituents could be observed for these

species. This oxidation is irreversible at low scan rates and becomes reversible at scan rates

higher than 1.0 V s"1. Such behavior is characteristic for an electrochemical-chemical

mechanism (EC) and reflects high reactivity of the generated oxidized species. Furthermore,

oligoalkynes 62-64 undergo one reversible reduction occuring on the 7i-conjugated core. For

Page 107: Two-dimensional acetylenic scaffolding - Research Collection

82 Multivalent Charge-Transfer Chromophores and Cascade Reactions

61, no signal could be observed. The behavior of oligoyne precursors 66 and 80 involving

the oxidizable triphenylamine central core in addition to the iV,iV-dihexylanilino groups is

different. The peripheral DHA moieties are oxidized in a single, irreversible multielectron

transfer at respectively +0.42 V (66) and +0.47 V (80), whereas the central triphenylamine

core undergoes one-electron oxidation step at +0.75 V (66) and +0.69 V (80), respectively.

The redox potentials of oligoalkyne precursors 61-68, 77, 78, 80, and 81 vs. Fc+/Fc are

summarized in Table 3.1.

Table 3.1. Electrochemical data of 7V,7V-dihexylanihno-substituted oligoalkyne precursors 61-68, 77, 78,

80, and 81 observed by cyclic voltammetry (CV) and rotating disk voltammetry (RDV) in

CH2C12 (+0.1 M «Bu4NPF6). All potentials are given vs. ferricinium/ferrocene (Fc+/Fc) couple

used as internal standard.

CV RDV

E° [Vf A£p [mV]6 EP [Vf Em [V]rf Slope [mVf

61 +0.54 +0.50 120

62

-1.85 70

+0.50 +0.58 170

64 +0.50 +0.42 300

-1.75 90 -1.47 120

63 +0.51

-1.70 130 -1.55 120

66 +0.75 170 +0.75 (le~)+0.42 (3e~)

85

85

67 +0.43 /

68 +0.59 +0.60 (6e~) 65

77 +0.57

78 +0.48

-2.14

/

80 +0.69 70

+0.47

-2A0h

g

g

81 +0.47 f

aE° = (Epc+Epa)/2, where Epc and Epa correspond to the cathodic and anodic peak potentials, respectively.

bAEp = Eox-Eied, where the subscripts ox and red refer to the conjugated oxidation and reduction steps,

respectively. CEP = irreversible peak potential. dEn2 = half-wave potential. eSlope = slope of the linearized plot of

E versus log^/hn-T)], where 4m is the limiting current and / the current. ^Electrode inhibition during oxidation.

gUnresolved spread-out wave. ^Reduction observed as a shoulder on the electrolyte discharge.

3.5.2 /V,/V-Dihexylanilino-Substituted TCBDs

For the jV,jV-dihexylanilino-substituted TCBDs 84-94, the multielectron oxidation step

occurring on the peripheral anilino substituents became reversible. Moreover, the oxidation

Page 108: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 83

potential is shifted to more positive values by ca. 400 mV when compared to the

corresponding oligoalkyne precursors 61-68, 77, 78, 80, and 81. Such shift denotes the

strong electron-withdrawing capacity of the TCBD moiety located in the para position with

respect to the iV,iV-dihexylanilino substituent (Table 3.2). From the peak shape and the peak

potential difference Epa-Epc, ranging from 50 to 80 mV, it is clear that the oxidation of all

DHA moieties occured at similar potentials and therefore all the DHA moieties in a

multivalent system behave as independent redox centers [222]. Such a behavior has been

observed previously in the case of ferrocenyl dendrimers by Astruc and co-workers [223,224]

and others [225]. As an example, dendrimer 94 with the hexaphenylbenzene core is oxidized

in a unique, 12-electron transfer step at +0.89 V (vs. Fc+/Fc) (Table 3.2).

TCBDs 88 and 93 involving the oxidizable triphenylamine central core show quite

interesting, hence different behavior during oxidation. Thus, in the case of 88 the oxidation

of the central triphenylamine core occurs only after the oxidation of the peripheral anilino

groups, whereas the triphenylamine core in extended 93 is oxidized first. This observation

might be explained in the following way. Upon introduction of the TCBD moieties, the

oxidation potential of the triphenylamine core shifts to more positive potentials. This shift is

270 mV when going from 66 to 88 and only 60 mV when going from 80 to 93. The smaller

shift observed for 80 vs. 93 is presumably due to the less pronounced electron-withdrawing

effect of the more distant TCBD units on the central triphenylamine core in 93 when

compared to 88 (Table 3.2).

DHA-substituted TCBDs 84-87 undergo several reversible, one-electron reduction steps

centered on the dicyanovinyl units: each TCBD moiety can accommodate two electrons

(Table 3.3). Although the reductions of trimeric 84 are not well resolved, the first step

involves a three-electron exchange followed by a second set of three-electron exchange.

Careful examination of the peak shape and simulation of the CV allowed us to find out that

the first reduction involves three one-electron steps at -0.63, -0.70, and -0.76 V,

respectively, whereas the second reduction corresponds to three one-electron steps at -1.11,

-1.17, and -1.24 V, respectively (for the CV trace, see Fig. 3.9a). Compounds 85-87 show a

first set of well separated one-electron reduction steps followed by an unresolved

multielectron transfer. Thus, 87 with six TCBD moieties shows six well separated one-

electron reduction steps (from -0.46 V to -1.07 V) followed by an unresolved six-electron

transfer at -1.57 V (for the CV trace, see Fig. 3.9b). It can be assumed that the first six one-

electron transfers are centered on dicyanovinyl units of different TCBD moieties.

Page 109: Two-dimensional acetylenic scaffolding - Research Collection

84 Multivalent Charge-Transfer Chromophores and Cascade Reactions

Furthermore, comparison of potentials of the first two one-electron reduction steps gives

potential differences of 70 mV (from the peak shape simulation discussed above) for 84, and

160 mV for 85. These differences may result from stronger electrostatic repulsion between a

second, newly incoming electron and the monoradical anion of 85, due to increased steric

crowding between the neighboring TCBD moieties in 85 than in 84. Accordingly, for species

86 and 87, the corresponding potential differences are quite similar (i.e. 160 mV for 86, and

150 mV for 87) denoting similar electrostatic interactions. Generally, the observed potential

splitting depends on the degree of steric crowding in the molecule [222].

Table 3.2. Electrochemical data of 7V,7V-dihexylanilino-substituted dendritic TCBDs 88-94 observed by

cyclic voltammetry (CV) and rotating disk voltammetry (RDV) in CH2C12 (+ 0.1 M «Bu4NPF6).

All potentials are given vs. ferricinium/ferrocene (Fc+/Fc) couple used as internal standard.

CV RDV

E°[\]a A£p[mVf £p[V]c Em[V\d Slope [mVf

88 +1.00 60

+0.88 80

-0.72 155

-1.12 120

89 +0.87 70

-0.75 80

-1.10 75

90 +0.88 60

-0.72 300

-1.08 230

91 +0.88 60

-0.62 140

-1.07 130

92 +0.87 70

-0.71 140

-1.20 250

93 +0.89 60

+0.75 70

-0.68 120

-1.08 130

94 +0.87 50

-0.70 100

-l.io 220

"E° = (Epc+Epa)/2, where Epc and £pa correspond to the cathodic and anodic peak potentials, respectively.

bAEp = Eox-Erild, where the subscripts ox and red refer to the conjugated oxidation and reduction steps,

respectively. CEP = irreversible peak potential. dEn2 = half-wave potential. eSlope = slope of the linearized plot of

E versus \og[II(I\^-I)\, where I\^ is the limiting current and / the current. ^Unresolved spread-out wave, ^mall-

amplitude oxidation wave.

+1.02 (le-) 60

+0.89 (3e") 70

-0.77 (3e~) 100

-1.15 (3e~) 80

+0.88 (3e") 60

-0.74 (3e~) 75

-1.15 (3el 100

+0.93 60

/

/

+0.90 (6e~) 60

-0.75 (6e~) 150

+0.90 (8e~) 50

-0.75 (8e~) 150

/

+0.90 (6e~)g

50

-0.72 (6e") 100

-1.14 (6e~) 120

+0.89 (12e~) 50

+0.73 (12el 130

/

Page 110: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 85

a) b)

EIV vs. Fe7Fc

c)

Fig. 3.9. Cyclic voltammetry (CV) of 7V,7V-dihexylanilino-substituted TCBDs. Trimeric 84 (a), hexameric

87 (b), and dendritic 94 in the presence of ferrocene (c) on a glassy carbon working electrode in

CH2C12 (+ 0.1 M «Bu4NPF6) at scan rate v = 0.1 V s"1.

All extended TCBD dendrimers 91-94 undergo two reversible multielectron reduction steps

whose characteristics are quite similar. The number of exchanged electrons in each step is

equal to the number of TCBD moieties in the molecule. The differences in peak potentials

for the first and second reduction steps are 100-150 mV and 120-250 mV, respectively. The

peak potentials are scan rate independent up to 1 V s_1. These characteristics are typical for

unresolved overlapping electron transfers occurring at slightly different potentials, denoting

very little interactions between the different TCBD groups in 91-94 [222]. As an example,

dendrimer 94 accepts 24 electrons in two reversible 12-electron reduction steps at -0.70 V

and -1.10 V, respectively (for the CV trace, see Fig. 3.9c). The reversible injection of 24

electrons into a molecule within a narrow potential range between -0.70 V and -1.10 V is

Page 111: Two-dimensional acetylenic scaffolding - Research Collection

86 Multivalent Charge-Transfer Chromophores and Cascade Reactions

quite remarkable, also in terms of the solubility of the formed highly charged species (Table

3.2) [226].

Table 3.3. Electrochemical data of 7V,7V-dihexylanilino-substituted oligomeric TCBDs 84-87 observed by

cyclic voltammetry (CV) and rotating disk voltammetry (RDV) in CH2C12 (+ 0.1 M «Bu4NPF6).

All potentials are given vs. femcinium/ferrocene (Fc+/Fc) couple used as internal standard.

CV RDV

E°[\]a A£p[mVf £P[V]C Em [Y]d Slope [mVf

84

85

86

87

+0.88 90

-0.67 160

-1.13 180

+0.88 60

-0.50 60

-0.66 60

-0.81 60

-0.85 60

-1.22 150

+0.87 60

-0.47 60

-0.62 60

-0.73 60

-0.86 60

-0.95 60

-1.28 120

+0.89 100

-0.46 60

-0.60 60

-0.70 60

-0.76 60

-0.95 60

-1.07 60

-1.57 150

+0.87 (3e")-0.73 (3e~)-1.28 (3e~)+0.91 (4e~)

60

120

150

60

/

/

/

/

+0.89 (5e~) 75

/

/

/

/

/

+0.90 (6e~) 85

-1.80 (6e") 400

-1.55 (6e~) 200

"E° = (Epc+Ep!i)/2, where Epc and £pa correspond to the cathodic and anodic peak potentials, respectively.

*A£p = Eox-Erild, where the subscripts ox and red refer to the conjugated oxidation and reduction steps,

respectively. CEP = irreversible peak potential. dEn2 = half-wave potential. eSlope = slope of the linearized plot of

E versus log[J'1(1^-1)], where Ilim is the limiting current and / the current. ^Unresolved spread-out wave.

Page 112: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 87

3.6 Novel Cascade Reactions

While exploring the reactivity of the tris-TCBD derivative 84, we found the C=C bonds

adjacent to the electron-accepting TCBD units to be sufficiently electron-deficient and,

hence, activated for the [2+2] cycloaddition to tetrathiafulvalene (TTF), as previously

observed by Hopf and Hirsch and co-workers for cyanoethynylethenes and oc,co-

dicyanopolyynes, respectively (see Chapter 1) [166,168]. Upon heating in MeCN, 84

undergoes three-fold [2+2] cycloaddition to TTF followed by retro-electrocyclization to give

adduct 95 in 47% yield {i.e. 78% yield for each TTF addition/retro-electrocyclization

sequence) (Scheme 3.8).

Scheme 3.8. Threefold cycloaddition of tetrathiafulvalene (TTF) to tris-TCBD derivative 84 to give 95. a)

TTF, MeCN, 20 h, 60 °C, 47% (95).

The proposed constitution of this black-metallic solid, melting at 214-217 °C, was

unambiguously proven by the spectral data (see the Experimental Part), although complex

conformational equilibria complicate the interpretation of the lYi and 13C NMR spectra {vide

infra).

Building on this finding, we decided to construct rod-like oligomeric donor-acceptor (D-A)

systems where the donor part consists of l,2-di(l,3-dithiol-2-ylidene)ethane units, whereas

the l,l,4,4-tetracyanobuta-l,3-diene (TCBD) framework serves as the acceptor. A cascade of

successive TCNE/TTF additions to end-capped polyynes, controlled by the electronic

Page 113: Two-dimensional acetylenic scaffolding - Research Collection

88 Multivalent Charge-Transfer Chromophores and Cascade Reactions

properties of the reacting C=C bonds, would provide access to a new class of conjugated

[AB]-type oligomers and polymers [227,228] with dendralene-type backbones [229,230].

Thus, bis-(iV,iV-dimethylanilino) (DMA)-substituted tetrayne 96 was treated with one

equivalent of TCNE in CH2C12 at 20 °C to yield TCBD derivative 97 in 72% yield (Scheme

3.9). TCBD derivative 97 afforded a single crystal suitable for X-ray crystallographic

analysis by slow diffusion of hexane into CH2CI2 solution at 20 °C. The X-ray analysis

nicely confirmed the regioselective addition of TCNE to the alkyne moiety adjacent to the

DMA substituent. Furthermore, in the crystal packing of 97, the main feature is the

interaction between neighboring C(CN)2 units. A short intermolecular N-N interaction of

3.27 Â occurs between neighboring C=N dipoles, and a short intermolecular C-N contact of

3.15 Â occurs between two approximately antiparallel C=N dipoles, the N-C=N angle being

95° (Fig. 3.10). Similar observations have been described in our previous work [181].

a)

OS ,

C20 /

C29 /C30/ _ C22/ „

C35 Y VV"- Q1 / / C28 / '

(34 »^^

C33

/ C32

C3 Ç4C5 C6^

C7„

/ \ y)

C23

C26

Fig. 3.10. ORTEP plot of 97; arbitrary numbering, H-atoms are omitted for clarity. Atomic displacement

parameters at 220 K are drawn at the 30% probability level. Selected bond lengths [Â]: C(l)-

C(2) 1.404(4), C(2)-C(3) 1.205(4), C(3)-C(4) 1.366(5), C(4)-C(5) 1.205(4), C(5)-C(6) 1.356(5),

C(6)-C(7) 1.212(4), C(7)-C(8) 1.414(4), C(8)-C(9) 1.392(4), C(9)-C(10) 1.368(4), C(10)-C(ll)

1.412(4), C(ll)-C(12) 1.407(4), C(12)-C(13) 1.371(4), C(8)-C(13) 1.397(4), N(14)-C(ll)

1.360(4), C(l)-C(17) 1.354(4), C(l)-C(22) 1.510(4), C(22)-C(28) 1.427(4), C(28)-C(29)

1.408(4), C(29)-C(30) 1.362(4), C(30)-C(31) 1.406(4), C(31)-C(32) 1.405(4), C(32)-C(33)

1.354(4), C(28)-C(33) 1.407(4), N(34)-C(31) 1.345(3), C(22)-C(23) 1.383(4). Selected bond

angles [°]: C(17)-C(l)-C(22) 121.0(3), C(23)-C(22)-C(l) 113.6(2), C(18)-C(17)-C(20)

117.8(3), C(26)-C(23)-C(24) 113.6(3). Selected torsion angles [°]: C(23)-C(22)-C(28)-

C(33) = 2.7(5), C(36)-N(34)-C(31)-C(32) = -6.1(4). b) Arrangement of neighboring molecules

in the crystal packing featuring favorable multipolar CN---CN interactions.

Page 114: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 89

TCBD 97 reacted subsequently with an excess of TTF in MeCN at 60 °C to afford the hybrid

TCNE-TTF adduct 98 in 80% yield. In the next step, derivative 98 gave A-D-A system 99

(83%o) upon reaction with TCNE (Scheme 3.9). The regioselectivity of the TCNE addition is

determined by the stronger l,2-di(l,3-dithiol-2-ylidene)ethane donor. However, the

attempted cycloaddition of the remaining acetylenic bond in 99 to TTF failed. Apparently,

this triple bond is not sufficiently electron deficient to undergo [2+2] cycloaddition to TTF.

To eliminate this "electronic confusion" of the last CC triple bond, we started from mono-

DMA-, mono-phenyl-substituted tetrayne 100. Again, TCBD derivative 101 was formed in

nearly quantitive yield (95%) using one equivalent of TCNE and 100. Subsequent reaction of

101 with TTF in MeCN at elevated temperature afforded adduct 102 (78%). Treatment of A-

D chromophore 102 with TCNE in CH2CI2 gave A-D-A derivative 103 in nearly quantitative

yield (92%>). Finally, the CC triple bond in 103, which is now electron-deficient enough to

undergo [2+2] cycloaddition to TTF, was subjected to the reaction with an excess of TTF to

yield the A-D-A-D chromophore 104 as a black-metallic solid (M.p. 260 °C) in 21% yield

(Scheme 3.9). The reduced yield of 104 is presumably caused by steric crowding around the

reacting C=C bond.

We next attempted the cascade of successive [2+2] TCNE/TTF additions to the end-capped

tetrayne 100 in a one-pot setup. Mixing 100 with an excess of TCNE and TTF in

MeCN/CH2Cl2 at 50 °C indeed yielded the desired [ABAB] system 104 in 21% yield,

corresponding to a yield of 68%> per cycloaddition/retro-electrocyclization step (Scheme 3.9).

As already mentioned, the reduced yield of 104 is mainly caused by steric factors (vide

supra). Nevertheless, even the phenyl substituent is a very weak electron donor, as expressed

by its Hammett constant <7P(Ph) = -0.01 [107], that contributes to the "electronic confusion"

of the adjacent alkyne moiety. To completely eliminate this effect of the phenyl substituent,

we started from mono-DMA, mono-4-cyanophenyl-substituted tetrayne 105 (crp(CN) = +0.66,

[107]). Reaction of 105 with an excess of TTF and TCNE in a one-pot setup indeed

furnished the [ABAB] 106 system in a significantly increased yield of 58% (i.e. 87% per

cycloaddition/retro-electrocyclization sequence) !

As in the case of 95, the NMR characterization of the hybrid TTF-TCNE chromophores 98,

99, 102-104, and 106 was seriously complicated by the presence of complex conformational

equilibria in solution. However, limited stability of chromophores 95, 98, 99, 102-104, and

106 at high temperatures together with poor solubility at low temperatures reduced the

available temperature range for variable temperature (VT)-NMR experiments (253-353 K).

Page 115: Two-dimensional acetylenic scaffolding - Research Collection

90 Multivalent Charge-Transfer Chromophores and Cascade Reactions

Thus, only the *£! NMR spectra of derivatives 98 and 102 could be recorded beyond the

coalescence temperature of all signals (Fig. 3.11). The temperature at which frozen

conformations could be observed by *£! NMR was not reached due to the low solubility of the

compounds. The 13C NMR coalescence was not observed within the available temperature

range. Thus, complex 13C NMR spectra of 95, 98, 99, 102-104, and 106 are reported in the

Experimental Part as empiric enumeration of observed signals.

Me,N

Me2N

b)

Me2N

96 R = NMe2100 R = H

105 R = CN

NCL XN Sx .S

98 R = NMe2102 R = H

97 R = NMe2101 R=H

/=\NC XN S. .S NC XN

99 R = NMe2103 R = H

d)

Me2N,

1NC^XN S SNC^

I I j

f=\XN S S

1

NC CN S S NC

\=J

"XN s S

\=J

104 R

106 R

= H= CN

Scheme 3.9. Cascade of alternating [2+2]cycloadditions/retro-electrocyclizations of TCNE/TTF to

octatetraynes 96, 100 and 105. a) TCNE, CH2C12, 10-14 h, 20 °C, 72% (97), 95% (101); b)

TTF, MeCN, 16-17 h, 60 °C, 80% (98), 78% (102); c) TCNE, CH2C12, 14-22 h, 20 °C, 83%

(99), 92% (103); d) TTF, CH2Cl2/MeCN 1:1, 3 h, 50 °C, 21% (104); e) TCNE, TTF,

CH2Cl2/MeCN 1:1, 18-22 h, 50 °C, 21% (104), 58% (106).

Page 116: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 91

o

O'

SO

J I-1 "

1

J :

_ ^

_J -

o£_

O

Ml

1 zm

p«3 (D

*"'

p

£t,

Or-

O

fH, I--

J>

\ \

Fig. 3.11. 300 MHz :H VT-NMR of 98 in C2D2C14 showing the coalescence of signals, thus indicating the

presence of a single constitutional isomer of 98 in solution.

Page 117: Two-dimensional acetylenic scaffolding - Research Collection

92 Multivalent Charge-Transfer Chromophores and Cascade Reactions

3.6.1 UV/Vis Spectroscopy and Electrochemistry

The UV/Vis absorption spectra of newly prepared multivalent charge-transfer chromophores

95, 98, 99, 102-104, and 106 were recorded in CH2C12 at 298 K to gain further insight into

their electronic properties. Electronic absorption spectra of all multivalent TCNE/TTF

adducts display intense, broad charge-transfer (CT) bands with absorption maxima Ämax

between 460 and 482 nm (Fig. 3.12a). Thus, the UV/Vis spectrum of trimeric 95 in CH2CI2

shows an intense broad CT band at >4iax = 482 nm (2.57 eV, e= 132000 NT1 cnT1) (Fig.

3.12b).

a) b)

... 98

99

90000 -

l

1

ij

102

103

3 60000- / 'K

<A

1

1V

30000 -

^ ""\

1

it \

\

\

0-

\/

X.\

\

-- 95

120000 - (' ',104

106

90000 -

f

'

60000 -

\1

X/

30000 - \ / /

\

0-^*Ss*——L^_

300 400 500 600 700 800

/ / nm

500 600

/ /nm -

Fig. 3.12. UV/Vis spectra of TCNE/TTF adducts 98, 99, 102, and 103 (a) and 95, 104, and 106 (b) in

CH2C12 at 298 K.

The redox properties of D-A chromophores 95, 97-99, 101-104, and 106 were studied by

CV and RDV in CH2C12 with «Bu4NPF6 (0.1 m) as the supporting electrolyte (Table 3.4).

Well reproducible voltammograms were measured for 95 showing three successive reversible

two-electron oxidation steps of the three l,2-di(l,3-dithiol-2-ylidene)ethane moieties at

+0.41, +0.65, and +0.81 V in addition to a three-electron oxidation at +0.96 V of the three

DHA moieties and six individual reduction waves between -1.12 V and -1.55 V for the six

dicyanovinyl units (Fig. 3.13).

Page 118: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 93

b)

-15 -10 -0 5 0 0 0 5 10

EIVvs. Fc*/Fc

Fig. 3.13. Cyclic voltammetry (CV) of 95 measured without ferrocene (a) and in the presence of ferrocene

(b) on a glassy carbon working electrode in CH2C12 (+ 0.1 M «Bu4NPF6) at scan rate

v = 0.1 Vs"1.

The compounds featuring one TCBD framework (97, 98, 101, and 102) gave two reversible

one-electron reductions (except for the second reduction of 102 that is irreversible). The

presence of donating l,2-di(l,3-dithiol-2-ylidene)ethane units shifts the reduction potential of

the TCBD units to more negative potentials by ca. 400 mV. Compound 98 is oxidized in two

well separated one-electron steps (+0.36 V, +0.53 V) whereas 102 gives a single two-electron

step (+0.56 V). This could be explained by the donating character of the additional N,N-

dimethylamino group in 98, shifting the first oxidation potential of the 1,2-di( 1,3-dithiol-2-

ylidene)ethane unit to more negative potentials. Chromophores 99 and 103 differ only by an

additional JV,iV-dimethylamino substituent in 99. As a result, the oxidation and reduction

potentials are shifted in 99 to more negative potentials by about 150 mV in comparison to

103. The proximity of two TCBD moieties in 99 and 103 results in an easier first reduction of

the C(CN)2 unit compared to 98 and 102. The irreversible oxidations and reductions of 104

and 106 are not well resolved due to electrode inhibition. The steric crowding in 104 and 106

results in a twisted structure so that extended conjugation is no longer expected. Under these

conditions, a discussion of the observed potentials is rather difficult.

Page 119: Two-dimensional acetylenic scaffolding - Research Collection

94 Multivalent Charge-Transfer Chromophores and Cascade Reactions

Table 3.4. Electrochemical data of the TCNE/TTF adducts 95, 97-99, and 101-103 observed by cyclic

voltammetry (CV) and rotating disk voltammetry (RDV) in CH2C12 (+ 0.1 M «Bu4NPF6). All

potentials are given vs. ferricinium/ferrocene (Fc+/Fc) couple used as internal standard.

CV

E° [Vf A£p [m\]b EP [V]c

RDV

Em [V]d Slope [mV]e

95 +0.95

97

98

99

101

102

103

+0.61

+0.40

-1.12

-1.22

-1.35

-1.40

-1.48

-1.55

-0.65

-1.01

+0.53

+0.38

-1.01

-1.20

+0.70

-0.85

+0.93

-0.60

-0.98

+0.55

-1.10

-0.71

-0.89

100

115

110

+0.80

70

70

100

60

80

75

75

90

90

100

110

75

110

80

100

+0.96 (3e") 70

+0.81 (2e") 70

+0.65 (2e") 60

+0.41 (2e") 70

-1.40(60 300

+0.86

+0.66 +0.65 (le") 90

-0.66 (le") 70

-1.06 (le") 120

+0.73

+0.53 (le") 60

+0.36 (le") 60

-1.07 (le") 70

-1.27 (le") 75

-2.47

+0.90

+0.73 (2e") 40

-0.84 (le") 60

-1.06 (le") 120

+0.94 (le") 70

-0.60 (le") 70

-1.03 (le") 90

+0.94

+0.56 (2e") 40

-1.09 (le") 80

-1.28 -1.29 (le") 100

-2.78

+ 1.03

+0.93 +0.90 (2e") 50

-0.73 (le") 75

-0.94 (le") 70

-1.66

"E° = (EpC+Ep?i)/2, where Epc and Ew correspond to the cathodic and anodic peak potentials, respectively.

bAEp = Eox-Eied, where the subscripts ox and red refer to the conjugated oxidation and reduction steps,

respectively. CEV = irreversible peak potential. dEV2 = half-wave potential. eSlope = slope of the linearized plot of

E versus logl/A/iun-./)], where 4m is the limiting current and / the current.

Page 120: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 95

3.7 Conclusion and Outlook

The electrochemical properties of the previously reported trimeric derivative 39 were

remarkable in that it underwent six reversible one electron reduction steps in CH2CI2, each

centered on a dicyanovinyl moiety, in the unprecedently narrow potential range of 1.0 V (see

Chapter 1) [181]. This finding stimulated our search for even larger multivalent CT systems

acting as potent molecular electron reservoirs.

Compared to 39, buta-l,3-diyne-l,4-diyl instead of ethyne-l,2-diyl fragments were used to

attach the iV,iV-dihexylanilino (DHA) substituents to the central core to (i) reduce steric

crowding and (ii) enhance the distance between pairs of C(CN)2 moieties, thereby bringing

the individual reduction potentials even closer. TCNE addition, having the character of a

"click"-reaction, afforded dendrimer-like TCBD derivatives such as 87 and 94 in excellent

yields of 77% and 86%, respectively (Fig. 3.3 and Fig. 3.7). All compounds are

environmentally stable and melt undecomposed above 100 °C. Detailed electrochemical

investigation by CV and RDV revealed general redox characteristics of multivalent donor-

substituted TCBDs:

i. All DHA moieties in the multivalent systems are oxidized in a single reversible multi-

electron transfer, denoting that they all behave as independent redox centers. As an

example, dendritic 94 is oxidized in a unique 12-electron transfer step at +0.89 V.

ii. Each TCBD moiety accommodates two electrons. Consequently, a large number of

reversible electron uptakes, centered on the dicyanovinyl units, are observed. For

example, dendritic 94 with twelve TCBD moieties accepts 24 electrons in two

reversible 12-electron reduction steps within an exceptionally narrow potential range

between -0.70 V and -1.10 V.

We found C=C bonds adjacent to the electron-accepting TCBD units to be activated for the

[2+2] cycloaddition to the strong electron donor tetrathiafulvalene (TTF). This result led to

the construction of a new class of conjugated [AB]-type oligomers via a cascade of sequential

TCNE/TTF additions to end-capped polyynes, controlled by the electronic properties of the

reacting C=C bonds. In this cascade, l,2-di(l,3-dithiol-2-ylidene)ethane fragments are the

donor parts activating adjacent triple bonds for TCNE addition, whereas TCBD moieties

provide the activation for TTF addition. This research culminated in a one-pot, eight-step,

Page 121: Two-dimensional acetylenic scaffolding - Research Collection

96 Multivalent Charge-Transfer Chromophores and Cascade Reactions

five-component domino reaction, with the formation of a single product, A-D-A-D

chromophores 104 and 106, resulting from four sequential cycloaddition/retro-

electrocyclizations of TCNE and TTF molecules to the corresponding oligoynes. The

formation of regular [AB]-type sequences is the result of a careful control of the electronic

character of the involved acetylenic triple bonds.

While the redox properties of all multivalent D-A chromophores have already been studied

by CV and RDV, the spin properties of the poly-anions and poly-cations with odd numbers of

electrons are currently under investigation by electron paramagnetic resonance (EPR) by

Prof. G. Gescheidt at the Technische Universität Graz. For one-electron reduced species

(radical anions), preliminary results indicate confinement of spin and charge to the TCBD

moiety, presumably due to (i) substantial deviation of the 7t-system from planarity and, (ii)

counterion effects.

In view of the appealing redox properties of the described dendritic TCBD derivatives, we

will continue to further increase the charge-storage capacity of these systems. We plan to

construct large G2 dendrimers such as 107 (Fig. 3.14).

Page 122: Two-dimensional acetylenic scaffolding - Research Collection

Multivalent Charge-Transfer Chromophores and Cascade Reactions 97

JiVCNNC^/CN

NC' xcW

NC^CN°N NC^JF

N(C6H13)2

Fig. 3.14. Extended G2 dendrimer 107 acting as molecular electron reservoir with increased charge-storage

capacity.

Page 123: Two-dimensional acetylenic scaffolding - Research Collection
Page 124: Two-dimensional acetylenic scaffolding - Research Collection

4 New Transformations of 7,7,8,8-

Tetracyanoquinodimethane

Page 125: Two-dimensional acetylenic scaffolding - Research Collection
Page 126: Two-dimensional acetylenic scaffolding - Research Collection

New Transformations of 7,7,8,8-Tetracyanoquinodimethane 101

4.1 Introduction

Back in the early 1970s, Hagihara and co-workers reported the reactions of Pt(II) alkynyls

with 7,7,8,8-tetracyanoquinodimethane (TCNQ) to give intensively colored products that

were described as charge-transfer complexes [132]. However, one of these products was

later shown to be a buta-l,3-dienyl derivative apparently resulting from [2+2] cycloaddition

of TCNQ to the alkyne moiety [133] (Chapter 1). Nevertheless, at that time no special

attention was paid to this result and the reaction was not further investigated. Although the

chemistry of strongly electrophilic TCNQ was thoroughly investigated since then, its

reactivity towards alkynes remained unexplored. Namely, it possesses two strongly electron-

deficient CC double bonds that could, in analogy to tetracyanoethene (TCNE) [181], undergo

thermal [2+2] cycloaddition with donor-substituted alkynes to yield a new class of charge-

transfer (CT) chromophores. We were interested whether TCNQ is capable of undergoing

such a transformation with jV,jV-dialkylanilino-substituted alkynes. Investigations in this

direction are described in this Chapter.

4.2 Synthesis

A variety of electron-rich, iV,iV-dialkylanilino (DAA)-substituted alkynes were prepared by

Sonogashira cross-coupling [29,187] or oxidative Hay coupling [183] reactions and

subsequently subjected to the reaction with TCNQ to probe their reactivity. Whereas known

alkynes 108 [231], 109 [231], 110 [232], 111 [233], 112 [181], 113 [234], and oligoynes 114

and 115 [181] were prepared according to literature procedures, DAA-substituted alkynes

116, 117, and 118 were readily available via well established protocols for acetylenic

construction (see the Experimental Part).

All acetylenic precursors 108-118 indeed reacted with TCNQ in a uniform manner to give

products 119-128 (Table 4.1, Scheme 4.1). Thus, /'-DMA-substituted, terminally

deprotected alkyne 108 reacted at 20 °C in CH2C12 to give adduct 119 (81%) as a black

metallic solid. Chromophore 119 was also isolated in 42% yield starting from Me3Si-

protected 109, since silyl-deprotection took place during chromatographic purification on the

weakly acidic SiC>2 support (CH^Cb/EtOAc 97:3), as a result of the Si activation by the

attached electron-withdrawing C(CNh moiety [181]. The use of the less labile (z'-Pr)3Si

protecting group unexpectedly led to complete decomposition during attempted

Page 127: Two-dimensional acetylenic scaffolding - Research Collection

102 New Transformations of 7,7,8,8-Tetracyanoquinodimethane

chromatography (Si02 or A1203). Also, the Me3Si group in 123 was partially cleaved during

column chromatography on Si02 leading to decomposition, as reflected by the low isolated

yield of 123 (33%).

Table 4.1. Summary of the reactions of monomelic DMA-substituted alkynes with TCNQ.

NC^ ^CN

conditions

-R +

NC CN

NMe9

Alkyne Conditions Product, Yield

108 R = H CH2C12, 6 h, 20 °C119 R = H

81%

109 R = SiMe3

110 R

111 R

112 R

CH2C12, 10 h, 20 °C

CH2C12, 14 h, 20 °C

NMe2 CH2C12, 17 h, 20 °C

-SiMe?

113 R

toluene, 12 h, 80 °C

-^^NMe2 CH2C12, 18 h, 20 °C

119 R = H

42%

121 R = i—v ^>

93%

122 R = %—(/ ^NMe,

100%

-SiMe,

33%

123 R

125 R = \-^^—<n h—WAe2

78%

116 R = nBu

117 R

118 R = CN

CH2C12, 13 h, 20 °C120 R = nBu

100%

i,2-dichloroethane, 5 h, 80 °C

72%

1,1,2,2-tetrachloroethane, 12 128 R = CN

h, 120 °C 27%

In agreement with our previous observations [181],/»-DMA-substituted buta-l,3-diynes 112

and 117 reacted exclusively with one equivalent of TCNQ at the more electron-rich C=C

bond directly attached to the DMA substituent. Accordingly, a second addition to the

Page 128: Two-dimensional acetylenic scaffolding - Research Collection

New Transformations of 7,7,8,8-Tetracyanoquinodimethane 103

residual C=C bond in 123, 124, and 125 was not observed, even in the presence of a large

excess of TCNE at elevated temperature. Gratifyingly, bis-DMA-substituted alkyne 111

provided TCNQ adduct 122 in quantitative yield as a deep-purpe metallic solid (M.p. 259-

262 °C).

Scheme 4.1. Reaction of oligomeric DHA-substituted alkynes with TCNQ. a) TCNQ, 1,2-dichloroethane,

14 h at 20 °C then 3 h at 80 °C, 93% (126); b) TCNQ, 1,2-dichloroethane, 14 h at 20 °C then 2

h at 80 °C, 66% (127).

Recently, we found that the DMA-substituted cyanoalkyne 118 reacted with TCNE at room

temperature in THF to give DMA-substituted 1,1,2,4,4-pentacyanobuta-1,3-diene (PCBD) in

a yield of 97% [235]. Under harsher conditions, by heating to 120 °C in 1,1,2,2-

tetrachloroethane,5 TCNQ underwent a similar transformation with 118, yielding the

cyclohexa-2,5-diene-l,4-diylidene-expanded PCBD, 128, in 27% yield.

Oligomeric chromophores 126 and 127 featuring solubilizing iV,iV-dihexylanilino (DHA)-

substituents were also prepared in high yields from the corresponding alkyne precursors

(Scheme 4.1). Although an excess of TCNQ and elevated temperature (1,2-dichloroethane,

80 °C) were necessary to complete the reaction, the threefold addition of TCNQ to produce

As a note of caution, exposure to 1,1,2,2-tetrachloroethane should be avoided due to its high toxicity.

Page 129: Two-dimensional acetylenic scaffolding - Research Collection

104 New Transformations of 7,7,8,8-Tetracyanoquinodimethane

oligomeric 127 proceeded in 66% yield, {i.e. 87% yield for each addition step). All

compounds 119-128 are dark metallic solids that are stable at ambient temperature under air.

NC^ „CN

EDG

NC CN

NC^ XN

EDG

NC CN

charge-transfercomplex

zwittenon

CN r CN r

EDG

NC CN

biradical

EDG

NC CN

Scheme 4.2. Assumed mechanism for the reaction between TCNQ and an alkyne substituted with an

electron-donating group (EDG).

We assume, the reaction proceeds by means of thermal [2+2] cycloaddition, in analogy to the

corresponding reaction of TCNE, between the exocyclic CC double bond of TCNQ and the

triple bond of the alkyne, followed by electrocyclic ring opening of the intermediately formed

strained cyclobutene to give the observed product. The cycloaddition step proceeds

presumably via a zwitterionic or a biradical intermediate, as a concerted [2+2] mechanism

involving the HOMO/LUMO interaction is symmetry forbidden [113,128]. The reaction is

completely regioselective with respect to TCNQ and proceeds exclusively at one of the

dicyanovinyl moieties and not at the endocyclic double bonds (Scheme 4.2). Interestingly,

the reaction is regioselective also with respect to the alkyne moiety, as from the two

theoretically possible products (constitutional isomers) only the one with the DMA group

neighboring to the "TCNQ moiety" is formed. According to this finding, a reversible

Page 130: Two-dimensional acetylenic scaffolding - Research Collection

New Transformations of 7,7,8,8-Tetracyanoquinodimethane 105

formation of the cyclobutene intermediate could be assumed (Scheme 4.3). At present, we do

not have any plausible explanation for this finding. Theoretical calculations might provide

further insight into the (electronic) factors governing this reaction. The constitution of the

products was unambiguously confirmed by 2D NMR spectroscopy (HSQC and HMBC) in a

collaboration with Prof. B. Jaun (Laboratorium für Organische Chemie, ETH Zürich) based

on the observed correlation between H-C(5) (resp. H-(C7)) and C(4) (Scheme 4.3), and as

shown below, by X-ray analysis.

Scheme 4.3. Regioselectivity of the reaction between TCNQ and 7V,7V-dimethylanilino-substituted alkynes.

4.3 X-ray Structure Analysis

Gratifyingly, 119 and 121 afforded single crystals suitable for X-ray crystallographic analysis

upon slow diffusion of hexane into 1,1,2,2-tetrachloroethane solutions of the compounds at

20 °C. The X-ray analysis nicely confirmed the regioselective addition of the alkyne at one

exocyclic CC double bond of TCNQ and proved the constitution of the formed non-planar

donor-acceptor chromophores (Figs. 4.1 and 4.2).

Page 131: Two-dimensional acetylenic scaffolding - Research Collection

106 New Transformations of 7,7,8,8-Tetracyanoquinodimethane

a) b)

(>

N25(>

C24

N27 C26 \

7 \

>j l' C17

\ C8 } b \N14

^

C1>^

^/c a\ qX

C9 CIO C16

N14

C3

NS Ç>

\ °3

/ C6 M7

(KN14 ,

y» ^/

N5!

C6

A

N7m^ 3 ;3.20Â

'••.. /C6

^N7

N5

3.21Â

^o—i^"

N14*c

Fig. 4.1. ORTEP plot of 119; arbitrary numbering, H-atoms are omitted for clarity. Atomic displacement

parameters at 220 K are drawn at the 30% probability level. Selected bond lengths [Â]: C(l)-

C(2) 1.4678(18), C(2)-C(3) 1.3409(19), C(3)-C(4) 1.438(2), N(5)-C(4) 1.145(2), C(l)-C(8)

1.4457(18), C(8)-C(9) 1.4140(18), C(9)-C(10) 1.3697(19), C(10)-C(ll) 1.4168(19), N(14)-

C(ll) 1.3550(17), C(ll)-C(12) 1.4158(19), C(12)-C(13) 1.3683(18), C(8)-C(13) 1.4136(18),

C(l)-C(17) 1.4021(18), C(17)-C(18) 1.4313(18), C(18)-C(19) 1.3518(8), C(19)-C(20)

1.4307(17), C(20)-C(23) 1.3971(18), C(23)-C(24) 1.4184(19), N(25)-C(24) 1.1448(18).

Selected bond angles [°]: C(17)-C(l)-C(8) 124.05(12), C(8)-C(l)-C(2) 118.07(11), C(24)-

C(23)-C(26) 116.06(12), C(3)-C(2)-C(l) 124.56(13). Selected torsion angles [°]: C(2)-C(l)-

C(8)-C(13) = 33.28(18), C(2)-C(l)-C(17)-C(22) = 15.44(19). Quinoid character:

fr = (((a+ar)l2-(b+br)l2)+((c+cr)l2-(b+br)l2))l2. & = 0.046. b) Arrangement of neighboring

molecules in the crystal packing of 119 showing short intermolecular contacts. Molecules A

(x,y,z) and A* (2-x, -y, 1-z) are related by an inversion center.

In the crystal packing of 119 (Fig. 4.1b), two molecules related by an inversion center show

short multipolar CN---CN interactions, as already previously observed [181]. Particularly

interesting are the short contacts between nitrogen atoms that are polarized in an opposite

way through the intramolecular charge-transfer (CT) interactions. The negatively polarized

N-atoms of a CN moiety in one molecule interact at van der Waals distance with the

positively polarized N-atom of the DMA moiety of an adjacent one.

The efficiency of the CT from the donor to the acceptor moieties can be expressed as the

quinoid character {&) of the iV,iV-dimethylanilino (DMA) ring (Eq. 4.1) [236]. In benzene,

the & value equals 0, whereas values between 0.08 and 0.10 are found in fully quinoid rings

(see Fig. 4.1a for the definition of bonds a, a\ b, b\ c, and c'). The jV,jV-dimethylanilino

Page 132: Two-dimensional acetylenic scaffolding - Research Collection

New Transformations of 7,7,8,8-Tetracyanoquinodimethane 107

(DMA) ring in 119 exhibits a high or value of 0.046 comparable to the highest value

observed for DMA-substituted l,l,4,4-tetracyanobuta-l,3-diene (TCBD) derivatives [181].

The & value for the DMA ring in 121 could not be estimated due to the reduced accuracy.

fr={[(a + a')-(b + b')]/2 + [(c + c')-(b + b')]/2}/2 (Eq. 4.1)

The crystal structure of 121 contains three independent molecules in the asymmetric unit

(Fig. 4.2). Molecules 121a and 121c have approximately the same conformation, while in

molecule 121b the subunit N(l)-C(l)-C(2)-C(3)-N(2) is rotated by car. 164° with respect to

121a, and ca. 178° with respect to 121c.

4.4 UV/Vis Spectroscopy

The UV/Vis spectra of chromophores 119-128 recorded in CH2C12 are dominated by intense,

broad charge-transfer (CT) bands with end absorptions reaching into the near infrared region

(Fig. 4.3). No deviations from the Lambert-Beer law were observed for 120 and 125 within

the studied concentration range (4 x 10~6-9 x 10~5 m) indicating the absence of self-

association in CH2CI2 solution. There is no reason to expect a different behavior of the

remaining chromophores.

Upon introduction of a second DMA donor, the intensity of the CT band increases strongly

(compare the spectra of 121 vs. 122 or 124 vs. 125, Fig. 4.3a). The CT bands of oligomeric

chromophores 126 and 127 in CH2CI2 feature very large lvalues (Fig. 3.4b). Thus, the

spectrum of trimeric 127 shows a CT band with a /Uax of 709 nm (1.75 eV) and £ of

87000 Ml cm-1. This lvalue is more than twice as large as that of monomeric 121 at /Uax =

676 nm (1.84 eV, e= 36300 M"1 cm"1).

Page 133: Two-dimensional acetylenic scaffolding - Research Collection

108 New Transformations of 7,7,8,8-Tetracyanoquinodimethane

a) b)C27

>y- V

C23 /' /

C26

C1/\-^S ^ C25

NI y

V1C22

1 C4 C24

N5

XC20

C21 /

C17 J/C14

1 rs

x x v>. C12

V \ C9 CIO

\/\/a5

1 °6

C7 \ / X^C8

N3\

ar f N2'

C28' /

C26' ^\c23'/ Q,

C25' >'f^^ CV

C22' /I A MV

NS- C2V >C24

]«' a3,

?» ^ X ^X C6'

X C20' / >V^C5>

,\ C177

C)

C18'(

C16

t a 9'

VN4'

/o4' <f ^ C9' CIO'

'CIS' """X-^X

«^N2"

C3" C27"C28" -

cvI- /?

UA\ C2v/C26"

C5"J^X / \ CI2"

C2iy^\^ XjN5"

CIO"C9"

ï ) C14" C6" \ \ C9.

k C2°"C17V ,/ \ J^ /

| C18" C16-C8" )

\C19„

CIV

N4"

\

Fig. 4.2. ORTEP plot of the three independent molecules in the crystal structure of 121. Atomic

displacement parameters obtained at 173 K are shown at the 30 % probability level. Arbitrary

numbering, H-atoms are omitted for clarity. Selected bond lengths [Â] for 121a: N(l)-C(l)

1.144(8), C(l)-C(2) 1.440(10), C(2)-C(4) 1.358(9), C(4)-C(5) 1.469(8), C(5)-C(6) 1.447(8),

C(6)-C(7) 1.405(8), C(7)-C(8) 1.385(8), C(8)-C(9) 1.397(9), N(3)-C(9) 1.380(8), N(3)-C(ll)

1.455(9), C(9)-C(12) 1.414(9), C(12)-C(13) 1.372(8), C(6)-C(13) 1.408(8), C(4)-C(23)

1.482(9), C(23)-C(24) 1.404(9), C(24)-C(25) 1.382(9), C(25)-C(26) 1.383(10), C(14)-C(15)

1.445(8), C(15)-C(16) 1.335(8), C(16)-C(17) 1.418(9), C(17)-C(18) 1.412(9), C(18)-C(19)

1.400(10), N(4)-C(19) 1.143(9). Selected bond angles [°] for 121a: C(6)-C(5)-C(4) 116.5(5),

C(14)-C(5)-C(6) 123.5(5), C(3)-C(2)-C(l) 114.9(6), C(2)-C(4)-C(23) 122.4(5), C(19)-C(18)-

C(20) 118.1(6). Selected torsion angles [°]: 121a: C(4)-C(5)-C(6)-C(l3) = -40.2(8), C(4)-

C(5)-C(14)-C(22) = -12.9(9), C(4)-C(5)-C(14)-C(15) = 166.3(5), C(2)-C(4)-C(5)-C(14) =-

55.7(8), C(23)-C(4)-C(5)-C(14) = 125.7(6); 121b: C(4')-C(5')-C(6')-C(13') = -27.9(9),

C(4')-C(5')-C(14')-C(22') = -13.1(8), C(4')-C(5')-C(14')-C(15') = 166.0(5), C(2')-C(4')-

C(5')-C(14') = 108.2(7), C(23')-C(4')-C(5')-C(14') = -72.1(7); 121c: C(4")-C(5")-C(6")-

C(13") = -30.3(8), C(4")-C(5")-C(14")-C(22") = -13.3(8), C(4")-C(5")-C(14")-C(15") =

167.5(5), C(2")-C(4")-C(5")-C(14") = -69.5(7), C(23')-C(4')-C(5')-C(14') = 109.8(6).

Page 134: Two-dimensional acetylenic scaffolding - Research Collection

New Transformations of 7,7,8,8-Tetracyanoquinodimethane 109

Interestingly, an additional shift of the CT band to lower energy is observed in the UV/Vis

spectrum of 128 (Fig 4 3b), with the maximum observed at /Uax = 859 nm (1 44 eV,

e= 17700 M_1 cm-1) This band tails far into the near infrared, and the end-absorption is

observed near 1300 nm (0 95 eV) This low optical gap is quite remarkable for a small

chromophore, such as 128 The CT character of the longest wavelength absorption band was

confirmed in a protonation experiment When a solution of 128 in CH2CI2 was acidified by

trifluoroacetic acid (TFA) (Fig 4 3c), the band at >4max=859 nm nearly completely

disappeared However, neutralization with K2CO3 did not quantitatively regenerate the

original spectrum, as strongly electrophilic 128 decomposes rapidly in the presence of a base

Immediate decomposition occured also upon neutralization with a non-nucleophilic base such

as l,5-diazabicyclo[4 3 0]non-5-ene (DBN)

a) b)

E 40000

C)

119100000 -,

_ 121/ \ 122

1 \

1 \

- - 124

125

80000 -

v \

£ 60000 -

ü

*!

S

Fig 4 3

300 400 500 600 700

/ /nm .

800 900 1000

128

128 acidified

128 neutralized

'/ nm

UV/Vis spectra of chromophores 119, 121, 122, 124, and 125 (a) and oligomenc 126 and 127

compared to monomelic 121 (b) and of 128 recorded neat, after acidification with trifluoroacetic

acid (TFA) and after neutralization with K2C03 (c) in CH2C12 at 298 K

Page 135: Two-dimensional acetylenic scaffolding - Research Collection

110 New Transformations of 7,7,8,8-Tetracyanoquinodimethane

All molecules 119-127 show a pronounced solvatochromism in CH2Cl2/hexane mixtures

(Table 4.2). The largest solvent effect was observed for noncentrosymmetric 120, with the

CT band shifting from ÄmeiX = 559 nm (1.63 eV) in hexane to ÄmeiX = 655 nm (1.89 eV) in

more polar CH2C12 (Fig. 4.4).

Table 4.2. Solvent effects of chromophobes 119-127 in CH2Cl2/hexane mixtures at 298 K."

Amax [nm (eV)]6 in solvent

CH2C12 CH2Cl2/hexane CH2Cl2/hexane CH2Cl2/hexane CH2Cl2/hexane hexane

1:1 1:3 1:9 1:19

119759 746 727

c c c

'1.63) ((1.66) (1.71)

120655 625 604 581 574 559

'1.89) ((1.99) (2.05) (2.14) (2.16) (2.22)

121676 646 626 600

c c

'1.84) ((1.92) (1.98) (2.07)

122665 638 616 596

c c

'1.87) ((1.94) (2.01) (2.08)

123709 680 659 635

c c

(1.75) ((1.82) (1.88) (1.95)

124708 680 661 630

c c

(1.75) ((1.82) (1.88) (1.97)

125677 649 631 607

c c

(1.83) ((1.91) (1.97) (2.04)

126685 652 631

c c c

(1.81) ((1.90) (1.97)

127709 694 677

c c c

(1.75) ((1.79) (1.83)

"Solvatochromic effects of 128 could not be investigated due to poor solubility in CH2Cl2/mixtures. *The

charge-transfer (CT) bands were used to observe the solvent effects. cCould not be estimated due to low

solubility.

It is generally accepted that solvatochromism is a characteristic behavior of dipolar molecules

featuring a more polar excited state than the ground state [237]. A more polar excited state is

better stabilized by polar solvents than the ground state, resulting in a lower transition energy.

However, centrosymmetric molecule 126 as well as the octupolar-type structure 127 also

display solvatochromic effects similar to those observed for noncentrosymmetric 119-125.

As an example, the absorption maximum of 126 shifts from 685 nm (1.81 eV) in CH2C12 to

631 nm (1.97 eV) in CH2Cl2/hexane (1:3) mixture (Table 4.2). According to our previous

Page 136: Two-dimensional acetylenic scaffolding - Research Collection

New Transformations of 7,7,8,8-Tetracyanoquinodimethane 111

findings in the series of donor-substituted cyanoethynylethenes (CEEs) [171] and TCBD

derivatives [181], this effect could be explained as follows A strong CT from the ground to

the excited state would produce a partially positive charge on the anilino donors and a

negative charge on the cyano acceptors, which then forms a quadrupole for 126 and an

octupole for 127 Normally, the dipole moment is dominant, however, the quadrupole (or

even the octupole) moment can significantly contribute to the overall electric moment of a

molecule, especially in cases where the dipole moment is zero Thus, this increase in electric

moment via the quadrupole (or even the octupole) most likely explains the observed

solvatochromic effect of 126 and 127 [238]

a)120000-,

80000 -

CH2CI2(1)CH CI /hexane 1 1 (2)

hexane (6)

600 700

/ /nm

b)

Fig 4 4 a) UV/Vis spectra of chromophore 120 in CH2Cl2/hexane mixtures at 298 K

Solvatochromism of 120 in CH2Cl2/hexane mixtures

b)

Page 137: Two-dimensional acetylenic scaffolding - Research Collection

112 New Transformations of 7,7,8,8-Tetracyanoquinodimethane

4.5 Electrochemistry

The redox properties of charge-transfer chromophores 119-128 were studied by cyclic

voltammetry (CV) and rotating disc voltammetry (RDV). The measurements were carried

out in CH2C12 with «Bu4NPF6 (0.1 m) as the supporting electrolyte. All potentials are given

vs. Fc+/Fc (ferricinium/ferrocene couple) used as an internal reference and are uncorrected

from ohmic drop (Table 4.3). The electrochemical investigations were performed by

Gisselbrecht, Boudon and Gross at the Laboratoire d'Electrochimie et de Chimie Physique du

Corps Solide, Université Louis Pasteur in Strasbourg, France.

Each iV,iV-dialkylanilino moiety in chromophores 119-128 undergoes a one-electron

oxidation step which is irreversible, except for 123. While the two DMA moieties in 122 and

125 are oxidized in two separated one-electron steps, all DAA moieties in oligomeric 126 and

127 are oxidized in a single, irreversible multielectron step, denoting no electrostatic

interactions between the redox centers [222]. Compared to the previously discussed

multivalent jV,jV-dialkylanilino-substituted TCBDs (see Chapter 3), the DMA donor in 119-

128 is much more readily oxidized at ca. +0.40 V (vs. ca. +0.90 V for TCBDs), which means

that it transfers less electron density into the acceptor CN moieties. Hence, ground state CT

interactions are much less effective in TCNQ adducts 119-128 than in DAA-substituted

TCBDs.

Monomelic chromophores 119-125, and 128 remain potent electron-acceptors, and display

two reversible one-electron reduction steps, centered on the two dicyanovinyl moieties.

Except for 119 and 128, the observed potential difference between these two reductions is

rather small (ranging from 90 mV for 122 to 150 mV for 123 and 124). The difference is

indeed much smaller than previously observed for DAA-substituted TCBD derivatives (230-

570 mV) [181]. This is readily explained by the larger distance between the two

dicyanovinyl groups in 120-125 as a result of insertion of the cyclohexa-2,5-diene-l,4-

diylidene moiety, resulting in decreased electrostatic repulsion. However, in the case of 119

and 128, the potential difference is somewhat larger (260 mV). With their relatively small H

and CN substituents, 119 and 128 may adopt a more planar structure in solution, thereby

making the conjugation between the dicyanovinyl moieties and the DMA donor more

efficient than in the other cases. As a result of higher planarity, the electrostatic repulsion in

the electrogenerated dianion is stronger in these species.

Page 138: Two-dimensional acetylenic scaffolding - Research Collection

New Transformations of 7,7,8,8-Tetracyanoquinodimethane 113

Table 4.3. Electrochemical data of chromophores 119-128 observed by cyclic voltammetry (CV) and

rotating disk voltammetry (RDV) in CH2C12 (+0.1 M «Bu4NPF6). All potentials are given vs.

ferricinium/ferrocene (Fc+/Fc) couple used as internal standard.

CV RDV

E°[Vf A£p[mVf Ep[Vf Em[V]d Slope [mV}

119 +0.42 +0.44 (;iei) 60

-0.50 80 -0.55 (>i) 70

-0.76 80 -0.86 (>i) 70

120 +0.42 +0.42 (;iei) 55

-0.72 90 -0.71 (>i) 60

-0.81 80 -0.84 (>i) 75

121 +0.42 +0.42 (;iei) 50

-0.68 70 -0.67 (>i) 60

-0.82 70 -0.81 (>i) 60

122 +0.86

+0.39 +0.39 (;iei) 60

-0.81 60 -0.82 (>i) 60

-0.90 60 -0.92 (>i) 60

123 +0.42 80 +0.43 ('lei) 40

-0.59 65 -0.58 (>i) 65

-0.74 65 -0.75 (>i) 65

124 +0.45 +0.44 ('lei) 60

-0.55 90 -0.58 (;iei) 70

-0.70 90 -0.77 (;iei) 75

125 +0.74 +0.69 /

+0.40 +0.39 ('lei) 55

-0.64 65 -0.65 (;iei) 60

-0.75 65 -0.77 (;iei) 60

126 +0.40 +0.39 ('2e1) 60

-0.62 65 -0.63 (;iei g

-0.74 70 -0.74 (;iei-0.85 60 -0.86 (;iei-0.95 60 -0.97 (;iei

127 +0.38 +0.40 ('3 el \g

-0.51 60 -0.50 (;iei-0.64 55 -0.64 (;iei-0.76 60 -0.76 (;iei-0.86 60 -0.84 (;iei-0.98 60 -0.98 (;iei-1.14 55 -1.16 (;iei

128 +0.52 +0.54 ('lei) 50

-0.27 80 -0.28 ('lei) 60

-0.53 85 -0.56 ('lei) 60

"E° = {Evc+Eva)l2, where Epc and £pa correspond to the cathodic and anodic peak potentials, respectively.

bAEp = Eox-Eied, where the subscripts ox and red refer to the conjugated oxidation and reduction steps,

respectively. CEP = irreversible peak potential. dEn2 = half-wave potential. eSlope = slope of the linearized plot of

E versus log^/h,,-/)], where 4m is the limiting current and / the current. ^Bad resolved second oxidation due to

strong electrode inhibition. gDue to overlapping waves, the slopes for each step could not be determined.

Page 139: Two-dimensional acetylenic scaffolding - Research Collection

114 New Transformations of 7,7,8,8-Tetracyanoquinodimethane

The cyclohexa-2,5-diene-l,4-diylidene-expanded PCBD derivative, 128, deserves rather

special attention. Thus, 128 undergoes two one-electron reductions at -0.27 V and -0.53 V,

as well as an irreversible oxidation step at +0.52 V. Compared to 119 with the H-atom

substituent, that is reduced at -0.50 V and -0.76 V, both reduction steps in 128 are anodically

shifted by 230 mV as a result of the additional electron-withdrawing CN group. Whereas the

first reduction in 128 is similar to that of TCNQ (-0.25 V vs. -0.27 V (128)), the second one

is greatly facilitated (-0.53 V (128) vs. -0.81 V (TCNQ)). This finding can be readily

explained by the larger distance between the reducible dicyanovinyl and tricyanovinyl

moieties in 128 resulting in decreased electrostatic repulsion in the electrogenerated species.

The stepwise reduction of 126 and 127, with the latter undergoing six reversible one-electron

reductions in the narrow potential range between -0.51 and -1.14 V, is a good indication of

electrostatic interactions between the dicyanovinyl moieties in these chromophores. Hence,

the C(CN)2 moieties in oligomeric 126 and 127 are not independent redox-active centers, as

observed previously in the case of dendrimer-type multivalent TCBD derivatives (see

Chapter 3).

4.6 Conclusion

In summary, we have described a completely regioselective thermal [2+2] cycloaddition of

TCNQ with DAA-substituted alkynes, followed by ring opening of the initially formed

cyclobutene derivative to yield a new type of non-planar chromophores featuring intense low-

energy intramolecular charge-transfer bands and appealing redox properties. The generality

of this often high-yielding, atom-economic transformation was demonstrated by running the

reaction with a series of acetylenic substrates.

The exploration of the optical nonlinearities of these new TCNQ derivatives is currently

under investigation in a collaboration with Prof. I. Biaggio from the Lehigh University in

Bethlehem, PA, USA. Furthermore, the application of these powerful acceptors towards the

preparation of organic-based magnets and conductive materials will be pursued.

In upcoming studies we will also attempt to clarify the mechanistic questions concerning the

[2+2] cycloaddition of TCNQ with iV,iV-dialkylanilino-substituted alkynes by both

experimental as well as computational methods.

Page 140: Two-dimensional acetylenic scaffolding - Research Collection

New Transformations of 7,7,8,8-Tetracyanoquinodimethane 115

4.7 Towards New Organic Super-Acceptors - Future Prospects

Encouraged by the previous results, we next attempted the reaction between 2,3,5,6-

tetrafluoro-7,7,8,8-quinodimethane (F4-TCNQ), which is even stronger electron-acceptor

than TCNQ (see Chapter 1), and the DMA-substituted cyanoalkyne 118. Gratifyingly, we

found that 118 reacted with F4-TCNQ in CH2CI2 at room temperature to afford fluonnated

adduct 129 in 86% yield as a black metallic solid (Scheme 4.4).

F NC

Me9N -CNa)

118

NMe2

Scheme 4.4. Reaction of cyanoalkyne 118 with F4-TCNQ. a) F4-TCNQ, CH2C12, 15 h at 20 °C 86% (129).

For the success of the reaction, it was essential to work in a glassware that was previously

deactivated by silylation with Me2SiCl2 [239] (see the Experimental Part), as 129

decomposes readily upon contact with a non-treated glass surface to form an insoluble

greenish film. Consequently, crude 129 was successfully purified by slow diffusion of

hexane into CH2CI2 solution in a silylated vessel.

The UV/Vis spectrum of 129 displays a significantly bathochromically shifted CT band with

/Uax of 1001 nm (1.23 eV, £= 17700 M_1 cirf1) with the end-absorption observed near 1400

nm (0.89 eV) (Fig. 4.5).

30000 -

;-- 129

25000 - ;1

/'\

20000 -

E ;; /

~

15000-

* ;\',

10000- 'A'i \ /v

5000-

'"'

**" v-

800 1000

/ / nm

1200 1400

Fig. 4.5. UV/Vis spectrum of chromophore 129 in CH2C12 at 298 K.

Page 141: Two-dimensional acetylenic scaffolding - Research Collection

116 New Transformations of 7,7,8,8-Tetracyanoquinodimethane

Although the charge-transfer chromophore 129 was synthesized during the writing of this

doctoral thesis, first electrochemical results revealing its extraordinary electron-accepting

power have been obtained (Table 4.4).

Table 4.4. Electrochemical data of chromophore 129 observed by cyclic voltammetry (CV) and rotating

disk voltammetry (RDV) in CH2C12 (+ 0.1 M «Bu4NPF6). All potentials are given vs.

ferricinium/ferrocene (Fc+/Fc) couple used as internal standard.

CV RDV

E° [Vf A£p [mVf EP [Vf Em [V]rf Slope [mVf

129 +0.61 ;

0.00 75 0.00 (le-) 68

-0.27 70 -0.29 (le-) 61

aE° = (Epc+Epa)/2, where Epc and Epa correspond tc) the cathodic and anodic peak potentials, respectively.

bAEp = Eox-Erild, where the subscripts ox and red refer to the conjugated oxidation and reduction steps,

respectively. CEP = irreversible peak potential. dEn2 = half-wave potential. eSlope = slope of the linearized plot of

E versus \og[I1(1^-1)], where Ilim is the limiting current and / the current. ^Electrode inhibition during oxidation.

Thus, 129 displays in CH2C12 two reversible one-electron reduction steps at 0.00 V and

-0.27 V centered on the tricyanovinyl and dicyanovinyl moieties, respectively, as well as an

irreversible oxidation step at +0.61 V located on the DMA substituent. Compared to the

TCNQ adduct 128, both reduction steps in 129 are anodically shifted by 270 mV for the first

and 260 mV for the second reduction step, respectively, as a result of fluorine substitution

(vide supra). Furthermore, preliminary spectroelectrochemical studies of 129 performed in a

optically transparent thin-layer electrode (OTTLE) in CH2CI2 with «Bu4NPF6 (0.1 m) as the

supporting electrolyte suggest that the electrogenerated reduced species (i.e. radical anion and

dianion) are stable at the time scale of spectroelectrochemistry, namely at least for 60

seconds. Further electrochemical investigations are currently in progress.

It can be expected that (i) upon incorporation of even stronger acceptor moieties such as 3,6-

difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ) [143] or 2,5-dicyano-7,7,8,8-

tetracyanoquinodimethane (TCNQ(CN)2) [137] (Chapter 1) or (ii) upon attentuation of the

donor moiety, the reduction steps become further facilitated (Fig. 4.6).

Page 142: Two-dimensional acetylenic scaffolding - Research Collection

New Transformations of 7,7,8,8-Tetracyanoquinodimethane 117

NC. XN

NC CN

TCNQ(CN)2 F2-HCNQ

Fig. 4.6. Powerful electron acceptors 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ)

[143] and2,5-dicyano-7,7,8,8-tetracyanoquinodimethane (TCNQ(CN)2) [137].

Page 143: Two-dimensional acetylenic scaffolding - Research Collection
Page 144: Two-dimensional acetylenic scaffolding - Research Collection

5 Experimental Part

Page 145: Two-dimensional acetylenic scaffolding - Research Collection
Page 146: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 121

5.1 Materials and General Methods

Reagents and solvents were purchased at reagent grade from Acros, Aldrich, Fluka, GFS, and

TCI and used as received. Tetrahydrofuran (THF) was freshly distilled from

Na/benzophenone and CH2C12 from CaH2 under N2. Hay catalyst refers to a freshly prepared

solution of CuCl (100 mg, 1.0 mmol) and #,#,#',#'-tetramethylethylenediamine (TMEDA;

0.15 mL, 1.0 mmol) in acetone (25 mL). All reactions, except Hay couplings, were

performed under an inert atmosphere by applying a positive présure of N2 or Ar.

Thin-layer chromatography (TLC) was conducted on aluminum sheets coated with SiC>2 60

F254 obtained from Macherey-Nagel; visualisation with a UV lamp (254 or 366 nm).

Column chromatography (CC) and plug filtrations were carried out with SiC>2 60 (particle

size 0.040-0.063 mm, 230-400 mesh; Fluka), or Si02 60 (particle size 0.063-0.200 mm, 70-

230 mesh; Merck) and distilled technical solvents.

Size-exclusion chromatography (GPC) was performed on Bio-Beads SX-3 from the

company Bio-Rad and distilled technical solvents.

Melting points (M.p.) were measured on a Büchi B-540 melting-point apparatus in open

capillaries and are uncorrected. "Decomp." refers to decomposition. Some

melting/decomposition points could not be determined due to the low stability of the

compounds, or due to the dark color of the solid.

UWVis spectra were recorded on a Varian Cary-5 spectrophotometer. The spectra were

measured in CHCI3 or CH2CI2 in a quartz cuvette (1 cm) at 298 K. The absorption maxima

(-^max) are reported in nm with the extinction coefficient (e) NT1 cm-1 in brackets. Shoulders

are indicated as sh.

Infrared spectra (IR) were recorded neat on a Perkin-Elmer BX FT-IR spectrophotometer.

Selected absorption bands are reported in wavenumbers (cm4) with relative signal intensities

described as s (strong), m (medium), w (weak).

Page 147: Two-dimensional acetylenic scaffolding - Research Collection

122 Experimental Part

Nuclear magnetic resonance spectra (NMR). *H NMR and 13C NMR spectra were

measured on a Varian Gemini 300 or on a Bruker DRX500 spectrometer at 298 K unless

otherwise stated. Chemical shifts (â) are reported in ppm relative to the signal of

tetramethylsilane (TMS). Residual solvent signals in the *H and 13C NMR spectra were used

as an internal reference. Coupling constants (J) are given in Hz. The apparent resonance

multiplicity is described as s (singlet), br s (broad singlet), d (doublet), t (triplet), q (quartet),

sept (septuplet), and m (multiplet).

Mass spectrometry (MS) was performed by the MS-service, ETH Zürich. High-resolution

(HR) EI-MS and ESI-MS spectra were measured on a Hitachi-Perkin-Elmer VG-Tribrid

spectrometer and a Finnigan Mat TSQ 7000 spectrometer, respectively. HR FT-ICR-MALDI

spectra were measured on an IonSpec Ultima Fourier transform (FT) instrument with [(2E)-

3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB), or 3-

hydroxypicolinic acid (3-HPA) as matrix. The most important peaks are reported in mlz units

with M as the molecular ion. MALDI-TOF spectra were recorded on a Bruker Daltonics

Ultraflex mass spectrometer using DCTB as matrix.

Elemental analyses were performed by the Mikrolabor at the Laboratorium für Organische

Chemie, ETH Zürich, with a LECO CHN/900 instrument.

Electrochemical measurements were performed by Dr. Jean-Paul Gisselbrecht, Prof. Dr.

Corinne Boudon, and Prof. Dr. Maurice Gross at the Laboratoire d'Electrochimie et de

Chimie Physique du Corps Solide, Université Louis Pasteur in Strasbourg, France. The

measurements were carried out at 20 °C in CH2C12, containing 0.1 M «Bu4NPF6 in a classical

three-electrode cell. CH2CI2 was purchased in spectroscopic grade from Merck, dried over

molecular sieves (4 Â) and stored under Ar prior to use. «Bu4NPF6 was purchased in

electrochemical grade from Fluka and used as received. The working electrode was a glassy

carbon disk electrode (3 mm in diameter) used either motionless for cyclic voltammetry (0.1

to 10 V s_1) or as rotating-disk electrode for rotating disk voltammetry (RDV). The auxiliary

electrode was a Pt wire, and a Pt wire was used as the pseudo-reference electrode, or the

reference electrode was an aqueous Ag/AgCl electrode. All potentials are referenced to the

ferricinium/ferrocene (Fc+/Fc) couple, used as an internal standard, and are uncorrected from

ohmic drop. The cell was connected to Autolab PGSTAT20 potentiostat (Eco Chemie BV,

Page 148: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 123

Utrecht, The Netherlands) controlled by the GPSE software running on a personal computer.

Simulations of the cyclic voltammetry were carried out using the DigiSimm3.0 software

(Bioanalytical Systems Inc. )

X-ray crystallography was performed by Paul Seiler, ETH Zürich, using Bruker-Nonius

Kappa-CCD diffractometer.

Nomenclature follows the proposals of the ACD-Name 9.0 (ACD/Labs) program.

5.2 Experimental Procedures

Compounds 48 [36], l-bromo-2-(triisopropylsilyl)ethyne (49) [188], cis-[l,3-

bis(diphenylphosphino)propane]dichloroplatinum(II) (53) [193], 4-ethynyl-iV,iV-

dihexylaniline (57) [93], 1,3,5-triiodobenzene (58) [213], 1,2,4,5-tetraiodobenzene (59)

[214], hexaiodobenzene (60) [214], {Pd[P(o-Tol)3]2} (65) [216], tris(4-iodophenyl)amine

(69) [217], l,3,5-tris(4-iodophenyl)benzene (70) [218], hexakis(4-iodophenyl)benzene (71)

[219], 3,5-diiodoaniline (73) [213], 4-ethynyl-#,#-dimethylaniline (108) [231], N,N-

dimethyl-4-[(trimethylsilyl)ethynyl]aniline (109) [231], iV,iV-dimethyl-4-

(phenylethynyl)aniline (110) [232], 4,4'-ethyne-l,2-diylbis(#,#-dimethylaniline) (111) [233],

jV,jV-dimethyl-4-[(trimethylsilyl)buta-l,3-diyn-l-yl]aniline (112) [181], 4,4'-buta-l,3-diyne-

l,4-diylbis(jV,jV-dimethylaniline) (113) [234], 4,4'-[l,4-phenylenebis(ethyne-2,l-

diyl)]bis(jV,jV-dihexylaniline) (114) [181], 4,4',4"-[benzene-l,3,5-triyltris(ethyne-2,l-

diyl)]tris(jV,jV-dihexylaniline) (115) [181], jV,jV-dimethyl-4-[(triisopropylsilyl)buta-l,3-diyn-

l-yl]aniline (130) [181], trimethyl(4-phenyl-l,3-butadiyn-l-yl)silane (131) [221], and 3-[4-

(dimethylamino)phenyl]prop-2-yn-l-ol (132) [240] were prepared according to literature

procedures. Their syntheses will therefore not be described.

Page 149: Two-dimensional acetylenic scaffolding - Research Collection

124 Experimental Part

General Procedure 1 (GP 1) for desilylation/Sonogashira cross-coupling

GPla with AyV-dihexylanilino-substituted alkynes: To a solution of silyl-protected alkyne

(1.5 equiv. per iodine) in THF (13 mL per mmol of 56, 100 mL per mmol of 72), «BU4NF

(1.0 M in THF, 3.0 equiv.) was added. The mixture was stirred for 20 min at 0 °C, diluted

with CH2CI2, filtered through a plug (SiC>2; CH2CI2), and the solution was concentrated in

vacuo. The residue was dissolved in diisopropylamine, the appropriate iododerivative was

added, and the mixture deoxygenated thoroughly by Ar bubbling through for 30 min. Cul

(0.30 equiv.) and [PdCl2(PPh3)2] (0.20 equiv.) were added, and the mixture was stirred under

Ar (see experimental details). The mixture was diluted with CH2CI2, passed through a plug

(Si02; CH2C12), and the solvents were removed in vacuo. The residue was purified by CC

(see experimental details).

GPlb with l,4-bis(trimethylsilyl)buta-l,3-diyne [121]: To a solution of 1,4-

bis(trimethylsilyl)buta-l,3-diyne (5.0 equiv. per iodine) in THF (10 mL per mmol),

MeLiLiBr complex (2.2 M in Et2Û, 1 equiv.) was added dropwise. After stirring for 3-6 h at

20 °C, sat. aq. NH4C1 was added and the mixture extracted with w-pentane (3 x). The

combined organic layers were washed with sat. aq. NaCl (1 x), dried (MgS04), and

concentrated in vacuo (without heating) to ca. 10% of the original volume. The residue was

dissolved in diisopropylamine, the appropriate iododerivative was added, and the mixture

was deoxygenated thoroughly by Ar bubbling through for 30 min. Cul (0.30 equiv.) and

[PdCl2(PPh3)2] (0.20 equiv.) were added, and the reaction mixture was stirred under Ar (see

experimental details). The mixture was diluted with CH2C12, passed through a plug (Si02;

CH2CI2), and the solvents were removed in vacuo. The residue was subjected to CC (see

experimental details).

GPlc with sensitive oligoalkynes: To a solution of silyl-protected alkyne in THF (200 mL

per mmol), «Bu4NF (1.0 M in THF 2.0 equiv. per silyl protecting group) was added. The

mixture was stirred for 20 min at 0 °C, diluted with CH2CI2, filtered through a plug (SiÛ2;

CH2CI2), and the solution was concentrated in vacuo to ca. 10% of the original volume. The

residue was dissolved in diisopropylamine, the appropriate iododerivative (1.5 equiv. per

alkyne) was added, and the mixture deoxygenated thoroughly by Ar bubbling through for 30

min. Cul (0.30 equiv.) and [PdCl2(PPh3)2] (0.20 equiv.) were added, and the mixture was

stirred either at 20 °C or at elevated temperature (see experimental details). The mixture was

diluted with CH2CI2, passed through a plug (SiÛ2; CH2CI2), and the solvents were removed in

vacuo. The residue was purified by CC (see experimental details).

Page 150: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 125

General Procedure 2 (GP 2) for [2+2] cycloaddition of TCNE with alkynes

A mixture of alkyne and TCNE (1.0-2.5 equiv. per C=C bond) in the solvent of choice was

stirred either at 20 °C or at elevated temperature (see experimental details). The solvent was

evaporated in vacuo and the residue subjected to CC (see experimental details).

General Procedure 3 (GP 3) for [2+2] cycloaddition of TTF with alkynes

A mixture of alkyne and TTF (3.0 equiv. per C=C bond) in MeCN or MeCN/CH2Cl2 (1:1)

was stirred under N2 at 60 °C. The solvent was evaporated in vacuo and the residue subjected

to CC (see experimental details).

General Procedure 4 (GP 4) for "one-pot" [2+2] cycloaddition of TCNE/TTF with

alkynes

To a solution of the appropriate tetrayne in CH2Cl2/MeCN (1:1), TCNE (5.0 equiv.) and TTF

(5.0 equiv.) were added. The mixture was stirred under N2 at 50 °C. The solvents were

evaporated in vacuo and the residue subjected to CC (see experimental details).

General Procedure 5 (GP 5) for [2+2] cycloaddition of TCNQ or F4-TCNQ with alkynes

TCNQ (1.0 equiv.) or F4-TCNQ (1.0 equiv.) was added to a solution of the appropriate

alkyne in the solvent of choice, and the mixture was stirred either at 20 °C or at elevated

temperature (see experimental details). The solvents were evaporated in vacuo and the

residue subjected to CC (see experimental details).

General Procedure 6 (GP6) for deactivating glass surfaces with dimethyldichlorosilane

(DMDCS) [239]

Glassware was soaked in a toluene solution of DMDCS (5% v/v) for 15 minutes at 20 °C.

Subsequently, the glassware was rinsed twice with toluene, soaked for 15 min in MeOH,

rinsed with MeOH, and finally dried with a nitrogen stream.

Page 151: Two-dimensional acetylenic scaffolding - Research Collection

126 Experimental Part

4,4,,4M,4,M-(Cycloicosa-l,ll-diene-3,5,7,9,13,15,17,19-octayne-l,2,ll,12-tetrayltetra-

ethyne-2,l-diyl)tetrakis(AyV-diisopropylaniline) (40)

4,4',4",4'",4"",4 -(Cyclotriaconta-l,ll,21-triene-3,5,7,9,13,15,17,19,23,25,27,29-

dodecayne-l,2,ll,12,21,22-hexaylhexaethyne-2,l-diyl)hexakis(ArrA/-diisopropylaniline)

(41)

(y-Pr)2N N(i-Pr)2

(<-Pr)2N N(i-Pr)2

(/-Pr)2N N(;-Pr)2

(/-Pr)2N N(i-Pr)2

To a cooled solution (0 °C) of 50 (250 mg, 0.300 mmol) in moist THF (25 mL), «Bu4NF (1 M

in THF, 0.90 mL) was added. After stirring for 15 min, TLC (Si02; hexanes/EtOAc 10:1)

indicated complete deprotection. CH2CI2 (100 mL) was added and the mixture filtered

through a plug (Si02; CH2C12). The solvents were removed in vacuo, and the oily residue

was dissolved in acetone (850 mL). Hay catalyst (58 mL) was added and the mixture stirred

exposed to air for 2 h at 20 °C. The deep-purple solution was diluted with CH2CI2 and

filtered through a plug (SiÛ2; CH2CI2). The solvents were evaporated in vacuo to leave a

deep-purple solid which was subjected to CC (Si02; hexanes/Et20 1:1) to yield 40 (8 mg,

6%) and impure 41 that was subsequently further purified by preparative GPC (Bio-Beads

SX-3; THF) to give pure 41 (16 mg, 13%).

[20]Annulene 40

Deep-purple metallic solid.

Rf = 0.46 (Si02; hexanes/Et20 1:1).

Page 152: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 127

UV/Vis (CH2C12): 316 (62200), 363 (47400), 391 (44700), 481 (sh, 36900), 552 (41100).

IR (neat): 2956w, 2924w, 2864w, 2\6\m, 2079w, 15985, 1515a, 1460>v, 1367w, 1329w,

12925, 11765, 11495, 11145, 1018s, 817jw.

'HNMR (500 MHz, CDCI3): 1.28 (d, J= 6.9 Hz, 48 H); 3.88 (sept, J= 6.9 Hz, 8 H); 6.71 (d,

J = 9.1 Hz, 8 H); 7.24 (d, J = 9.1 Hz, 8 H).

13C NMR (125 MHz, CDC13): 21.06; 47.49; 69.60; 73.90; 83.50; 84.90; 84.95; 106.43;

108.38; 115.22; 120.94; 132.83; 149.17.

HR-MALDI-MS (DCTB): 1040.5769 ([M]+, C76H72N/, cale. 1040.5752).

[30]Annulene 41

Deep-purple metallic solid.

Rf = 0.25 (Si02; hexanes/Et20 1:1).

UV/Vis (CH2C12): 311 (115500), 374 (sh, 63000), 554 (89800), 614 (sh, 76400).

IR (neat): 2962w, 2925w, 2863w, 21475, 2074w, 15945, 15145, \4\3m, \367m, \327m,

12905, 11835, 11365, 11125, 816jw.

lîî NMR (500 MHz, CDC13): \.3\ (d,J= 6.9 Hz, 72 H); 3.91 (sept, J= 6.9 Hz, 12 H); 6.77

(d, J= 9.0 Hz, 12 H); 7.38 (d, J= 9.0 Hz, 12 H).

13C NMR (125 MHz, CDC13): 21.10; 47.51; 66.46; 72.57; 76.15; 82.76; 86.70; 106.57;

108.67; 115.31; 117.21; 132.94; 149.20.

HR-MALDI-MS (DCTB): 1560.8599 ([M]+, Cn4Hio8N6+, cale. 1560.8630).

4,4'-{(3JE)-3,4-Bis[(triisopropylsilyl)ethynyl]hex-3-ene-l,5-diyne-l,6-diyl}bis(Arr/V-diiso-

propylaniline) (44)

^>L .Si(/-Pr)3

To a degassed solution of 47 (694 mg, 2.29 mmol) in diisopropylamine (30 mL), 48 (500 mg,

1.14 mmol), [PdCl2(PPh3)2] (72 mg, 0.10 mmol), and Cul (33 mg, 0.17 mmol) were added

and the mixture was stirred for 21 h at 20 °C. CH2C12 (200 mL) was added and the deep-red

mixture filtered through a plug (SiÛ2; CH2CI2). Solvents were removed in vacuo, and the

residue was purified by CC (SiÛ2; toluene/hexanes 20:1) to give 44 (615 mg, 69%).

Page 153: Two-dimensional acetylenic scaffolding - Research Collection

128 Experimental Part

Orange crystals.

Rf = 0.38 (Si02; hexanes/EtOAc 20:1).

M.p. 209-211 °C (decomp.).

UV/Vis (CHC13): 300 (36000), 344 (sh, 12400), 472 (46000).

IR (neat): 2939w, 2863w, 2197s, 214\w, 1599s, 1515s, 141 8jw, \369m, \329m, 1293s, 1138s,

1116s, 1016m, 994m, 882w, 817s.

lîî NMR (300 MHz, CDC13): 1.14 (s, 42 H); 1.28 (d, J= 6.9 Hz, 24 H); 3.86 (sept, J = 6.9

Hz, 4 H); 6.74 (d, J= 9.0 Hz, 4 H); 7.28 (d, J= 9.0 Hz, 4 H).

13C NMR (75 MHz, CDC13): 11.48; 18.84; 21.22; 47.45; 87.02; 99.93; 100.09; 104.46;

109.82; 115.53; 115.75; 132.39; 148.32.

HR-MALDI-MS (DCTB): 786.5688 ([M]+, C52H78N2Si2+, calc. 786.5704).

Anal. calc. for C52H78N2Si2 (787.37): C 79.32, H 9.98, N 3.56; found: C 79.33, H 9.93, N

3.61.

4,4'-{(3Z)-3,4-Bis[(triisopropylsilyl)ethynyl]hex-3-ene-l,5-diyne-l,6-diyl}bis(Ar^V-diiso-

propylaniline) (45)

()-Pr)3Si

0-Pr)3Si

A solution of 44 (275 mg, 0.349 mmol) in Et20 (140 mL) was irradiated with a medium-

pressure Hg lamp (125 W) for 2 h at 20 °C. The dark-orange residue obtained by evaporation

of the solvent in vacuo was subjected to CC (Si02; hexanes/EtOAc 20:1) to yield 45 (134 mg,

49%) and recovered 44 (133 mg, 48%).

Orange solid.

Rf = 0.29 (Si02; hexanes/EtOAc 20:1).

M.p. 70-72 °C.

UV/Vis (CHCI3): 283 (sh, 26500), 305 (30200), 412 (30500), 470 (30300).

ffi. (neat): 2941w, 2864w, 2178w, 2132w, 1602s, 1516s, 1463w, 1418w, 1368w, U29m,

1292s, 1188w, 1115s, \0\6m, 996m, 883w, 818s.

lîî NMR (300 MHz, CDC13): 1.13 (s, 42 H); 1.28 (d, J= 6.9 Hz, 24 H); 3.88 (sept, J = 6.9

Hz, 4 H); 6.76 (d, J= 9.0 Hz, 4 H); 7.32 (d, J= 9.0 Hz, 4 H).

\vKi-r\)2

m/. n^\

Page 154: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 129

liC NMR (75 MHz, CDC13): 11.51; 18.88; 21.26; 47.50; 87.44; 100.15; 100.38; 104.41;

109.89; 115.42; 115.62; 132.43; 148.40.

HR-MALDI-MS (DCTB): 786.5708 ([M]+, C52H78N2Si2+, cale. 786.5704).

Anal. cale, for C52H78N2Si2 (787.37): C 79.32, H 9.98, N 3.56; found: C 79.42, H 9.94, N

3.39.

4-Iodo-iV-isopropylaniline (46)

NH(i-Pr)

<>I

A mixture of 4-iodoaniline (2.00 g, 9.1 mmol), 2-iodopropane (24.9 g, 14.7 mL, 147 mmol),

and Na2C03 (2.24 g, 21.2 mmol) in ethanol (50 mL) was stirred for 30 h at 80 °C. The

solvent was removed in vacuo and the residue mixed with hexanes (200 mL) and filtered.

The filtrate was concentrated in vacuo and subjected to CC (SiÛ2; hexanes/EtOAc 10:1) to

afford 46 (1.68 g, 71%).

Colorless oil.

Rf = 0.46 (Si02; hexanes/EtOAc 10:1).

UV/Vis (CHCI3): 262 (25300), 305 (2800).

IR(neat): 3401w, 2962w, 1586s, 1491s, 1293s, 1315s, 1292s, 1249s, 1181s, 808s.

lîî NMR (300 MHz, CDC13): 1.19 (d, J= 6.2 Hz, 6 H); 3.48 (br s, 1 H); 3.57 (m, 1 H); 6.36

(dd, J = 6.8, 2.1 Hz, 2 H); 7.40 (dd, J = 6.8, 2.1 Hz, 2 H).

13C NMR (75 MHz, CDCI3): 23.01; 44.33; 77.36; 115.58; 137.98; 147.23.

EI-MS (70 eV): 261.0 (70) [M]+, 246.0 (100) [M- CH3]+.

Anal. calc. for C9H12IN (261.11): C 41.40, H 4.63, N 5.36; found: C 41.37, H 4.70, N 5.40.

4-Iodo-AyV-diisopropylaniline (47)

N(/-Pr)2

I

4-Iodo-iV-isopropylaniline (46) (1.68 g, 6.42 mmol), 2-iodopropane (10.9 g, 6.4 mL, 64.1

mmol), and Na2C03 (1.23 g, 11.6 mmol) in ethanol (30 mL) were stirred for 46 h at 80 °C.

Page 155: Two-dimensional acetylenic scaffolding - Research Collection

130 Experimental Part

The solvent was removed in vacuo and the oily residue purified by CC (Si02; hexanes/EtOAc

15:1) to afford 47 (603 mg, 31%).

White solid.

Rf = 0.59 (Si02; hexanes/EtOAc 10:1).

M.p. 40-41 °C.

UV/Vis (CHC13): 278 (17900), 310 (sh, 2900).

IR(neat): 2968w, 1584s, 1495s, 1384w, 1367w, 1317s, 1293s, 1189s, 1153s, 1123s, 1024>v,

811s, 786s.

!H NMR (300 MHz, CDC13): 1.21 (d, J = 6.8 Hz, 12 H); 3.76 (sept, J= 6.8 Hz, 2 H); 6.63

(dd, J= 7.0, 2.2 Hz, 2 H); 7.42 (dd, J= 7.0, 2.2 Hz, 2 H).

13C NMR (75 MHz, CDCI3): 21.25; 47.49; 78.56; 120.01; 136.98; 147.53.

ESI-MS: 304.2 (100) [MH]+.

Anal. calc. for d2Hi8IN (303.19): C 47.54, H 5.98, N 4.62; found: C 47.53, H 5.89, N 4.80.

4-{(3Z)-4-{[4-(Diisopropylamino)phenyl]ethynyl}-8-(triisopropylsilyl)-3-[4-(triisopropyl-

sily^buta-l^-diyn-l-ylJoct-S-ene-l^^-triyn-l-ylj-A^^-diisopropylaniline (50)

(,-Pr)3SK^N(,-Pr)2

('-Pr)3Sr- -N(,-Pr)2

To a cooled solution (0 °C) of 45 (500 mg, 0.635 mmol) in moist THF (30 mL), «Bu4NF (1 M

in THF, 1.90 mL) was added. After stirring for 20 min, CH2C12 (100 mL) was added, the

mixture was filtered through a plug (Si02; CH2C12), and the solvents were removed in vacuo.

The residue was dissolved in dry DMF (130 mL), and NH2OH HCl (441 mg, 6.35 mmol),

«BuNH2 (1.39 g, 1.90 mL, 19.1 mmol), and l-bromo-2-(triisopropylsilyl)ethyne (49) (1.66 g,

6.35 mmol) were added. The mixture was thoroughly degassed (3 freeze-pump-thaw cycles).

CuCl (629 mg, 6.35 mmol) was added and the mixture stirred for 26 h at 20 °C. The mixture

was poured into H20 (1 L), sat. aq. NaCl (200 mL) was added, and the mixture extracted with

EtOAc (5 x 200 mL). The combined organic layers were washed with sat. aq. NaCl (2 x 250

mL), dried (MgS04), and concentrated in vacuo to leave a deep-red solid. CC (Si02;

hexanes/EtOAc 10:1) afforded 50 (305 mg, 57%).

Page 156: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 131

Deep-red solid.

Rf = 0.25 (Si02; hexanes/EtOAc 20:1).

M.p. 78-81 °C.

UV/Vis (CH2C12): 307 (39000), 326 (sh, 32300), 364 (sh, 14500), 388 (14500), 462 (21300),

536 (27300).

IR (neat): 2940w, 2864w, 2161s, 2088w, 1600s, 1516s, \463m, 1418w, 1368w, \329m,

1293s, 1187w, 1153s, 1117s, 1016jw, 996m, 882w, 818s.

!H NMR (300 MHz, CDC13): 1.10 (s, 42 H); 1.28 (d, J= 6.9 Hz, 24 H); 3.89 (sept, J = 6.9

Hz, 4 H); 6.74 (d, J= 9.0 Hz, 4 H); 7.34 (d, J= 9.0 Hz, 4 H).

13C NMR (75 MHz, CDC13): 11.49; 18.75; 21.27; 47.60; 73.31; 82.69; 86.64; 89.88; 93.12;

104.01; 109.10; 115.52; 116.97; 132.92; 149.09.

HR-ESI-MS: 835.5765 ([MH]+, C56H79N2Si2+, cale. 835.5782).

Anal. cale, for C56H78N2Si2 (835.42): C 80.51, H 9.41, N 3.35; found: C 80.26, H 9.29, N

3.28.

4,4,,4M,4,M-(Cyclododeca-l,7-diene-3,5,9,ll-tetrayne-l,2,7,8-tetrayltetraethyne-2,l-diyl)-

tetrakis(AyV-diisopropylaniline) (51)

4,4',4",4'",4"",4 -(Cyclooctadeca-l,7,13-triene-3,5,9,ll,15,17-hexayne-l,2,7,8,13,14-

hexaylhexaethyne-2,l-diyl)hexakis-(AyV-diisopropylaniline) (52)

(/-Pr)2N N(;-Pr)2

To a cooled solution (0 °C) of 45 (90 mg, 0.114 mmol) in moist THF (10 mL), «Bu4NF (1 M

in THF, 0.35 mL) was added. After stirring for 15 min, CH2CI2 (50 mL) was added and the

mixture filtered through a plug (Si02; CH2C12). Solvents were evaporated in vacuo, and the

residue was dissolved in acetone (150 mL). Hay catalyst (3 mL) was added and the mixture

stirred exposed to air for 2 h at 20 °C. The deep-purple solution was filtered through a plug

Page 157: Two-dimensional acetylenic scaffolding - Research Collection

132 Experimental Part

(Si02; acetone) and evaporated in vacuo. The residue was subjected to CC (Si02;

CH2Cl2/EtOAc 99:1 -> 98:2) to afford 51 (14.1 mg, 26%) and 52 (24.8 mg, 46%).

[12]Annulene 51

Deep-purple metallic solid.

Rf = 0.79 (Si02; CH2Cl2/EtOAc 99:1).

UV/Vis (CH2C12): 336 (55100), 440 (22700), 550 (34400), 600 (23000).

IR (neat): 2965w, 2926w, 2863w, 2\52m, 2128s, 1595s, \5\5s, \406m, 1368w, \329m,

12925, 1186w, 11525, 1112s, 1019w, 936w, 816*.

'HNMR (300 MHz, CDC13): 1.27 (d, J= 6.8 Hz, 48 H); 3.87 (sept, J= 6.8 Hz, 8 H); 6.70 (d,

J= 9.0 Hz, 8 H); 7.22 (d, J= 9.0 Hz, 8 H).

13C NMR (125 MHz, CDC13): 21.07; 47.45; 84.90; 87.94; 94.72; 104.71; 108.82; 115.74;

121.50; 132.68; 148.94.

HR-MALDI-MS (DCTB): 944.5764 ([M]+, C68H72N4+, calc. 944.5757).

[18]Annulene 52

Deep-purple metallic solid.

Rf = 0.68 (Si02; CH2Cl2/EtOAc 98:2).

M.p. 218°C(decomp.).

UV/Vis (CH2C12): 304 (90400), 375 (46700), 553 (136100), 573 (sh, 131000).

IR(neat): 2968w, 2931w, 2160s, 1596s, 1515s, 1407w, 1367w, 1328w, 1292s, 1185w, 1151s,

1136s, 1115s, 1066s, 1017w, 815s.

'HNMR (300 MHz, CDCI3): 1.32 (d,J= 6.9 Hz, 72 H); 3.93 (m, 12 H); 6.81 (d,J= 9.0 Hz,

12 H); 7.47 (d, J= 9.0 Hz, 12 H).

13C NMR (75 MHz, CDC13): 21.31; 47.65; 83.75; 85.83; 87.16; 105.20; 109.35; 115.59;

116.38; 133.07; 149.16.

HR-MALDI-MS (DCTB): 1417.8653 ([M]+, Cio2Hi08N6+, calc. 1417.8669).

Anal. calc. for Cio2Hio8N6 (1418.02): C 86.40, H 7.68, N 5.93; found: C 86.39, H 7.75, N

5.97.

Page 158: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 133

[Cu2(//-Cl)] Complex of bis{//-[(3Z)-3,4-bis{[4-(diisopropylamino)phenyl]ethynyl}hex-3-

ene-l,5-diyne-l,6-diyl-ÄC1:ÄC6]}{bis[propane-l,3-diylbis(diphenylphosphine-ÄP)]}di-

platinum(II) (54)

To a cooled solution (0 °C) of 45 (150 mg, 0 191 mmol) in moist THF (15 mL), «Bu4NF (1 M

in THF, 0 60 mL) was added After stirring for 15 min, CH2C12 (50 mL) was added and the

mixture was filtered through a plug (Si02, CH2CI2) Solvents were removed in vacuo, and

the residue was dissolved in diisopropylamine (200 mL) The mixture was deoxygenated

thoroughly by Ar bubbling through for 30 min Cis-[\,3-

bis(diphenylphosphino)propane]dichloroplatinum(II) (53) (129 mg, 0 191 mmol) and Cul (18

mg, 0 095 mmol) were added, and the reaction mixture was stirred for 24 h at 50 °C The

reaction mixture was kept overnight at -20 °C, the formed brown precipitate was filtered off

and dried in vacuo The resulting brown powder was suspended in CH2C12 (100 mL),

undissolved impurities were removed by filtration, and the filtrate was concentrated in vacuo

The crude product was purified by multiple crystallizations from CHCI3 solution by diffusion

of EtOAc vapors at 20 °C to yield 54 (13 mg, 14%)

Orange needles

Mp > 220 °C (decomp )

UV/Vis (CH2C12) 300 (sh, 56300), 312 (59500), 421 (46000), 466 (34700)

IR (neat) 2967w, 2930w, 2863w, 2323w, 2168w, 1980>v, 1599s, 1515s, 1434s, 1367w,

1328w, 1292s, 1186OT, 1152s, 1102s, 1018w, 970w, 818w

lîî NMR (500 MHz, CD2C12) 1 28 (d, J= 6 8 Hz, 48 H), 2 12 (br s, 4 H), 2 58 (m, 4 H), 2 66

(m, 4 H), 3 88 (sept, J = 6 8 Hz, 8 H), 6 73 (d, J = 9 0 Hz, 8 H), 7 07 (d, J = 9 0 Hz, 8 H),

7 33-7 51 (m, 24 H), 7 70-7 79 (m, 16 H)

13C NMR (125 MHz, CD2C12) 2124, 25 22 (m), 47 87, 84 98, 10163, 109 48, 115 78,

117 84, 128 85 (m), 129 29 (m), 130 45 (m), 131 67, 131 73, 132 60, 133 69, 134 07, 149 12

31P NMR (202 5 MHz, CD2C12) -10 72 (V(195Pt,31P) = 2339 Hz)

195Pt NMR (53 8 MHz, CD2C12) -4695 (\/(195Pt,31P) = 2322 Hz)

Page 159: Two-dimensional acetylenic scaffolding - Research Collection

134 Experimental Part

HR-MALDI-MS (3-HPA): 2322.6327 (25, [M], Ci22Hi24N4P4ClCu2Pt2+, calc. 2322.6362),

2223.7368 (100, [M- CuCl]+, Ci22Hi24N4P4CuPt2+, calc. 2223.7389), 2159.8379 (2, [MH-

Cu2Cl]+, Ci22Hi25N4P4Pt2+, calc. 2159.8162).

Anal. calc. for CmHmN^ClCu^trl.S CHC13 (2501.98): C 59.29, H 5.06, N 2.24, CI 7.79,

Cu 5.08, Pt 15.59; found: C 59.28, H 4.81, N 2.35, CI 4.69, Cu 5.62, Pt 10.00.

AyV-Dihexyl-4-[(triisopropylsilyl)buta-l,3-diyn-l-yl]aniline (56)

(C6H13)2N^^> — —

Si(>-Pr)3

To 4-ethynyl-jV,jV-dihexylaniline (57) (3.53 g, 12.4 mmol) and (triisopropylsilyl)acetylene

(11.3 g, 61.8 mmol), Hay catalyst (750 mL) was added. The mixture was stirred for 7 h at

20 °C, filtered through a plug (Si02; acetone), and the solvent removed in vacuo. The residue

was subjected to CC (Si02; hexanes/CH2Cl2 20:1) to yield 56 (3.70 g, 64%).

Yellow oil.

Rf = 0.30 (Si02; hexanes/CH2Cl2 20:1).

UV/Vis (CH2C12): 330 (sh, 35000), 349 (51600).

IR (neat): 2928w, 2863w, 2\92m, 2097w, 1603s, \5\9m, \464w, \404w, 1368>v, 1295>v,

\254w, US9m, 996w, 883w, 812w.

1HNMR(300MHz, CDCI3): 0.90 (t, J= 6.5 Hz, 6 H); 1.11 (s, 21 H); 1.32 (s, 12 H); 1.57 (m,

4 H); 3.26 (t, J= 7.6 Hz, 4 H); 6.51 (d, J= 9.0 Hz, 2 H); 7.34 (d, J= 9.0 Hz, 2 H).

13C NMR (75 MHz, CDC13): 11.58; 14.22; 18.81; 22.87; 26.96; 27.33; 31.88; 51.11; 72.97;

77.88; 86.26; 90.75; 106.38; 111.21; 134.39; 148.69.

HR-EI-MS (70 eV): 465.3784 ([M]+, C3iH5iNSi+, calc. 465.3791).

Anal. calc. for C3iH5iNSi (465.83): C 79.93, H 11.04, N 3.01; found: C 80.08, H 11.15, N

3.10.

Page 160: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 135

4,4',4"-(Benzene-l,3,5-triyltributa-l,3-diyne-4,l-diyl)tris(Ar^V-dihexylaniline) (61)

N(C6H13)2

(C6H13)2N^ ^

N(C6H13)2

General procedure GPla, starting from 56 (690 mg, 1.48 mmol), 1,3,5-triiodobenzene (58)

(150 mg, 0.33 mmol), Cul (19 mg, 0.099 mmol), and [PdCl2(PPh3)2] (46 mg, 0.066 mmol) in

diisopropylamine (50 mL) stirred for 22 h at 60 °C and purified by CC (Si02;

hexanes/CH2Cl2 4:1 -> 2:1) to give 61 (272 mg, 83%).

Yellow greasy solid.

Rf = 0.63 (Si02; hexanes/CH2Cl2 4:1).

UV/Vis (CH2C12): 260 (48800), 272 (53300), 289 (57300), 309 (sh, 65000), 344 (102000),

370 (sh, 99000), 398 (130000).

IR (neat): 2952w, 2924w, 2855w, 2204s, 2138w, 1598s, 1573w, 1517s, \465m, 1413w,

1401w, 1365w, 1293w, 1254w, 1227w, 1195s, 1163w, 1107w, 1057w, 979w, 875w, 847w,

810s.

lîî NMR (300 MHz, CDC13): 0.92 (t, J = 6.5 Hz, 18 H); 1.33 (s, 36 H); 1.59 (jw, 12 H); 3.28

(t, J= 7.6 Hz, 12 H); 6.54 (d, J= 9.0 Hz, 6 H); 7.38 (J, J= 9.0 Hz, 6 H); 7.52 (s, 3 H).

13C NMR (75 MHz, CDC13): 14.21; 22.84; 26.91; 27.28; 31.83; 51.04; 71.77; 76.44; 78.72;

84.88; 106.07; 111.06; 123.47; 134.09; 135.25; 148.57.

HR-MALDI-MS (3-HPA): 1000.7458 ([MH]+, C72H94N3+, calc. 1000.7448).

Page 161: Two-dimensional acetylenic scaffolding - Research Collection

136 Experimental Part

4,4,,4M,4,M-(Benzene-l,2,4,5-tetrayltetrabuta-l,3-diyne-4,l-diyl)tetrakis(iV^V-

dihexylaniline) (62)

T

(C6H13)2N"-" v

N(C6H13)2

General procedure GPla, starting from 56 (720 mg, 1.55 mmol), 1,2,4,5-tetraiodobenzene

(59) (150 mg, 0.26 mmol), Cul (15 mg, 0.077 mmol), and [PdCl2(PPh3)2] (36 mg, 0.051

mmol) in diisopropylamine (50 mL) stirred for 24 h at 60 °C and purified by CC (Si02;

hexanes/CH2Cl2 5:1 -> 2:1) to give 62 (82 mg, 24%).

Orange greasy solid.

Rf = 0.50 (Si02; hexanes/CH2Cl2 2:1).

UV/Vis (CH2C12): 295 (sh, 62000), 333 (sh, 134800), 350 (161400), 397 (94000), 464

(114300).

IR(neat): 2924w, 2854w, 2192s, 2138>v, 1596s, 1519s, 1483s, \465m, \402m, 1363s, \293m,

\254m, \221w, \\99m, 111As, 1107w, 1020>v, 994w, 896w, 810s.

lîî NMR (300 MHz, CDC13): 0.92 (t, J= 6.4 Hz, 24 H); 1.33 (s, 48 H); 1.59 (m, 16 H); 3.28

(t, J= 7.6 Hz, 16 H); 6.54 (d, J= 9.0 Hz, 8 H); 7.40 (d, J= 9.0 Hz, 8 H); 7.58 (s, 2 H).

13C NMR (75 MHz, CDC13): 14.25; 22.89; 26.98; 27.36; 31.89; 51.16; 72.59; 78.31; 81.66;

87.12; 106.50; 111.28; 125.40; 134.41; 137.23; 148.88.

HR-MALDI-MS (3-HPA): 1307.9766 ([MH]+, C94H123N/, cale. 1307.9748).

Page 162: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 137

4,4',4",4'",4"",4 -(Benzene-l,2,3,4,5,6-hexaylhexabuta-l,3-diyne-4,l-diyl)hexakis-

(AyV-dihexylaniline) (63)

4,4,,4M,4,M,4MM-(Benzene-l,2,3,4,5-pentaylpentabuta-l,3-diyne-4,l-diyl)pentakis(iV^V-

dihexylaniline) (64) [215]

N(C6H13)2 N(C6H13)2

(C6H13)2N

(C6H13)2N

N(C6H13)2 (C6H13)2N

N(C6H13)2 (C6H13)2N

N(C6H13)2

N(C6H13)2

To a solution of 56 (558 mg, 1.20 mmol) in THF (20 mL), «Bu4NF (1.0 M in THF, 3.6 mL)

was added. The mixture was stirred for 20 min at 0 °C, diluted with CH2CI2, and filtered

through a plug (SiÛ2; CH2CI2), and the solvents were removed in vacuo. The residue was

dissolved in triethylamine (2 mL) and the solution deoxygenated thoroughly by bubbling Ar

through for 30 min. In a separate flask were placed hexaiodobenzene (60) (100 mg, 0.12

mmol), {Pd[P(o-Tol)3]2} (13 mg, 0.02 mmol), Cul (11 mg, 0.06 mmol), anhydrous NMP (6

mL), and the mixture was deoxygenated thoroughly by bubbling Ar through for 30 min. To

this mixture, the deprotected butadiyne in triethylamine was added and the reaction was

stirred under Ar for 16 h at 60 °C. The mixture was diluted with CH2CI2, and washed with

H20 (10 x 30 mL) and sat. aq. NaCl solution (30 mL). The organic phase was dried

(MgS04), filtered, and concentrated in vacuo. Multiple CC (Si02; 3 x hexanes/CH2Cl2

4:1 -> 2:1) afforded 63 (14.4 mg, 6%) and 64 (23.7 mg, 12%).

63

Deep-red greasy solid.

Rf = 0.45 (Si02; hexanes/CH2Cl2 2:1).

UV/Vis (CH2C12): 284 (sh, 101300), 339 (288300), 354 (301700), 471 (243500), 495 (sh,

234900).

Page 163: Two-dimensional acetylenic scaffolding - Research Collection

138 Experimental Part

R (neat): 2950w, 2923w, 2854w, 2184s, 1598s, 1519s, 1465w, 1422w, 1401w, 1365w,

1294w, 1254w, 1227w, 1189s, 1106w, 1072w, 810s.

lîî NMR (500 MHz, CDC13): 0.88 (t, J= 6.7 Hz, 36 H); 1.30 (s, 72 H); 1.51 (m, 24 H); 3.24

(t, J= 7.7 Hz, 24 H); 6.50 (d, J= 9.0 Hz, 12 H); 7.40 (d, J= 9.0 Hz, 12 H).

13C NMR (125 MHz, CDC13): 14.00; 22.68; 26.85; 27.19; 31.68; 50.97; 73.09; 77.33; 85.45;

88.23; 106.84; 111.09; 128.50; 134.34; 148.64.

HR-MALDI-MS (3-HPA): 1922.4250 ([M]+, Ci38Hi8oN6+, calc. 1922.4264).

64

Deep-orange greasy solid.

Rf = 0.48 (Si02; hexanes/CH2Cl2 2:1).

UV/Vis (CH2C12): 332 (198000), 351 (209800), 449 (166300).

IR (neat): 2924w, 2854w, 2185s, 2\36m, 1596s, \5\9m, \444m, UISm, \40\m, \364m,

\293m, \254m, \221m, 121 lw, 1184s, 1097w, 1055w, 999w, 98lw, 886w, 810s.

lîî NMR (500 MHz, CDC13): 0.90 (t, J= 6.2 Hz, 30 H); 1.31 (s, 60 H); 1.58 (m, 20 H); 3.27

(t, J= 7.5 Hz, 20 H); 6.53 (d, J= 9.0 Hz, 10 H); 7.41 (m, 10 H); 7.50 (s, 1 H).

13C NMR (125 MHz, CDC13): 14.00; 22.66; 26.77; 27.17; 31.67; 50.96; 72.47; 72.87; 72.99;

77.43; 77.98; 81.49; 84.21; 85.50; 86.95; 87.43; 88.22; 106.46; 106.78; 111.09; 111.11;

125.61; 128.22; 129.78; 134.24; 134.30; 135.89; 148.62; 148.65; 148.70.

HR-MALDI-MS (3-HPA): 1614.1929 ([MH]+, Cii6Hi5iN5+, calc. 1614.1964).

4,4',4M-[Nitrilotris(4,l-phenylenebuta-l,3-diyne-4,l-diyl)]tris(Arr/V-dihexylaniline) (66)

(C6H13)2N

N(C6H13)2

N(C6H13)2

General procedure GPla, starting from 56 (336 mg, 0.72 mmol), tris(4-iodophenyl)amine

(69) (100 mg, 0.16 mmol), Cul (9.0 mg, 0.048 mmol), and [PdCl2(PPh3)2] (22 mg, 0.032

Page 164: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 139

mmol) in diisopropylamine (25 mL) stirred for 16 h at 20 °C and purified by CC (Si02;

hexanes/CH2Cl2 4:1) to give 66 (194 mg, 100%).

Orange greasy solid.

Rf = 0.33 (Si02; hexanes/CH2Cl2 4:1).

UV/Vis (CH2C12): 287 (40600), 343 (90600), 387 (sh, 166000), 410 (200000).

IR (neat): 2924w, 2853w, 2201w, 2127w, 1567s, 1520w, 1499s, 1464w, 1402w, 1365w,

1315s, 1286s, 1172s, 1105w, 983w, 887w, 829w, 809s.

lîî NMR (500 MHz, CDC13): 0.89 (t, J = 6.8 Hz, 18 H); 1.30 (s, 36 H); 1.55 (w, 12 H); 3.25

(f, 7= 7.7 Hz, 12 H); 6.50 (d, 7= 9.1 Hz, 6 H); 6.99 (d, J= 8.8 Hz, 6 H); 7.33 (d, J= 9.1 Hz,

6 H); 7.37 (d, J= 8.8 Hz, 6 H).

13C NMR (125 MHz, CDC13): 14.01; 22.65; 26.77; 27.16; 31.67; 50.95; 72.01; 74.85; 80.61;

83.89; 106.69; 111.12; 117.25; 124.02; 133.54; 133.97; 146.72; 148.50.

HR-MALDI-MS (DCTB): 1166.8096 ([M]+, C84Hio2N4+, calc. 1166.8104).

Anal. calc. for C84Hio2N4 (1167.76): C 86.40, H 8.80, N 4.80; found: C 86.12, H 8.56, N

4.82.

4,4',4"-[Benzene-l,3,5-triyltris(l,4-phenylenebuta-l,3-diyne-4,l-diyl)]tris(Arr/V-

dihexylaniline) (67)

(C6H13)2N

N(C6H13)2

N(C6H13)2

General procedure GPla, starting from 56 (306 mg, 0.658 mmol), l,3,5-tris(4-

iodophenyl)benzene (70) (100 mg, 0.146 mmol), Cul (8.0 mg, 0.044 mmol), and

[PdCl2(PPh3)2] (20 mg, 0.029 mmol) in diisopropylamine (25 mL) stirred for 14 h at 20 °C

and purified by CC (Si02; hexanes/CH2Cl2 3:1) to give 67 (132 mg, 74%).

Page 165: Two-dimensional acetylenic scaffolding - Research Collection

140 Experimental Part

Orange solid.

Rf = 0.35 (Si02; hexanes/CH2Cl2 3:1).

M.p. 64-66 °C.

UV/Vis (CH2C12): 281 (sh, 72000), 300 (106200), 317 (139000), 342 (165300), 370 (sh,

155000), 392(176400).

IR (neat): 2925w, 2854w, 2200w, 2140w, 1598s, 1520s, 1505s, 1463w, 1401w, 1363w,

\293m, \253m, 1177s, 1106w, 1008w, 984w, 886w, 809s.

lîî NMR (300 MHz, CDC13): 0.92 (t, J = 6.3 Hz, 18 H); 1.32 (s, 36 H); 1.56 (jw, 12 H); 3.28

(t,J= 7.6 Hz, 12 H); 6.54 (d, J = 9.0 Hz, 6 H); 7.38 (J, J= 8.7 Hz, 6 H); 7.60-7.68 (m, 12

H); 7.77 (s, 3 H).

13C NMR (75 MHz, CDC13): 14.24; 22.87; 26.96; 27.33; 31.88; 51.15; 72.10; 76.09; 80.70;

84.57; 106.65; 111.29; 122.08; 125.36; 127.41; 133.02; 134.23; 141.03; 141.84; 148.74.

HR-MALDI-MS (3-HPA): 1228.8405 ([MH]+, C9oHio6N3+, calc. 1228.8387).

Anal. calc. for C90H105N3 (1228.84): C 87.97, H 8.61, N 3.42; found: C 87.69, H 8.40, N

3.43.

4,4',4",4m,4"",4 -[Benzene-l,2,3,4,5,6-hexaylhexakis(l,4-phenylenebuta-l,3-diyne-

4,l-diyl)]hexakis(AyV-dihexylaniline)(68)

(C6H13)2N

(C6H13)2N

N(C6H13)2

N(C6H13)2

N(C6H13)2

N(C6H13)2

General procedure GPla, starting from 56 (162 mg, 0.349 mmol), hexakis(4-

iodophenyl)benzene (71) (50 mg, 0.039 mmol), Cul (2.0 mg, 0.012 mmol), and

Page 166: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 141

[PdCl2(PPh3)2] (5.5 mg, 0.008 mmol) in diisopropylamine (20 mL) stirred for 14 h at 50 °C

and purified by CC (Si02; hexanes/CH2Cl2 4:1) to give 68 (50 mg, 54%).

Orange solid.

Rf = 0.68 (Si02; hexanes/CH2Cl2 1:1).

M.p. 207-209 °C (decomp.).

UV/Vis (CH2C12): 274 (117000), 292 (133200), 315 (sh, 170000), 342 (248000), 361

(232400), 386(240000).

IR (neat): 2924w, 2854w, 2357w, 2324w, 2201w, 2138>v, 1599s, 1519*, 1509s, 1463w,

1401w, U66m, \293m, \254m, \226w, 1176s, \U9m, \\05m, 1007w, 983w, 861w, 837w,

809s.

lîî NMR (300 MHz, CDC13): 0.90 (t, J= 6.4 Hz, 36 H); 1.31 (s, 72 H); 1.56 (m, 24 H); 3.26

(t, J= 7.6 Hz, 24 H); 6.51 (d, J= 9.0 Hz, 12 H); 6.71 (d, J= 8.2 Hz, 12 H); 7.05 (d,J= 8.2

Hz, 12 H); 7.33 (d, J= 9.0 Hz, 12 H).

13C NMR (75 MHz, CDC13): 14.23; 22.86; 26.95; 27.32; 31.87; 51.13; 72.18; 75.32; 80.90;

83.83; 106.99; 111.24; 120.13; 131.32; 133.09; 134.18; 136.48; 140.31; 148.57.

HR-MALDI-MS (DCTB): 2377.6111 ([M]+, Ci74H2o4N6+, cale. 2377.6142).

4,4'-({5-[4-(Trimethylsilyl)buta-l,3-diyn-l-yl]-l,3-phenylene}dibuta-l,3-diyne-4,l-

diyl)bis(AyV-dihexylaniline) (72)

(CeH13)2N' ^~" ^N(C6H13)2

General procedure GPlb, starting from l,4-bis(trimethylsilyl)buta-l,3-diyne (338 mg, 1.74

mmol), iododerivative 76 (285 mg, 0.35 mmol), Cul (2 mg, 0.01 mmol), and [PdCl2(PPh3)2]

(12 mg, 0.02 mmol) in diisopropylamine (30 mL) stirred for 18 h at 20 °C and purified by CC

(Si02; hexanes/CH2Cl2 1:4) to give 72 (234 mg, 83%).

Brown viscous oil.

Rf = 0.38 (Si02; hexanes/CH2Cl2 2:1).

Page 167: Two-dimensional acetylenic scaffolding - Research Collection

142 Experimental Part

UV/Vis (CH2C12): 257 (53800), 270 (69400), 286 (85200), 303 (82900), 344 (95000), 372

(sh, 84000), 397 (103800).

IR (neat): 2951w, 2925w, 2855w, 2203s, 2137w, 2100>v, 1598s, 1574w, 1517s, 1464w,

1401w, 1363w, 1293w, 1249w, 1195w, 1181w, 1164w, 1107>v, 1074>v, 842s, 810s.

'HNMR (300 MHz, CDCI3): 0.25 (s, 9 H); 0.91 (t, J= 6.4 Hz, 12 H); 1.32 (s, 24 H); 1.58 (m,

8 H); 3.28 (t, J= 7.6 Hz, 8 H); 6.53 (d, J= 9.0 Hz, 4 H); 7.37 (d, J= 9.0 Hz, 4 H); 7.50 (d, J

= 1.5 Hz, 2H);7.54(r,J= 1.5 Hz, 1 H).

13C NMR (75 MHz, CDC13): -0.26; 14.24; 22.88; 26.96; 27.33; 31.88; 51.15; 71.84; 74.74;

75.55; 76.84; 78.61; 85.26; 87.62; 91.96; 106.19; 111.29; 122.58; 123.88; 134.36; 135.81;

136.20; 148.90.

HR-MALDI-MS (3-HPA): 813.5533 ([MH]+, CstH^S^, calc. 813.5538).

Anal. calc. for Csy^NîSi (813.29): C 84.18, H 8.92, N 3.44; found: C 83.91, H 8.81, N

3.36.

l-(3,5-Diiodophenyl)-3,3-diethyltriaz-l-ene (74)

N3Et2

A,3,5-Diiodoaniline (73) (5.0 g, 14.5 mmol) was dissolved in a mixture of Et20/THF/MeCN

(7:6:1, 100 mL), then cone. HCl (11 mL) was added and the solution cooled to -5 °C. A

solution of NaNC-2 (3.4 g, 49.3 mmol) in MeCN/H20 (2:3, 25 mL) was added slowly and the

mixture stirred for 1.5 h at -5 °C. The mixture was poured into a cold solution of K2CO3

(10.0 g, 72.5 mmol) and diethylamine (5.3 g, 7.5 mL, 72.5 mmol) in MeCN/H20 (2:1, 150

mL). After stirring for 3 h at 20 °C, the mixture was extracted with CH2CI2 (3 x 100 mL),

dried (MgS04), filtered, and concentrated in vacuo. The crude product was purified by CC

(Si02; hexanes/CH2Cl2 1:1 -> 1:2) to yield triazene 74 (3.4 g, 55%) as a mixture of EIZ

isomers.

Brown oil.

Rf = 0.83 (Si02; hexanes/CH2Cl2 1:2).

IR (neat): 2972w, 293lw, 1563w, 1535w, 1463w, 1445w, 1419w, 1388s, 1348s, 1335s,

1318s, 1281w, 1182w, 1114s, 1076s, 989w, 954w, 901m, %14m, 842s, 818>v.

Page 168: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 143

lH NMR (300 MHz, CDC13): 1.26 (br s, 6 H); 3.74 (m, 4 H); 7.72 (d, 7= 1.5 Hz, 2 H); 7.75

(t, J= 1.5 Hz, 1H).

13C NMR (75 MHz, CDC13): 11.47 (br s); 14.77 (br s); 41.57 (br s); 49.49 (br s); 95.04;

129.14; 140.94; 153.47.

HR-EI-MS (70 eV): 428.9193 (22, [M]+, CioHi3l2N3+, cale. 428.9199).

Anal. cale, for C10H13I2N3 (429.04): C 27.99, H 3.05, N 9.79; found: C 28.04, H 3.03, N 9.74.

4,4'-({5-[3,3-Diethyltriaz-l-en-l-yl]-l,3-phenylene}dibuta-l,3-diyne-4,l-diyl)bis(iV^V-

dihexylaniline) (75)

(C6H13)2Nv v

N(C6H13)2

General procedure GPla, starting from 56 (4.00 g, 8.59 mmol), triazene 74 (1.50 g, 3.43

mmol), Cul (196 mg, 1.03 mmol), and [PdCl2(PPh3)2] (480 mg, 0.69 mmol) in

diisopropylamine (100 mL) stirred for 14 h at 20 °C and purified by CC (Si02;

hexanes/CH2Cl2 3:1 -> 2:1) to give 75 (2.59 g, 95%).

Yellow solid.

M.p. 102-104 °C.

Rf = 0.44 (Si02; hexanes/CH2Cl2 2:1).

UV/Vis (CH2C12): 273 (42400), 289 (53900), 307 (sh, 62200), 343 (103000), 357 (sh,

95000), 387(101500).

IR(neat): 2925w, 2855w, 2205w, 2138w, 1598s, 1519*, 1464w, 1447w, 1399s, 1366s, 1349s,

1294w, \253m, 1230w, 1188s, 1160w, 1107w, 1077w, 990w, 865w, 810s.

!H NMR (300 MHz, CDC13): 0.91 (t, J= 6.4 Hz, 12 H); 1.32 (br s, 30 H); 1.57 (m, 8 H); 3.27

(t,J= 7.6 Hz, 8 H); 3.76 (q, 7= 7.1 Hz, 4 H); 6.53 (d,J= 9.0 Hz, 4 H); 7.36 (t,J= 1.4 Hz, 1

H); 7.37 (d, J= 9.0 Hz, 4 H); 7.53 (d, 7= 1.4 Hz, 2 H).

13C NMR (75 MHz, CDC13): 14.24; 22.88; 26.97; 27.34; 31.88; 51.14; 72.11; 75.11; 80.38;

84.10; 106.66; 111.27; 123.29; 124.86; 132.12; 134.24; 148.73; 151.45 (18 out of 20 signals

expected).

HR-MALDI-MS (DCTB): 791.5872 ([M]+, Cs^Ns*, calc. 791.5866).

Page 169: Two-dimensional acetylenic scaffolding - Research Collection

144 Experimental Part

4,4'-[(5-Iodo-l,3-phenylene)dibuta-l,3-diyne-4,l-diyl]bis(Arr/V-dihexylaniline) (76)

To a solution of triazene 75 (500 mg, 0.63 mmol) in MeCN (30 mL) and CC14 (10 mL), Nal

(331 mg, 2.21 mmol) and Me3SiCl (205 mg, 250 uL, 1.89 mmol) were added. The mixture

was stirred under N2 at 60 °C for 20 min. Sat. aq. NaHCCh (20 mL) was added and the

mixture extracted with CH2CI2 (3 x 30 mL). The combined organic layers were dried

(MgSC^), filtered and the solvents removed in vacuo. The crude product was purified by CC

(Si02; hexanes/CH2Cl2 4:1) to afford 76 (257 mg, 50%).

Yellow viscous oil.

Rf = 0.38 (Si02; hexanes/CH2Cl2 4:1).

UV/Vis (CH2CI2): 271 (33400), 289 (33600), 310 (sh, 38000), 347 (66900), 371 (sh, 58000),

397 (71200).

IR (neat): 2950w, 2924w, 2854w, 2203s, 2138>v, 1599s, \516m, 1517s, 1464w, 1420w,

1401JW, 1367w, 1294w, 1254>v, \\96m, \\%6m, \\64m, 1107w, 81 \m.

'HNMR (300 MHz, CDCI3): 0.91 (t, J= 6.2 Hz, 12 H); 1.32 (s, 24 H); 1.58 (m, 8 H); 3.28 (t,

J= 7.6 Hz, 8 H); 6.54 (d,J= 9.0 Hz, 4 H); 7.37 (d, J= 9.0 Hz, 4 H); 7.53 (s, 1 H); 7.77 (s, 2

H).

13C NMR (75 MHz, CDC13): 14.26; 22.89; 26.98; 27.34; 31.90; 51.15; 71.83; 78.13; 85.51;

93.27; 106.18; 111.29; 124.88; 134.36; 134.82; 140.70; 148.91 (17 out of 18 signals

expected).

HR-MALDI-MS (3-HPA): 819.4098 ([MH]+, C5oH64IN2+, calc. 819.4109).

Anal. calc. for C5oH63IN2 (818.97): C 73.33, H 7.75, N 3.42; found: C 73.28, H 7.79, N 3.32.

Page 170: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 145

4,4',4",4'",4"",4 -[Benzene-l,3,5-triyltris(buta-l,3-diyne-4,l-diylbenzene-5,l,3-

triyldibuta-l,3-diyne-4,l-diyl)]hexakis(Ar^V-dihexylaniline) (77)

(C6H13)2N

(C6H13)2N

N(C6H13)2

N(C6H13)2

N(C6H13);

N(C6H13)2

General procedure GPla, starting from 72 (41.8 mg, 0.051 mmol), 1,3,5-triiodobenzene (58)

(5.2 mg, 0.011 mmol), Cul (0.6 mg, 0.003 mmol), and [PdCl2(PPh3)2] (1.5 mg, 0.002 mmol)

in diisopropylamine (5 mL) stirred for 22 h at 60 °C and purified by CC (SiÛ2;

hexanes/CH2Cl2 1:2) to give 77 (11.7 mg, 46%).

Deep-yellow greasy solid.

Rf = 0.55 (Si02; hexanes/CH2Cl2 2:1).

UV/Vis (CH2C12): 275 (sh, 128300), 291 (sh, 142000), 307 (sh, 159000), 321 (185900), 344

(226900), 375 (sh, 166400), 397 (180000).

IR (neat): 2923w, 2853w, 2203w, 2138w, 1598s, 1574w, 1516s, 1463w, 1402w, 1362w,

1293w, 1253w, 1187w, 1164w, 874w, 848w, 809s.

lîî NMR (300 MHz, CDC13): 0.91 (t, J= 6.4 Hz, 36 H); 1.31 (s, 72 H); 1.56 (m, 24 H); 3.27

(t, J= 7.6 Hz, 24 H); 6.53 (d, J= 9.0 Hz, 12 H); 7.37 (d, J= 9.0 Hz, 12 H); 7.56 (s, 9 H); 7.64

(s, 3 H).

13C NMR (125 MHz, CDC13): 14.01; 22.66; 26.76; 27.15; 31.67; 50.95; 71.68; 74.71; 75.48;

78.43; 79.60; 80.53; 85.05; 106.02; 111.12; 122.38; 122.93; 123.76; 123.93; 134.16; 135.57;

136.13; 136.53; 148.75.

HR-MALDI-TOF-MS (DCTB): 2293.2753 ([M]+, Ci68Hi92N6+, calc. 2293.5209).

Page 171: Two-dimensional acetylenic scaffolding - Research Collection

146 Experimental Part

4,4',4",4'",4"",4 ,4 ,4 -[Benzene-l,2,4,5-tetrayltetrakis(buta-l,3-diyne-4,l-

diylbenzene-5,l93-triyldibuta-l,3-diyne-4,l-diyl)]octakis(Ar^V-dihexylaniline) (78)

N(C6H13)2 (C6H13)2N

General procedure GPla, starting from 72 (50 mg, 0.061 mmol), 1,2,4,5-tetraiodobenzene

(59) (6.0 mg, 0.010 mmol), Cul (0.6 mg, 0.003 mmol), and [PdCl2(PPh3)2] (1.5 mg, 0.002

mmol) in diisopropylamine (5 mL) stirred for 15 h at 60 °C and purified by multiple CC

(Si02; hexanes/CH2Cl2 3:1) to give 78 (7.7 mg, 25%).

Yellow greasy solid.

Rf = 0.13 (Si02; hexanes/CH2Cl2 3:1).

UV/Vis (CH2C12): 273 (159000), 290 (165700), 309 (sh, 187000), 345 (300000), 374 (sh,

268000), 397 (305400).

IR (neat): 2924w, 2853w, 2202w, 2138>v, 1598s, \515m, 1516s, 1463w, 1402w, U62m,

1293w, 1253w, \226w, \\%%m, \\64m, 873w, 848w, 809s.

lîî NMR (500 MHz, CDC13): 0.89 (t, J= 6.5 Hz, 48 H); 1.29 (s, 96 H); 1.53 (m, 32 H); 3.24

(t, J= 7.7 Hz, 32 H); 6.50 (d, J= 9.0 Hz, 16 H); 7.34 (d,J= 9.0 Hz, 16 H); 7.55 (t,J= 1.5

Hz, 4 H); 7.58 (d, J= 1.5 Hz, 8 H); 7.69 (s, 2 H).

13C NMR (75 MHz, CDC13): 14.01; 22.65; 26.77; 27.16; 31.67; 50.95; 71.74; 74.89; 78.46;

78.54; 80.72; 82.79; 85.00; 106.24; 111.13; 111.58; 122.37; 123.80; 125.52; 134.18; 135.63;

136.28; 137.80; 148.69.

HR-MALDI-TOF-MS (DCTB): 3032.049 ([M]+, C222H254N8+, calc. 3032.012).

Page 172: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 147

4,4',4",4'",4"",4 -[Nitrilotris(4,l-phenylenebuta-l,3-diyne-4,l-diylbenzene-5,l,3-

triyldibuta-l,3-diyne-4,l-diyl)]hexakis(Ar^V-dihexylaniline) (80)

(C6H13)2N

(C6H13)2N

N(C6H13)2

N(C6H13)2

N(C6H13)2

General procedure GPlc, starting from 82 (30 mg, 0.049 mmol), iododerivative 76 (162 mg,

0.198 mmol), Cul (3.0 mg, 0.015 mmol), and [PdCl2(PPh3)2] (7.0 mg, 0.010 mmol) in

diisopropylamine (15 mL) stirred for 15 h at 20 °C and purified by CC (SiÛ2;

hexanes/CH2Cl2 5:1 -> 2:1) to give 80 (56 mg, 46%).

Yellow greasy solid.

Rf = 0.50 (Si02; hexanes/CH2Cl2 5:1).

UV/Vis (CH2C12): 273 (146700), 289 (151100), 307 (152800), 322 (sh, 160000), 344

(208600), 401 (346000).

IR (neat): 2924w, 2854w, 2202s, 2137w, 1598s, 1575s, 1517s, 1505s, 1463w, 1402w, 1362s,

1317JW, 1288w, 1254w, 1191s, 1163s, 1105w, 1057w, 979w, 873w, 830w, 809s.

!H NMR (300 MHz, CDC13): 0.92 (t, J= 6.5 Hz, 36 H); 1.31 (s, 72 H); 1.55 (m, 24 H); 3.27

(t, J= 7.6 Hz, 24 H); 6.53 (d, J= 8.7 Hz, 12 H); 7.05 (d, J= 8.4 Hz, 6 H); 7.37 (d, J= 8.7 Hz,

12 H); 7.45 (d, J= 8.4 Hz, 6 H); 7.55 (s, 9 H).

13C NMR (75 MHz, CDC13): 14.25; 22.88; 26.98; 27.34; 31.89; 51.15; 71.90; 74.01; 75.67;

78.73; 79.85; 82.49; 85.22; 106.24; 111.29; 116.59; 123.08; 123.86; 124.30; 134.20; 134.36;

135.65; 147.35; 148.89 (24 out of 26 signals expected).

HR-MALDI-MS (DCTB): 2461.5896 ([MH]+, Ci8oH2o2N7+, calc. 2461.6022).

Page 173: Two-dimensional acetylenic scaffolding - Research Collection

148 Experimental Part

4 4' 4" 4'" 4"" 4"" ' 4"" " 4"" »»» 4"" »»»» 4"" »»»» » 4"" »»»» »» 4"" »»»» '"-fRpn^pnp-

l,2,3,4,5,6-hexaylhexakis(l,4-phenylenebuta-l,3-diyne-4,l-diylbenzene-5,l93-triyldibuta-

l,3-diyne-4,l-diyl)]dodecakis(AyV-dihexylaniline) (81)

General procedure GPlc, starting from 83 (10 mg, 8.0 |imol), iododerivative 76 (59 mg, 72

|imol), Cul (4.0 mg, 22 |imol), and [PdCl2(PPh3)2] (10 mg, 14 |imol) in diisopropylamine (10

mL) stirred for 14 h at 60 °C and purified by CC (Si02; hexanes/CH2Cl2 5:1 -> 2:1) to give

81(4.3mg, 11%).

Yellow greasy solid.

Rf = 0.27 (Si02; hexanes/CH2Cl2 2:1).

UV/Vis (CH2C12): 262 (296100), 273 (322500), 289 (343700), 308 (405600), 328 (sh,

519000), 347 (588800), 395 (435300).

IR(neat): 2923w, 2852w, 2203s, 2138>v, 1598s, 1576s, 1517s, \465m, 1401w, 1363s, \293m,

\253m, \226w, 1191s, 1164s, 1106w, 1058>v, lOOôw, 874w, 835w.

lîî NMR (300 MHz, CDC13): 0.88 (t,J= 6.7 Hz, 72 H); 1.31 (br s, 144 H); 1.52 (m, 48 H);

3.25 (t,J= 7.7 Hz, 48 H); 6.51 (d, J= 9.0 Hz, 24 H); 6.76 (d, J= 8.0 Hz, 12 H); 7.11 (d, J =

8.0 Hz, 12 H); 7.35 (d, J= 9.0 Hz, 24 H); 7.53 (s, 18 H).

Page 174: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 149

liC NMR (125 MHz, CDC13): 14.01; 22.66; 26.77; 27.16; 31.67; 50.94; 71.74; 74.08; 75.27;

78.58; 79.56; 82.21; 84.86; 106.28; 111.14; 119.30; 122.89; 123.63; 131.16; 131.55; 134.15;

135.57; 136.38; 139.85; 140.67; 148.68 (26 out of 27 signals expected).

MALDI-TOF-MS (DCTB): 4965.34 ([M]+, C366H4o2Ni2+, calc. 4965.18).

4-[4-(Trimethylsilyl)buta-l,3-diyn-l-yl]-iV^V-bis{4-[4-(trimethylsilyl)buta-l,3-diyn-l-

yl] phenyl}aniline (82)

SiMe3

General procedure GPlb, starting from l,4-bis(trimethylsilyl)buta-l,3-diyne (468 mg, 2.40

mmol), tris(4-iodophenyl)amine (69) (100 mg, 0.16 mmol), Cul (9 mg, 0.048 mmol), and

[PdCl2(PPh3)2] (22 mg, 0.032 mmol) in diisopropylamine (30 mL) stirred for 13 h at 20 °C

and purified by CC (Si02; hexanes/CH2Cl2 5:1) to give 82 (98 mg, 100%).

Brown solid.

Rf = 0.54 (Si02; hexanes/CH2Cl2 5:1).

M.p. 100-105 °C (decomp.).

UV/Vis (CH2C12): 264 (22800), 279 (28800), 297 (25600), 381 (100700).

IR(neat): 2958w, 2197w, 2101w, 1591s, 1499s, 1409w, 1317s, 1288s, 1268w, 1246s, 1177w,

1105w, 1027w, 1009w, 826s.

lîî NMR (300 MHz, CDC13): 0.23 (s, 27 H); 6.98 (d, J= 8.7 Hz, 6 H); 7.37 (d, J= 8.7 Hz, 6

H).

13C NMR (75 MHz, CDC13): -0.18; 74.46; 76.72; 88.12; 90.99; 116.45; 124.23; 134.21;

147.25.

HR-MALDI-MS (DCTB): 605.2376 ([M]+, C39H39NSi3+, calc. 605.2385).

Anal. calc. for Cs^NSis (606.00): C 77.30, H 6.49, N 2.31; found: C 77.46, H 6.75, N

2.20.

Page 175: Two-dimensional acetylenic scaffolding - Research Collection

150 Experimental Part

Hexakis[4-(4-(trimethylsilyl)buta-l,3-diynyl)phenyl]benzene (83)

SiMe3

II

II

II

SiMe3

General procedure GPlb, starting from l,4-bis(trimethylsilyl)buta-l,3-diyne (180 mg, 0.93

mmol), hexakis(4-iodophenyl)benzene (71) (80 mg, 0.062 mmol), Cul (3.5 mg, 0.019 mmol),

and [PdCl2(PPh3)2] (9 mg, 0.012 mmol) in diisopropylamine (10 mL) stirred for 14 h at 60 °C

and purified by CC (Si02; hexanes/CH2Cl2 4:1 -> 2:1) to give 83 (52 mg, 67%).

Tan solid.

Rf = 0.42 (Si02; hexanes/CH2Cl2 2:1).

M.p. > 370 °C (decomp.).

UV/Vis (CH2C12): 274 (sh, 91600), 290 (159400), 310 (165200).

IR(neat): 2957w, 2894w, 2203w, 2103>v, 1399w, \249m, 1141w, 1106w, 1012w, 835s.

!H NMR (300 MHz, CDC13): 0.20 (s, 54 H); 6.66 (d, 7= 8.1 Hz, 12 H); 7.00 (d, 7= 8.1 Hz,

12 H).

13C NMR (75 MHz, CDC13): -0.22; 74.72; 76.73; 88.02; 90.90; 119.23; 131.21; 131.70;

139.90; 140.67.

HR-MALDI-TOF-MS (DCTB): 1254.489 ([M]+, CgÄSie^ cale. 1254.472).

Page 176: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 151

2,2'-[(5-{5,5-Dicyano-3-(dicyanomethylene)-4-[4-(dihexylamino)phenyl]pent-4-en-l-yn-

l-yl}-l,3-phenylene)-diethyne-2,l-diyl]bis{3-[4-(dihexylamino)phenyl]buta-l,3-diene-

l,l>4,4-tetracarbonitrile} (84)

N(C6H13)2

(C6H13)2N^^

General procedure GP2, starting from 61 (130 mg, 0.13 mmol) and TCNE (50 mg, 0.39

mmol) in CH2C12 (50 mL) stirred for 10 h at 20 °C and purified by CC (Si02; CH2Cl2/EtOAc

98:2) to give 84 (173 mg, 96%).

Black metallic solid.

Rf = 0.61 (Si02; CH2Cl2/EtOAc 98:2).

M.p. 110-113 °C.

UV/Vis (CH2C12): 283 (47000), 363 (77700), 460 (114300), 568 (16000).

IR(neat): 2928w, 2857w, 2213w, 2188w, 1600s, 1534>v, 1484s, 1445s, 141%, 1345s, 1276w,

1213w, 11835, lllSm, 978w, 888w, Sl9m.

lîî NMR (300 MHz, CDC13): 0.91 (t, J =6.7 Uz, 18 H); 1.33 (s, 36 H); 1.61 (m, 12 H); 3.40

(t, J= 7.8 Hz, 12 H); 6.70 (d, J= 9.4 Hz, 6 H); 7.76 (d, J= 9.4 Hz, 6 H); 7.93 (s, 3 H).

13C NMR (75 MHz, CDC13): 14.18; 22.78; 26.82; 27.48; 31.68; 51.74; 72.27; 86.62; 97.37;

109.88; 111.13; 112.54; 113.82; 114.52; 116.48; 122.01; 132.88; 139.28; 150.33; 153.59;

157.88 (21 out of 22 signals expected).

HR-MALDI-MS (3-HPA): 1384.7786 ([MH]+, C^H^N^, calc. 1384.7811).

Anal. calc. for C90H93N15 (1384.83): C 78.06, H 6.77, N 15.17; found: C 78.35, H 6.93, N

15.09.

Page 177: Two-dimensional acetylenic scaffolding - Research Collection

152 Experimental Part

2,2',2"-[(5-{5,5-Dicyano-3-(dicyanomethylene)-4-[4-(dihexylamino)phenyl]pent-4-en-l-

yn-1-yl} benzene-1,2,4-triyl)triethyne-2,1-diyl]tris {3-[4-(dihexylamino)phenyl]buta-1,3-

diene-l,l>4,4-tetracarbonitrile} (85)

(C6H13)2N^^ ^-'

N(C6H13)2

General procedure GP2, starting from 62 (50 mg, 0.038 mmol) and TCNE (20 mg, 0.153

mmol) in CH2C12 (25 mL) stirred for 18 h at 20 °C and purified by CC (Si02; CH2Cl2/EtOAc

98:2) to give 85 (68 mg, 98%).

Black metallic solid.

Rf = 0.59 (Si02; CH2Cl2/EtOAc 98:2).

M.p. 129-131 °C.

UV/Vis (CH2C12): 287 (72100), 372 (138600), 471 (189900), 634 (19400).

IR (neat): 2927w, 2856w, 2213s, 2186w, 1600s, \540m, 1484s, 1445s, 1414s, 1341*, 1262s,

12135, 11825, 1118a, 977w, 900m, S2lm.

lîî NMR (300 MHz, CDC13): 0.91 (t, J= 6.4 Hz, 24 H); 1.33 (s, 48 H); 1.63 (m, 16 H); 3.40

(t, J= 7.6 Hz, 16 H); 6.67 (d, J= 9.3 Hz, 8 H); 7.82 (d, J= 9.3 Hz, 8 H); 8.03 (s, 2 H).

13C NMR (75 MHz, CDC13): 14.18; 22.78; 26.81; 27.51; 31.68; 51.70; 71.60; 92.00; 98.81;

107.03; 109.93; 111.87; 112.53; 114.31; 114.78; 116.87; 125.61; 133.48; 139.26; 150.03;

153.79; 157.72.

HR-MALDI-MS (3-HPA): 1820.0185 ([MH]+, Cn8Hi23N2o+, calc. 1820.0234).

Anal. calc. for C118H122N20 (1820.40): C 77.86, H 6.75, N 15.39; found: C 77.97, H 7.01, N

15.10.

Page 178: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 153

2,2,,2",2,M-[(4-{5,5-Dicyano-3-(dicyanomethylene)-4-[4-(dihexylamino)phenyl]pent-4-

en-1-yn-1-yl}benzene-1,2,3,5-tetrayl)tetr aethyne-2,l-diyl] tetrakis {3- [4-(dihexylamino)-

phenyl]buta-l,3-diene-l,l94,4-tetracarbonitrile} (86)

N(C6H13)2

(C6H13)2N^^

General procedure GP2, starting from 64 (15.0 mg, 0.009 mmol) and TCNE (6.0 mg, 0.047

mmol) in CH2C12 (10 mL) stirred for 18 h at 20 °C and purified by CC (Si02; CH2Cl2/EtOAc

30:1) to give 86 (18.5 mg, 89%).

Black metallic solid.

Rf = 0.74 (Si02; CH2Cl2/EtOAc 30:1).

M.p. 118-122 °C.

UV/Vis (CH2C12): 382 (99600), 473 (153300), 638 (19200).

IR(neat): 2921m, 2856w, 22Um, 1600s, 1534>v, 1484s, 1445s, 1413s, 1341s, \295m, \259m,

1212s, 1183s, 1146s, 978w, 899w, %\lm.

lîî NMR (500 MHz, CDC13): 0.91 (t, J= 6.5 Hz, 30 H); 1.34 (s, 60 H); 1.64 (m, 20 H); 3.41

(m, 20 H); 6.70 (d, J = 9.5 Hz, 4 H); 6.72 (d, J = 9.5 Hz, 4 H); 6.78 (d,J=9.6 Hz, 2 H);

7.72-7.78 (m, 10 H); 8.03 (s, 1 H).

13C NMR (125 MHz, CDC13): 13.96; 22.58; 26.64; 27.30; 31.47; 51.55; 51.65; 71.57; 71.91;

72.03; 91.87; 93.32; 95.00; 98.86; 99.84; 99.91; 103.70; 103.87; 105.65; 109.40; 109.53;

109.60; 110.68; 111.06; 112.48; 112.60; 112.93; 113.93; 114.12; 114.21; 114.42; 114.56;

116.70; 116.87; 117.07; 126.24; 127.63; 127.84; 132.98; 133.05; 133.16; 140.02; 148.65;

148.80; 149.30; 153.59; 153.74; 153.90; 156.48; 156.60; 157.20 (51 signals out of 64

expected).

HR-MALDI-MS (3-HPA): 2255.2715 ([MH]+, Ci46Hi5iN25+, calc. 2255.2657).

Page 179: Two-dimensional acetylenic scaffolding - Research Collection

154 Experimental Part

2,2,,2M,2,M,2MM-[(6-{5,5-Dicyano-3-(dicyanomethylene)-4-[4-(dihexylamino)phenyl]pent-

4-en-l-yn-l-yl}benzene-l,2,3,4,5-pentayl)pentaethyne-2,l-diyl]pentakis{3-[4-(dihexyl-

amino)phenyl]buta-l,3-diene-l,l>4,4-tetracarbonitrile} (87)

N(C6H13)2

N(C6H13)2

General procedure GP2, starting from 63 (4.2 mg, 2.2 |imol) and TCNE (1.7 mg, 13.1 |imol)

in CH2C12 (5 mL) stirred for 20 h at 20 °C and purified by CC (Si02; CH2Cl2/EtOAc 30:1) to

give 87 (4.5 mg, 77%).

Black metallic solid.

Rf = 0.83 (Si02; CH2Cl2/EtOAc 30:1).

M.p. 121-123 °C.

UV/Vis (CH2C12): 276 (68200), 396 (74800), 476 (110000), 651 (22900).

IR(neat): 2921m, 2856w, 2214w, 1601*, 1484s, 1446s, 1416s, 1343s, 1298w, \251m, 1213s,

1184s, 1118/w, 980w, 900w, %\9m.

lîî NMR (500 MHz, CDC13): 0.89 (t, J= 7.0 Hz, 36 H); 1.32 (s, 72 H); 1.62 (m, 24 H); 3.37

(t, J= 7.9 Hz, 24 H); 6.72 (d, J= 9.4 Hz, 12 H); 7.78 (d, J= 9.4 Hz, 12 H).

13C NMR (125 MHz, CDC13): 13.98; 22.60; 26.67; 27.29; 31.48; 51.61; 71.62; 94.65; 99.10;

103.12; 109.35; 110.20; 112.60; 114.15; 114.46; 116.90; 128.34; 133.20; 148.68; 153.63;

155.92.

HR-MALDI-MS (3-HPA): 2690.5047 ([MH]+, Ci74Hi8iN3o+, calc. 2690.5080).

Page 180: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 155

2,2'-{[(4-{5,5-Dicyano-3-(dicyanomethylene)-4-[4-(dihexylamino)phenyl]pent-4-en-l-yn-

l-yl}phenyl)imino]bis(4,l-phenyleneethyne-2,l-diyl)}bis{3-[4-(dihexylamino)phenyl]-

buta-l,3-diene-l,l94,4-tetracarbonitrile} (88)

General procedure GP2, starting from 66 (50 mg, 0.043 mmol) and TCNE (33 mg, 0.257

mmol) in CH2C12 (30 mL) stirred for 16 h at 20 °C and purified by CC (Si02; CH2Cl2/EtOAc

99:1) to give 88 (68 mg, 100%).

Black solid.

Rf = 0.55 (Si02; CH2Cl2/EtOAc 99:1).

M.p. 122-126 °C.

UV/Vis (CH2C12): 279 (57500), 321 (sh, 52700), 347 (54500), 461 (157800), 522 (131100).

IR (neat): 2925w, 2855w, 2214w, 2160s, 1600s, 1483s, 1446s, 1412s, 1351s, 1317s, 1286s,

1211s, 1179s, 1116s, 1016JW, 991m, 900w, 820w, 804w.

lîî NMR (500 MHz, CDC13): 0.91 (t, J =6.9 Uz, 18 H); 1.32 (s, 36 H); 1.61 (m, 12 H); 3.37

(t, J= 7.9 Hz, 12 H); 6.66 (d, J= 9.4 Hz, 6 H); 7.10 (d, J= 8.8 Hz, 6 H); 7.57 (d,J= 8.8 Hz,

6 H); 7.75 (d, J= 9.4 Hz, 6 H).

13C NMR (125 MHz, CDC13): 13.96; 22.57; 26.63; 27.27; 31.50; 51.46; 72.67; 87.10; 93.69;

110.34; 111.58; 112.08; 113.48; 114.53; 115.49; 116.77; 116.96; 124.58; 132.67; 135.41;

148.86; 150.65; 153.15; 159.25.

HR-MALDI-MS (3-HPA): 1551.8582 ([MH]+, Cio2Hio3Ni6+, cale. 1551.8552).

Anal. cale, for C^H^Nie (1552.04): C 78.94, H 6.62, N 14.44; found: C 79.11, H 6.75, N

14.26.

Page 181: Two-dimensional acetylenic scaffolding - Research Collection

156 Experimental Part

2,2',2"-[Benzene-l,3,5-triyltris(l,4-phenyleneethyne-2,l-diyl)]tris{3-[4-(dihexylamino)-

phenyl]buta-l,3-diene-l,l>4,4-tetracarbonitrile} (89)

General procedure GP2, starting from 67 (50 mg, 0.040 mmol) and TCNE (31 mg, 0.242

mmol) in CH2C12 (40 mL) stirred for 14 h at 20 °C and purified by CC (Si02; CH2Cl2/EtOAc

99:1) to give 89 (70 mg, 100%).

Black solid.

Rf = 0.55 (Si02; CH2Cl2/EtOAc 99:1).

M.p. 126-130 °C.

UV/Vis (CH2C12): 304 (55200), 417 (144400), 557 (21400).

IR(neat): 2926w, 2856w, 2215w, 2169s, 1599s, 1483s, 1446s, 1413s, 1349s, \322m, 1289w,

121 lw, 1182s, 1117s, 101 8jw, 991w, 900w, 820s.

lîî NMR (300 MHz, CDC13): 0.91 (t, J =6.7 Uz, 18 H); 1.33 (s, 36 H); 1.64 (m, 12 H); 3.41

(t, J= 7.8 Hz, 12 H); 6.71 (d, J= 9.3 Hz, 6 H); 7.77-7.84 (m, 21 H).

13C NMR (75 MHz, CDC13): 14.19; 22.79; 26.83; 27.47; 31.72; 51.67; 72.73; 86.96; 94.71;

110.47; 111.66; 112.32; 113.75; 114.77; 116.85; 116.98; 119.19; 126.46; 127.99; 132.91;

134.44; 141.56; 144.42; 151.14; 153.38; 159.31.

HR-MALDI-MS (3-HPA): 1613.8817 ([MH]+, Cio8Hio6Ni5+, cale. 1613.8781).

Anal. cale, for C108H105N15 (1613.12): C 80.41, H 6.56, N 13.02; found: C 80.61, H 6.65, N

12.81.

Page 182: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 157

2,2,,2",2m,2MM,2 -[Benzene-l,2,3,4,5,6-hexaylhexakis(l,4-phenyleneethyne-2,l-

diyl)]hexakis{3-[4-(dihexylamino)phenyl]-l,3-butadiene-l,l94,4-tetracarbonitrile} (90)

N(C6H13)2

(C6H13)2N

N(C6H13)2

(C6H13)2N N(C6H13)2

General procedure GP2, starting from 68 (10 mg, 0.004 mmol) and TCNE (31 mg, 0.042

mmol) in CH2C12 (10 mL) stirred for 14 h at 20 °C and purified by CC (Si02; CH2Cl2/EtOAc

99:1) to give 90 (12 mg, 91%).

Brown solid.

M.p. 144-146 °C.

Rf = 0.62 (Si02; CH2Cl2/EtOAc 99:1).

UV/Vis (CH2C12): 293 (92700), 399 (185100), 456 (183700), 558 (sh, 38000).

IR(neat): 2925w, 2854w, 2213w, 2170s, 1600s, 1533w, 1484s, 1446s, 1414s, 1349s, 1288w,

1212s, 1182s, 1117s, 1019w, 1008>v, 991w, 900w, 866w, 84 lw, 81 \m.

lîî NMR (300 MHz, CDC13): 0.92 (t, J= 6.5 Hz, 36 H); 1.34 (s, 72 H); 1.64 (m, 24 H); 3.40

(m, 24 H); 6.68 (d,J= 9.3 Hz, 12 H); 6.87 (m, 12 H); 7.25 (m, 12 H); 7.73 (d, J= 9.3 Hz, 12

H).

13C NMR (125 MHz, CDC13): 14.10; 22.67; 26.63; 27.30; 31.51; 51.48; 71.08; 86.30; 94.41;

110.21; 111.39; 112.20; 112.31; 113.98; 114.65; 116.39; 116.62; 118.07; 131.20; 132.74;

139.64; 142.81; 151.13; 153.42; 158.78.

HR-MALDI-MS (3-HPA): 3148.6932 ([MH]+, C2i0H2o5N3o+, calc. 3148.7020).

Page 183: Two-dimensional acetylenic scaffolding - Research Collection

158 Experimental Part

3,3',3",3'",3"",3 -{Benzene-l,3,5-triyltris[l,3-butadiyne-4,l-diylbenzene-5,l,3-

triylbis(2,l-ethynediyl)]}hexakis{2-[4-(dihexylamino)phenyl]-l,3-butadiene-l,l94,4-

tetracarbonitrile} (91)

General procedure GP2, starting from 77 (2.7 mg, 1.2 |imol) and TCNE (1.4 mg, 10.6 urnol)

in CH2C12 (5 mL) stirred for 21 h at 20 °C and purified by CC (Si02; CH2Cl2/EtOAc 99:1) to

give 91 (3.0 mg, 74%).

Black solid.

Rf = 0.41 (Si02; CH2Cl2/EtOAc 99:1).

M.p. 123 °C.

UV/Vis (CH2CI2): 283 (sh, 157400), 298 (162800), 319 (162600), 347 (189000), 458

(196400), 591 (43600).

ffi. (neat): 2924w, 2854w, 2213w, 2186w, 1600s, 1486s, 1447s, 1413*, 1346s, \295m,

\216m, \2\2m, 1183s, 1117s, 979w, 883w, 818jw.

lîî NMR (300 MHz, CDC13): 0.92 (t, J= 6.5 Hz, 36 H); 1.33 (s, 72 H); 1.64 (m, 24 H); 3.40

(t, J= 7.6 Hz, 24 H); 6.70 (d, J= 9.3 Hz, 12 H); 7.68 (s, 3 H); 7.76 (d,J= 9.3 Hz, 12 H); 7.81

(t, J= 1.5 Hz, 3 H); 7.87 (d, J= 1.5 Hz, 6 H).

13C NMR (125 MHz, CDC13): 14.10; 22.68; 26.65; 27.30; 31.51; 51.54; 72.38; 86.16; 96.73;

109.77; 111.02; 111.06; 112.16; 112.30; 113.54; 114.34; 116.43; 121.34; 122.68; 124.18;

132.67; 136.78; 136.90; 139.24; 150.29; 153.36; 158.08 (27 signals out of 30 expected).

HR-MALDI-MS (3-HPA): 3064.5998 ([M]+, C204Hi92N3o+, calc. 3064.6081).

Page 184: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 159

3,3',3",3"',3"",3 ,3 ,3 -{Benzene-l,2,4,5-tetrayltetrakis[l,3-butadiyne-4,l-

diylbenzene-5,l93-triylbis(2,l-ethynediyl)]}octakis{2-[4-(dihexylamino)phenyl]-l,3-

butadiene-l,l94,4-tetracarbonitrile} (92)

General procedure GP2, starting from 78 (2.2 mg, 0.7 umol) and TCNE (1.1 mg, 8.7 urnol)

in CH2C12 (3 mL) stirred for 12 h at 20 °C and purified by CC (Si02; CH2Cl2/EtOAc 98:2) to

give 92 (3.0 mg, 100%).

Black solid.

Rf = 0.52 (Si02; CH2Cl2/EtOAc 98:2).

M.p. 114-117 °C.

UV/Vis (CH2C12): 281 (120600), 363 (173500), 457 (179600), 576 (29000).

IR(neat): 2925w, 2854w, 2212w, 2186w, 1601*, 1484s, 1448s, 1414s, 1345s, \216m, 1213s,

1183s, lll&w, 979w, 855w, %\9m.

lîî NMR (500 MHz, CDC13): 0.91 (t, J= 6.8 Hz, 48 H); 1.33 (s, 96 H); 1.63 (m, 32 H); 3.40

(t, J= 7.8 Hz, 32 H); 6.70 (d, J= 9.5 Hz, 16 H); 7.71 (s, 2 H); 7.76 (d,J= 9.5 Hz, 16 H); 7.80

(t, J= 1.5 Hz, 4 H); 7.90 (d, J= 1.5 Hz, 8 H).

13C NMR (125 MHz, CDC13): 14.10; 22.69; 26.64; 27.30; 31.58; 51.53; 72.17; 86.22; 96.77;

109.86; 111.07; 112.33; 113.63; 114.42; 116.43; 121.38; 132.72; 136.95; 139.35; 150.25;

153.41; 158.08 (22 signals out of 30 expected).

HR-MALDI-MS (3-HPA): 4060.124 ([MH]+, C27oH255N4o+, cale. 4060.127).

Page 185: Two-dimensional acetylenic scaffolding - Research Collection

160 Experimental Part

2,2,,2",2m,2MM,2 -[Nitrilotris(4,l-phenylenebuta-l,3-diyne-4,l-diylbenzene-5,l,3-

triyldiethyne-2,l-diyl)]hexakis{3-[4-(dihexylamino)phenyl]buta-l,3-diene-l,l94,4-

tetracarbonitrile} (93)

General procedure GP2, starting from 80 (16.0 mg, 0.006 mmol) and TCNE (12.5 mg, 0.097

mmol) in CH2C12 (20 mL) stirred for 11 h at 20 °C and purified by CC (Si02; CH2Cl2/EtOAc

99:1) to give 93 (21 mg, 100%).

Black solid.

Rf = 0.53 (Si02; CH2Cl2/EtOAc 99:1).

M.p. > 130 °C (decomp.).

UV/Vis (CH2C12): 288 (172000), 374 (236000), 414 (sh, 230000), 456 (272300), 568

(20800).

IR(neat): 2925w, 2855w, 2212w, 2186w, 1600s, 1533>v, 1486s, 1446s, 1413s, 1339s, 1290w,

1212w, 1182s, 1117s, 1016W, 980w, 884w, 818w.

!H NMR (500 MHz, CDC13): 0.91 (t, J= 6.5 Hz, 36 H); 1.34 (s, 72 H); 1.64 (m, 24 H); 3.40

(t, J= 7.8 Hz, 24 H); 6.70 (d, J= 9.3 Hz, 12 H); 7.06 (d, J= 8.7 Hz, 6 H); 7.46 (d, J= 8.7 Hz,

6 H); 7.75-7.78 (m, 15 H); 7.85 (d, J= 1.5 Hz, 6 H).

13C NMR (125 MHz, CDC13): 13.96; 22.57; 26.63; 27.28; 31.49; 51.52; 72.35; 73.25; 77.46;

78.10; 83.75; 86.08; 96.58; 109.79; 111.02; 111.35; 112.27; 113.52; 114.33; 116.06; 116.41;

121.21; 124.17; 124.75; 132.65; 134.16; 136.33; 139.15; 147.37; 150.31; 153.33; 158.12.

HR-MALDI-MS (3-HPA): 3231.6722 ([MH]+, C2i6H2o2N3i+, calc. 3231.6816).

Page 186: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 161

Anal. cale, for C216H201N31 (3231.17): C 80.29, H 6.27, N 13.44; found: C 80.64, H 6.28, N

13.12.

3,3',3",3"',3"",3 ,3 ,3 ,3 ,3 ,3 ,3 -[Benzene-

l,2,3,4,5,6-hexaylhexakis(l,4-phenylenebuta-l,3-diyne-4,l-diylbenzene-5,l,3-

triyldiethyne-2,l-diyl)]dodecakis{2-[4-(dihexylamino)phenyl]buta-l,3-diene-l,l94,4-

tetracarbonitrile} (94)

General procedure GP2, starting from 81 (2.5 mg, 0.50 |imol) and TCNE (1.3 mg, 10.1 |imol)

in CH2CI2 (3 mL) stirred for 15 h at 20 °C and purified by CC (Si02; CH2Cl2/EtOAc 98:2) to

give 94 (2.8 mg, 86%).

Black solid.

Rf = 0.61 (Si02; CH2Cl2/EtOAc 98:2).

M.p. 155-157 °C.

UV/Vis (CH2CI2): 288 (68200), 306 (69700), 331 (sh, 83400), 357 (96300), 456 (91400), 572

(sh, 14000).

IR(neat): 2923w, 2852w, 2213w, 2187w, 1601s, 1533>v, 1485s, 1446s, 1414s, 1343s, 129Ijw,

1213jw, 1182s, 1117/w, 1018w, 980w, 884w, 819jw.

Page 187: Two-dimensional acetylenic scaffolding - Research Collection

162 Experimental Part

lH NMR (500 MHz, CDC13): 0.89 (t,J= 6.9 Hz, 72 H); 1.31 (br s, 144 H); 1.61 (m, 48 H);

3.38 (t,J= 7.8 Hz, 48 H); 6.67 (d, J= 9.3 Hz, 24 H); 6.75 (d, J= 8.1 Hz, 12 H); 7.17 (d, J =

8.1 Hz, 12 H); 7.73 (d, J= 9.3 Hz, 24 H); 7.80 (s, 18 H).

13C NMR (125 MHz, CDC13): 14.10; 22.64; 26.64; 27.31; 31.51; 51.53; 72.27; 73.42; 77.86;

83.52; 86.11; 96.61; 109.86; 111.06; 111.36; 112.32; 113.60; 114.40; 116.40; 118.93; 121.22;

124.68; 131.19; 131.70; 132.69; 136.45; 139.22; 139.81; 140.92; 144.21; 150.29; 153.38;

158.11.

MALDI-TOF-MS (DCTB): 6507.20 ([MH]+, C438H4o3N6o+, calc. 6507.35).

2,2-[(5-{5,5-Dicyano-3-(dicyanomethylene)-4-[4-(dihexylamino)phenyl]-l,2-di-l,3-

dithiol-2-ylidenepent-4-en-l-yl}-l,3-phenylene)bis(l,2-di-l,3-dithiol-2-ylideneethane-

2,l-diyl)]bis{3-[4-(dihexylamino)phenyl]buta-l,3-diene-l,l94,4-tetracarbonitrile} (95)

N(C6H13)2

^N(C6H13)2

General procedure GP3, starting from 84 (40 mg, 0.03 mmol) and TTF (59 mg, 0.30 mmol)

in MeCN (12 mL) stirred for 20 h at 60 °C and purified by CC (Si02;

CH2C12 -> CH2Cl2/EtOAc 95:5) to give 95 (27 mg, 47%).

Black metallic solid.

Rf = 0.35 (Si02; CH2Cl2/EtOAc 95:5).

M.p. 214-217 °C.

UV/Vis (CH2C12): 286 (sh, 45800), 385 (57600), 469 (sh, 130800), 482 (132000).

IR (neat): 3073w, 2921w, 2851w, 2203w, 1598s, 1489s, 1451*, 1413w, 1348w, 1287s,

1258 1209 1180s, 1102 983 948w, 932w, 888w, 820 804w.

Page 188: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 163

!H NMR (300 MHz, C2D2C14, 353 K): 0.86 (t,J= 6.7 Hz, 18 H); 1.26 (s, 36 H); 1.53 (m, 12

H); 3.20-3.34 (m, 12 H); 6.14 (d, J= 6.5 Hz, 2 H); 6.42 (m, 4 H); 6.66 (m, 8 H); 6.88-6.93

(m, 2 H); 7.02 (s, 2 H); 7.41 (s, 1 H); 7.67 (s, 2 H); 7.79-7.93 (m, 6 H).

13C NMR (125 MHz, CDC13)6: 14.02; 22.61; 26.70; 27.42; 31.59; 51.22; 51.37; 51.52; 69.76;

72.04; 73.81; 74.03; 112.37; 112.48; 114.18; 114.34; 115.28; 115.69; 116.07; 116.30; 116.47;

116.78; 118.39; 118.51; 119.04; 119.20; 119.35; 119.45; 119.79; 121.34; 122.13; 124.19;

127.47; 133.25; 133.48; 137.59; 138.83; 151.14; 151.27; 153.02; 153.28; 155.49; 155.74;

161.82; 162.60; 171.33; 173.89.

HR-MALDI-MS (3-HPA): 1996.5346 ([MH]+, Cio8Hio6Ni5Si2+, cale. 1996.5404).

4,4'-Octa-l,3,5,7-tetrayne-l,8-diylbis(A^^V-dimethylaniline)(96)

Me2N—f' J—=—=—=—=—<{ ^NMe2

To a solution of diyne 130 (100 mg, 0.31 mmol) in THF (10 mL), «Bu4NF (1.0 M in THF,

0.62 mL) was added. The mixture was stirred for 20 min at 0 °C, diluted with CH2CI2,

filtered through a plug (SiÛ2; CH2CI2), and the solution was concentrated in vacuo. The

residue was dissolved in acetone (5 mL). Hay catalyst (25 mL) was added, and the mixture

was stirred while exposed to air for 3 h at 20 °C. The solvents were removed in vacuo, and

the product was purified by CC (Si02; hexanes/CH2Cl2 1:1) to give 96 (82 mg, 79%).

Orange solid.

Rf = 0.58 (Si02; hexanes/CH2Cl2 1:1).

M.p. 270 °C (decomp.).

UV/Vis (CH2CI2): 277 (31000), 286 (31200), 306 (33400), 328 (46600), 357 (sh, 54700), 379

(93200), 406 (83400), 444 (52700).

ffi. (neat): 2903w, 281 lw, 2180s, 2063w, 1596s, \52\m, \436m, 1372s, 1296>v, \233m,

1188s, 1063w, 1012w, 978w, 946w, 805s.

lîî NMR (300 MHz, C2D2C14): 2.92 (s, 12 H); 6.51 (d, J= 9.0 Hz, 4 H); 7.33 (d,J= 9.0 Hz, 4

H).

13C NMR (75 MHz, C2D2C14): 40.29; 65.32; 67.95; 73.71; 80.79; 106.00; 111.93; 135.28;

151.21.

The 13C NMR coalescence was not observed within the available temperature range (253-353 K). Thus, 13C

NMR spectrum of 95 is reported as an empiric enumeration of observed signals. For details, see Chapter 3.

Page 189: Two-dimensional acetylenic scaffolding - Research Collection

164 Experimental Part

HR-MALDI-MS (DCTB): 336.1626 ([M], C24H20N2,calc. 336.1621).

2-[4-Dimethylamino)phenyl]-3-{6-[4-(dimethylamino)phenyl]hexa-l,3,5-triyn-l-yl}buta-

l,3-diene-l,l94,4-tetracarbonitrile (97)

NC

Me2N—^ J—'/ sr-\

NC^f \=/

CN

General procedure GP2, starting from tetrayne 105 (50 mg, 0.15 mmol) and TCNE (19 mg,

0.15 mmol) in CH2C12 (25 mL) stirred for 10 h at 20 °C and purified by CC (Si02; CH2C12) to

give 97 (50 mg, 72%).

Black metallic solid.

Rf=0.45(SiO2;CH2Cl2).

M.p. 201 °C (explosive decomp.).

UV/Vis (CH2CI2): 273 (47600), 338 (33900), 396 (sh, 44800), 443 (57700), 593 (36600).

IR (neat): 2854w, 2212w, 2104s, 2051s, 1590s, 1527s, 1481s, 1436s, 1367s, 1336s, 1301w,

\265m, \209m, 1169s, \062m, 1012w, 990w, 941m, 90\w, Sl3m.

'HNMR (300 MHz, CDCI3): 3.05 (s, 6 H); 3.18 (s, 6 H); 6.60 (d,J= 9.0 Hz, 2 H); 6.73 (d, J

= 9.0 Hz, 2 H); 7.43 (d, J= 9.0 Hz, 2 H); 7.73 (d, J= 9.0 Hz, 2 H).

13C NMR (75 MHz, CDC13): 40.19; 40.41; 66.11; 72.80; 74.16; 74.24; 85.62; 92.89; 96.45;

102.36; 104.53; 110.49; 111.43; 111.86; 112.36; 113.41; 114.34; 117.31; 132.60; 135.60;

149.67; 151.99; 154.74; 159.45.

HR-MALDI-MS (3-HPA): 465.1825 ([MH]+, C3oH2iN6+, calc. 465.1822).

Anal. calc. for C30H20N6 (464.53): C 77.57, H 4.34, N 18.09; found: C 77.80, H 4.50, N

17.80.

Page 190: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 165

2-[4-Dimethylamino)phenyl]-3-{6-[4-(dimethylamino)phenyl]-l,2-di-l,3-dithiol-2-

ylidenehexa-3,5-diyn-l-yl}buta-l,3-diene-l,l94,4-tetracarbonitrile (98)

General procedure GP3, starting from 97 (20 mg, 0.04 mmol) and TTF (26 mg, 0.13 mmol)

in MeCN (12 mL) stirred for 16 h at 60 °C and purified by CC (Si02; CH2Cl2/EtOAc 95:5) to

give 98 (23 mg, 80%).

Deep-red solid.

Rf = 0.57 (Si02; CH2Cl2/EtOAc 95:5).

M.p. 240 °C (decomp.).

UV/Vis (CH2C12): 332 (41600), 397 (sh, 58000), 425 (69700), 481 (81500).

IR (neat): 3094w, 3070>v, 29\7w, 2847w, 2801w, 2205w, 2114w, 1599s, \52\m, 1486w,

14575, 13585, 12125, 1160s, \024w, 981w, 943m, 902w, 860^, 807w.

lîî NMR (300 MHz, C2D2C14, 353 K): 2.94 (s, 6 H); 3.08 (s, 6 H); 6.52 (d,J= 6.5 Hz, 1 H);

6.57 (d,J= 9.0 Hz, 2 H); 6.63 (d, J= 6.5 Hz, 1 H); 6.69 (d,J= 9.0 Hz, 2 H); 6.98 (s, 2 H);

7.34 (d, J= 9.0 Hz, 2 H); 7.85 (d, J= 9.0 Hz, 2 H).

13C NMR (125 MHz, C2D2C14)7: 40.34; 40.49; 71.93; 73.14; 73.51; 78.65; 83.20; 88.27;

99.40; 107.70; 107.95; 111.93; 112.66; 112.78; 114.04; 114.89; 115.92; 116.38; 116.67;

120.59; 121.63; 121.83; 125.26; 125.83; 128.31; 132.75; 132.94; 134.12; 135.96; 150.75;

155.09; 156.22; 162.14; 162.68; 165.04; 171.53.

HR-MALDI-MS (3-HPA): 707.0624 (20, [M+K]+, CseH^NeS^, calc. 707.0582),

691.0828 (26, [M+Na]+, C36H24N6S4Na+, calc. 691.0843), 669.1016 (100, [MH]+,

C36H25N6S4+, calc. 669.1018).

7The 13C NMR coalescence was not observed within the available temperature range (253-353 K). Thus, 13C

NMR spectra of 98, 99, 102-104, and 106 are reported as empiric enumeration of observed signals. For details,

see Chapter 3.

Page 191: Two-dimensional acetylenic scaffolding - Research Collection

166 Experimental Part

3,6-Bis(dicyanomethylene)-2-[4-(dimethylamino)phenyl]-7-{[4-(dimethylamino)-

phenyl]ethynyl}-4,5-di-l,3-dithiol-2-ylideneocta-l,7-diene-l,l98,8-tetracarbonitrile (99)

General procedure GP2, starting from 98 (8 mg, 12 |imol) and TCNE (1.5 mg, 12 |imol) in

CH2C12 (6 mL) stirred for 14 h at 20 °C and purified by CC (Si02; CH2Cl2/EtOAc

95:5 -> 92:8) to give 99 (8 mg, 83%).

Black metallic solid.

Rf = 0.33 (Si02; CH2Cl2/EtOAc 92:8).

M.p. 245 °C (decomp.).

UV/Vis (CH2C12): 289 (36000), 474 (110000), 551 (sh, 44700).

IR (neat): 3083w, 2919w, 2863w, 2651w, 2201m, 2098s, 1601s, 1538>v, 1481s, 1455w,

1367s, 1315s, 1284s, \229m, 1211s, 1168s, 1122s, 1030w, 989w, 942w, 902w, 820w.

lîî NMR (300 MHz, C2D2C14, 353 K): 3.07 (s, 6 H); 3.09 (s, 6 H); 6.61-6.72 (m, 4 H); 6.96

(m, 1 H); 7.03 (s, 2 H); 7.07 (d, J= 6.5 Hz, 1 H); 7.66-7.86 (m, 4 H).

13C NMR (125 MHz, C2D2C14): 40.42; 40.52; 40.60; 71.43; 72.49; 72.86; 73.60; 85.11;

86.39; 97.42; 98.89; 99.61; 100.38; 112.11; 112.46; 112.86; 113.47; 114.15; 114.82; 115.58;

115.65; 115.74; 115.93; 116.05; 116.93; 118.16; 118.76; 120.58; 120.83; 125.33; 125.45;

126.53; 126.78; 129.21; 132.53; 132.63; 133.09; 148.32; 154.64; 154.95; 155.25; 156.57;

160.44; 161.38; 173.26; 179.47.

HR-MALDI-MS (3-HPA): 835.0754 (20, [M+K]+, C42H24NioS4K+, calc. 835.0705),

819.0926 (49, [M+Na]+, C42H24NioS4Na+, calc. 819.0966), 797.1153 (100, [MH]+,

C42H25NioS4+, calc. 797.1146).

iV^V-Dimethyl-4-(8-phenylocta-l,3,5,7-tetrayn-l-yl)aniline(100)

Me2N^3 = = = = <Q

To a solution of diyne 130 (350 mg, 1.45 mmol) in THF (20 mL), «Bu4NF (1.0 M in THF,

2.90 mL) was added. The mixture was stirred for 20 min at 0 °C, diluted with CH2C12,

filtered through a plug (Si02; CH2C12) and the solution was concentrated in vacuo.

Page 192: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 167

Simultaneously, diyne 131 (58 mg, 0.29 mmol) in THF (8 mL) was treated with «Bu4NF (1.0

M in THF, 0.58 mL) for 20 min at 0 °C. The mixture was diluted with CH2C12, filtered

through a plug (SiÛ2; CH2CI2), and the solution was concentrated in vacuo. Both deprotected

butadiynes were combined, dissolved in acetone (8 mL) and the resulting solution was added

dropwise to Hay catalyst (25 mL). The mixture was stirred while exposed to air for 3 h at

20 °C. The solvents were removed in vacuo, and the product was purified by CC (Si02;

hexanes/CH2Cl2 1:1) to give 100 (61 mg, 72%).

Orange solid.

Rf = 0.67 (Si02; hexanes/CH2Cl2 1:1).

M.p. 156-157 °C.

UV/Vis (CH2CI2): 268 (38000), 282 (49300), 310 (26500), 331 (24200), 351 (28400), 366

(sh, 21600), 396 (26600), 427 (21000).

IR(neat): 2897w, 2806w, 2192s, 2\6\m, 2112s, 2066w, 1595s, 1526s, 1490w, 1441s, 1409w,

1370s, 1232w, 1198s, 1152s, 1066w, 1032>v, 978w, 943w, 846w, 810s.

lîî NMR (300 MHz, CDC13): 3.02 (s, 6 H); 6.59 (d, J= 9.0 Hz, 2 H); 7.33-7.43 (m, 5 H);

7.54 (d,J= 9.0 Hz, 2 H).

13C NMR (75 MHz, CDC13): 40.19; 63.76; 65.04; 67.21; 67.96; 73.45; 74.90; 77.72; 80.37;

106.06; 111.80; 121.00; 128.70; 129.98; 133.31; 134.99; 151.20.

HR-MALDI-MS (DCTB): 293.1204 ([M]+, C22Hi5N+, cale. 293.1203).

2-[4-Dimethylamino)phenyl]-3-(6-phenylhexa-l,3,5-triyn-l-yl}buta-l,3-diene-l,l54,4-

tetracarbonitrile (101)

NC

CN

General procedure GP2, starting from tetrayne 100 (25 mg, 0.08 mmol) and TCNE (11 mg,

0.08 mmol) in CH2C12 (15 mL) stirred for 14 h at 20 °C and purified by CC (Si02; CH2C12) to

give 101 (34 mg, 95%).

Green metallic solid.

Rf=0.60(SiO2;CH2Cl2).

M.p. 79-82 °C.

Page 193: Two-dimensional acetylenic scaffolding - Research Collection

168 Experimental Part

UV/Vis (CH2C12): 284 (47600), 300 (sh, 44300), 320 (sh, 33800), 370 (21600), 449 (55000).

IR (neat): 2919w, 2851w, 2213w, 2132s, 2090s, 1600s, 1533w, 1482s, 1435s, 1379s, 1334s,

1300s, 1260w, 1210s, 1170s, 1097s, 1063w, 1025>v, 1002>v, 899w, 820w.

lîî NMR (300 MHz, CDC13): 3.19 (s, 6 H); 6.75 (d, J = 9.3 Hz, 2 H); 7.38 (t,J= 7.4 Hz, 2

H); 7.48 (t, J= 7.3 Hz, 1 H); 7.57 (d, J= 7.2 Hz, 2 H); 7.72 (d, J= 9.3 Hz, 2 H).

13C NMR (75 MHz, CDC13): 40.29; 64.42; 70.91; 73.68; 74.19; 82.07; 87.65; 98.07; 99.87;

109.82; 110.80; 112.15; 113.01; 113.91; 116.97; 119.32; 128.65; 131.03; 132.28; 133.33;

149.22; 154.42; 158.55.

HR-MALDI-MS (3-HPA): 423.1484 ([MH]+, C28Hi6N5+, cale. 423.1478).

2-(l,2-Di-l,3-dithiol-2-ylidene-6-phenylhexa-3,5-diyn-l-yl)-3-[4-(dimethylamino)-

phenyl]buta-l,3-diene-l,l>4,4-tetracarbonitrile (102)

General procedure GP3, starting from 101 (20 mg, 0.05 mmol) and TTF (29 mg, 0.14 mmol)

in MeCN (12 mL) stirred for 17 h at 60 °C and purified by CC (Si02; CH2Cl2/EtOAc 95:5) to

give 102 (23 mg, 78%).

Deep-red solid.

Rf = 0.53 (Si02; CH2Cl2/EtOAc 95:5).

M.p. 253 °C (decomp.).

UV/Vis (CH2C12): 285 (45600), 412 (67800), 480 (109900).

IR(neat): 3090w, 3074w, 2858w, 2205s, 2115w, 1601s, 1540>v, 1470s, 1435w, 1385s, 1361s,

1287s, 1262w, 1212s, 1173s, 1076w, 1045w, 988w, 941m, 902w, 824w, 807w.

lîî NMR (300 MHz, C2D2C14, 353 K): 3.08 (s, 6 H); 6.55 (d, J= 6.5 Hz, 1 H); 6.60-6.72 (m,

3 H); 6.99 (s, 2 H); 7.29 (m, 3 H); 7.48 (m, 2 H); 7.85 (d, J= 9.2 Hz, 2 H).

13C NMR (125 MHz, C2D2C14): 40.48; 40.50; 71.97; 73.59; 74.94; 78.36; 79.52; 82.38;

83.30; 86.25; 86.34; 98.66; 100.88; 112.63; 112.78; 114.03; 114.48; 114.88; 115.87; 116.30;

116.65; 120.32; 120.60; 121.86; 122.08; 125.24; 128.40; 128.75; 128.90; 129.50; 129.70;

132.61; 132.72; 132.93; 132.93; 154.96; 155.10; 156.26; 162.07; 164.20; 166.51; 171.73.

Page 194: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 169

HR-MALDI-MS (3-HPA): 664.0142 (23, [M+K], C34H19N5S4K, calc. 664.0160),

648.0422 (42, [M+Na]+, C34Hi9N5S4Na+, calc. 648.0421), 626.0595 (100, [MH]+,

C34H2oN5S4+, calc. 626.0596).

3,6-Bis(dicyanomethylene)-2-[4-(dimethylamino)phenyl]-4,5-di-l,3-dithiol-2-ylidene-7-

(phenylethynyl)octa-l,7-diene-l,l98,8-tetracarbonitrile (103)

General procedure GP2, starting from 102 (8 mg, 13 |imol) and TCNE (3.3 mg, 26 |imol) in

CH2C12 (6 mL) stirred for 22 h at 20 °C and purified by CC (Si02; CH2Cl2/EtOAc

95:5 -^ 92:8) to give 103 (9 mg, 92%).

Black metallic solid.

Rf = 0.23 (Si02; CH2Cl2/EtOAc 95:5).

M.p. 237 °C (decomp.).

UV/Vis (CH2C12): 279 (33800), 390 (53000), 465 (102100).

IR (neat): 3075w, 2920w, 2857w, 265 lw, 2204s, 2171s, 1600s, 1488w, 1435s, 1333s, 1320s,

1208s, 1169s, 1121JW, 1059w, 988w, 941m, 90\w, &20m, 802w.

'HNMR (300 MHz, C2D2C14, 353 K): 3.09, 3.14 (s, 6 H); 6.74-6.88 (m, 2 H); 7.17 (m, 2 H),

7.35-7.53 (m, 5 H); 7.71-7.84 (m, 4 H).

13C NMR (125 MHz, C2D2C14): not available due to low solubility.

HR-MALDI-MS (3-HPA): 776.0541 (28, [M+Na]+, C4oHi9N9S4Na+, calc. 776.0544),

754.0733 (45, [MH]+, C4oH2oN9S4+, calc. 754.0724).

Page 195: Two-dimensional acetylenic scaffolding - Research Collection

170 Experimental Part

3,6-Bis(dicyanomethylene)-2-(l,2-di-l,3-dithiol-2-ylidene-2-phenylethyl)-7-[4-

(dimethylamino)phenyl]-4,5-di-l,3-dithiol-2-ylideneocta-l,7-diene-l,l98,8-

tetracarbonitrile (104)

\=j \=j

A) One-Pot Procedure

General procedure GP4, starting from tetrayne 100 (20 mg, 0.07 mmol), TCNE (44 mg, 0.34

mmol), and TTF (70 mg, 0.34 mmol) in CH2Cl2/MeCN (1:1, 16 mL) stirred for 22 h at 50 °C

and purified by CC (Si02; CH2C12 -> CH2Cl2/EtOAc 95:5 -^80:20) to give 104 (14 mg,

21%).

Black metallic solid.

Rf = 0.20 (Si02; CH2Cl2/EtOAc 90:10).

M.p. 260 °C (decomp.).

UV/Vis (CH2C12): 287 (25900), 313 (sh, 23600), 462 (62100).

IR (neat): 3065w, 2920w, 2852w, 2692w, 265\w, 2198s, \667m, 1601*, 1485w, 1434s,

13235, \209m, \\7\m, 1086w, \057m, 999m, 945m, 885w, Sl9m.

'HNMR (300 MHz, C2D2C14, 353 K): 3.12, 3.14 (s, 6 H); 6.28-6.43 (m, 3 H); 6.52-6.59 (m,

1 H); 6.71-6.76 (m, 2 H); 7.08-7.28 (m, 7 H); 7.77 (m, 2 H); 7.93 (m, 2 H).

13C NMR (125 MHz, C2D2C14): not available due to low solubility.

HR-MALDI-MS (3-HPA): 995.9556 (18, [M+K]+, C46H23N9S8K+, calc. 995.9479),

979.9765 (49, [M+Na]+, C46H23N9S8Na+, calc. 979.9740), 957.9916 (100, [MH]+,

C46H24N9S8+, calc. 957.9920).

B) Stepwise Procedure

General procedure GP3, starting from 103 (4.9 mg, 6.5 |imol) and TTF (4.0 mg, 19.5 |imol)

in CH2Cl2/MeCN (1:1, 4 mL) stirred for 3 h at 50 °C and purified by CC (Si02;

CH2C12 -> CH2Cl2/EtOAc 95:5 -> 90:10) to give 104 (1.3 mg, 21%).

Black metallic solid.

Anal, data identical to those reported for 104 obtained by procedure A.

Page 196: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 171

4-{8-[4-(Dimethylamino)phenyl]-l,3,5,7-octatetrayn-l-yl}benzonitrile (105)

Me2N^ \—=—=—=—=—( ffCH

To a solution of benzonitrile 133 (100 mg, 0.448 mmol) and iV,iV-dimethyl-4-

[(trimethylsilyl)buta-l,3-diyn-l-yl]aniline (112) (22 mg, 0.089 mmol) in THF/MeOH (1:1, 10

mL), K2C03 (149 mg, 1.08 mmol) was added. The mixture was stirred for 2 h at 20 °C,

diluted with CH2CI2, filtered through a plug (SiÛ2; CH2CI2), and the solvents were removed

in vacuo. To the residue, Hay catalyst (50 mL) was added and the mixture was stirred while

exposed to air for 6 h at 20 °C. The solvents were removed in vacuo. Multiple CC (SiÛ2;

3 x hexanes/CH2Cl2 1:1) afforded 105 (12 mg, 42%).

Yellow solid.

Rf = 0.36 (Si02; hexanes/CH2Cl2 1:1).

M.p. > 207 °C (decomp.).

UV/Vis (CH2C12): 280 (sh, 64000), 292 (80000), 339 (45800), 365 (52800), 397 (46300), 427

(40600).

IR (neat): 289bv, 2852w, 2798w, 2220m, 2194s, 2\6\m, 2114s, 2069m, 1916>v, 1884>v,

1594s, 1520s, 1498w, 1403w, 1362s, \216m, \232m, 1196s, 1148s, \063m, 1018w, 9Mm,

943m, 835s, 812s.

'HNMR (300 MHz, C2D2CI4): 2.93 (s, 6 H); 6.51 (d, J= 9.0 Hz, 2 H); 7.34 (d, J= 9.0 Hz, 2

H);7.54(brs, 4 H).

13C NMR (75 MHz, C2D2C14): 40.36; 63.39; 66.72; 67.30; 70.33; 73.52; 75.84; 78.92; 81.88;

105.14; 111.82; 112.79; 118.60; 125.92; 132.34; 133.70; 135.18; 151.24.

HR-MALDI-MS (DCTB): 318.1154 ([M]+, C23Hi4N2+, calc. 318.1152).

Page 197: Two-dimensional acetylenic scaffolding - Research Collection

172 Experimental Part

2-[2-(4-Cyanophenyl)-l,2-di-l,3-dithiol-2-ylideneethyl]-3,6-bis(dicyanomethylene)-7-[4-

(dimethylamino)phenyl]-4,5-di-l,3-dithiol-2-ylidene-l,7-octadiene-l,l98,8-

tetracarbonitrile (106)

\=j \=j

One-Pot Procedure

General procedure GP4, starting from tetrayne 105 (5.7 mg, 0.018 mmol), TCNE (11.4 mg,

0.089 mmol), and TTF (18.3 mg, 0.089 mmol) in CH2Cl2/MeCN (1:1, 6 mL) stirred for 18 h

at 50 °C and purified by CC (Si02; CH2C12 -> CH2Cl2/EtOAc 95:5 -> 90:10) to give 106

(10.2 mg, 58%).

Black metallic solid.

Rf = 0.22 (Si02; CH2Cl2/EtOAc 90:10).

M.p. 221 °C (decomp.).

UV/Vis (CH2C12): 402 (sh, 41000), 459 (117000).

IR(neat): 3066w, 2920w, 2851w, 2199s, 1600s, 1486w, 1435s, 1320s, 1208s, 1170s, 101 8jw,

IOOOw, 941m, 90lw, 848w, Slim.

lîî NMR (500 MHz, CD2C12): 3.16, 3.19 (s, 6 H); 6.47-6.50 (m, 1 H); 6.59-6.61 (m, 1 H);

6.77-6.83 (m, 3 H); 7.11 (d, J= 6.5 Hz, 1 H); 7.17 (d, J= 6.5 Hz, 1 H); 7.20-7.24 (m, 2 H);

7.31 (d, J= 6.5 Hz, 1 H); 7.38 (d, J= 6.5 Hz, 1 H); 7.57 (d, J= 9.0 Hz, 2 H); 7.89-7.95 (m, 3

H).

13C NMR (125 MHz, CD2C12): 40.28; 40.37; 70.69; 70.77; 71.57; 71.97; 75.31; 75.94;

109.88; 110.17; 111.57; 112.10; 112.45; 112.51; 112.61; 112.84; 113.36; 114.64; 114.86;

115.29; 115.33; 115.36; 115.49; 115.61; 115.64; 115.73; 115.80; 115.91; 116.02; 116.07;

116.23; 116.35; 116.41; 116.45; 117.10; 117.31; 117.43; 117.62; 118.39; 118.67; 118.95;

119.05; 119.11; 119.32; 120.37; 120.61; 122.27; 123.49; 125.55; 125.68; 125.81; 125.87;

126.44; 128.97; 129.13; 129.62; 129.68; 130.47; 130.83; 131.82; 131.94; 133.50; 134.07;

140.68; 141.05.

HR-MALDI-MS (3-HPA): 982.9850 ([MH]+, C47H23NioS8+, cale. 982.9867).

Page 198: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 173

4-Hex-l-yn-l-yl-AyV-dimethylaniline(116)

Me2N-()—=—\^

To a degassed solution of 7V,iV-dimethyl-4-iodoaniline (200 mg, 0.809 mmol) in

diisopropylamine (15 mL), hex-1-yne (100 mg, 0.14 mL, 1.21 mmol), [PdCl2(PPh3)2] (28 mg,

0.040 mmol), and Cul (15 mg, 0.081 mmol) were added and the mixture was stirred for 5 h at

20 °C. Removal of the solvent in vacuo and CC (Si02; hexanes/CH2Cl2 1:1) afforded 116

(158 mg, 97%).

Brown oil.

Rf = 0.69 (Si02; hexanes/CH2Cl2 1:1).

UV/Vis (CH2C12): 289 (51900).

ffi. (neat): 2955w, 2929w, 2859w, 2806w, 1608s, 1518*, 1444w, 1352s, 1224w, 1188w,

1166w, 1128w, 1061w, 947w, 8155.

lft NMR (300 MHz, CDC13): 0.97 (t, J = 7.1 Hz, 3 H); 1.48-1.61 (m, 4 H); 2.42 (t,J= 7.0

Hz, 2 H); 2.96 (s, 6 H); 6.63 (dd, J= 6.9, 2.2 Hz, 2 H); 7.30 (dd, J= 6.9, 2.2 Hz, 2 H).

13C NMR (75 MHz, CDC13): 13.91; 19.42; 22.25; 31.37; 40.50; 81.22; 87.85; 111.46; 112.14;

132.67; 149.84.

HR-EI-MS (70 eV): 201.1506 ([M]+, Ci4Hi9N+, calc. 201.1517).

Anal. calc. for C14H19N (301.21): C 83.53, H 9.51, N 6.96; found: C 83.09, H 9.49, N 6.84.

AyV-Dimethyl-4-(4-phenylbuta-1,3-diyn-l-yl)aniline (117)

Me2N^ %—^—=—^ \

To a mixture of 4-ethynyl-iV,iV-dimethylaniline (108) (500 mg, 3.44 mmol) and

phenylacetylene (1.76 g, 17.2 mmol), Hay catalyst (50 mL) was added. The mixture was

stirred while exposed to air for 3 h at 20 °C. The solvents were removed in vacuo, and the

product was purified by CC (Si02; hexanes/CH2Cl2 1:1) to give 117 (61 mg, 72%).

Yellowish solid.

Rf = 0.54 (Si02; hexanes/CH2Cl2 1:1).

M.p. 113-114 °C.

UV/Vis (CH2C12): 265 (24000), 284 (24100), 341 (63800), 367 (52600).

Page 199: Two-dimensional acetylenic scaffolding - Research Collection

174 Experimental Part

IR (neat): 2902w, 2821w, 2620w, 2205w, 2141m, 2122w, 1881w, 1594s, 1522s, 1487s,

14395, 13695, 1233w, 1182*, 1168*, 1063w, 998w, 979w, 940w, 810*.

lîî NMR (300 MHz, CDC13): 3.00 (s, 6 H); 6.63 (d,J = 9.0 Hz, 2 H); 7.35 (m, 3 H); 7.43 (d, J

= 9.0 Hz, 2 H); 7.54 (w, 2 H).

13C NMR (75 MHz, CDC13): 40.26; 72.33; 75.00; 81.00; 83.80; 107.95; 111.86; 122.59;

128.62; 128.97; 132.53; 134.04; 150.80.

HR-EI-MS (70 eV): 245.1204 ([M]+, Ci8Hi5N+, cale. 245.1197).

Anal. cale, for Ci8Hi5N (245.32): C 88.13, H 6.16, N 5.71; found: C 87.98, H 6.06, N 5.72.

3-[4-(Dimethylamino)phenyl]prop-2-ynenitrile (118) [241]

Me2N^ %—^^CN

To a mixture of alcohol 132 (150 mg, 0.86 mmol), MgS04 (1.5 g, 12.8 mmol), and NH3 in i-

PrOH (2.0 M, 1.7 mL, 3.4 mmol) in THF (5 mL), Mn02 (1.1 g, 12.8 mmol) were added. The

mixture was stirred for 7 h at 20 °C, diluted with CH2C12, filtered through a plug (Celite;

CH2CI2), and the solvents were removed in vacuo. The crude product was purified by

crystallization from CTI^Cb/hexane to give 118 (120 mg, 70%).

Yellowish solid.

Rf = 0.35 (Si02; hexanes/CH2Cl2 1:1).

M.p. 143-145 °C.

IR (neat): 2917w, 2828w, 2231m, 2213s, 2124m, 1595s, 1531s, 1443m, 1383w, 1294w,

1240m, 1183s, 1080w, 9%4w, 949m, 806s.

lîî NMR (300 MHz, CDC13): 3.04 (s, 6 H); 6.60 (d,J= 9.0 Hz, 2 H); 7.44 (d,J= 9.0 Hz, 2

H).

13C NMR (75 MHz, CDCI3): 40.14; 62.47; 86.41; 102.54; 106.85; 111.68; 135.27; 152.19.

HR-EI-MS (70 eV): 169.0760 ([M-H]+, CnH9N2+, cale. 169.0761).

Anal. cale, for CnHi0N2 (170.21): C 77.62, H 5.92, N 16.46; found: C 77.76, H 5.64, N

16.57.

Page 200: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 175

(4-{3,3-Dicyano-l-[4-(dimethylamino)phenyl]prop-2-en-l-ylidene}cyclohexa-2,5-dien-l-

ylidene)malononitrile (119)

NC

NC

General procedure GP5, starting from TCNQ (35 mg, 0.172 mmol) and 4-ethynyl-iV,iV-

dimethylaniline (108) (25 mg, 0.172 mmol) in CH2C12 (10 mL) stirred for 6 h at 20 °C and

purified by CC (Si02; CH2Cl2/EtOAc 97:3) to give 119 (49 mg, 81%).

Black metallic solid.

Rf = 0.65 (Si02; CH2Cl2/EtOAc 97:3).

M.p. 211 °C

UV/Vis (CH2C12): 276 (13400), 369 (sh, 19000), 418 (39400), 526 (13700), 759 (27800).

IR(neat): 3024w, 2910w, 2232w, 2194s, 2170s, 1614w, 1568s, 1523s, 1480w, 1393w, 1367s,

1346s, \229m, \207w, 1153s, 1087s, \062m, 922m, 839w, 821s.

lîî NMR (300 MHz, CDC13): 3.15 (s, 6 H); 6.78 (d,J= 9.0 Hz, 2 H); 7.15 (d, J= 9.0 Hz, 2

H); 7.30 (brs, 4 H); 8.18 (s, 1 H).

13C NMR (125 MHz, CDC13): 40.17; 76.46; 92.58; 110.53; 112.31; 113.78; 114.08; 122.72;

126.39 (br s); 134.22; 135.74; 146.45; 152.89; 152.95; 156.63 (15 signals out of 19

expected).

HR-MALDI-MS (DCTB): 349.1341 ([Mf, C22Hi5N5~, cale. 349.1333).

(4-{2-Butyl-3,3-dicyano-l-[4-(dimethylamino)phenyl]prop-2-en-l-ylidene}cyclohexa-2,5-

dien-l-ylidene)malononitrile (120)

General procedure GP5, starting from TCNQ (41 mg, 0.199 mmol) and alkyne 116 (40 mg,

0.199 mmol) in CH2C12 (20 mL) stirred for 13 h at 20 °C and purified by CC (Si02;

CH2Cl2/EtOAc 98:2) to give 120 (86 mg, 100%).

NMe2

Page 201: Two-dimensional acetylenic scaffolding - Research Collection

176 Experimental Part

Copper-like metallic solid.

Rf = 0.55 (Si02; CH2Cl2/EtOAc 98:2).

M.p. 163-164 °C.

UV/Vis (CH2C12): 259 (17000), 281 (sh, 14600), 339 (20000), 417 (22300), 655 (50300).

IR(neat):2921w, 2859w, 2635w, 2196s, 1611/w, 1573s, 1519s, 1480w, 1339s, \204w, 1151s,

939m, %99m, 827w, 800w.

lîî NMR (300 MHz, CDC13): 0.87 (t,J = 7.1 Hz, 3 H); 1.23-1.47 (m, 4 H); 2.61 (br s, 1 H);

2.87 (br s, 1 H); 3.16 (s, 6 H); 6.76 (d, J= 9.0 Hz, 2 H); 6.98 (dd, J= 9.8, 2.2 Hz, 1 H); 7.18

(d, J= 9.0 Hz, 2 H); 7.24 (m, 2 H); 7.37 (dû, 7= 9.7, 2.2 Hz, 1 H).

13C NMR (125 MHz, CDC13): 13.46; 22.67; 29.74; 38.03; 40.16; 72.36; 90.82; 111.13;

111.33; 112.32; 114.47; 114.52; 121.40; 125.16; 125.37; 131.35; 133.76; 133.79; 135.80;

151.82; 152.87; 154.33; 179.76.

HR-MALDI-MS (DCTB): 405.1950 ([Mf, C26H23N5~, cale. 405.1953).

(4-{3,3-Dicyano-l-[4-(dimethylamino)phenyl]-2-phenylprop-2-en-l-ylidene}cyclohexa-

2,5-dien-l-ylidene)malononitrile (121)

NMe2

General procedure GP5, starting from TCNQ (41 mg, 0.200 mmol) and alkyne 110 (45 mg,

0.200 mmol) in CH2C12 (15 mL) stirred for 14 h at 20 °C and purified by CC (Si02;

CH2C12 -> CH2Cl2/EtOAc 98:2) to give 121 (79 mg, 93%).

Copper-like metallic solid.

Rf=0.38(SiO2;CH2Cl2).

M.p. 244-245 °C.

UV/Vis (CH2C12): 268 (18500), 291 (sh, 19000), 330 (22000), 459 (16200), 676 (36300).

IR (neat): 29\7m, 2850w, 2638w, 2228w, 2195s, 1613w, 1573s, 1524s, 1484w, \393m,

1341s, 1154s, 1072s, 939m, 906m, %llm, %31w, %23m.

lîî NMR (300 MHz, CDC13): 3.13 (s, 6 H); 6.71 (d, J = 9.3 Hz, 2 H); 6.99 (dd,J= 9.5, 1.9

Hz, 1 H); 7.14 (dd,J= 9.5, 2.0 Hz, 1 H); 7.24-7.29 (m, 3 H); 7.43-7.55 (m, 4 H); 7.63-7.66

(m, 2 H).

Page 202: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 177

liC NMR (75 MHz, CDC13): 40.37; 71.48; 87.71; 112.46; 112.72; 113.17; 114.99; 115.06;

123.65; 125.02; 125.42; 129.77; 129.83; 131.87; 133.78; 134.58; 134.76; 134.97; 136.11;

152.28; 153.14; 154.31; 173.01.

HR-MALDI-MS (DCTB): 425.1639 ([Mf, C28Hi9N5~, cale. 425.1640).

(4-{3,3-Dicyano-l,2-bis[4-(dimethylamino)phenyl]prop-2-en-l-ylidene}cyclohexa-2,5-

dien-l-ylidene)malononitrile (122)

General procedure GP5, starting from TCNQ (39 mg, 0.189 mmol) and alkyne 111 (50 mg,

0.189 mmol) in CH2C12 (10 mL) stirred for 17 h at 20 °C and purified by CC (Si02;

CH2C12 -> CH2Cl2/EtOAc 98:2) to give 122 (89 mg, 100%).

Deep-purple metallic solid.

Rf = 0.50 (Si02; CH2Cl2/EtOAc 98:2).

M.p. 259-262 °C.

UV/Vis (CH2C12): 333 (18000), 424 (49400), 662 (51900).

IR (neat): 2918w, 2850w, 2627w, 2193s, 1600w, 1571s, 1478s, 1437w, 1402w, 1327s,

1287s, 1212w, 1149s, 1116s, 939m, 880w, 820w.

'HNMR (300 MHz, CDCI3): 3.10 (s, 6 H); 3.13 (s, 6 H); 6.64 (d,J= 9.3 Hz, 2 H); 6.72 (d, J

= 9.0 Hz, 2 H); 6.96 (dd,J = 9.7, 1.8 Hz, 1 H); 7.07 (dd,J = 9.3, 1.8 Hz, 1 H); 7.22 (dd,J =

9.7, 1.8 Hz, 1 H); 7.34 (d,J= 9.3 Hz, 2 H); 7.55 (dd, J= 9.3, 1.8 Hz, 1 H); 7.72 (d,J= 9.0

Hz, 2 H).

13C NMR (75 MHz, CDC13): 40.27; 40.37; 69.53; 76.36; 111.96; 112.63; 114.51; 115.40;

115.51; 121.46; 124.26; 124.80; 130.89; 132.99; 134.87; 135.26; 136.16; 153.15; 154.00;

154.80; 155.09; 169.47 (22 signals out of 24 expected).

HR-MALDI-MS (DCTB): 468.2062 ([Mf, C3oH24N6~, calc. 468.2068).

Anal. calc. for C3oH24N6CH3COOC2H5 (556.66): C 73.36, H 5.79, N 15.10; found: C 73.27,

H5.75,N 15.19.

Page 203: Two-dimensional acetylenic scaffolding - Research Collection

178 Experimental Part

[l-{[4-(Dicyanomethylene)cyclohexa-2,5-dien-l-ylidene][4-(dimethylamino)phenyl]-

methyl}-3-(trimethylsilyl)prop-2-yn-l-ylidene]malononitrile (123)

NC

NC

General procedure GP5, starting from TCNQ (34 mg, 0.165 mmol) and diyne 112 (40 mg,

0.165 mmol) in toluene (25 mL) stirred for 12 h at 80 °C and purified by CC (Si02;

CH2C12 -> CH2Cl2/EtOAc 98:2) to give 123 (24 mg, 33%).

Black metallic solid.

Rf = 0.55 (Si02; CH2Cl2/EtOAc 98:2).

M.p. 209-211 °C.

UV/Vis (CH2C12): 270 (26300), 307 (26200), 368 (sh, 12000), 480 (26400), 709 (36000).

IR (neat): 2918w, 2853w, 2806w, 2635w, 22025, 1608w, 15825, 1528w, \504m, 1439w,

14085, 13675, 13445, 13235, 12965, 12495, 12035, 11715, 11255, \063m, 103lw, 999w, 973w,

942m, 902m, 8435, 8095.

'HNMR (300 MHz, CDC13): 0.24 (5, 9 H); 3.17 (5, 6 H); 6.76 (d, J= 9.3 Hz, 2 H); 7.25-7.34

(m, 6 H).

13C NMR (75 MHz, CDC13): -0.74; 40.41; 72.45; 96.99; 100.78; 110.94; 112.34; 112.48;

114.92; 123.59; 124.76; 124.96; 125.54; 131.62; 134.46; 135.04; 136.28; 148.60; 153.33;

154.26; 154.43 (21 signals out of 22 expected).

HR-MALDI-MS (DCTB): 445.1726 ([Mf, C27H23N5Sr, calc. 445.1723).

(l-{[4-(Dicyanomethylene)cyclohexa-2,5-dien-l-ylidene][4-(dimethylamino)phenyl]-

methyl}-3-phenylprop-2-yn-l-ylidene)malononitrile (124)

NMe2

General procedure GP5, starting from TCNQ (42 mg, 0.204 mmol) and diyne 117 (50 mg,

0.204 mmol) in 1,2-dichloroethane (30 mL) stirred for 5 h at 80 °C and purified by CC (Si02;

CH2C12 -> CH2Cl2/EtOAc 98:2) to give 124 (66 mg, 72%).

-SiMe,

NMe2

Page 204: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 179

Deep-purple metallic solid.

Rf = 0.57 (Si02; CH2Cl2/EtOAc 98:2).

M.p. 229-232 °C.

UV/Vis (CH2C12): 272 (19300), 320 (26400), 340 (sh, 24000), 361 (sh, 21000), 488 (20300),

708 (27300).

IR (neat): 339\w, 29\4m, 2%52m, 2640w, 2196s, 2171s, 1608w, 1573s, 1519s, 1482w,

\443w, \394m, 1343s, 1266s, \205w, 1154s, 1116s, 940m, 902m, 824m.

lîî NMR (300 MHz, CDC13): 3.18 (s, 6 H); 6.78 (d, J= 9.0 Hz, 2 H); 7.26-7.43 (m, 8 H);

7.49-7.54 (m, 3 H).

13C NMR (75 MHz, CDC13): 40.33; 72.26; 88.35; 94.49; 111.05; 112.33; 112.56; 114.67;

114.72; 115.35; 119.71; 123.32; 124.66; 125.32; 128.86; 131.28; 132.12; 133.17; 134.15;

134.76; 136.01; 148.60; 153.01; 153.99; 154.43.

HR-MALDI-MS (DCTB): 449.1639 ([Mf, C3oHi9N5~, cale. 449.1640).

(4-{2-(Dicyanomethylene)-l,4-bis[4-(dimethylamino)phenyl]but-3-yn-l-ylidene}-

cyclohexa-2,5-dien-l-ylidene)malononitrile (125)

NMe2

General procedure GP5, starting from TCNQ (38 mg, 0.184 mmol) and diyne 113 (53 mg,

0.184 mmol) in CH2C12 (30 mL) stirred for 18 h at 20 °C and purified by CC (Si02;

CH2C12 -> CH2Cl2/EtOAc 98:2) to give 125 (71 mg, 78%).

Black metallic solid.

Rf=0.38(SiO2;CH2Cl2).

M.p. > 300 °C (decomp.).

UV/Vis (CH2C12): 270 (36000), 326 (sh, 29400), 446 (57700), 480 (sh, 50000), 677 (64700).

IR (neat): 2906w, 2858w, 2806w, 2628w, 2196s, 2113s, 1597s, 1573s, 1531s, 1439s, 1338s,

1269s, \230m, 1156s, 1105s, \0\5m, 939m, 901m, 806m.

lîî NMR (300 MHz, CDC13): 3.08 (s, 6 H); 3.17 (s, 6 H); 6.62 (d,J= 9.0 Hz, 2 H); 6.76 (d, J

= 9.0 Hz, 2 H); 7.19-7.26 (m, 2 H); 7.35-7.40 (m, 6 H).

Page 205: Two-dimensional acetylenic scaffolding - Research Collection

180 Experimental Part

liC NMR (150 MHz, CDC13): 40.06; 40.19; 71.05; 88.67; 92.44; 105.72; 111.79; 112.16;

112.28; 113.65; 114.96; 115.03; 123.07; 123.77; 124.27; 124.96; 130.82; 134.78; 134.94;

135.73; 136.33; 150.56; 152.82; 153.12; 154.01; 154.48.

HR-MALDI-MS (DCTB): 492.2062 ([Mf, C32H24N(f, calc. 492.2068).

Anal. calc. for C32H24N6 (492.58): C 78.03, H 4.91, N 17.06; found: C 77.72, H 4.83, N

16.58.

2,2'-[l,4-Phenylenebis({l,l-dicyano-3-[4-(dihexylamino)phenyl]prop-l-en-2-yl-3-

ylidene}cyclohexa-2,5-diene-4,l-diylidene)]dimalononitrile (126)

General procedure GP5, starting from TCNQ (38 mg, 0.186 mmol) and the corresponding

dialkyne 114 (60 mg, 0.093 mmol) in 1,2-dichloroethane (30 mL) stirred for 14 h at 20 °C,

subsequently 3 h at 80 °C to complete the reaction and purified by CC (Si02;

CH2C12 -> CH2Cl2/EtOAc 98:2) to give 126 (91 mg, 93%).

Black metallic solid.

Rf = 0.48 (Si02; CH2Cl2/EtOAc 98:2).

M.p. 255 °C.

UV/Vis (CH2C12): 275 (sh, 28600), 346 (54800), 685 (68200).

IR (neat): 3378w, 3062w, 2923w, 2854w, 2650w, 2195s, 161 lw, 1573s, \520m, 1465>v,

1383s, 1339s, 1292s, 1210w, 1161s, 976m, 906m, 883w, S2lm.

lîî NMR (300 MHz, C2D2C14): 0.82 (t, J = 6.4 Hz, 12 H); 1.21 (br s, 24 H); 1.56 (m, 8 H);

3.29 (t,J= 7.8 Hz, 8 H); 6.62 (d, J= 9.3 Hz, 4 H); 6.77 (d,J= 9.0 Hz, 2 H); 7.02 (d, J= 9.0

Hz, 2 H); 7.18 (m, 6 H); 7.44 (d, J= 9.0 Hz, 2 H); 7.70 (s, 4 H).

13C NMR (125 MHz, C2D2C14): 14.42; 22.96; 26.97; 27.68; 31.82; 51.85; 70.09; 89.92;

111.99; 112.67; 113.25; 115.60; 120.60; 122.86; 124.94; 125.35; 130.59; 130.62; 134.00;

135.20; 136.02; 138.66; 150.47; 152.31; 154.15; 171.04.

HR-MALDI-MS (3-HPA): 1052.5966 ([Mf, C7oH72Ni(f, calc. 1052.5947).

Page 206: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 181

2,2',2"-[Benzene-l,3,5-triyltris({l,l-dicyano-3-[4-(dihexylamino)phenyl]prop-l-en-2-yl-

3-ylidene}cyclohexa-2,5-diene-4,l-diylidene)]trimalononitrile (127)

(C6H13)2N--/ ^

N(C6H1:

TCNQ (38 mg, 0.186 mmol) was added to a solution of the corresponding tnalkyne 115 (57

mg, 0.061 mmol) in 1,2-dichloroethane (30 mL). The mixture was stirred for 14 h at 20 °C.

Subsequently, TCNQ (19 mg, 0.093 mmol) was added, and the mixture was stirred for 2 h at

80 °C to complete the reaction. Evaporation of the solvent in vacuo and CC (Si02;

CH2C12 -^ CH2Cl2/EtOAc 98:2) afforded 127 (62 mg, 66%).

Black metallic solid.

Rf = 0.63 (Si02; CH2Cl2/EtOAc 98:2).

M.p. 229-230 °C.

UV/Vis (CH2C12): 274 (63000), 319 (sh, 63200), 567 (sh, 61000), 709 (87000).

IR(neat): 2925w, 2855w, 2645w, 2197s, 1609>v, 1576s, \522m, 1388s, 1341s, 1289s, \26\m,

1167s, 978w, 904w, 891w, 836w.

1HNMR(500MHz, C2D2C14): 0.84 (t, J = 6.7 Hz, 18 H); 1.27 (br s, 36 H); 1.55 (brs, 12 H);

3.31 (br s, 12 H); 6.59 (d, J = 9.1 Hz, 6 H); 6.73 (br s, 3 H); 6.91 (br d, J = 8.2 Hz, 3 H);

7.06-7.19 (bi,9H); 7.30 Qprd,J= 8.2 Hz, 3 H); 7.79 (brs, 3 H).

13C NMR (125 MHz, C2D2C14): 14.42; 22.94; 26.96; 27.64; 31.80; 52.02; 91.95; 111.25;

112.52; 113.57; 115.49; 115.59; 120.60; 123.15 (brs); 124.69; 125.19; 130.12 (brs); 132.77

(brs); 134.06 (brs); 135.39; 136.19; 138.10; 149.49 (brs); 152.47; 153.57; 170.01.

HR-MALDI-MS (3-HPA): 1540.8718 ([Mf, Cio2Hi05Ni5~, calc. 1540.8750).

Anal. calc. for C10Ä05N15 (1541.05): C 79.50, H 6.87, N 13.63; found: C 79.23, H 6.83, N

13.37.

Page 207: Two-dimensional acetylenic scaffolding - Research Collection

182 Experimental Part

3-[4-(Dicyanomethylene)cyclohexa-2,5-dien-l-ylidene]-3-[4-(dimethylamino)phenyl]-

prop-l-ene-l,l?2-tricarbonitrile (128)

NMe2

General procedure GP5, starting from TCNQ (18 mg, 0.088 mmol) and cyanoalkyne 118 (15

mg, 0.088 mmol) in 1,1,2,2-tetrachloroethane8 (10 mL) stirred for 12 h at 120 °C and purified

by CC (Si02; CH2C12 -> CH2Cl2/EtOAc 98:2) to give 128 (9 mg, 27%).

Black metallic solid.

Rf = 0.65 (Si02; CH2Cl2/EtOAc 98:2).

M.p. > 269 °C (decomp.).

UV/Vis (CH2C12): 272 (16000), 307 (sh, 10600), 491 (35000), 859 (17700).

IR (neat): 2925w, 2847w, 2801w, 2640s, 2194s, 1610w, 1569s, 1522s, 1397s, 1336s, 1359s,

1279s, 1136s, 938w, 896w, 822w.

lîî NMR (500 MHz, C2D2C14): 3.11 (s, 6 H); 6.83 (d, J= 9.1 Hz, 2 H); 7.14 (m, 4 H); 7.28

(br s, 2 H).

13C NMR (125 MHz, C2D2C14): 40.65; 76.13; 101.13; 109.93; 111.39; 113.28; 114.12;

114.64; 123.02; 127.01 (br s); 135.40; 135.60; 141.53; 143.22; 143.64; 151.92; 152.91;

153.98; 160.21; 168.49.

HR-MALDI-MS (DCTB): 374.1281 ([Mf, C23Hi4N5~, cale. 374.1280).

3-[4-(Dicyanomethylene)-2,3,5,6-tetrafluoro-2,5-cyclohexadien-l-ylidene]-3-[4-

(dimethylamino)phenyl]-l-propene-l,l?2-tricarbonitrile (129)

NMe2

General procedure GP5, starting from F4-TCNQ (15.0 mg, 0.054 mmol) and cyanoalkyne 118

(9.2 mg, 0.054 mmol) in CH2C12 (12 mL) stirred for 15 h at 20 °C in a flask treated with

Exposure to 1,1,2,2-tetrachloroethane should be avoided due to its high toxicity.

Page 208: Two-dimensional acetylenic scaffolding - Research Collection

Expérimental Part 183

Me2SiCl2 according to general procedure GP6.9 The compound was purified by slow

diffusion of hexane into CH2C12 solution at 20 °C to yield 129 (20.9 mg, 86%).

Black metallic solid.

Rf = 0.12 (Si02; CH2Cl2/EtOAc 95:5, decomp.).

M.p. >410°C.

UV/Vis (CH2C12): 326 (13300), 390 (8000), 540 (29700), 1001 (25700).

IR (neat): 2359w, 2331w, 2196s, 2181s, \634m, 1602s, 1532s, 1387s, 1343s, 1271s, 1200s,

1161s, \07\m, \057m, 960m, 97%m, 869w, 834w, S2lm.

!H NMR (300 MHz, CD2C12): 3.39 (s, 6 H); 6.95 (d,J = 9.4 Hz, 2 H); 7.33 (d, J= 9.4 Hz, 2

H).

13C NMR (500 MHz, CD2C12): not available due to low solubility.

19F NMR (282 MHz, CD2C12): -140.53 (m); -133.24 (br s).

HR-MALDI-MS (DCTB): 446.0900 (1, [M\~, C23HioN6F4~, calc. 446.0903), 426.0831 (10,

[M- HF] , C23H9N6F3~, calc. 426.0841), 401.0881 (100, [M - FCNf, C22HioN5F3~, calc.

401.0888).

Anal. calc. for C23HioN6F4 (446.37): C 61.89, H 2.26, N 18.83; found: C 61.92, H 2.43, N

18.65.

4-[4-(Trimethylsilyl)-l,3-butadiyn-l-yl]benzonitrile(133)[221]

NC^ %—=—^^SiMe3

General procedure GPlb, starting from l,4-bis(trimethylsilyl)buta-l,3-diyne (560 mg, 2.88

mmol), 4-iodobenzonitrile (300 mg, 1.31 mmol), Cul (75 mg, 0.39 mmol), and

[PdCl2(PPh3)2] (184 mg, 0.26 mmol) in diisopropylamine (35 mL) stirred for 24 h at 20 °C

and purified by CC (Si02; hexanes/CH2Cl2 1:1) to give 133 (243 mg, 83%).

Tan solid.

Rf = 0.55 (Si02; hexanes/CH2Cl2 1:1).

M.p. 146-147 °C.

UV/Vis (CH2C12): 262 (10000), 277 (25300), 293 (47100), 312 (46300).

IR (neat): 3061w, 2962w, 2899w, 2342w, 2358w, 2230w, 2209w, 2106w, 1602>v, 1501w,

\407m, \289m, \274w, \252m, \237m, US3m, \04\m, lOISm, 1006w, 976m, 834s.

9An insoluble greenish film forms readily upon standing of a CH2C12 solution of 129 in a non-treated glassware,

for details, see Chapter 4.

Page 209: Two-dimensional acetylenic scaffolding - Research Collection

184 Experimental Part

!H NMR (300 MHz, CDC13): 0.24 (s, 9 H); 7.53-7.62 (m, 4 H).

13C NMR (75 MHz, CDC13): -0.34; 74.61; 78.38; 87.16; 93.88; 112.71; 118.34; 126.59;

132.26; 133.27.

HR-EI-MS (70 eV): 208.0576 ([M]+, Ci4Hi3NSi+, calc. 223.0817).

Page 210: Two-dimensional acetylenic scaffolding - Research Collection

6 References

Page 211: Two-dimensional acetylenic scaffolding - Research Collection
Page 212: Two-dimensional acetylenic scaffolding - Research Collection

REFERENCES 187

[I] J. M. Tour, Chem. Rev. 1996, 96, 537-553. Conjugated Macromolecules of Precise

Length and Constitution. Organic Synthesis for the Construction of Nanoarchitectures.

[2] Special Issue on "Organic Electronics" (Eds. F. Faupel, C. Dimitrakopoulos, A. Kahn,

C. Wöll): J. Mater. Res. 2004, 79, 1887-2203.

[3] Acetylene Chemistry. Chemistry, Biology and Material Science, F. Diederich, P. J.

Stang, R. R. Tykwinski (Eds.), Wiley-VCH, Weinheim, 2005.

[4] Carbon-Rich Compounds, M. M. Haley, R. R. Tykwinski, (Eds.), Wiley-VCH,

Weinheim, 2006.

[5] Special Issue on "Organic Electronics and Optoelectronics" (Eds. S. R. Forrest, M. E.

Thompson): Chem. Rev. 2007, 707, 923-1386.

[6] J. Roncali, P. Leriche, A. Cravino, Adv. Mater. 2007, 79, 2045-2060. From One- to

Three-Dimensional Organic Semiconductors: In Search of the Organic Silicon?

[7] T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, D. E.

Vogel, S. D. Theiss, Chem. Mater. 2004, 16, 4413-4422. Recent Progress in Organic

Electronics: Materials, Devices, and Processes.

[8] J. R. Sheats, J. Mater. Res. 2004, 79, 1974-1989. Manufacturing and

Commercialization Issues in Organic Electronics.

[9] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev.

2005, 105, 1171-1196. New Approaches to Nanofabrication: Molding, Printing, and

Other Techniques.

[10] G. Horowitz, Adv. Mater. 1998, 10, 365-377. Organic Field-Effect Transistors.

[II] Z. Bao, J. A. Rogers, H. E. Katz, J. Mater. Chem. 1999, 9, 1895-1904. Printable

Organic and Polymeric Semiconducting Materials and Devices.

[12] C. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 2002, 14, 99-117. Organic Thin

Film Transistors for Large Area Electronics.

[13] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H.

Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539-541. Light-Emitting Diodes

Based on Conjugated Polymers.

[14] S. R. Forrest, Nature 2004, 428, 911-918. The Path to Ubiquitous and Low-Cost

Organic Electronic Appliances on Plastic.

[15] J. G. C. Veinot, T. J. Marks, Ace. Chem. Res. 2005, 38, 632-643. Toward the Ideal

Organic Light-Emitting Diode. The Versatility and Utility of Interfacial Tailoring by

Cross-Linked Siloxane Interlayers.

Page 213: Two-dimensional acetylenic scaffolding - Research Collection

188 REFERENCES

[16] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, 258, 1474-1476.

Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene.

[17] J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Adv. Mater. 2005, 77, 66-71. A Hybrid

Planar-Mixed Molecular Heterojunction Photovoltaic Cell.

[18] H. Hoppe, N. S. Sariciftci, J. Mater. Chem. 2006, 16, 45-61. Morphology of

Polymer/Fullerene Bulk Heterojunction Solar Cells.

[19] S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 707, 1324-1338.

Conjugated Polymer-Based Organic Solar Cells.

[20] S. W. Thomas III, G. D. Joly, T. M. Swager, Chem. Rev. 2007, 707, 1339-1386.

Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers.

[21] C. W. Chu, J. Ouyang, J. H. Tseng, Y. Yang, Adv. Mater. 2005, 77, 1440-1443.

Organic Donor-Acceptor System Exhibiting Electrical Bistability for Use in Memory

Devices.

[22] G. Jiang, T. Michinobu, W. Yuan, M. Feng, Y. Wen, S. Du, H. Gao, L. Jiang, Y. Song,

F. Diederich, D. Zhu, Adv. Mater. 2005, 77, 2170-2173. Crystalline Thin Film of a

Donor-Substituted Cyanoethynylethene for Nanoscale Data Recording Through

Intermolecular Charge-Transfer Interactions.

[23] J. E. Anthony, Chem. Rev. 2006, 106, 5028-5048. Functionalized Acenes and

Heteroacenes for Organic Electronics.

[24] T. Otsubo, Y. Aso, K. Takimiya, J. Mater. Chem. 2002, 12, 2565-2575. Functional

Oligothiophenes as Advanced Molecular Electronic Materials.

[25] J. Wu, W. Pisula, K. Müllen, Chem. Rev. 2007, 707, 718-747. Graphenes as Potential

Material for Electronics.

[26] D. Bonifazi, O. Enger, F. Diederich, Chem. Soc. Rev. 2007, 36, 390-414.

Supramolecular [60]Fullerene Chemistry on Surfaces.

[27] F. Diederich, Pure & Appl. Chem. 2005, 77, 1851-1863. Advanced Opto-Electronics

Materials by Fullerene and Acetylene Scaffolding.

[28] P. Siemsen, R. C. Livingston, F. Diederich, Angew. Chem. 2000, 772, 2740-2767;

Angew. Chem. Int. Ed. 2000, 39, 2632-2657. Acetylenic Coupling: A Powerful Tool in

Molecular Construction.

[29] R. Chinchilla, C. Najera, Chem. Rev. 2007, 707, 874-922. The Sonogashira Reaction:

A Booming Methodology in Synthetic Organic Chemistry.

[30] F. Diederich, Nature 1994, 369, 199-207. Carbon Scaffolding: Building Acetylenic

All-Carbon and Carbon-Rich Compounds.

Page 214: Two-dimensional acetylenic scaffolding - Research Collection

REFERENCES 189

[31] U. H. F. Bunz, Y. Rubin, Y. Tobe, Chem. Soc. Rev. 1999, 28, 107-119.

Polyethynylated Cyclic 7i-Systems: Scaffoldings for Novel Two and Three-

Dimensional Carbon Networks.

[32] Y. Hori, K. Noda, S. Kobayashi, H. Taniguchi, Tetrahedron Lett. 1969, 26, 3563-3566.

Synthesis and Properties of Tetrakis(phenylethynyl)ethylene.

[33] H. Hauptmann, Angew. Chem. 1975, 87, 490-491; Angew. Chem. Int. Ed. 1975, 14,

498-499. Tetraethynylethenes.

[34] H. Hopf, M. Kreutzer, P. G. Jones, Chem. Ber. 1991, 124, 1471-1475. Neue Planare %-

Systeme, II. Zur Darstellung und Struktur von Tetrakis(phenylethinyl)ethen.

[35] Y. Rubin, C. B. Knobler, F. Diederich, Angew. Chem. 1991, 103, 708-710; Angew.

Chem. Int. Ed. 1991, 30, 698-700. Tetraethynylethene.

[36] J. Anthony, A. M. Boldi, Y. Rubin, M. Hobi, V. Grämlich, C. B. Knobler, P. Seiler, F.

Diederich, Helv. Chim. Acta 1995, 78, 13-45. Tetraethynylethenes: Fully Cross-

Conjugated 7i-Electron Chromophores and Molecular Scaffolds for All-Carbon

Networks and Carbon-Rich Nanomaterials.

[37] R. R. Tykwinski, M. Schreiber, R. P. Carlôn, F. Diederich, V. Grämlich, Helv. Chim.

Acta 1996, 79, 2249-2281. Donor/Acceptor-Substituted Tetraethynylethenes:

Systematic Assembly of Molecules for Use as Advanced Materials.

[38] R. R. Tykwinski, M. Schreiber, V. Grämlich, P. Seiler, F. Diederich, Adv. Mater. 1996,

8, 226-231. Donor-Acceptor Substituted Tetraethynylethenes.

[39] M. B. Nielsen, F. Diederich, Chem. Rev. 2005, 105, 1837-1867. Conjugated

Oligoenynes Based on the Diethynylethene Unit.

[40] M. B. Nielsen, F. Diederich, Synlett 2002, 544-552. Modules for Acetylenic

Scaffolding.

[41] M. B. Nielsen, F. Diederich, Chem. Rec. 2002, 2, 189-198. The Art of Acetylenic

Scaffolding: Rings, Rods, and Switches.

[42] J.-P. Gisselbrecht, N. N. P. Moonen, C. Boudon, M. B. Nielsen, F. Diederich, M.

Gross, Eur. J. Org. Chem. 2004, 2959-2972. Redox Properties of Linear and Cyclic

Scaffolds Based on Di- and Tetraethynylethene.

[43] R. E. Martin, U. Gubler, J. Cornil, M. Balakina, C. Boudon, C. Bosshard, J.-P.

Gisselbrecht, F. Diederich, P. Günter, M. Gross, J.-L. Brédas, Chem. Eur. J. 2000, 6,

3622-3635. Monodisperse Poly(triacetylene) Oligomers Extending from Monomer to

Hexadecamer: Joint Experimental and Theoretical Investigation of Physical Properties.

Page 215: Two-dimensional acetylenic scaffolding - Research Collection

190 REFERENCES

[44] M. J. Edelmann, M. A. Estermann, V. Grämlich, F. Diederich, Helv. Chim. Acta 2001,

84, 473-480. Poly(triacetylene) Oligomers: Conformational Analysis by X-Ray

Crystallography and Synthesis of a 17.8-nm-Long Monodisperse 24-mer.

[45] P. Siemsen, U. Gubler, C. Bosshard, P. Günter, F. Diederich, Chem. Eur. J. 2001, 7,

1333-1341. Pt-Tetraethynylethene Molecular Scaffolding: Synthesis and

Characterization of a Novel Class of Organometallic Molecular Rods.

[46] J.-M. Raimundo, S. Lecomte, M. J. Edelmann, S. Concilio, I. Biaggio, C. Bosshard, P.

Günter, F. Diederich, J. Mater. Chem. 2004, 14, 292-295. Synthesis and Properties of a

ROMP Backbone Polymer with Efficient, Laterally Appended Nonlinear Optical

Chromophores.

[47] L. Gobbi, P. Seiler, F. Diederich, Angew. Chem. 1999, 777, 737-740; Angew. Chem.,

Int. Ed. 1999, 38, 674-678. A Novel Three-Way Chromophoric Molecular Switch: pH

and Light Controllable Switching Cycles.

[48] L. Gobbi, P. Seiler, F. Diederich, V. Grämlich, C. Boudon, J.-P. Gisselbrecht, M.

Gross, Helv. Chim. Acta 2001, 84, 143-111. Photoswitchable Tetraethynylethene-

Dihydroazulene Chromophores.

[49] R. C. Livingston, L. R. Cox, V. Grämlich, F. Diederich, Angew. Chem. 2001, 773,

2396-2399; Angew. Chem. Int. Ed. 2001, 40, 2334-2337. 1,3-Diethynylallenes: New

Modules for Three-Dimensional Acetylenic Scaffolding.

[50] R. C. Livingston, L. R. Cox, S. Odermatt, F. Diederich, Helv. Chim. Acta 2002, 85,

3052-3077. 1,3-Diethynylallenes: Carbon-Rich Modules for Three-Dimensional

Acetylenic Scaffolding.

[51] S. Odermatt, J. L. Alonso-Gomez, P. Seiler, M. M. Cid, F. Diederich, Angew. Chem.

2005, 777, 5203-5207; Angew. Chem. Int. Ed. 2005, 44, 5074-5078. Shape-Persistent

Chiral Alleno-Acetylenic Macrocycles and Cyclophanes by Acetylenic Scaffolding

with 1,3-Diethynylallenes.

[52] S. Thorand, F. Vögtle, N. Krause, Angew. Chem. 1999, 777, 3929-3931; Angew. Chem.

Int. Ed. 1999, 38, 3721-3723. Synthesis of the First [34]Allenophane:

1,3,10,12,19,21,28,30-Octamethyl-[3.3.3.3]paracyclophan-l,2,10,l 1,19,20,28,29-

octaene.

[53] M. D. Clay, A. G. Fallis, Angew. Chem. 2005, 777, 4107-4110; Angew. Chem. Int. Ed.

2005, 44, 4039-4042. Acetylenic Allenophanes: An Asymmetrie Synthesis of a

Bis(alleno)-bis(butadiynyl)-weto-cyclophane.

Page 216: Two-dimensional acetylenic scaffolding - Research Collection

REFERENCES 191

[54] M. Iyoda, H. Otani, M. Oda, Y. Kai, Y. Baba, N. Kasai, J. Am. Chem. Soc. 1986, 108,

5371-5372. 0ctaphenyl[4]radialene.

[55] A. Auffrant, F. Diederich, C. Boudon, J.-P. Gisselbrecht, M. Gross, Helv. Chim. Acta

2004, 87, 3085-3105. Synthesis of 1,4-Diethynyl- and 1,1,4,4-Tetraethynylbutatrienes.

[56] A. Auffrant, B. Jaun, P. D. Jarowski, K. N. Houk, F. Diederich, Chem. Eur. J. 2004, 10,

2906-2911. Peralkynylated Buta-1,2,3-Trienes: Exceptionally Low Rotational Barriers

of Cumulenic C=C Bonds in the Range of Those of Peptide C-N Bonds.

[57] W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 1990, 347, 354-

358. Solid C60: A New Form of Carbon.

[58] U. H. F. Bunz, Angew. Chem. 1994, 106, 1127-1131; Angew. Chem. Int. Ed. Engl.

1994, 33, 1073-1076. Polyynes - Fascinating Monomers for the Construction of

Carbon Networks?

[59] J. A. Marsden, M. M. Haley, J. Org. Chem. 2005, 70, 10213-10226. Carbon Networks

Based on Dehydrobenzoannulenes. 5. Extension of Two-Dimensional Conjugation in

Graphdiyne Nanoarchitectures.

[60] C. A. Johnson II, Y. Lu, M. M. Haley, Org. Lett. 2007, 9, 3725-3728. Carbon

Networks Based on Benzocyclynes. 6. Synthesis of Graphyne Substructures via

Directed Alkyne Metathesis.

[61] R. H. Baughman, H. Eckhardt, J. Chem. Phys. B 1987, 87, 6687-6699. Structure-

Property Predictions for New Planar Forms of Carbon: Layered Phases Containing sp2

and sp Atoms.

[62] H. R. Karfunkel, T. Dressler, J. Am. Chem. Soc. 1992, 114, 2285-2288. New

Hypothetical Carbon Ätiotropes of Remarkable Stability Estimated by Modified

Neglect of Diatomic Overlap Solid-State Self-Consistent Field Computations.

[63] N. Narita, S. Nagai, S. Suzuki, K. Nakao, Phys. Rev. B 1998, 58, 11009-11014.

Optimized Geometries and Electronic Structures of Graphyne and its Family.

[64] N. Narita, S. Nagai, S. Suzuki, Phys. Rev. B 2001, 64, 245408-245414. Potassium

Intercalated Graphyne.

[65] J. A. Marsden, G. J. Palmer, M. M. Haley, Eur. J. Org. Chem. 2003, 2355-2369.

Synthetic Strategies for Dehydrobenzo[«]annulenes.

[66] I. Hisaki, M. Sonoda, Y. Tobe, Eur. J. Org. Chem. 2006, 833-847. Strained

Dehydrobenzoannulenes.

[67] F. Sondheimer, Ace. Chem. Res. 1972, 5, 81-91. The Annulenes.

Page 217: Two-dimensional acetylenic scaffolding - Research Collection

192 REFERENCES

[68] M. Nakagawa, Angew. Chem. 1979, 91, 215-226; Angew. Chem. Int. Ed. 1979, 18,

202-214. Annulenoannulenes.

[69] R. D. Kennedy, D. Lloyd, H. McNab, J. Chem. Soc. Perkin Trans. 1 2002, 1601-1621.

Annulenes, 1980-2000.

[70] E. L. Spitler, C. A. Johnson II, M. M. Haley, Chem. Rev. 2006, 106, 5344-5386.

Renaissance of Annulene Chemistry.

[71] S. Eisler, R. R. Tykwinski, Angew. Chem. 1999, 111, 2138-2141; Angew. Chem. Int.

Ed. 1999, 38, 1940-1943. Expanded Radialenes: Modular Synthesis and

Characterization of Cross-Conjugated Enyne Macrocycles.

[72] A. Nomoto, M. Sonoda, Y. Yamaguchi, T. Ichikawa, K. Hirose, Y. Tobe, J. Org.

Chem. 2006, 71, 401-404. A Clue to Elusive Macrocycles: Unusually Facile,

Spontaneous Polymerization of a Hexagonal Diethynylbenzene Macrocycle.

[73] V. Maraval, R. Chauvin, Chem. Rev. 2006, 106, 5317-5343. From Macrocyclic Oligo-

acetylenes to Aromatic Ring Carbo-mers.

[74] K. Nakao, M. Nishimura, T. Tamachi, Y. Kuwatani, H. Miyasaka, T. Nishinaga, M.

Iyoda, J. Am. Chem. Soc. 2006, 128, 16740-16747. Giant Macrocycles Composed of

Thiophene, Acetylene, and Ethylene Building Blocks.

[75] M. Laskoski, W. Steffen, M. D. Smith, U. H. F. Bunz, Chem. Commun. 2001, 691-692.

Is Ferrocene More Aromatic than Benzene?

[76] J. Jusélius, D. Sundholm, Phys. Chem. Chem. Phys. 2001, 3, 2433-2437. The

Aromaticity and Antiaromaticity of Dehydroannulenes.

[77] A. J. Boydston, M. M. Haley, R. V. Williams, J. R. Armantrout, J. Org. Chem. 2002,

67, 8812-8819. Diatropicity of 3,4,7,8,9,10,13,14-Octadehydro[14]annulenes: A

Combined Experimental and Theoretical Investigation.

[78] H. Hinrichs, A. K. Fischer, P. G. Jones, H. Hopf, M. M. Haley, Org. Lett. 2005, 7,

3793-3795. [2.2]Paracyclophane/Dehydroannulene Hybrids: Probing the Aromaticity

of the Dehydro[14]annulene Framework.

[79] K. Tahara, T. Yoshimura, M. Sonoda, Y. Tobe, R. V. Williams, J. Org. Chem. 2007,

72, 1437-1442. Theoretical Studies on Graphyne Substructures: Geometry,

Aromaticity, and Electronic Properties of the Multiply Fused

Dehydrobenzo[12]annulenes.

[80] A. Sarkar, J. J. Pak, G. W. Rayfield, M. M. Haley, J. Mater. Chem. 2001, 11, 2943-

2945. Nonlinear Optical Properties of Dehydrobenzo[18]annulenes: Expanded Two-

Dimensional Dipolar and Octupolar NLO Chromophores.

Page 218: Two-dimensional acetylenic scaffolding - Research Collection

REFERENCES 193

[81] S. Anand, O. Varnavski, J. A. Marsden, M. M. Haley, H. B. Schlegel, T. Goodson, III,

J. Phys. Chem. A 2006, 110, 1305-1318. Optical Excitations in Carbon Architectures

Based on Dodecadehydrotribenzo[18]annulene.

[82] T. Kawase, Y. Nishiyama, T. Nakamura, T. Ebi, K. Matsumoto, H. Kurata, M. Oda,

Angew. Chem. 2007, 119, 1104-1106; Angew. Chem. Int. Ed. 2007, 46, 1086-1088.

Cyclic [5]Paraphenyleneacetylene: Synthesis, Properties, and Formation of a Ring-in¬

Ring Complex Showing a Considerably Large Association Constant and Entropy

Effect.

[83] F. Sondheimer, R. Wolovsky, J. Am. Chem. Soc. 1962, 84, 260-269. Unsaturated

Macrocyclic Compounds. XXI. The Synthesis of a Series of Fully Conjugated

Macrocyclic Polyene-polyynes (Dehydro-annulenes) from 1,5-Hexadiyne.

[84] E. Hückel, Z. Phys. 1931, 70, 204-286. Quantentheoretische Beiträge zum

Benzolproblem. I. Die Elektronenkonfigurafion des Benzols und verwandter

Verbindungen.

[85] E. Hückel, Z Phys. 1931, 72, 310-337. Quantentheoretische Beiträge zum

Benzolproblem. II. Quantentheorie der induzierten Polaritäten.

[86] E. Hückel, Z Phys. 1932, 76, 628-648. Quantentheoretische Beiträge zum Problem der

aromatischen und ungesättigten Verbindungen. III.

[87] R. H. Mitchell, Chem. Rev. 2001, 101, 1301-1315. Measuring Aromaticity by NMR.

[88] P. von R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van E. Hommes, J. Am.

Chem. Soc. 1996, 118, 6317-6318. Nucleus-Independent Chemical Shifts: A Simple

and Efficient Aromaticity Probe.

[89] A. Stanger, J. Org. Chem. 2006, 71, 883-893. Nucleus-Independent Chemical Shifts

(NICS): Distance Dependence and Revised Criteria for Aromaticity and

Antiaromaticity.

[90] J. Anthony, C. B. Knobler, F. Diederich, Angew. Chem. 1993, 105, 437-440; Angew.

Chem. Int. Ed. Engl. 1993, 32, 406-409. Stable [12]- and [18]Annulenes Derived from

Tetraethynylethene.

[91] J. Anthony, A. M. Boldi, C. Boudon, J.-P. Gisselbrecht, M. Gross, P. Seiler, C. B.

Knobler, F. Diederich, Helv. Chim. Acta 1995, 78, 191-%\1. Macrocyclic

Tetraethynylethene Molecular Scaffolding: Perethynylated Aromatic

Dodecadehydro[18]annulenes, Antiaromatic Octadehydro[12]annulenes, and Expanded

Radialenes.

Page 219: Two-dimensional acetylenic scaffolding - Research Collection

194 REFERENCES

[92] F. Mitzel, C. Boudon, J.-P. Gisselbrecht, M. Gross, F. Diederich, Chem. Commun.

2002, 2318-2319. 7i-Electron Conjugation Effects in Antiaromatic Dehydro[12]- and

Aromatic Dehydro[18]annulenes.

[93] F. Mitzel, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, F. Diederich, Helv. Chim.

Acta 2004, 87, 1130-1157. Donor-Substituted Perethynylated Dehydroannulenes and

Radiaannulenes: Acetylenic Carbon Sheets Featuring Intense Intramolecular Charge

Transfer.

[94] A. M. Boldi, F. Diederich, Angew. Chem. 1994, 106, 482-485; Angew. Chem. Int. Ed.

Engl. 1994, 33, 468-471. Expanded Radialenes: A Novel Class of Cross-Conjugated

Macrocycles.

[95] M. Schreiber, R. R. Tykwinski, F. Diederich, R. Spreiter, U. Gubler, C. Bosshard, I.

Poberaj, P. Günter, C. Boudon, J.-P. Gisselbrecht, M. Gross, U. Jonas, H. Ringsdorf,

Adv. Mater. 1997, 9, 339-343. Tetraethynylethene Molecular Scaffolding: Nonlinear

Optical, Redox, and Amphiphilic Properties of Donor Functionalized Polytriacetylene

and Expanded Radialenes.

[96] M. B. Nielsen, M. Schreiber, Y. G. Baek, P. Seiler, S. Lecomte, C. Boudon, R. R.

Tykwinski, J.-P. Gisselbrecht, V. Grämlich, P. J. Skinner, C. Bosshard, P. Günter, M.

Gross, F. Diederich, Chem. Eur. J. 2001, 7, 3263-3280. Highly Functionalized Dimeric

Tetraethynylethenes and Expanded Radialenes: Strong Evidence for Macrocyclic

Cross-Conjugation.

[97] F. Mitzel, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, F. Diederich, Chem.

Commun. 2003, 1634-1635. Donor-Substituted Peralkynylated "Radiaannulenes":

Novel All-Carbon Macrocycles with an Intense Intramolecular Charge-Transfer.

[98] A. S. Andersson, K. Kilsâ, T. Hassenkam, J.-P. Gisselbrecht, C. Boudon, M. Gross, M.

B. Nielsen, F. Diederich, Chem. Eur. J. 2006, 12, 8451-8459. Synthesis and

Characteristics of a Nonaggregating Tris(tetrathiafulvaleno)dodecadehydro-

[18]annulene.

[99] H. Enozawa, M. Hasegawa, D. Takamatsu, K.-i. Fukui, M. Iyoda, Org. Lett. 2006, 8,

1917-1920. Synthesis of Tris(tetrathiafulvaleno)dodecadehydro[18]annulenes and

Their Self-Assembly.

[100] Special Issue on "Carbon-Rich Organometallics" (Ed. U. H. F. Bunz): J. Organomet.

Chem. 2003, 683, 267-434.

Page 220: Two-dimensional acetylenic scaffolding - Research Collection

REFERENCES 195

[101] A. Kaiser, P. Bäuerle, Top. Curr. Chem. 2005, 249, 127-201. Macrocycles and

Complex Three-Dimensional Structures Comprising Pt(II) Building Blocks.

[102] A. Köhler, H. F. Wittmann, R. H. Friend, M. S. Khan, J. Lewis, Synth. Met. 1996, 77,

147-150. Enhanced Photocurrent Response in Photocells Made with Platinum/Polyyne

Blends by Photoinduced Electron Transfer.

[103] S. C. Jones, V. Coropceanu, S. Barlow, T. Kinnibrugh, T. Timofeeva, J.-L. Brédas, S.

R. Marder, J. Am. Chem. Soc. 2004, 126, 11782-11783. Derealization in Platinum-

Alkynyl Systems: A Metal-Bridged Organic Mixed-Valence Compound.

[104] C. A. Johnson II, M. M. Haley, E. Rather, F. Han, T. J. R. Weakley, Organometallics

2005, 24, 1161-1172. Selective Metallacyclization and Crystallographic

Characterization of Structurally Related Platina-annulenes.

[105] R. Faust, F. Diederich, V. Grämlich, P. Seiler, Chem. Eur. J. 1995, 7, 111-117. Linear

and Cyclic Platinum (7-Acetylide Complexes of Tetraethynylethene.

[106] K. Campbell, C. A. Johnson II, R. McDonald, M. J. Ferguson, M. M. Haley, R. R.

Tykwinski, Angew. Chem. 2004, 116, 6093-6097; Angew. Chem. Int. Ed. 2004, 43,

5967-5971. A Simple, One-Step Procedure for the Formation of Chiral

Metallamacrocycles.

[107] C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165-195. A Survey of Hammett

Substituent Constants and Resonance and Field Parameters.

[108] O. W. Webster, J. Polym. Sei. Part A: Polym. Chem. 2002, 40, 210-221.

Cyanocarbons: A Classic Example of Discovery-Driven Research.

[109] T. L. Cairns, R. A. Carboni, D. D. Coffman, V. A. Engelhardt, R. E. Heckert, E. L.

Little, E. G. McGeer, B. C. McKusick, W. J. Middleton, J. Am. Chem. Soc. 1957, 79,

2340-2341. Cyanocarbon Chemistry- Synthesis and Chemistry of Tetracyanoethylene.

[110] A. J. Fatiadi, Synthesis 1986, 249-284. New Applications of Tetracyanoethylene in

Organic Chemistry.

[Ill] A. J. Fatiadi, Synthesis 1987, 749-789. Addition and Cycloaddition Reactions of

Tetracyanoethylene (TCNE) in Organic Chemistry.

[112] A. J. Fatiadi, Synthesis 1987, 959-978. New Applications of Tetracyanoethylene in

Organometallic Chemistry.

[113] R. Huisgen, Ace. Chem. Res. 1977, 10, 117-124. Tetracyanoethylene and Enol Ethers.

A Model for 2+2 Cycloadditions via Zwitterionic Intermediate.

Page 221: Two-dimensional acetylenic scaffolding - Research Collection

196 REFERENCES

[114] R. Huisgen, Pure & Appl. Chem. 1980, 52, 2283-2302. Cycloaddition Mechanism and

the Solvent Dependence of Rate.

[115] T. Kim, H. Sarker, N. L. Bauld, J. Chem. Soc. Perkin Trans. 2 1995, 577-580. On the

Long-standing Question of an ET or Polar Mechanism for the Cycloaddition of

Tetracyanoethylene with Electron Rich Alkenes.

[116] J. Ficini, A. M. Touzin, Bull. Soc. Chim. Fr. 1972, 6, 2385-2387. Cycloaddition of

Ynamines to oc,ß-Unsaturated Nitriles. Synthesis of Aminocyanocyclobutenes and oc-

Cyanocyclobutanones.

[117] M. I. Bruce, J. R. Rodgers, M. R. Snow, A. G. Swincer, J. Chem. Soc. Chem. Commun.

1981, 271-272. Cyclopentadienyl-Ruthenium and -Osmium Chemistry. Cleavage of

Tetracyanoethylene under Mild Conditions: X-Ray Crystal Structures of [Ru{;f-

C(CN)2CPhC=C(CN)2}(PPh3)(;/-C5H5)] and [Ru{C[=C(CN)2]CPh=C(CN)2}-

(CNBu^PPha) (7/-C5H5)].

[118] K. Onitsuka, N. Ose, F. Ozawa, S. Takahashi, J. Organomet. Chem. 1999, 578, 169-

177. Reactions of Acetylene-Bridged Diplatinum Complexes with Tetracyanoethylene.

[119] C. Cai, I. Liakatas, M.-S. Wong, M. Bosch, C. Bosshard, P. Günter, S. Concilio, N.

Tirelli, U. W. Suter, Org. Lett. 1999, 1, 1847-1849. Donor-Acceptor-Substituted

Phenylethenyl Bithiophenes: Highly Efficient and Stable Nonlinear Optical

Chromophores.

[120] T. Mochida, S. Yamazaki, J. Chem. Soc. Dalton Trans. 2002, 3559-3564. Mono- and

Diferrocenyl Complexes with Electron-Accepting Moieties Formed by the Reaction of

Ferrocenylalkynes with Tetracyanoethylene.

[121] Y. Morioka, N. Yoshizawa, J.-i. Nishida, Y. Yamashita, Chem. Lett. 2004, 33, 1190-

1191. Novel Donor-7i-Acceptor Compounds Containing l,3-Dithiol-2-ylidene and

Tetracyanobutadiene Units.

[122] C. Diaz, A. Arancibia, Polyhedron 2000, 19, 137-145. TCNE and TCNQ Ligands as

Efficient Bridges in Mixed-Valence Complexes Containing Iron-Cyclopentadienyl and

Other Organometallic Systems.

[123] M. L. Kaplan, R. C. Haddon, F. B. Bramwell, F. Wudl, J. H. Marshall, D. O. Cowan, S.

Gronowitz, J. Phys. Chem. 1980, 84, 427-431. Cyano-Based Acceptor Molecules.

Electrochemistry and Electron Spin Resonance Spectroscopy.

Page 222: Two-dimensional acetylenic scaffolding - Research Collection

REFERENCES 197

[124] D. S. Acker, R. J. Harder, W. R. Hertler, W. Mahler, L. R. Melby, R. E. Benson, W. E.

Mochel, J. Am. Chem. Soc. 1960, 82, 6408-6409. 7,7,8,8-Tetracyanoquinodimethane

and its Electrically Conducting Anion Radical Derivatives.

[125] D. S. Acker, W. R. Hertler, J. Am. Chem. Soc. 1962, 84, 3370-3374. Substituted

Quinodimethanes. I. Preparation and Chemistry of 7,7,8,8-Tetracyanoquinodimethane.

[126] B. P. Bespalov, V. V. Titov, Russ. Chem. Rev. 1975, 44, 1091-1108. 7,7,8,8-

Tetracyanoquinodimethane in Addition, Substitution, and Complex Formation

Reaction.

[127] W. R. Hertler, H. D. Hartzler, D. S. Acker, R. E. Benson, J. Am. Chem. Soc. 1962, 84,

3387-3393. Substituted Quinodimethanes. III. Displacement Reactions of 7,7,8,8-

Tetracyanoquinodimethane.

[128] H. K. Hall, Jr., T. Itoh, S. Iwatsuki, A. B. Padias, J. E. Mulvaney, Macromolecules

1990, 23, 913-917. /»-Phenylenetetramethylene Diradical and Zwitterion Intermediates

in the Spontaneous Copolymerizations of Electrophilic /»-Quinodimethanes with

Electron-Rich Olefins.

[129] N. Martin, M. Hanack, J. Chem. Soc. Chem. Commun. 1988, 1522-1524. Synthesis

and Electrochemical Properties of 15,15,16,16-Tetracyano-6,13-

pentacenequinodimethane (TCPQ).

[130] N. Martin, R. Behnisch, M. Hanack, J. Org. Chem. 1989, 54, 2563-2568. Syntheses

and Electrochemical Properties of Tetracyano-p-quinodimethane Derivatives

Containing Fused Aromatic Rings.

[131] H. Noyori, N. Hayashi, M. Katô, Tetrahedron Lett. 1973, 2983-2984. Reaction of 2,2-

Diphenylmethylenecyclopropane with Electron-Deficient Quinoid Compounds. New

[G2+re2+re2]-Type Cycloaddition.

[132] H. Masai, K. Sonogashira, N. Hagihara, J. Organomet. Chem. 1972, 34, 397-404. The

Charge-Transfer Interaction of 7,7,8,8-Tetracyanoquinodimethane with trans-

Bis(trialkylphosphine)-dialkynylplatinum(II) and Related Complexes.

[133]K.-i. Onuma, Y. Kai, N. Yasuoka, N. Kasai, Bull. Chem. Soc. Jpn. 1975, 48, 1696-

1700. The Crystal and Molecular Structure of/ram'-Bis^rimethylphosphine^ropynyl-

l-^'-dicyanomethylene-cyclohexa^S'-dien-l-yliden^^-dicyano^-methyl-pro^

en-1-ylplatinum, a Reaction Product of ^ra«s-Bis(trimethylphosphine)-

bis(propynyl)platinum and 7,7,8,8-Tetracyanoquinodimethane.

Page 223: Two-dimensional acetylenic scaffolding - Research Collection

198 REFERENCES

[134] M. Szablewski, J. Org Chem. 1994, 59, 954-956. Novel Reactions of TCNQ:

Formation of Zwitterions for Nonlinear Optics by Reaction with Enamines.

[135] N. Martin, J. L. Segura, C. Seoane, J. Mater. Chem. 1997, 7, 1661-1676. Design and

Synthesis of TCNQ and DCNQI Type Electron Acceptor Molecules as Precursors for

'Organic Metals'.

[136] R. C. Wheland, E. L. Martin, J. Org. Chem. 1975, 40, 3101-3109. Synthesis of

Substituted 7,7,8,8-Tetracyanoquinodimethanes.

[137] R. C. Wheland, J. L. Gillson, J. Am. Chem. Soc. 1976, 98, 3916-3925. Synthesis of

Electrically Conductive Organic Solids.

[138] S. Hünig, E. Herberth, Chem. Rev. 2004, 104, 5535-5563. iV,iV-Dicyanoquinone

Diimines (DCNQIs): Versatile Acceptors for Organic Conductors.

[139] D. J. Sandman, A. F. Garito, J. Org. Chem. 1974, 39, 1165-1166. An Improved

Synthetic Route to 11,1 l,12,12-Tetracyanonaphto-2,6-quinodimethane.

[140] A. W. Addison, N. S. Dalai, Y. Hoyano, S. Huizinga, L. Weiler, Can. J. Chem. 1977,

55, 4191-4199. The Chemistry of Anions Derived from

Tetracyanodiphenoquinodimethane (TCNDQ).

[141] R. Gomez, C. Seoane, J. L. Segura, Chem. Soc. Rev. 2007, 36, 1305-1322. The First

Two Decades of a Versatile Electron Acceptor Building Block: 11,11,12,12-

Tetracyano-9,10-anthraquinodimethane (TCAQ).

[142] M. Maxfield, A. N. Bloch, D. O. Cowan, J. Org. Chem. 1985, 50, 1789-1796. Large

Electron Acceptors for Molecular Metals: 13,13,14,14-Tetracyano-4,5,9,10-tetrahydro-

2,7-pyrenoquinodimethane (TCNTP) and Anions of 13,13,14,14-Tetracyano-2,7-

pyrenoquinodimehtane (TCNP).

[143] Z. Q. Gao, B. X. Mi, G Z. Xu, Y. Q. Wan, M. L. Gong, K. W. Cheah, C. H. Chen,

Chem. Commun. 2007, 117-119. An Organic /»-Type Dopant with High Thermal

Stability for an Organic Semiconductor.

[144] D. M. Way, J. B. Cooper, M. Sadek, T. Vu, P. J. Mahon, A. M. Bond, R. T. C.

Brownlee, A. G. Wedd, Inorg. Chem. 1998, 37, 604. Systematic Electrochemical

Synthesis of Reduced Forms of the a-[S2Moi8062]4~ Anion.

[145] F. Wudl, D. Wobschall, E. J. Hufnagel, J. Am. Chem. Soc. 1972, 94, 670-672.

Electrical Conductivity by the Bis-l,3-dithiole-Bis-l,3-dithiolium System.

[146] J. Ferraris, D. O. Cowan, V. Walatka, Jr., J. H. Perlstein, J. Am. Chem. Soc. 1973, 95,

948-949. Electron Transfer in a New Highly Conducting Donor-Acceptor Complex.

Page 224: Two-dimensional acetylenic scaffolding - Research Collection

REFERENCES 199

[147] L. B. Coleman, M. J. Cohen, D. J. Sandman, F. G. Yamagishi, A. F. Garito, A. J.

Heeger, Solid State Commun. 1973, 12, 1125-1132. Superconducting Fluctuations and

the Peierls Instability in an Organic Solid.

[148] R. V. Gemmer, D. O. Cowan, T. O. Poehler, A. N. Bloch, R. E. Pyle, R. H. Banks, T.

O. Poehler, J. Org. Chem. 1975, 40, 3544-3547. Chemical Purity and the Electrical

Conductivity of Tetrathiafulvalinium Tetracyanoquinodimethanide.

[149] Special Issue on "Molecular Conductors" (Ed. P. Batail): Chem. Rev. 2004, 104, 4887-

5782.

[150] J. B. Torrance, J. J. Mayerle, K. Bechgaard, B. D. Silverman, Y. Tomkiewicz, Phys.

Rev. B 1980, 22, 4960-4965. Comparison of Two Isostructural Organic Compounds,

One Metallic and the Other Insulating.

[151] A. N. Bloch, D. O. Cowan, K. Bechgaard, R. E. Pyle, R. H. Banks, Phys. Rev. Lett.

1975, 34, 1561-1564. Low-Temperature Metallic Behavior and Resistence Minimum

in a New Quasi One-Dimensional Organic Conductor.

[152] H. Tanaka, Y. Okano, H. Kobayashi, W. Suzuki, A. Kobayashi, Science 2001, 291,

285-287. A Three-Dimensional Synthetic Metallic Crystal Composed of Single-

Component Molecules.

[153] N. Wiberg, Angew. Chem. 1968, 80, 809-822; Angew. Chem. Int. Ed. Engl. 1968, 7,

766-779. Tetraaminoethylenes as Strong Electron Donors.

[154] J. R. Fox, B. M. Foxman, D. Guarrera, J. S. Miller, J. C. Calabrese, A. H. Reis, Jr., J.

Mater. Chem. 1996, 6, 1627-1631. Characterization of Novel TCNQ and TCNE 1:1

and 1:2 Salts of the Tetrakis(dimethyamino)ethylene Dication, [{(CH3)2N}2C-

C(N(CH3)2}2]2+.

[155] J. S. Miller, J. C. Calabrese, H. Rommelmann, S. R. Chittipeddi, J. H. Zhang, W. M.

Reiff, A. J. Epstein, J. Am. Chem. Soc. 1987, 109, 769-781. Ferromagnetic Behavior of

[Fe(C5Me5)2]*[TCNE]*~. Structural and Magnetic Characterization of

Decamethylferrocenium Tetracyanoethenide, [Fe(C5Me5)2]*+[TCNE]*~-MeCN, and

DecamethylferroceniumPentacyanopropenide, [Fe(C5Me5)2]*[C3(CN)5]*~.

[156] J. S. Miller, Inorg. Chem. 2000, 39, 4392-4408. Organometallic- and Organic-Based

Magnets: New Chemistry and New Materials for the New Millennium.

[157] J. M. Manriquez, G. T. Yee, R. S. McLean, A. J. Epstein, J. S. Miller, Science 1991,

252, 1415-1417. A Room-Temperature Molecular/Organic-Based Magnet.

Page 225: Two-dimensional acetylenic scaffolding - Research Collection

200 REFERENCES

[158] E. B. Vickers, I. D. Giles, J. S. Miller, Chem. Mater. 2005, 17, 1667-1672. M[TCNQ]r

Based Magnets (M = Mn, Fe, Co, Ni; TCNQ = 7,7,8,8-tetracyano-p-quinodimethane).

[159] S. R. Marder, B. Kippelen, A. K.-Y. Jen, N. Peyghambarian, Nature 1997, 388, 845-

851. Design and Synthesis of Chromophores and Polymers For Electro-Optic and

Photorefractive Applications.

[160] H. Ma, S. Liu, J. Luo, S. Suresh, L. Liu, S. H. Kang, M. Haller, T. Sassa, L. R. Dalton,

A. K.-Y. Jen, Adv. Funct. Mater. 2002, 12, 565-574. Highly Efficient and Thermally

Stable Electro-Optical Dendrimers for Photonics.

[161] S. R. Mader, Chem. Commun. 2006, 131-134. Organic Nonlinear Optical Materials:

Where We Have Been and Where We Are Going.

[162] R. R. Tykwinski, U. Gubler, R. E. Martin, F. Diederich, C. Bosshard, P. Günter, J.

Phys. Chem. B 1998, 102, 4451-4465. Structure-Property Relationships in Third-Order

Nonlinear Optical Chromophores.

[163] J.-L. Brédas, C. Adant, P. Tackx, A. Persoons, Chem. Rev. 1994, 94, 243-278. Third-

Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental

Aspects.

[164] H. Hopf, M. Kreutzer, Angew. Chem. 1990, 102, 425-426; Angew. Chem. Int. Ed. Engl.

1990, 29, 393-395. Novel Planar 7i-Systems.

[165] L. Dulog, B. Körner, J. Heinze, J. Yang, Liebigs Ann. 1995, 1663-1671. Synthesis and

Electrochemical Properties of 4-Phenyl-l-buten-3-yne-l,l,2-tricarbonitriles and

Tricyanoacrylates.

[166] H. Hopf, M. Kreutzer, P. G. Jones, Angew. Chem. 1991, 103, 1148-1151; Angew.

Chem. Int. Ed. Engl. 1991, 30, 1127-1128. On a Metathesis Reaction of

Tetrathiafulvalene (TTF).

[167] H. Hopf, M. Kreutzer, C. Mlynek, M. Scholz, G. Gescheidt, Helv. Chim. Acta 1994, 77,

1466-1474. Solution Structures of One-Electron Reduced and Oxidized Molecules

with Twisted Donor and Acceptor Moieties.

[168] G. Schermann, O. Vostrowsky, A. Hirsch, Eur. J. Org. Chem. 1999, 2491-2500.

Addition Chemistry of Rod-Shaped 1,6-Dicyanohexatriyne: Regioselectivity Control

by the Remote Cyano Function.

[169] N. N. P. Moonen, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, F. Diederich,

Angew. Chem. 2002, 114, 3170-3173; Angew. Chem. Int. Ed. 2002, 41, 3044-3047.

Page 226: Two-dimensional acetylenic scaffolding - Research Collection

REFERENCES 201

Cyanoethynylethenes: A Class of Powerful Electron Acceptors for Molecular

Scaffolding.

[170] N. N. P. Moonen, R. Gist, C. Boudon, J.-P. Gisselbrecht, P. Seiler, T. Kawai, A.

Kishioka, M. Gross, M. Irie, F. Diederich, Org. Biomol. Chem. 2003, 7, 2032-2034.

Donor-Substituted Cyanoethynylethenes: Powerful Chromophores for Opto-Electronic

Applications.

[171] N. N. P. Moonen, W. C. Pomerantz, R. Gist, C. Boudon, J.-P. Gisselbrecht, T. Kawai,

A. Kishioka, M. Gross, M. Irie, F. Diederich, Chem. Eur. J. 2005, 77, 3325-3341.

Donor-Substituted Cyanoethynylethenes: 7i-Conjugation and Band-Gap Tuning in

Strong Charge-Transfer Chromophores.

[172] N. N. P. Moonen, F. Diederich, Org. Biomol. Chem. 2004, 2, 2263-2266. Limitations

on the Use of UV/Vis Spectroscopy for the Evaluation of Conjugation Effectiveness.

[173] I. Fernandez, G. Frenking, Chem. Commun. 2006, 5030-5032. 7i-Conjugation in

Donor-Substituted Cyanoethynylethenes: an EDA Study.

[174] F. Bures, W. B. Schweizer, J. C. May, C. Boudon, J.-P. Gisselbrecht, M. Gross, I.

Biaggio, F. Diederich, Chem. Eur. J. 2007, 13, 5378-5387. Property Tuning in Charge-

Transfer Chromophores by Systematic Modulation of the Spacer between Donor and

Acceptor.

[175] J. C. May, J. H. Lim, I. Biaggio, N. N. P. Moonen, T. Michinobu, F. Diederich, Opt.

Lett. 2005, 30, 3057-3059. Highly Efficient Third-Order Optical Nonlinearities in

Donor-Substituted Cyanoethynylethene Molecules.

[176] J. C. May, P. R. LaPorta, B. Esembeson, I. Biaggio, T. Michinobu, F. Bures, F.

Diederich, Proc. ofSPIE 2006, 633J, 633101/1-633101/14. Optimizing Specific Third-

Order Polarizabilities and Approaching the Fundamental Limit in Donor Substituted

Cyanoethynylethene (CEE) Molecules.

[177] J. C. May, I. Biaggio, F. Bures, F. Diederich, Appl. Phys. Lett. 2007, 90, 251106/1-

251106/3. Extended Conjugation and Donor-Acceptor Substitution to Improve the

Third-Order Optical Nonlinearity of Small Molecules.

[178] M. G. Kuzyk, Opt. Lett. 2000, 25, 1183-1185. Fundamental Limits on Third-Order

Molecular Susceptibilities.

[179] B. M. Trost, Science 1991, 254, 1471-1477. The Atom Economy - A Search for

Synthetic Efficiency.

Page 227: Two-dimensional acetylenic scaffolding - Research Collection

202 REFERENCES

[180] T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross,

I. Biaggio, F. Diederich, Chem. Commun. 2005, 737-739. A New Class of Organic

Donor-Acceptor Molecules with Large Third-Order Optical Nonlinearities.

[181] T. Michinobu, C. Boudon, J.-P. Gisselbrecht, P. Seiler, B. Frank, N. N. P. Moonen, M.

Gross, F. Diederich, Chem. Eur. J. 2006, 72, 1889-1905. Donor-Substituted 1,1,4,4-

Tetracyanobutadienes (TCBDs): New Chromophores with Efficient Intramolecular

Charge-Transfer Interactions by Atom-Economic Synthesis.

[182] Q. Xie, E. Pérez-Cordero, L. Echegoyen, J. Am. Chem. Soc. 1992, 114, 3978-3980.

Electrochemical Detection of Coo6 and C706 : Enhanced Stability of Füllendes in

Solution.

[183] A. S. Hay, J. Org. Chem. 1962, 27, 3320-3321. Oxidative Coupling of Acetylenes. II.

[184] W. Chodkiewicz, P. Cadiot, C R. Hebd. Seances Acad. Sei. 1955, 241, 1055-1057.

New Synthesis of Symmetrical and Asymmetrical Conjugated Polyacetylenes.

[185] W. Chodkiewicz, Ann. Chim. {Paris) 1957, 2, 819-869. Synthesis of Acetylenic

Compounds.

[186] J. Wityak, J. B. Chan, Synth. Commun. 1991, 27, 977-979. Synthesis of 1,3-Diynes

Using Palladium-Copper Catalysis.

[187] K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 4467-4470. A

Convenient Synthesis of Acetylenes: Catalytic Substitutions of Acetylenic Hydrogen

with Bromoalkenes, Iodoarenes, and Bromopyridines.

[188] R. Dembinski, T. Lis, S. Szafert, C. L. Mayne, T. Bartik, J. A. Gladysz, J. Organomet.

Chem. 1999, 578, 229-246. Appreciably Bent sp Carbon Chains: Synthesis, Structure,

and Protonation of Organometallic 1,3,5-Triynes and 1,3,5,7-Tetraynes of the Formula

(ri5-C5Me5)Re(NO)(PPh3)((C=C)„-^-C6H4Me).

[189] M. Nishio, CrystEngComm. 2004, 6, 130-158. CH/71 Hydrogen Bonds in Crystals.

[190] A. Hilger, J.-P. Gisselbrecht, R. R. Tykwinski, C. Boudon, M. Schreiber, R. E. Martin,

H. P. Liithi, M. Gross, F. Diederich, J. Am. Chem. Soc. 1997, 779, 2069-2078.

Electronic Characteristics of Arylated Tetraethynylethenes: A Cooperative

Computational and Electrochemical Investigation.

[191] C. Boudon, J.-P. Gisselbrecht, M. Gross, J. Anthony, A. M. Boldi, R. Faust, T. Lange,

D. Philp, J.-D. Van Loon, F. Diederich, J. Electroanal. Chem. 1995, 394, 187-197.

Electrochemical Properties of Tetraethynylethenes, Fully Cross-Conjugated %-

Page 228: Two-dimensional acetylenic scaffolding - Research Collection

REFERENCES 203

Chromophores, and Tetraethynylethene-Based Carbon-Rich Molecular Rods and

Dehydroannulenes.

[192] G. Fuhrmann, T. Debaerdemaeker, P. Bäuerle, Chem. Commun. 2003, 948-949. C-C

Bond Formation Through Oxidatively Induced Elimination of Platinum Complexes - A

Novel Approach Towards Conjugated Macrocycles.

[193] T. G. Appleton, M. A. Bennett, I. B. Tomkins, J. Chem. Soc. Dalton Trans. 1976, 439-

446. Effect of Chelate-ring Size on Spectroscopic and Chemical Properties of

Methylplatinum(II) Complexes of the Ditertiary Phosphines Ph2P[CH2]„PPh2(« = 1, 2,

or 3).

[194] M. I. Bruce, K. Costuas, J.-F. Halet, B. C. Hall, P. J. Low, B. K. Nicholson, B. W.

Skelton, A. H. White, J. Chem. Soc. Dalton Trans. 2002, 383-398. Preparation of Buta-

1,3-diynyl Complexes of Platinum(II) and Their Use in the Construction of Neutral

Molecular Squares: Synthesis, Structural and Theoretical Characterisation of cyclo-

{Pt(//-C=CC=C)(dppe)}4 and Related Chemistry.

[195] M. Janka, G. K. Anderson, N. P. Rath, Organometallics 2004, 23, 4382-4390.

Synthesis of Neutral Molecular Squares Composed of Bis(phosphine)platinum Corner

Units and Dialkynyl Linkers. Solid-State Characterization of [Pt(//-C=CC=C)(dppp)]4.

[196] H. Lang, D. S. A. George, G Rheinwald, Coord. Chem. Rev. 2000, 206-207, 101-197.

Bis(alkynyl) Transition Metal Complexes, R^^C-fMJ-C^CR2, as Organometallic

Chelating Ligands; Formation of //, ;/1(2)-Alkynyl-Bridged Binuclear and Oligonuclear

Complexes.

[197] M. G. B. Drew, A. Lavery, V. McKee, S. M. Nelson, J. Chem. Soc. Dalton Trans.

1985, 1771-1774. The Structure of a Dinuclear Copper(I) Complex of a Schiff-base

Ligand Containing a Copper-Copper Bond.

[198] J. S. Bradley, R. L. Pruett, E. Hill, G. B. Ansell, M. E. Leonowicz, M. A. Modrick,

Organometallics 1982, 1, 748-752. Synthesis and Molecular Structure of

Bis(acetonitrilecuprio)carbidohexadecacarbonylhexaruthenium, [(CH3CN)2Cu2Ru6C-

(CO)iô], a Bimetallic Carbidocarbonyl Cluster Containing a Copper-Copper Bond.

[199] N. J. Blackburn, M. E. Barr, W. H. Woodruff, J. van der Ooost, S. de Vries,

Biochemistry 1994, 33, 10401-10407. Metal-Metal Bonding in Biology: EXAFS

Evidence for a 2.5 Â Copper-Copper Bond in the Cua Center of Cytochrome Oxidase.

Page 229: Two-dimensional acetylenic scaffolding - Research Collection

204 REFERENCES

[200] C. Kappenstein, U. Schubert, J. Chem. Soc. Chem. Commun. 1980, 1116-1118. X-Ray

Crystal Structure of Two New Mixed-valence Copper Cyanide Complexes: Unusual

Bi-co-ordinated Copper(I) Atoms in Polymeric Networks.

[201] C. Harding, V. McKee, J. Nelson, J. Am. Chem. Soc. 1991, 773, 9684-9685. Highly

Delocalized Cu(I)/Cu(II): A Copper-Copper Bond?

[202] C. Harding, J. Nelson, M. C. R. Symons, J. Wyatt, J. Chem. Soc. Chem. Commun.,

1994, 2499-2500. A Copper-Copper Bond by Intent.

[203] S. De, S. Chowdhury, J. P. Naskar, M. G. B. Drew, R. Clérac, D. Datta, Eur. J. Inorg.

Chem. 2007, 3695-3700. A Hexadecanuclear Copper(I)-Copper(II) Mixed-Valence

Compound: Structure, Magnetic Properties, Intervalence Charge Transfer, EPR, and

NMR.

[204] G. V. Goeden, J. C. Huffman, K. G. Caulton, Inorg. Chem. 1986, 25, 2484-2485. A

Cu-(//-H) Bond Can Be Stronger Than an Intramolecular P^Cu Bond. Synthesis and

Structure of Cu2(//-H)2[^-CH3C(CH2PPh2)3]2.

[205] K. Köhler, H. Pritzkow, H. Lang, J. Organomet. Chem. 1998, 553, 31-38. Synthese

und Reaktionsverhalten monomerer bis(^2-Alkin)-Kupfer(I)-Fluorid- und Kupfer(I)-

Hydrid-Komplexe.

[206] N. P. Mankad, D. S. Laitar, J. P. Sadighi, Organometallics 2004, 23, 3369-3371.

Synthesis, Structure, and Alkyne Reactivity of a Dimeric (Carbene)copper(I) Hydride.

[207] B. H. Lipshutz, B. A. Frieman, Angew. Chem. 2005, 777, 6503-6506; Angew. Chem.

Int. Ed. 2005, 44, 6345-6348. CuH in a Bottle: A Convenient Reagent for Asymmetric

Hydrosilylations.

[208] Organic Chemistry, J. Clayden, N. Greeves, S. Warren, P. Wothers, Oxford University

Press, Oxford, 2001.

[209] H. D. Kaesz, R. B. Saillant, Chem. Rev. 1972, 72, 231-281. Hydride Complexes of the

Transition Metals.

[210] R. E. Martin, J. A. Wytko, F. Diederich, C. Boudon, J.-P. Gisselbrecht, M. Gross, Helv.

Chim. Acta 1999, 82, 1470-1485. Modulation of 7i-Electron Conjugation in

01igo(triacetylene) Chromophores by Incorporation of a Central Spacer.

[211] Y. Rio, G. Accorsi, N. Armaroli, D. Felder, E. Levillain, J.-F. Nierengarten, Chem.

Commun. 2002, 2830-2831. Thin Layer Cyclic Voltammetry: An Efficient Tool to

Determine the Redox Characteristics of Large Dendrimers.

Page 230: Two-dimensional acetylenic scaffolding - Research Collection

REFERENCES 205

[212] J.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Am. Chem. Soc. 1993, 775, 12378-12384.

Transition Metal Templated Formation of [2]- and [3]-Rotaxanes with Porphyrins as

Stoppers.

[213] C. Willgerodt, E. Arnold, Chem. Ber. 1901, 34, 3343-3354. Bearbeitung des p-

Nitranilins auf Trijod- und Tetrajod-Benzole, auf das Pentajodbenzol, sowie auf alle zu

diesen Verbindungen führenden Zwischenproducte.

[214] D. L. Mattern, J. Org. Chem. 1983, 48, 4772-4773. Periodination of Benzene with

Periodate/Iodide.

[215] W. B. Wan, M. M. Haley, J. Org. Chem. 2001, 66, 3893-3901. Carbon Networks

Based on Dehydrobenzoannulenes. Synthesis of "Star" and "Trefoil" Graphdiyne

Substructures via Sixfold Cross-Coupling of Hexaiodobenzene.

[216] F. Paul, J. Part, J. F. Hartwig, Organometallics 1995, 14, 3030-3039. Structural

Characterization and Simple Synthesis of {Pd[P(o-Tol)3]2}, Dimeric Palladium(II)

Complexes Obtained by Oxidative Addition of Aryl Bromides, and Corresponding

Monometallic Amine Complexes.

[217] M. J. Plater, T. Jackson, J. Chem. Soc. Perkin Trans. 1 2001, 2548-2552. Polyaromatic

Amines. Part 2. Synthesis of 4,4',4"-Tris(jV-aryl-jV-phenylamino)triphenylamine, 7V,7V-

Bis[4-(jV-aryl-jV-phenylamino)phenyl]tolylamine and N,N,N',N'-Tetraary\-o-

phenylenediamine Derivatives.

[218] S. Kotha, D. Kashinath, K. Lahiri, R. B. Sunoj, Eur. J. Org. Chem. 2004, 4003-4013.

Synthesis of C3-Symmetric Nano-Sized Polyaromatic Compounds by Trimerization

and Suzuki-Miyaura Cross-Coupling Reactions.

[219] K. Kobayashi, N. Kobayashi, M. Ikuta, B. Therrien, S. Sakamoto, K. Yamaguchi, J.

Org. Chem. 2005, 70, 749-752. Syntheses of Hexakis(4-functionalized-

phenyl)benzenes and Hexakis[4-(4'-functionalized-phenylethynyl)phenyl]benzenes

Directed to Host Molecules for Guest-Inclusion Networks.

[220] H. Ku, J. R. Barrio, J. Org. Chem. 1981, 46, 5239-5241. Convenient Synthesis of Aryl

Halides from Arylamines via Treatment of l-Aryl-3,3-dialkyltriazenes with

Trimethylsilyl Halides.

[221] V. Fiandanese, D. Bottalico, G. Marchese, A. Punzi, Tetrahedron 2004, 60, 11421-

11425. New Stereoselective Methodology for the Synthesis of Dihydroxerulin and

Xerulin, Potent Inhibitors of the Biosynthesis of Cholesterol.

Page 231: Two-dimensional acetylenic scaffolding - Research Collection

206 REFERENCES

[222] J. B. Flanagan, S. Margel, A. J. Bard, F. C. Anson, J. Am. Chem. Soc. 1978, 100, 4248-

4253. Electron Transfer to and from Molecules Containing Multiple, Noninteracting

Redox Centers. Electrochemical Oxidation of Poly(vinylferrocene).

[223] C. Valério, J.-L. Fillaut, J. Ruiz, J. Guittard, J.-C. Biais, D. Astruc, J. Am. Chem. Soc.

1997, 119, 2588-2589. The Dendritic Effect in Molecular Recognition: Ferrocene

Dendrimers and Their Use as Supramolecular Redox Sensors for the Recognition of

Small Inorganic Anions.

[224]M.-C. Daniel, J. Ruiz, J.-C. Biais, N. Daro, D. Astruc, Chem. Eur. J. 2003, 9, 4371-

4379. Synthesis of Five Generations of Redox-Stable Pentamethylamidoferrocenyl

Dendrimers and Comparison of Amidoferrocenyl- and Pentamethylamidoferrocenyl

Dendrimers as Electrochemical Exoreceptors for the Selective Recognition of H2PO4,

HSO4, and Adenosine 5'-Triphosphate (ATP) Anions: Stereoelectronic and

Hydrophobic Roles of Cyclopentadienyl Permethylation.

[225] V. J. Chebny, D. Dhar, S. V. Lindeman, R. Rathore, Org. Lett. 2006, 8, 5041-5044.

Simultaneous Ejection of Six Electrons at a Constant Potential by Hexakis(4-

ferrocenylphenyl)benzene.

[226] K. Hosomizu, H. Imahori, U. Hahn, J.-F. Nierengarten, A. Listorti, N. Armaroli, T.

Nemoto, S. Isoda, J. Phys. Chem. C 2007, 111, 2777-2786. Dendritic Effects on

Structure and Photophysical and Photoelectrochemical Properties of Fullerene

Dendrimers and Their Nanoclusters.

[227] Q. T. Zhang, J. M. Tour, J. Am. Chem. Soc. 1998, 120, 5355-5362. Alternating

Donor/Acceptor Repeat Units in Polythiophenes. Intramolecular Charge Transfer for

Reducing Band Gaps in Fully Substituted Conjugated Polymers.

[228] C. A. Thomas, K. Zong, K. A. Abboud, P. J. Steel, J. R. Reynolds, J. Am. Chem. Soc.

2004, 126, 16440-16450. Donor-Mediated Band Gap Reduction in a Homologous

Series of Conjugated Polymers.

[229] H. Hopf, Angew. Chem. 1984, 96, 947-958; Angew. Chem. Int. Ed. 1984, 23, 948-959.

The Dendralenes - a Neglected Group of Highly Unsaturated Hydrocarbons.

[230] H. Hopf, Angew. Chem. 2001, 113, 727-729; Angew. Chem., Int. Ed. 2001, 40, 705-

707. Dendralenes: The Breakthrough.

[231] H. Jian, J. M. Tour, J. Org. Chem. 2003, 68, 5091-5103. En Route to Surface-Bound

Electric Field-Driven Molecular Motors.

[232] M. I. Bardamova, O. M. Usov, Bull. Acad. Sei. USSR, Div. Chem. Sei. (Engl. Transi),

1990, 39, 978-984. Photochemistry of Acetylene Derivatives of Aromatic Amines. 2.

Page 232: Two-dimensional acetylenic scaffolding - Research Collection

REFERENCES 207

Photolysis of /»-Ethynyl- and /?-Butadiynyl-/V,/V-dibenzylanilines and p-

Dimethylaminotolane in the Presence of Carbon Tetrachloride and Oxygen.

[233] H. Umezawa, S. Okada, H. Oikawa, H. Matsuda, H. Nakanishi, J. Phys. Org. Chem.

2005, 18, 468-472. Synthesis and Non-Linear Optical Properties of New Ionic Species:

Tolan and Diphenylbutadiyne with Trimethylammonio and Dimethylamino Groups.

[234] G. Rodriguez, A. Lafuente, R. Martin-Villamil, M. P. Martinez-Alcazar, J. Phys. Org.

Chem. 2001, 14, 859-868. Synthesis and Structural Analysis of \,4-Bis[n-(N,N-

dimethylamino)phenyl]buta-l,3-diynes and Charge-Transfer Complexes with TCNE.

[235] P. Reutenauer, M. Kivala, P. D. Jarowski, C. Boudon, J.-P. Gisselbrecht, M. Gross, F.

Diederich, Chem. Commun. 2007, 4898-4900. New Strong Organic Acceptors by

Cycloaddition of TCNE and TCNQ to Donor-substituted Cyanoalkynes.

[236] C. Dehu, F. Meyers, J. L. Brédas, J. Am. Chem. Soc. 1993, 115, 6198-6206. Donor-

Acceptor Diphenylacetylenes: Geometric Structure, Electronic Structure, and Second-

Order Nonlinear Optical Properties.

[237] P. Suppan, J. Photochem. Photobiol. A 1990, 50, 293-330. Solvatochromic Shifts: The

Influence of the Medium on the Energy of Electronic States.

[238] B. Strehmel, A. M. Sarker, H. Detert, ChemPhysChem 2003, 4, 249-259. The Influence

of g and 7i Acceptors on Two-Photon Absorption and Solvatochromism of Dipolar and

Quadrupolar Unsaturated Organic Compounds.

[239] J. Crissman, Restek Ltd., 2007, www.restekcorp.com/solutions. Deactivating Glass

Surfaces with Dimethylchlorosilane (DMDCS).

[240] J. J. La Clair, J. Am. Chem. Soc. 1997, 119, 7676-7684. Selective Detection of the

Carbohydrate-Bound State of Concanvalin A at the Single Molecule Level.

[241] G. D. McAllister, C. D. Wilfred, R. J. K. Taylor, Synlett 2002, 1291-1292. Tandem

Oxidation Processes: The Direct Conversion of Activated Alcohols into Nitriles.

Page 233: Two-dimensional acetylenic scaffolding - Research Collection
Page 234: Two-dimensional acetylenic scaffolding - Research Collection

7 Appendix

Page 235: Two-dimensional acetylenic scaffolding - Research Collection
Page 236: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 211

7.1 X-ray Crystallographic Data

Table 7.1. Crystal data and structure refinement for 44.

Crystal data

Cambridge Crystallographic Data Centre CCDC-605747

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system, space group

Unit cell dimensions

Volume

Z

Calculated density

Absorption coefficient

F(000)

Approximate crystal size

Data collection

kival_D_04

C52H78N2Si2

787.34

220(2)K

0.7107 Â

triclinic, P 1 (no. 2)

a = 12.0694(5) Â, a = 92.044(4)°b = 12.6299(7) Â, ß= 92.778(3)°c = 17.9160(8) Kï= 104.564(2)°

2636.9(2) Â3

2

0.992 mg nT3

0.099 mnT1

864

0.30x0.25x0.10 mm

Nonius Kappa-CCD diffractometer with graphite monochromator

Grange for data collection

Index ranges

Reflections collected / unique

Completeness to 2d = 24.16

Absorption correction

Solution and refinement

Structure solution

Structure refinement

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [/> 20(1)]

Extinction coefficient

Largest diff peak and hole

6.97 < 6< 24.16°

-\3<h< 13,-14<K 14,-20</<20

13250/ 8046 (Rmt = 0.050)

95.2%

none

SIR-97 (direct methods)

SHELXL-97 (full-matrix least-squares on F2)8046 / 0/506

1.021

R(F) = 0.107, wR(F2) = 0.279

0.025(6)

0.467 and -0.437 e Â"3

Page 237: Two-dimensional acetylenic scaffolding - Research Collection

212 Appendix

s^s

#C16

a*/<2 C2ff

cs% (V*

A,

Jt-

C<W'3'='«,

Table 7.2. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Â2 x 103) for 44.

C/(eq) is defined as one third of the trace of the orthogonalized U1} tensor.

_y_ U(eq)

Si(l)

C(l)

C(2)

C(3)

C(4)

C(5)

C(6)

C(7)

C(8)

C(9)

N(10)

C(ll)

C(12)

C(13)

C(14)

C(15)

C(16)

C(17)

C(18)

C(19)

C(20)

C(21)

C(22)

C(23)

C(24)

C(25)

C(26)

C(27)

Si(l')

C(l')

C(2')

C(3')

C(4')

C(5')

C(6')

C(7')

C(8')

C(9')

N(IO')

3535(1)

548(2)

787(2)

1058(2

1451(2

740(2)

1148(2

2298(2

3001(2

2584(2

2730(2

3739(3

4893(3

3658(4

2067(3

1417(3

2817(3

1505(2

2318(3

4795(5

5863(6

4708(7

3656(5

2559(8

3728(13)

3200(7

3922(1

3222(17)

2126(1

4453(3

3944(3

3345(2

2609(2

2894(3

2177(3

1116(3

824(3)

1544(3)

386(3)

2012(1)

35(2)

-502(2)

-926(2)

-1396(2)

-1792(2)

-2208(2)

-2252(2)

-1859(3)

-1451(3)

-2630(2)

-3095(3)

-2228(4)

-3949(4)

-2799(3)

-3990(3)

-2350(3)

652(3)

1189(3)

2281(9)

3002(9)

2309(17)

1328(9)

1282(15)

277(13)

3419(6)

4109(10)

4090(14)

1761(1)

4722(3)

5090(3)

5264(2)

5476(2)

6402(3)

6600(3)

5881(3)

4939(3)

4754(3)

6081(3)

-1003(1)

133(1)

789(1)

1333(1)

1976(1)

2553(1)

3179(1)

3276(2)

2691(2)

2065(2)

3912(1)

3915(2)

3993(2)

3297(2)

4584(2)

4650(2)

5295(2)

-238(2)

-536(2)

-378(4)

-697(5)

390(5)

-1901(4)

-2431(5)

-1917(9)

-1158(5)

-1734(8)

-384(12)

3952(1)

5070(2)

5716(2)

6195(2)

6748(1)

7216(2)

7743(2)

7833(2)

7351(2)

6823(2)

8360(2)

96(1)

47(1)

50(1)

52(1)

49(1)

50(1)

50(1)

52(1)

61(1)

57(1)

61(1)

75(1)

99(1)

98(1)

60(1)

74(1)

75(1)

56(1)

74(1)

197(4)

195(4)

301(9)

222(4)

284(7)

252(6)

175(3)

361(5)

311(8)

83(1)

64(1)

61(1)

56(1)

54(1)

70(1)

79(1)

66(1)

68(1)

63(1)

86(1)

Page 238: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 213

C(ll') -380(9) 5021(9) 8759(4) 189(3)

C(12') -1354(7) 4883(10) 8253(5) 225(4)

C(13') 258(11) 4210(8) 8972(5) 211(4)

C(14') 620(5) 6993(6) 8846(3) 159(2)

C(15') 1448(7) 7192(12) 9402(4) 216(5)

C(16') -579(11) 7375(10) 8858(7) 279(4)

C(17') 3848(2) 3825(2) 4587(2) 52(1)

C(18') 3183(3) 3041(3) 4269(2) 74(1)

C(19') 1565(5) 1006(4) 4780(3) 117(2)

C(20') 2025(12) 160(8) 5027(6) 230(4)

C(21') 1333(6) 1704(6) 5430(3) 128(2)

C(22') 971(3) 2115(4) 3387(3) 99(1)

C(23') 127(4) 1122(5) 2970(4) 130(2)

C(24') 385(5) 2866(5) 3787(4) 132(2)

C(25') 2933(3) 1003(3) 3386(3) 104(1)

C(26') 3210(6) 1651(7) 2605(3) 146(2)

C(27') 4090(4) 876(5) 3731(3) 122(2)

Table 7.3. Bond lengths [Â] and angles [°] for 44.

Si(l)-C(19) 1.797(6) Si(l')-C(22') 1.837(5)

Si(l)-C(18) 1.831(3) Si(l')-C(18') 1.841(3)

Si(l)-C(22) 1.828(8) Si(l')-C(25') 1.842(5)

Si(l)-C(25) 1.945(9) Si(l')-C(19') 1.855(6)

C(l)-C(l)#l 1.365(5) C(l')-C(l')#2 1.369(6)

C(l)-C(17) 1.429(4) C(l')-C(17') 1.421(4)

C(l)-C(2) 1.430(4) C(l')-C(2') 1.451(4)

C(2)-C(3) 1.200(4) C(2')-C(3') 1.198(4)

C(3)-C(4) 1.429(4) C(3')-C(4') 1.425(4)

C(4)-C(9) 1.389(4) C(4')-C(5') 1.375(4)

C(4)-C(5) 1.400(4) C(4')-C(9') 1.392(4)

C(5)-C(6) 1.377(4) C(5')-C(6') 1.369(5)

C(6)-C(7) 1.407(4) C(6')-C(7') 1.392(5)

C(7)-N(10) 1.380(3) C(7')-N(10') 1.381(4)

C(7)-C(8) 1.406(4) C(7')-C(8') 1.404(5)

C(8)-C(9) 1.376(4) C(8')-C(9') 1.367(5)

N(10)-C(14) 1.469(4) N(10')-C(14') 1.381(7)

N(10)-C(ll) 1.479(4) N(10')-C(ll') 1.634(11)

C(ll)-C(13) 1.501(6) C(ll')-C(12') 1.420(12)

C(ll)-C(12) 1.537(5) C(ll')-C(13') 1.478(15)

C(14)-C(15) 1.523(4) C(14')-C(15') 1.347(10)

C(14)-C(16) 1.531(4) C(14')-C(16') 1.637(14)

C(17)-C(18) 1.203(4) C(17')-C(18') 1.211(4)

C(19)-C(21) 1.384(11) C(19')-C(20') 1.398(12)

C(19)-C(20) 1.528(10) C(19')-C(21') 1.515(8)

C(22)-C(24) 1.352(18) C(22')-C(24') 1.500(8)

C(22)-C(23) 1.579(13) C(22')-C(23') 1.545(6)

C(25)-C(26) 1.534(12) C(25')-C(27') 1.547(7)

C(25)-C(27) 1.59(2) C(25')-C(26') 1.651(8)

C(19)-Si(l)-C(18) 109.1(3) C(22')-Si(l')-C(18') 108.22(18)

C(19)-Si(l)-C(22) 115.0(4) C(22')-Si(l')-C(25') 111.6(2)

C(18)-Si(l)-C(22) 109.1(3) C(18')-Si(l')-C(25') 104.59(18)

C(19)-Si(l)-C(25) 106.5(5) C(22')-Si(l')-C(19') 111.2(3)

C(18)-Si(l)-C(25) 106.4(3) C(18')-Si(l')-C(19') 109.2(2)

C(22)-Si(l)-C(25) 110.4(4) C(25')-Si(l')-C(19') 111.8(3)

C(l)#l-C(l)-C(17) 120.8(3) C(l')#2-C(l')-C(17') 120.2(4)

C(l)#l-C(l)-C(2) 121.7(3) C(l')#2-C(l')-C(2') 117.8(3)

C(17)-C(l)-C(2) 117.5(2) C(17')-C(l')-C(2') 122.0(3)

Page 239: Two-dimensional acetylenic scaffolding - Research Collection

1fî1Ià131^131313^13131^1^1^1^1^1^1^1^1^1^1^

UiO^CUlONOOUiKlUiOMlOOUJiOlI'VOVOUM

^^

C^C^C^C^C^

to

L/iO

<~^<~^<~^^"^^"^

<~^^"^

<~^<~^^"^

L/i

r-^

r-^

tO

tO

tO

tO

tO

^-^^-^^-^tOtOtOK^K^tOK^tOtOK^

^-^

^j^131^13131^1313131^1^131^1^1^1^1^1^1^^

(JltOH-tOtOH-tOtOtO-

tO|4^K-|

I|K-OtOO^tO|UJ

^-^

u)

to

^-^^-^^-^

^-^

Ui

U)

K)W^

00

WUiOOOlKQiûKVOKO-li^liO-li^OOOOOOl/'^

Ä^131^13^1^1313131^1^1^1^1^1^1^1^1^1^^

c; ç ç ç: c;

c;

H I: 4^

rt>

öh.

of/i

S3o

Irt

ff

»n

£•a

*o

ri>&

&'S.

ST

i-ho

t)

ft»

§B »

1to

»-S

K

Üh

Kri»

,ç:

en

+>°

to

^

w

g*S»

*i-i

q

H er

to

o to

££££££££££££J-gJZ^JZ^OOOOOOJZ^OOOOOOO

tOtOtOtOtOtOtOtOtOK-K-K-IIilliK-IIilliK-^I^IOO^OaNl^l^tJiaNtJl^O^OtOtjJ

dS2"âàS^^dS^

°°w

°°-èVYYYYoCVWWW

XaAAAAAAAAAaXXaXXXZZOOOVVoOOOOOO

totototototoK-K-K-K-K-K-K-K-K-K-K-K-ooVW^i^iVWWW

ïï^uu^^555diàà^t;cSVYnnoYYnnoooon

II

II

II

II

II

II

IM

fl

'—^

'—^

'—^fl

fl

'—^

'—^

'—^

'—^

'—^

'—^

'—^

-^W^IwwtjJwwOw^-^CTNONtJltOtOtjJK-^-^^-^

-

4^

too

^o

oU>

toO

00

^1

00

^1

00

--

to

4^

u>

u>

<Jl

toto

too

toto

to

<Jl

to

toto

to

to

toto

too

On

^1

On

^1

<Ji

4^

^1

u>

^1

1—'

4^

^O

^o

<Ji

00

4^

U>

^1

^1

to

00o

^1

^1

Ut

1—'

00

^o

4^

^1

^o

On

On

On

^1

On

^D

00

00

^1

^o

On

On

^1

u>

U>

U>

to

u>

u>

u>

u>

to

to

to

u>

u>

to

to

to

to

to

to

to

to

(jJ

U>

MWMMtOMtOMWMMQ^^MMMvO^MOO\oa\M'2uiO\lO(JilJi(OW

AAAAAAAAAAA^AAAAA2|XXOOOVV

OOOOOOO

OOOOOOOOOOOOOOOOO—

^ÎÎQOO^^îî^G^

II

II

II

II

II

II

II

IIM

II

'—^

'—^

^—^fl

fl

^—^

^—^

^—^

^—^

'—^

^—^

^—^

gvjvJ^4.uu1o^lOMUiUiUl^-0000-JO^Hh-aih-tJK)HOtJgoo»

lo

(JiÖÖ

<JJlo

(JiÖ

'(-ft

VO

to

lo

b\

CTn

to

^-j

voÖ

I—,

'(-ft

'~J

4^Ö

00

toÖ

00

'~JloÖ

4^

I—'

4^L^4^4^4^4^4^^^0JL^^^^0^^^^04^4^4^0JL^UJtjJtjJtjJtjJtjJtjJtjJtjJtjJ

Page 240: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 215

C(21) 132(5) 550(20) 137(6) 50(9) -42(5) -68(9)

C(22) 133(3) 300(10) 158(4) -64(5) 88(3) -87(5)

C(23) 141(5) 476(19) 142(6) 24(8) -28(5) -90(9)

C(24) 259(11) 230(11) 280(12) -9(10) 98(10) 74(10)

C(25) 182(6) 130(5) 201(6) 59(4) 57(5) 2(5)

C(26) 199(9) 397(9) 455(10) 344(7) 7(8) -28(9)

C(27) 343(17) 237(12) 376(19) -8(13) 73(16) 106(12)

Si(l') 75(1) 68(1) 101(1) -6(1) -7(1) 10(1)

C(l') 71(2) 61(2) 61(2) 3(1) -4(1) 19(1)

C(2') 67(2) 73(2) 53(1) 23(1) 10(1) 34(1)

C(3') 63(2) 59(2) 48(1) 9(1) 0(1) 19(1)

C(4') 63(2) 57(2) 43(1) 8(1) 6(1) 16(1)

C(5') 81(2) 60(2) 62(2) 1(1) 16(2) 3(2)

C(6') 104(2) 55(2) 68(2) -12(2) 23(2) 1(2)

C(7') 84(2) 66(2) 51(2) 4(1) 16(1) 22(2)

C(8') 66(2) 70(2) 62(2) -6(1) 14(1) 6(2)

C(9') 65(2) 62(2) 59(2) -12(1) 6(1) 12(1)

N(IO') 113(2) 83(2) 66(2) 1(1) 40(1) 25(2)

C(ll') 235(7) 248(8) 106(4) -32(5) 23(5) 106(7)

C(12') 192(5) 357(10) 173(6) -66(6) -1(5) 169(6)

C(13') 325(10) 172(6) 180(6) 61(5) 91(7) 122(6)

C(14') 127(4) 213(6) 116(3) -89(3) 27(3) 12(4)

C(15') 153(6) 373(14) 102(4) -34(6) 23(4) 34(8)

C(16') 413(9) 294(8) 224(8) -22(7) 87(8) 254(7)

C(17') 52(1) 44(1) 56(1) 4(1) -12(1) 8(1)

C(18') 75(2) 59(2) 87(2) 1(2) -18(2) 20(2)

C(19') 124(3) 80(3) 136(4) 12(3) 18(3) 2(3)

C(20') 353(11) 179(6) 199(7) 93(5) 45(7) 127(7)

C(21') 136(4) 133(4) 120(4) 15(3) 29(3) 35(3)

C(22') 74(2) 77(2) 130(3) -24(2) -26(2) 3(2)

C(23') 102(3) 100(3) 168(4) -28(3) -61(3) 9(3)

C(24') 136(4) 107(3) 161(5) -14(3) -35(4) 53(3)

C(25') 73(2) 80(2) 152(3) -49(2) -28(2) 22(2)

C(26') 145(4) 207(6) 93(3) -2(4) 17(3) 56(4)

C(27') 88(2) 143(4) 141(4) -50(3) -27(2) 54(2)

Table 7.5. Hydrogen coordinates (x 104) and isotropic displacement parameters (Â2 x 103) for 44.

X y z t/(eq)

H(5A) -34 -1774 2511 60

H(6A) 642 -2469 3553 60

H(8A) 3776 -1875 2728 73

H(9A) 3082 -1202 1685 69

H(11A) 3708 -3498 4381 90

H(12A) 4880 -1704 4400 148

H(12B) 5021 -1851 3530 148

H(12C) 5506 -2582 4098 148

H(13A) 2910 -4466 3282 146

H(13B) 4249 -4334 3386 146

H(13C) 3761 -3600 2822 146

H(14A) 1486 -2372 4534 71

H(15A) 943 -4249 4195 111

H(15B) 936 -4047 5073 111

H(15C) 1960 -4433 4725 111

H(16A) 3211 -1589 5239 112

H(16B) 3376 -2773 5378 112

H(16C) 2339 -2402 5719 112

H(19A) 4981 1565 -441 237

H(20A) 6508 3107 -334 293

Page 241: Two-dimensional acetylenic scaffolding - Research Collection

216 Appendix

H(20B) 5727 3707 -807 293

H(20C) 6030 2650 -1153 293

H(21A) 5468 2455 637 451

H(21B) 4250 1608 535 451

H(21C) 4346 2882 536 451

H(22A) 4333 1770 -2137 266

H(23A) 2613 907 -2905 426

H(23B) 2535 2030 -2517 426

H(23C) 1867 906 -2201 426

H(24A) 3774 26 -2429 378

H(24B) 3053 -179 -1709 378

H(24C) 4407 228 -1622 378

H(25A) 2345 3256 -1406 210

H(26A) 3684 4781 -1791 542

H(26B) 3814 3698 -2211 542

H(26C) 4726 4283 -1564 542

H(27A) 3029 4776 -478 467

H(27B) 3982 4240 -137 467

H(27C) 2668 3664 -66 467

H(5'A) 3601 6913 7174 84

H(6'A) 2408 7242 8053 95

H(8'A) 119 4424 7392 81

H(9'A) 1314 4123 6502 75

H(11B) -547 5306 9259 227

H(12D) -1956 4265 8388 337

H(12E) -1158 4763 7744 337

H(12F) -1619 5546 8291 337

H(13D) -241 3609 9212 317

H(13E) 908 4556 9313 317

H(13F) 528 3933 8523 317

H(14B) 1002 7554 8476 191

H(15D) 2059 6880 9241 324

H(15E) 1131 6837 9843 324

H(15F) 1752 7971 9519 324

H(16D) -1068 7187 8402 419

H(16E) -368 8164 8950 419

H(16F) -988 7030 9274 419

H(19B) 789 621 4569 141

H(20D) 1633 -152 5459 345

H(20E) 2832 463 5166 345

H(20F) 1941 -407 4633 345

H(21D) 1034 1239 5831 193

H(21E) 776 2096 5267 193

H(21F) 2040 2226 5609 193

H(22B) 1384 2573 2990 118

H(23D) -452 1374 2684 194

H(23E) -240 606 3327 194

H(23F) 543 766 2634 194

H(24D) -204 3022 3452 199

H(24E) 935 3546 3951 199

H(24F) 35 2507 4218 199

H(25B) 2434 252 3259 124

H(26D) 3635 1266 2296 219

H(26E) 3665 2393 2724 219

H(26F) 2499 1672 2337 219

H(27D) 4424 458 3381 184

H(27E) 3974 501 4195 184

H(27F) 4603 1598 3830 184

Page 242: Two-dimensional acetylenic scaffolding - Research Collection

oooooooooooooooooooooooooooooo

-—^*_?s_><J>0l^s_>^^.0^/s_>

^^.0^/s_>\^

<J>0^/^^.

<J>0^/^^.

<J>s_>

ii

at

\Zs

'w'

'Z^

'^

ii

ii

ii

ii

i^^

ii

ii

ii

ii*^

at

ä;ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

^^O

/—Ï^

/—Ï^

/—Ï^

<~^^

-J

-J

-J

-J

"^

"^

°°

~~"A<

-^

-^

<-"

4--

4--^^

K>><Q

vvvvvvvvvvvvvvvvvvvvvXoSsaSXSXSa^^

oooooooooooooooooooooo^^.o'o'o

OlOlOlOlOlOlMMMMMMlOlOlOlOlOlOOOOOOO^i^^^^^^^^^^VVVQQQQ^Q^QQQ

,-'_

,O

^_^^_^

'^_^

'^_^

'^_^'OOOO^^^^O^^^^^

'TT:^^O

i.

OOOOOOOOOOOOOOOOOOOOO^

^•^•^•^•^•^•^•^•^•^•^•^•^•^•^•^•^•^•^•^•^

OOON^-^Ol^-^tO^-^LiJ^-^

IOn

S05

'öo

II

I4-.

4-.

h-

00

4-.

Ol

00

|On

OOl

"

,_.

00

0\I

IOl

IOl

|00

||

Ol

|h-

|Hl^

IVO

I00

i—'

.w.ww.w.^w.^w.^OnOOK-UJK-

00

-O°

1--

^4--

VO

I—'

I—'

,,

.

^^

00^^

Ol

I|

h-,

h-,

|h-,

|©©

||K-OI

4i

(o

in

Oih

-go

;„vho

-J

ijh

UiU

lOMO^

-^

'S'S'S

1-J

1.0'S

1-J

'

Ol

4-.

00

,

*->

-t^.

4^

^1

4^

Oi—'

I00

;„

<ji

K<

/—-

iOMIv)iOtlOIOlOUiOOVO^OOl»MMlJit»IO^UiMw^wHwH^;w^w^-JwO

^_^^_^^_^^^^^^^^^^^^^^^^^^^

''^^

'^

''

^_^

'^_^

''

'

OOho'Z'ZZiZiOOO

_____________________

^y

I^_1^

^^^

^^

^^^

^^^

II

I

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

i-

(j

^_^^_j

i^_j

ii

^_7

i^_7zzz

aiOiaiOiaiaiMMMMMM^O^O^O^O^O^OOOOOOO^^^^^^^^^^^www

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

iJ_

Cj^

^_j

i^_j

ii

^_7

i^_7OOO

To13131313131313131313131313131313'hj'i--'i--'i--'i--*^.^

1—'^

1—'

1—'^

1—'^

1—'

1—'

4--

ONONON^I^I^I<-J-0-04--4--4--K-K-K-OOO^I^I^I^_7^-^^^-^^<-''tj-'^^J^^-:;^-:;^-:;

00000z;oooo

'cR<

-Jtj

i^jq

N'i-

-tji

'<-5

4^<-

J

OOOOO

Q'S'S

/3oQOOOOO

P_

P_

'-O*_

z;0000

H1Ç

>C

»O

ÖOO '00

OOOO

""-""_

9_

<-_

VO000

><

/3o

/3o'S'SO 'S

O^OO

'öo

^--^j

'ER

000000

'S1313^^^

II

II

^_^^

OOOO

'to

'SH-H-1o><Q

II

I1^7

H^

oOOO^w

H5'S'SHj><Q

II

II^T

ho

oooqX-y

'ER'S

H5'S><q

^_7

U)

hI

4i

IJiH

IiahOi

^^IS^IS^XISÄIS^Ä^'a,^^^^^^

_o_o^-^4--^-^4--4--^-^4--^-^^-;4--4--^^'-^^'^^^

II

K-

4-.

IK-

|H-.

K<

|K-

—I

^J

^-^

h-

yJ

\U«^^

s]

'~j^

In

k>^H

00

lloc:o

II

I—'

II—'

—J

I-I--

I|

H-.

U>

|I|K-|K-|K-

WUUi-J^|UIO(J,(JhiOhUihhO-Jh^O

U)

^1

Ol

^1

On

'

,.

1—'

00

1—

00

On

"

1—'

^O

^4--^-^^-^

\S

!--•o

•_?P)

i--

'-J

-J^

*-"^^

'-"

^1

On

'

Ol

Ol

U)

'

Ol

IK-

K-

On

I|

,

«"

^1k^Ä^

mO

kio

0y-

>°^

010-5

1—;m

U)

4--

OnÔ3

'S

^^"^

U)

^1

K-

^4--

Page 243: Two-dimensional acetylenic scaffolding - Research Collection

218 Appendix

Table 7.7. Crystal data and structure refinement for 52.

Crystal data

Cambridge Crystallographic Data Centre

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system, space group

Unit cell dimensions

Volume

Z

Calculated density

Absorption coefficient

F(000)

Approximate crystal size

Data collection

CCDC-605748

kiva7_D_05

Cl02Hi08N6'CH2Cl2

1502.87

223(2)K

0.7107 Â

triclinic, P 1 (no. 2)

a= 17.1740(4) Â, a= 109.728(2)°b = 18.5800(5) Â, ß= 101.812(2)°c= 18.7780(5) Â, y= 113.563(2)°

4752.6(3) Â3

2

1.050 mgnT30.115 mm"1

1608

0.25x0.22x0.10 mm

Nonius Kappa-CCD diffractometer with graphite monochromator

Grange for data collection

Index ranges

Reflections collected / unique

Completeness to 28= 22.49

Absorption correction

Solution and refinement

Structure solution

Structure refinement

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [/> 20(1)]

Largest diff peak and hole

7.48 < 6< 22.49°

-18<A< 18, -\9<k< 19,-20</<20

18810/ 11496 (Rmt = 0.059)

92.6%

none

SIR-97 (direct methods)

SHELXL-97 (full-matrix least-squares on F2)11496/0/1123

1.013

R(F) = 0.073, wR(F2) = 0.181

0.401 and-0.397 eÂ"3

Page 244: Two-dimensional acetylenic scaffolding - Research Collection

OOOJ^OOOOOOOOOOOOOOOOOOOOOOOOOO

0NvJ^0\4^(JiUi(Ji-|i^UlK)M^MMh-OUiV0Ulv0Oh-O^I0\O^h-

r-^

r-^

r-^

r-^

r-^r-^r-^r-^r-^r-^r-^r-^r-^r-^r-^r-^r-^r-^oJtotototototototo

^-^^-^^-^

K-K-K-K-K-K-K-K-K-K-K-^OOOOOOOOO^IC7NC7NC7NtJitJitJitJitJiC7N^I^IOO^O'^

Ui(^JiUtOtOUKI^MOM00aiWO^V0UiKI00(JOMV0UiKliûO\^

UiOO»OUiUiv)UlvJUiVO-JUi»UlOUliO^JlûUUiOOO-|iOvOObJ^K)

H I: bo

<T)o

Ög,

P.o o

A,o

»&

&» •—

to

o gX

r-K

K^

Eo

!-!

u.

o

&

B-rn

(L>.0

r^-C

02*

O02

o B- ao

o*

&o

on

V&.

» N

'S.

& q§ »

a »•a >°

Ol

> "D

m z a x CD

Page 245: Two-dimensional acetylenic scaffolding - Research Collection

ooo^oooooooooooooo^ooooooooooooo

OV000^aiUi^U(OHOiOt»-JOiUi^UtO^O^00-J0\^-|iUIOHOi000s0O(l«4iU(OHO^0CNlOlUil'UKIHOV000-viaiUi^W(OH

O

M0000iOHHVO^O^OlOHHHH|OHHHW^UKlUU^UlO\HHHK)U|O|OUl^UU*.l«L«OlHHHHHHHHHHHHHHHHHH

-O-JOOHUHUiOOiO^OO-JOlHlOUi-J^HOOliO^U^iOOWHOltlOUOl^OOWOUlftslOvOU^OtOtlOUviaiiOOlOOHOlHOOOH

L.J

L.J

"L.J

K>

'

ON4^4^4^4^tjJK>K>K>K>tjJtjJK>K>K>tjJtjJK>

4^L^4^L/i^^L/i4^L/i^^^H-MMH-MMMOJMMOJL^L^L^4^H-MM^H-H-K>tjJK>K>tjJt_>JtjJ4^4^

OUWUiO\Ui-JtO^WUOOUOOVOO\UiOOHW^4iHlOOOHH^UO-JOtO(JiHM-jH

k-k-k-k-^Ok-k-k-k-k-^O^O^O^OOOk-k-k-

Ui^WlOUlljJUIljJ^UIljJW^JiljJWUIljJKItOWtOUlMtOWM-l^-I^W

WHHO

I«O

LiJ

4^

<JJ

^O^

<JJ

O-litOOOHHOOlnHUivl

4^

4^

4^

Ut

-

UWWM

Wl

(jj

L.J

K>

K>

K>

,

U)

U)

K)

> "0 "0

m a X

UiWUlOO~OWOOU-J^IOlWMOvOK)4iOW\OUUih-UiUi

liOo-jHaiOKiuoHjiaiaiooO'^ousouiH-oç^ioKi

VO

II

II

II

I004^(Ji4^4^(Ji4^4^

II

II

II

II

II

II

II

II

II

4^

K-

K-

On

K>

(Ji

oooiocuuuoNyaoiWKUi

IIu

oo

u)mu

i—'

K>

(Ji

<Ji

00

On

<Ji

OO

On

^1

^1

OJO

4^(_>JtjJ4^tjJK>K>K>K>K>K>K>K>K>'

VO

(JiUi

4^

-|iWO

'S

"C^

"t>J

HÀî"UJ

"to

'fo

00

VO

^1-

O^VOUOil«OiOOOHHOOO(OOSV01JiOO-J->H0001JiHOJ^IOOOiOVOOHOO^-jHK)(jHUiOMOH(JOiOUUisO|OKHOOUil»0\lJil»H^

Page 246: Two-dimensional acetylenic scaffolding - Research Collection

^opnnonooonoonnnnpnoonnnonoonpnnoo

^vjuiji^uwHHOvo-ooMJiji^uuwHOYYYYYYYYYYYYYY

OO^IOO^OOOOOO^OOO

4^H-K>tjJK>4^4^4^tjJ

OOOOCnOJ^1^1K>4^OhUihIOhh\OhKIUihhhMO00

H I: Cdo a en

LftLftLftLft4^LftLftLftLftLftLftLftLftLftLftLftLftLnai(ji(ji(ji(ji(ji(ji4^tJi(ji(ji(ji(ji(ji(ji(ji(ji

oooooooooooooz;z;oooooooooooooz;z;ooooo

00

00

4^

00

4^

00

00

00

00

00

o^1

^1

On

^1

On

^1

^1

^1

OOn

On

On00

On^1

OnOn

OnOn

On

On4^

On

On

00

00

^1

^1

4^

4^

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1

ooz;ooooooooooooooz;ooooooooooooooz;oo

00

On

00

00

^1

00

4^

00

00

00

On

00

00

o^1

^1

^1

00

^1

4^

^1

^1

On

^1

^1

O^1

On

On00

On^1

^1

OnOn

On

On

On

Ono

00

On

On

4^

U)

U)

U)

4^

U)

U)

U)

4^

K>

t/i

4^

t/1

t/i

4^

4^

U)

4^

U)

4^

U)

U)

U)

4^

K>

t/1

4^

t/i

t/1

4^

4^

U)

4^

U)

4^

U)

^1

yo

00o

On

00

00

U)O

4^

00

K^

k^

00

^1

On

k^

^1

k^

On

yo

yo

K>o

K>

^n

K>

K^

00

00

00O

00o

^1

^o

00oo

^1

On

On^

U)

4^

00

^1

^1

^Oo

00

<Ji

00O

^O

U)

U)

^1^

^1

U)

^1M

On

U)

U)

4^

^1

U)

^o

<ji

<ji

Ut

On

^1

On

<Ji

On

<ji

^1

^1

On

On

Ut

Ut

<Ji

<Ji

4^

Ut

<Ji

<Jl

<Jl

<Jl

<Jl

^1

^l

00

00

On

On

tji

On

Ut

tji

tji

Ü!s^:OOOOOOOOOO^000^iaNtJi4^0JK<K-

O00

^1

On

(Ji

4^

OJ

K<

i—'o^-^^-^^-^^-^^-^^-^^-^^-^^-^

MOih^OOOOOïCI'-JUhiOSChUUiOOUIhW

Ijlw

u,4^tjJt_>JtjJ4^tjJK>tjJtjJK>tjJtjJK>tjJtjJ4^4^tjJ

4^OOK-K-K-K»K»K»K-tjJOOO00UJaNK<<jJaNtJi

ffl(s)HUi^4itOO\OONWUtOU^IOtO-JvO~JW

> "0 "0

m z a x

HOOHOOOOOVOIO|gKUiUi-JOOUslO\lO^

HHH-JUOUUUO(O-JUK)O^00ffi0\O\-J

K<

K<

4^

^O

On

004^4^(jJK>K>K>K>K>K>K>K>K>tjJ4^K>

Page 247: Two-dimensional acetylenic scaffolding - Research Collection

u(ooNOiioo-joouiOi-iiuuKi4i4iHKiYOYYYYYYYYYY^YYMYY

II

II

II

II

II

II

II

II

II

f)

f)

.-—\

.-—\

.-—\

.-—\

.-—\

.-—\

.-—\

.-—\

.-—\

.-—\f)

.-—\

.-—\(y

?—\

.-—\

A-cA-

cA-

cA-

cA-

cA-

cA-

cA-

cA-

cA-

cA-

cA-

cA-

cA-

cA-

cA-

cA-

cA-

cm

oo

-^

-^

^-^

*o

*o

^-^^-^^-^^-^^-^

OJ

^-^

4^h

^o

oo

ooooooooz;z;ooooooooooooo

Ol

Ol

Oi

4^

4^

4^

4^

4^

4^

4^

4^

L.J

L.J

L.J

L.J

(jj

L.J

L.J

L.J

L.J

(jj

K>

K>

£2^O

^O

On

On

L.J

L.J

K>

K>O

^O

^O

00

^1

On

On

Ol

4^^^

00

00

11

11

11

11

11

11

11

11

11

11

11

1

ooooooooooooz;oooooooooo

i/i

Ol

Oi

Oi

4^

4^

4^

4^

4-

4-

4^

4^

4-

LiJ

LiJ

4^

ijj

LiJ

UJ

LiJ

UJ

LiJ

K>

MOn

o^1

00

4^

Oi

On

L.J

OK>

^O

00

^1

On

OiM

L.Jo

^O

MMKIHsIsIvIvIvI-JhIO(OhKIHsI-J-JvIhIOIOhKIHsI-J-J-JhWIOhKIKI

L^L^4^I-~->OiOiOiOi4^4^L^4^L^4^L^L^L^4^K->OiOiOiOi

oho-joiOioo-joovii«o^chosu1ï)osui«uoch<3u1oo<3ï)ooohooho

M"touow^coS"o"o^!o!cioKÜ^Üo

UiO^-J|^4iOHHOO\^OVOUOOOUil?iU^Ol^-OHlOiûU^HUiUIOVOOH

HVOWCOCiLftHOlOOOO^-vlU^loaiOOI'UOtO^

'^ITj

^CT3

^CT3

^CTj

^I^i

l^il^

i^I

^i^C

7>l^

i^C

T3^C

Tj^C

I5'C

Tj^C

T5^C

Tjl^

i^I

^i^l

i^^C

Tj^C

T3^C

T3^C

Tj^C

T5'C

IS^C

T5^C

Tj^l

i^^I

^i^l

i^^C

T5'C

IS'C

TS^C

T5^C

Tj'C

TS1I^1I^1I^1I^^^^^^1I^1I^1I^1I^1I^1I^1I^1I^1jî1jî^Cj^^

ooz;z;oz;z;ooooooz;z;ooo

00

-O

O00

4^

K>

On

On

On

-O

oo

to

-O

On

K>

-J

On

On

00

-O

ppoooz;z;oz;z;ooooooz;z;

ooooooz;z;oooooooooooooz;z;

On

On

4^

Oi

CT\

Oi

Oi

CT\

-J®

Ol

Ol

On

Oi

K-

4^

Ol

Ol

4^

K-

Ol

Ol

On

<jJ

^1

^1

OOOOOOO^^^OOOOOOOOOOOOOOOOOO^^^OOOOO

On

'On

^1

^1

^O

On

^1

^1

On

On

^1

^1

^1

^1

^1

^1

^1

^1

K-o

On

On

On

CTn

^O

00

On

On

^1

On

On

On

On

On

On

On

<Ji

4^

On

<J>

i—'

00

00

00

^1

On

Ui

4^

4^

4^

oonnonnnnnooonnoooooooonnonnnnnooonn

k^

^i

^i

^i

^1

^1

^1

^1

^1

^1

CTn

CTn

^1

^1

On

CTN

CTN

CTn

CTN

CTN

CTN

00

CTN

On

On

Ol

</l

On

</i

</l

On

Ul

Ol

Ol

</l

(Jl

ijj

^i

^i

00

Ol

Ol

4^

L.J

L.J

On

On

^OOo

00

^o

On

Ul

Ul

^i

On

^"^MM

L.J

^O

^oO

00

00

Ol

4^

Ol

(Jl

L.J

WtOHHHHHHH^lOiOVO^vO>O^VOlOCOOOoOOO

ooooooooo^o^ooo^iaNaNtji4^K-K-oooo^i^i

SSSSä^üüS'T'YY^Y^YY^YYYVY

AAAAAAi.i.AOZ;oOOOOOOOOOOO

GQPPPPPPP^^9îî^îîî9S9î9

~~

K-K-K-K-K-K-K-oo^ooo^ioaNtjitjJto^oOK-oo

OOOOOOOOK>^^^^wwwwwwww

-J

00

Ui

J^

Ul

Ol^^^

^-^

OOHH

K>

L.J

L.J

4^

Ol

K<

K<

On

K<

K>

OOn

^1

OOhh

K>

4^

to

4^

On

OK>

Ut

K<

^1

^1

Ut

to

Ut

Ol

Ol

4^00

4^On

00

00

4^o

^1

00

00

4^O

Ol

o4^

Ol

Ol

4^00

4^^1

OhOO

^O

UJ

(Jl

L.J

^O

(jj

L.J

^^

4^O

^^

^O

UtM

00

4^

^1

00

Ol

00

^1

^1M

00O

4^

^^

^1

L.JM

^1

4^

lO

^1

4^O

Ol

lO

OlM

00

^1

Olo

^^

Ol

4^

4^

L.J

On

00

4^

4^

lO^

Ol

4^

4^

4^

4^

4^

<jJ

4^

L.J

L.J

L.J

L.J

L.J

L.J

L.J

L.J

L.J

L.J

(jj

L.J

L.J

4^

U)

J^

4.

4^

On

4^

4^

L.J

4^

L.J

4^

4^

LiJ

L.J

4^

00

^1

On

^1

^1

^1

Ol

Ol

Ol

Ol

Ol

Ol

Ol

Ol

Ol

Ol

Ol

On

^1

00

Ol

On

Page 248: Two-dimensional acetylenic scaffolding - Research Collection

4n

4n

hO

(jJtjJtjJ4n4n4n4n4n4n

^004ntO(Jit04nOH

c;

WNMWMWWNMWM

<ji4n4ntjJtjJtjJ4ntjJ4ntjJtjJ

4n

4n

4n

u>

U)

UO

0\

vl

oo

4n

4n

4n

4n

4n

4n

OhOO

Ul

4nç

WNMWMWWNMWM

to

toMmm

K)

h<JJ

<JiO

to

to

to

to

to

to

to

to

toMmm

K)

to

to

to

to

to

Ut

4n

*0

-

131313

i—'

<jJ

On

-O

00

-O

Ut

hh

to

to

to

to

to

c;

OWU'^M^UlM^ltO'QS'

tOtOtO^-^HtOtOtOtOtO^-^^

ooooooooz;z;oz;z;ooooooz;z;ooooooooz;z;oz;z;ooooooz;z;o

to

to

On

On

4no

4n00

4nto

4nto

4n

4nto

4nto

4n

4nO

4n

00

4nto

4nto

^1

00

4n

^1

^1

4n

to^1

to^1

to

to^1

to^1

U)

to4^

to4^

to

toOn

to

to^1

to^1

toto

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

i

oooooooooooooz;z;z;ooooooooooooooooooz;z;z;oooooo

to

<Jl

<Jl

<Jl

o4n

4nOn

4n

On

4n

On

4n

4n

4n

4nto

4nto

4nto

4n

4nO

00

^1

On

On

On

4n

U)

U)

U)

to00

to

00

to

00

to

^1

to

^1

to

^1

toOn

to

to4^

to

4^

to

4^

to

ooooooooooooooooooooooooooooooooooooooooooo

4n

<Jl

oo

to

<Jl

^1

4n^1

4n^1

4n00

4n4n

4n4n

4n

4nOn

4nOn

4n

On

4nO

4nO

00

On

4n

On

to

to

to

oo

to

to00

to00

U)

to

to4^

to

to

to

to4^

to

toto

too

toto

^1

^1

^1

-J

K-o

L.J

L.J

4H

U)

4h

to

to

tO

tO

Hi

H-i

H-i

Ol

to

toto

toto

to

to

to

On

^1

^1

On

to

U)

UJ

toHU

OlC

toto

toto

to

Hi

tO

Onh

toto

toto

1—'

On

^ooo

^oWhO

HH

0\

4h

Ut

4h

^o

00

(Ji

^o

^o

to

H-i

On

4h

(Ji

^o

(Jl

Ut

(Jl

oo

to

to

toO

Ut

H-i

00

H-i

H-i

4h

Uto

U)

4^

U)

U)

U)

U)

4^

tjj

4h

Ut

<Ji

4h

4h

4h

U)

U)

U)

U)

UJ

U)

U)

U)

U)

U)

U)

<JJ

U)

4h

4h

4h

U)

UJ

U)

(jJ

4H

tjJ

L.J

U)

U)

U)

U)

UJ

U)

U)

'-jHHHHHHHVO»OiOHHHHVO>ûiOHHiOiOVo3'5oiO'Ôo'SoOOOOOOOOOOO'3'3oOtlOOOOOOO-J

GOOOOOOOVOiOOlOOOO-JM-JOO-pUilO-j-jOvO^OO^-MftOiU^-JtOUKlOiOHO

^^^^^^^^H^H^H^><><^^^^^><><^^^^^^^^^^^^^^^^^^^^^'00

>^HHHHHHHOOOH^O^O^OOO^iaN^O^OtJl4HHHHOOOOOO^I^I^|CTNtJl4H4H4HtJJtOHHHO

SoooppppwtoHo^vovgvW^ï^ïWWWWWWWWWWW

äOôôOô

r~>o^<X<'--<o^^^^^^^^^^^^^^^^^^'ôo'ôo'ôo'ôo'ôo'ôo'ôo'ôo'ôo'ôo'ôo'ôo

HA-CA-CA-C^^^^HHH^-Ï^O^OH^O^ai^O^O^^OJUJtO^O^OOHHOOH^ljJtjJtJl^HOOtOH

OOOOOOOOJOnO^O^-^^-^O

^-^^-^

HiHiHiHiHiHiHiHitOtOtOtOHitOtOtOtOtOtOHi^^HiHiHiHiHiHiHitOtOtOtOHitOtOtOtOtOtOHi^l

4^HL0HtO4^0J^HOHH^HtOHtOOtO^|tJlUJtjJtO4HtOtOtOtJltOOHtOtJlHtOHtOOtOaN00

VO

CTn

H-i

VO

~J

H-i

L/i

to

4h

lo

lo

'~J

L/i

L/iÖ

H-ilo

4h

4hh

vo

~J

4h

vo

CTn

i*>

4hÖ

L/i

'~J

to

4h

to

Ut

<\

00

VO

<J->

00

b\

<Ji

to

4^4^4^4^4^4^4^L>JLiJLiJLiJLiJLiJLiJLiJ4^0JLiJLiJLiJ4^4^4^4^0JLft^4^0JLiJLiJ4^0JLiJ4^0J4^4^4^

Page 249: Two-dimensional acetylenic scaffolding - Research Collection

pHpHpHt^i-liHiHiHiHrtpHNpH(SMM(N^,^,(N^,i-lpHpHN(Si-lMP|rtrtMW'tVOO\0\i-liHt^

,<N

(N

(N

(N

0\HHHH/lHf<lMO

.Vi

><

QLU

CL

CL

<'CSCSCSCSCSCSCSCS

u->u->^t-^t-^t-^t-m^t-

0\

0\m

0\

Vio

c~i

mm

Vi

\D*

v,v

N!SM(SN!SM(SNN!S(SMN!S(SM't

VO^O"—ivOfSOt-0\t-0'—i'*00000\0\vO'-HO,3Öt::-:ÖrnOÖ'*

^^t-u->^t-u->u->^t-^t-^t-^t-u->^t-^t-u->^t-r^

--

-

S-C-Ö.01NM

(N

(NM

(S

on

t-

t-

rn*

vo*

nm***

i1n

CM

CM

OOOOOOOOOOOOOOOlZOOOOOOO

Page 250: Two-dimensional acetylenic scaffolding - Research Collection

h-OO004^0n4^^1^0^000OK>O00

4^UJtjJ4^4^(Ji<Ji<Ji<Ji4^4^K><jJK>0

U^MHHlOUMHjiOOOlOUiO

K>K>K>tjJK>tjJL>J4^(Ji(Ji<->JtjJ4^K>K>N

h-HiouiKvjooHooauiUiaauip

OvOw^O^^vo^^

wwww

SwOooooooooovooo-joiui^uwHo^ooovioiw^iiJioHOiotio-jaiift^uM

O00

-O

On

<Ji

4^

<JJ

to

i—'o^^^^^^^^^^^^^^^^^^^^^^^^^^^^

m(OUi0l^000N0liO>CUI'^0N(OK)vlUi-0O\^vlHHiOUlHjiHOUUO\OO

tjJ(jJK>t-k>4^K>K>K>K>K>K>K>K>K>K>t-k>4^t-k>4^,

K>

K>

K>

K>

,

(Ji

4^

On

4^

4^

avoum

h-

K>13

Hki1313

HU^OUi^MO\l«WOOMOOaiUitlOVO>OHVOHlOUiOO\000-~|iOH4iUOO

^""^

'r-v

^""

t.\

K~l

t.\

t.\

K~l

K~l

K~l

K~l

K~l

K~l

K~l

K~l

K~l

K~l

t.\

^""

f.1

t.\

t.\

K~l

K~l

K~l

K~l

t.\

t.\

t.\

t.\

K~l

"^

-O

00

-O

-O

•J

0\HU

,,

,4^

,,

WK)WUK)(OMK)tObJKIK)bOKIW,

WUKIKIKIIOUUUIWKI,

WLOU

U)

tO

UOOOM-04-O^M-0(OOUCiUVOUiO-|ilJiOOHH

(sj

K>

4^www4^wwwwwwwwwwwwww

4^

(j,

aN(Ji4^<jJ4^(Ji4^(Ji<Ji

UWWWKIWWMIOK),

LO

LOW

4^WM

> "0

m z a x

H-JO\HUH4iUWHHHHWWHK)WIOtJiUOOU4iU(OWUUIOli)UW-vllnUiUUi+.4.

00

r-^r-^r-^r-^r-^r-^r-^r-^r-^r-^r-^r-^r-^r-^r-^r-^r-^r-^

r-^

r-^

r-^

r-^

r-^

r-^

r-^

r-^

r-^

r-^

r-^

r-^r-^

r-^

r-^

r-^

r-^

r-^

r-^

r-^

r-^

^MOJLk>Lk>MOJLk>MH-MMMMMMMMMOJM4^0JMMMMMMMMMMOJLk>K>K>tjJK>K>

K>

^J

>-OO^C^

Q0k>c

kj

^-^^-^

L.J

L.J

'

h-MO\Mi-K>4iUUi^lWK)i-h-Mi-OOK>i-K'ONUiUK)U)UtO

S)^toUUiQHH^ffiHU-slWO\a-sl>JUiQMsjHOOOMi-'\OHOO

K»4^^|tjJ(jJK-K<LiJK-K-K-K-K<K<K<K-K-K-4^^|tJitjJ4^K-K<K-K<K<l

IM^i-a\UiUlt04^tOK>

sJ^xloOKgOl-JIJiUiNOOHOUO\OOJiOO-jKvJ^oogvjaaKI4^>ûvOH(J\UiO--IJiiOO\

i<1^1ïï1Ik>1Ik>131Ik>1Ik>131^13131313131313131Ik>1Ik>131Ik>1ïï^

en

Page 251: Two-dimensional acetylenic scaffolding - Research Collection

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

UiUWOOMOO-vl-JvlO(l«ln^4i4i^UHOOO-JUUUW(OWHOOOlOiOVOOOffil»UMOCtlOOO-J-vlvlO\Uil«ln^4i^UHOtlO-JUUU

>>>0Cd>0Cd>>0Cd>0Cd>>>>>>0Cd>0Cd>>0Cd>0Cd>>>>>>0Cd>0td>>0Cd>0Cd>>>>>>0Cd>

0-JlO(OOOWHiOO^OHOiU*.Ji(Ol«H-sll»OOU^^UOOHUO\^vHOO>00\UVOHMUIOUU(OUO

Ol^U(OiOU4i4i^M^iOtlO^HOO-JO>OHlOvlOOUOOOOHaiUOOOHH^^VOIOiOHOHOO(OOOH^00OOOh-h-K>0JOO^100^1

Oh-^100h-OK>OOK>^Oh-K>4^

L«KIUiWUi04iUVOVOCOOOVOO^UiOl«^-JOWO>OUH4iOOl»Ul»(!00\05Ui^iOiOKIOOWO>0^-J(!OHvlHvHOKO\IOHOOOO-JO\

> "0 "0

m g X

00On<J.h-K>h-K>UJK>K>h-|

oOOOhhhMO^^

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

I<J>

II

UU4i

4^Oi^^Oi^OiW^O^4^h-0000M^M^Oh-OiMW4^4^OiOiOiW4^4^W4^OiOiOiMWMh-h-h-h-h-MM^Oh-MMWWWM

K>00Cn(JiK>004^4^O00

i—'

-JWO

-J

UOO-JvOOMO-JOM^UIUsJ^MOOa-JCNUUiON-JUUvJ^MO

-Jg^MmU

4iO00W00O^00V0O(OU00~JiO0\00UiO\-JUi-jgO

WW

Ui

-^

UiO

VO

w^

O OOnOo o

K-

On

i—'

^O

Onçz

K>

HVO

00

1—'

(Jl

<Jl

hiO

SO

VO

u>

<Jl

<Jl

-o

°"P"PÇ1^

i—'

4^

U>

K-

K-o

^Ono

^1

i—

UJ

U)

h-

^1

4^

00^^

K>

(Ji

4^

On

o^^

-^

00

^o

00-^tOK)UlM^IUi(JiOO^U14^(JiUi^lWtO^I^IVO^^

vO

i—'

i—'

hhhhhhhhhh-JI»O\O\O(00hvO

MM

+iMM

K>

4^

OO

-

4^

K>

On

Page 252: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 227

H(86A) 10887 7262 7493 73(13)

H(88A) 8242 4191 7418 150(30)

H(89A) 9153 3518 7349 100

H(89B) 8271 2989 7499 175

H(89C) 9253 3615 8239 148

H(90A) 8640 4504 9067 150

H(90B) 7652 3857 8337 146

H(90C) 8131 4895 8653 113

H(91A) 10063 5037 9151 87(14)

H(92A) 11066 5103 8494 130(20)

H(92B) 11585 5754 9452 87(15)

H(92C) 11456 6135 8828 104(18)

H(93A) 10717 6834 9615 94(16)

H(93B) 10705 6382 10195 103(17)

H(93C) 9768 6215 9625 120(20)

H(97A) 14106 9859 6535 68(12)

H(98A) 15423 10922 7690 61(11)

H(1AA) 14164 10076 9070 77(13)

H(1AB) 12850 9003 7898 66(11)

H(1AC) 16793 12507 9857 71(12)

H(1AD) 15638 12232 8379 114(19)

H(1AE) 16432 13159 9130 115(19)

H(1AF) 15526 12582 9224 97(17)

H(1AG) 17370 11734 9094 106(18)

H(1AH) 17574 12611 9022 130(20)

H(1AI) 16773 11674 8289 150(30)

H(1AJ) 15447 10617 9874 78(13)

H(1AK) 17042 11216 10214 96(17)

H(1AL) 16813 11447 11009 92(15)

H(1AM) 17208 12177 10720 102(17)

H(1AN) 15852 12385 10684 106(19)

H(1A0) 15404 11633 10938 105(18)

H(1AP) 14837 11569 10116 105(17)

H(2AQ) 4238 4502 2826 162

H(2AR) 4737 5511 3024 176

Table 7.12. Torsion angles [°] for 52.

C(18)-C(l)-C(2)-C(34) 179.9(3) C(53)-C(54)-C(55)-C(56) 1.7(5)

C(19)-C(l)-C(2)-C(34) 0.0(5) C(52)-C(51)-C(56)-C(55) -1.2(5)

C(18)-C(l)-C(2)-C(3) 1.3(5) C(50)-C(51)-C(56)-C(55) 176.1(3)

C(19)-C(l)-C(2)-C(3) -178.6(3) C(54)-C(55)-C(56)-C(51) -0.3(6)

C(l)-C(2)-C(3)-C(4) 158(100) C(53)-C(54)-N(57)-C(61) 11.7(5)

C(34)-C(2)-C(3)-C(4) -20(31) C(55)-C(54)-N(57)-C(61) -167.6(4)

C(2)-C(3)-C(4)-C(5) 27(100) C(53)-C(54)-N(57)-C(58) -157.7(4)

C(3)-C(4)-C(5)-C(6) -141(100) C(55)-C(54)-N(57)-C(58) 22.9(5)

C(4)-C(5)-C(6)-C(7) -12(17) C(54)-N(57)-C(58)-C(60) 49.3(6)

C(5)-C(6)-C(7)-C(8) -36(5) C(61)-N(57)-C(58)-C(60) -120.6(5)

C(5)-C(6)-C(7)-C(49) 144(5) C(54)-N(57)-C(58)-C(59) -83.2(6)

C(6)-C(7)-C(8)-C(9) -2.1(5) C(61)-N(57)-C(58)-C(59) 106.9(5)

C(49)-C(7)-C(8)-C(9) 178.7(3) C(54)-N(57)-C(61)-C(63) -99.2(5)

C(6)-C(7)-C(8)-C(64) 175.3(3) C(58)-N(57)-C(61)-C(63) 70.9(5)

C(49)-C(7)-C(8)-C(64) -4.0(5) C(54)-N(57)-C(61)-C(62) 133.9(4)

C(7)-C(8)-C(9)-C(10) -167(5) C(58)-N(57)-C(61)-C(62) -56.0(5)

C(64)-C(8)-C(9)-C(10) 16(5) C(7)-C(8)-C(64)-C(65) -136.7(17)

C(8)-C(9)-C(10)-C(ll) 48(17) C(9)-C(8)-C(64)-C(65) 40.8(19)

C(9)-C(10)-C(ll)-C(12) -79(61) C(8)-C(64)-C(65)-C(66) 44(6)

C(10)-C(ll)-C(12)-C(13) -136(53) C(64)-C(65)-C(66)-C(71) -120(5)

C(ll)-C(12)-C(13)-C(14) -17(5) C(64)-C(65)-C(66)-C(67) 57(5)

Page 253: Two-dimensional acetylenic scaffolding - Research Collection

228 Appendix

C(ll)-C(12)-C(13)-C(79) 162(5) C(71)-C(66)-C(67)-C(68) 1.5(5)

C(12)-C(13)-C(14)-C(94) -179.8(4) C(65)-C(66)-C(67)-C(68) -175.0(4)

C(79)-C(13)-C(14)-C(94) 0.9(6) C(66)-C(67)-C(68)-C(69) -0.1(6)

C(12)-C(13)-C(14)-C(15) 1.7(6) C(67)-C(68)-C(69)-N(72) 176.7(4)

C(79)-C(13)-C(14)-C(15) -177.7(4) C(67)-C(68)-C(69)-C(70) -1.8(5)

C(13)-C(14)-C(15)-C(16) -172(8) N(72)-C(69)-C(70)-C(71) -176.0(3)

C(94)-C(14)-C(15)-C(16) 9(8) C(68)-C(69)-C(70)-C(71) 2.5(5)

C(14)-C(15)-C(16)-C(17) 78(15) C(69)-C(70)-C(71)-C(66) -1.2(5)

C(15)-C(16)-C(17)-C(18) 11(18) C(67)-C(66)-C(71)-C(70) -0.8(5)

C(16)-C(17)-C(18)-C(l) -1(17) C(65)-C(66)-C(71)-C(70) 175.6(3)

C(2)-C(l)-C(18)-C(17) 80(11) C(68)-C(69)-N(72)-C(76) -164.5(4)

C(19)-C(l)-C(18)-C(17) -100(11) C(70)-C(69)-N(72)-C(76) 13.9(6)

C(2)-C(l)-C(19)-C(20) 67(6) C(68)-C(69)-N(72)-C(73) 24.4(6)

C(18)-C(l)-C(19)-C(20) -112(6) C(70)-C(69)-N(72)-C(73) -157.2(4)

C(l)-C(19)-C(20)-C(21) 13(10) C(69)-N(72)-C(73)-C(74) -80.9(5)

C(19)-C(20)-C(21)-C(26) 41(6) C(76)-N(72)-C(73)-C(74) 107.6(4)

C(19)-C(20)-C(21)-C(22) -136(6) C(69)-N(72)-C(73)-C(75) 51.2(5)

C(26)-C(21)-C(22)-C(23) -0.5(5) C(76)-N(72)-C(73)-C(75) -120.4(4)

C(20)-C(21)-C(22)-C(23) 177.2(3) C(69)-N(72)-C(76)-C(78) -101.8(5)

C(21)-C(22)-C(23)-C(24) -1.3(5) C(73)-N(72)-C(76)-C(78) 69.8(5)

C(22)-C(23)-C(24)-N(27) -174.8(3) C(69)-N(72)-C(76)-C(77) 132.1(4)

C(22)-C(23)-C(24)-C(25) 2.7(5) C(73)-N(72)-C(76)-C(77) -56.3(5)

N(27)-C(24)-C(25)-C(26) 175.1(3) C(14)-C(13)-C(79)-C(80) -33(13)

C(23)-C(24)-C(25)-C(26) -2.4(5) C(12)-C(13)-C(79)-C(80) 148(13)

C(24)-C(25)-C(26)-C(21) 0.8(6) C(13)-C(79)-C(80)-C(81) -54(22)

C(22)-C(21)-C(26)-C(25) 0.8(6) C(79)-C(80)-C(81)-C(86) 108(15)

C(20)-C(21)-C(26)-C(25) -176.9(4) C(79)-C(80)-C(81)-C(82) -69(15)

C(25)-C(24)-N(27)-C(31) 150.0(3) C(86)-C(81)-C(82)-C(83) 2.7(9)

C(23)-C(24)-N(27)-C(31) -32.7(5) C(80)-C(81)-C(82)-C(83) 179.8(6)

C(25)-C(24)-N(27)-C(28) -15.2(5) C(81)-C(82)-C(83)-C(84) 0.5(10)

C(23)-C(24)-N(27)-C(28) 162.1(3) C(82)-C(83)-C(84)-N(87) 177.0(6)

C(24)-N(27)-C(28)-C(29) 97.7(4) C(82)-C(83)-C(84)-C(85) -2.7(8)

C(31)-N(27)-C(28)-C(29) -68.4(4) N(87)-C(84)-C(85)-C(86) -178.0(4)

C(24)-N(27)-C(28)-C(30) -135.1(3) C(83)-C(84)-C(85)-C(86) 1.7(6)

C(31)-N(27)-C(28)-C(30) 58.8(4) C(84)-C(85)-C(86)-C(81) 1.5(6)

C(24)-N(27)-C(31)-C(33) -43.5(5) C(82)-C(81)-C(86)-C(85) -3.6(7)

C(28)-N(27)-C(31)-C(33) 122.0(4) C(80)-C(81)-C(86)-C(85) 179.3(4)

C(24)-N(27)-C(31)-C(32) 86.5(4) C(85)-C(84)-N(87)-C(88) 163.1(4)

C(28)-N(27)-C(31)-C(32) -107.9(4) C(83)-C(84)-N(87)-C(88) -16.6(7)

C(l)-C(2)-C(34)-C(35) -78(6) C(85)-C(84)-N(87)-C(91) -32.0(6)

C(3)-C(2)-C(34)-C(35) 101(6) C(83)-C(84)-N(87)-C(91) 148.3(5)

C(2)-C(34)-C(35)-C(36) -4(9) C(84)-N(87)-C(88)-C(90) -133.7(5)

C(34)-C(35)-C(36)-C(37) -102(5) C(91)-N(87)-C(88)-C(90) 60.4(6)

C(34)-C(35)-C(36)-C(41) 74(5) C(84)-N(87)-C(88)-C(89) 98.9(5)

C(41)-C(36)-C(37)-C(38)-4.3(6)C(91)-N(87)-C(88)-C(89)-67.1(5)C(35)-C(36)-C(37)-C(38)171.5(4)C(84)-N(87)-C(91)-C(92)-44.0(6)C(36)-C(37)-C(38)-C(39)0.4(6)C(88)-N(87)-C(91)-C(92)121.6(5)C(37)-C(38)-C(39)-N(42)-175.2(4)C(84)-N(87)-C(91)-C(93)87.9(5)C(37)-C(38)-C(39)-C(40)4.2(6)C(88)-N(87)-C(91)-C(93)-106.5(5)N(42)-C(39)-C(40)-C(41)174.4(4)C(13)-C(14)-C(94)-C(95)-165(4)C(38)-C(39)-C(40)-C(41)-5.0(5)C(15)-C(14)-C(94)-C(95)14(4)C(39)-C(40)-C(41)-C(36)1.3(6)C(14)-C(94)-C(95)-C(96)8(9)C(37)-C(36)-C(41)-C(40)3.4(5)C(94)-C(95)-C(96)-C(101)140(6)C(35)-C(36)-C(41)-C(40)-172.4(4)C(94)-C(95)-C(96)-C(97)-36(6)C(38)-C(39)-N(42)-C(43)10.4(6)C(101)-C(96)-C(97)-C(98)0.0(6)C(40)-C(39)-N(42)-C(43)-169.0(4)C(95)-C(96)-C(97)-C(98)176.6(4)C(38)-C(39)-N(42)-C(46)-175.8(5)C(96)-C(97)-C(98)-C(99)-0.2(6)C(40)-C(39)-N(42)-C(46)4.8(6)C(97)-C(98)-C(99)-N(102.)179.3(4)C(39)-N(42)-C(43)-C(45)59.9(6)C(97)-C(98)-C(99)-C(10C)0.0(6)C(46)-N(42)-C(43)-C(45)-114.3(5)N(102)-C(99)-C(100)-C(]01)

-179.0(4)

Page 254: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 229

C(39)-N(42)-C(43)-C(44) -71.9(5) C(98)-C(99)-C(100)-C(101) 0.3(6)

C(46)-N(42)-C(43)-C(44) 113.9(5) C(97)-C(96)-C(101)-C(100) 0.3(6)

C(39)-N(42)-C(46)-C(48) -116.1(5) C(95)-C(96)-C(101)-C(100) -176.2(4)

C(43)-N(42)-C(46)-C(48) 58.2(6) C(99)-C(100)-C(101)-C(96) -0.4(6)

C(39)-N(42)-C(46)-C(47) 118.7(5) C(100)-C(99)-N(102)-C(106) 9.6(5)

C(43)-N(42)-C(46)-C(47) -66.9(6) C(98)-C(99)-N(102)-C(106) -169.7(4)

C(8)-C(7)-C(49)-C(50) -38(8) C(100)-C(99)-N(102)-C(103) -153.2(4)

C(6)-C(7)-C(49)-C(50) 142(7) C(98)-C(99)-N(102)-C(103) 27.5(5)

C(7)-C(49)-C(50)-C(51) 29(17) C(99)-N(102)-C(103)-C(104) 47.8(5)

C(49)-C(50)-C(51)-C(56) -106(11) C(106)-N(102)-C(103)-C(104) -115.7(4)

C(49)-C(50)-C(51)-C(52) 71(11) C(99)-N(102)-C(103)-C(105) -83.2(5)

C(56)-C(51)-C(52)-C(53) 1.4(5) C(106)-N(102)-C(103)-C(105) 113.3(4)

C(50)-C(51)-C(52)-C(53) -176.0(3) C(99)-N(102)-C(106)-C(108) -87.6(4)

C(51)-C(52)-C(53)-C(54) 0.1(5) C(103)-N(102)-C(106)-C(108) 76.1(4)

C(52)-C(53)-C(54)-N(57) 179.0(3) C(99)-N(102)-C(106)-C(107) 145.3(4)

C(52)-C(53)-C(54)-C(55) -1.6(5) C(103)-N(102)-C(106)-C(107) -51.0(5)

N(57)-C(54)-C(55)-C(56) -178.9(4)

Page 255: Two-dimensional acetylenic scaffolding - Research Collection

230 Appendix

Table 7.13. Crystal data and structure refinement for 54.

Crystal data

Cambridge Crystallographic Data Centre

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system, space group

Unit cell dimensions

Volume

Z

Calculated density

Absorption coefficient

F(000)

Approximate crystal size

Data collection

kiva6_D_05

2(Ci22Hi24ClCu2N4P4Pt2)-3(CHCl3)

4775.76

223(2)K

0.7107 Â

monoclinic, P2\ln (no. 14)

a = 31.876(1) Â, a=90°

b = 27.206(1) Â, ß= 91.500(1)°c = 32.1930(1) Â, ^=90°

27908.8(16) Â3

4

1.137 mg m"3

2.437 mm"1

9650

0.26x0.25x0.23 mm

Nonius Kappa-CCD diffractometer with graphite monochromator

Grange for data collection

Index ranges

Reflections collected / unique

Completeness to 20 = 23.54

Absorption correction

Max. and min. transmission

Solution and refinement

Structure solution

Structure refinement

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [/> 20(1)]

Extinction coefficient

Largest diff peak and hole

2.33 < 6< 23.54°

-35<h< 35, -30 < k< 27, -36 < /< 36

68392/ 40424 (Rmt = 0.031)

95.1%

none

0.6041 and 0.5698

SIR-97 (direct methods)

SHELXL-97 (full-matrix least-squares on F2)40424/36/2383

1.039

R(F) = 0.064, wR(F2) = 0.176

0.000025(7)

1.095 and -2.086 e Â~3

Page 256: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 231

Table 7 14 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Â2 x 103) for 54

C/(eq) is defined as one third of the trace of the orthogonalized U1} tensor

X y z t/(eq)

Pt(l)l 10738(1) 4061(i; 3340(i; 37(1)

C(2)l 10203(3) 4183(3; 3645(3; 42(2)

C(3)l 9869(3) 4274(3; 3820(3; 37(2)

C(4)l 9476(3) 4416(3; 3980(3; 38(2)

C(5)l 9248(3) 4081(3; 4206(3; 39(2)

C(6)l 9443(3) 3613(3; 4283(3; 42(2)

C(7)l 9565(3) 3187(4; 4336(3; 44(2)

Pt(8)l 9655(1) 2448(i; 4339(i; 41(1)

C(9)l 9776(3) 2489(3; 3734(3; 42(2)

C(10)l 9778(3) 2511(3; 3350(3; 44(2)

C(H)1 9706(3) 2522(4; 2903(3; 48(2)

C(12)l 9927(3) 2855(3; 2682(3; 44(2)

C(13)l 10228(3) 3156(3; 2909(3; 43(2)

C(14)l 10453(3) 3467(3; 3077(3; 40(2)

Cu(15)l 10059(1) 3601(1 4071(i; 41(1)

Cl(16)l 10642(1) 3127(1 ) 4135(i; 47(1)

Cu(17)l 10276(1) 2950(1 ) 3537(i; 42(1)

C(18)l 9378(3) 2218(4 ) 2739(3; 52(3)

C(19)l 9090(3) 1956(4 ) 2662(3; 56(3)

C(20)l 8738(3) 1631(4 ) 2559(3; 60(3)

C(21)l 8436(4) 1750(5 ) 2268(4; 83(4)

C(22)l 8094(4) 1456(5 ) 2188(4; 84(4)

C(23)l 8033(4) 1019(4 ) 2394(4; 71(3)

C(24)l 8347(4) 902(5) 2696(5; 93(5)

C(25)l 8682(4) 1194(5 ) 2772(5; 87(4)

N(26)l 7678(3) 735(4) 2326(4; 87(3)

C(27)l 7324(4) 915(5) 2089(5; 97(5)

C(28)l 7332(8) 718(8) 1656(6; 182(10)

C(29)l 6911(5) 836(8) 2325(8; 180(10)

Page 257: Two-dimensional acetylenic scaffolding - Research Collection

232 Appendix

C(30)l 7667(6) 221(7) 2435(8) 158(9)

C(31)l 8024(8) -89(7) 2267(9) 202(13)

C(32)l 7577(7) 154(11) 2913(10) 202(14)

C(33)l 9864(3) 2933(4) 2245(3) 50(2)

C(34)l 9817(3) 3011(4) 1886(3) 55(3)

C(35)l 9766(3) 3134(4) 1456(3) 56(3)

C(36)l 9996(3) 3500(4) 1277(3) 64(3)

C(37)l 9938(3) 3637(4) 866(3) 69(3)

C(38)l 9635(3) 3411(4) 600(3) 63(3)

C(39)l 9401(4) 3033(5) 792(3) 71(3)

C(40)l 9461(4) 2901(4) 1205(3) 67(3)

N(41)l 9581(3) 3531(4) 190(3) 73(3)

C(42)l 9903(4) 3835(5) -15(4) 82(4)

C(43)l 9777(6) 4359(6) 13(5) 132(7)

C(44)l 9978(5) 3672(6) -451(4) 103(5)

C(45)l 9178(4) 3480(5) -33(4) 74(4)

C(46)l 9098(4) 2972(5) -217(4) 83(4)

C(47)l 8808(4) 3660(5) 207(4) 89(4)

C(48)l 9310(3) 4898(4) 3896(3) 43(2)

C(49)l 9160(3) 5302(3) 3857(3) 44(2)

C(50)l 8955(3) 5763(3) 3853(3) 44(2)

C(51)l 8700(3) 5898(4) 4183(3) 59(3)

C(52)l 8491(3) 6336(4) 4188(4) 65(3)

C(53)l 8503(3) 6676(4) 3862(3) 56(3)

C(54)l 8761(3) 6541(4) 3529(4) 62(3)

C(55)l 8980(3) 6101(4) 3532(3) 60(3)

N(56)l 8275(3) 7101(3) 3871(3) 69(3)

C(57)l 7906(4) 7152(4) 4143(4) 79(4)

C(58)l 8040(4) 7284(5) 4587(4) 89(4)

C(59)l 7580(4) 6749(5) 4096(5) 109(5)

C(60)l 8324(4) 7468(4) 3533(4) 78(4)

C(61)l 8291(5) 7984(4) 3686(5) 91(4)

C(62)l 8005(6) 7377(5) 3184(5) 116(6)

C(63)l 8844(3) 4180(3) 4341(3) 47(2)

C(64)l 8496(4) 4275(4) 4432(4) 65(3)

C(65)l 8071(4) 4427(5) 4503(4) 78(4)

C(66)l 7764(5) 4140(6) 4662(7) 155(9)

C(67)l 7359(5) 4292(8) 4727(8) 174(10)

C(68)l 7227(5) 4748(7) 4611(7) 128(7)

C(69)l 7519(5) 5041(6) 4417(8) 156(9)

C(70)l 7924(4) 4872(5) 4355(6) 106(5)

N(71)l 6822(4) 4915(6) 4687(7) 173(8)

C(72)l 6661(7) 5411(12) 4476(14) 234(17)

C(73)l 6815(9) 5829(11) 4769(11) 239(16)

C(74)l 6731(12) 5470(2) 3981(13) 410(4)

C(75)l 6496(8) 4563(12) 4877(11) 350(3)

C(76)l 6284(11) 4850(18) 5215(11) 390(3)

C(77)l 6188(16) 4410(2) 4515(13) 400

P(78)l 10987(1) 4778(1) 3625(1) 45(1)

C(79)l 11548(3) 4848(4) 3669(4) 66(3)

C(80)l 11803(3) 4707(4) 3287(4) 68(3)

C(81)l 11820(3) 4150(4) 3220(4) 58(3)

P(82)l 11338(1) 3895(1) 2990(1) 45(1)

C(83)l 10789(4) 5308(4) 3333(3) 54(3)

C(84)l 10365(4) 5368(4) 3274(4) 64(3)

C(85)l 10209(4) 5770(5) 3061(4) 80(4)

C(86)l 10462(5) 6109(5) 2897(4) 82(4)

C(87)l 10886(6) 6056(5) 2951(5) 103(5)

C(88)l 11049(5) 5665(4) 3168(4) 87(4)

C(89)l 10826(3) 4874(4) 4155(3) 49(2)

Page 258: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 233

C(90)l 10834(4) 4476(4) 4425(3; 63(3)

C(91)l 10709(4) 4533(5) 4829(4^ 83(4)

C(92)l 10591(5) 4975(6) 4965(4; 95(5)

C(93)l 10584(5) 5382(6) 4706(4; 98(5)

C(94)l 10704(4) 5325(4) 4307(3; 74(4)

C(95)l 11315(3) 4122(4) 2466(3; 54(3)

C(96)l 10921(4) 4177(4) 2270(3; 66(3)

C(97)l 10886(5) 4365(5) 1865(4; 88(4)

C(98)l 11243(7) 4467(5) 1647(4; 110(6)

C(99)l 11641(6) 4414(6) 1843(5; 116(6)

C(100)l 11664(4) 4233(5) 2246(4; 91(4)

C(101)l 11476(3) 3250(4) 2971(3; 49(2)

C(102)l 11677(4) 3033(5) 2648(4; 76(4)

C(103)l 11797(5) 2536(5) 2667(5; 104(5)

C(104)l 11721(5) 2259(5) 3009(5; 87(4)

C(105)l 11518(4) 2472(5) 3323(5; 85(4)

C(106)l 11397(3) 2961(4) 3312(4; 71(3)

P(107)l 9706(1) 1611(1) 4270(i; 49(1)

C(108)l 9828(4) 1268(4) 4740(3; 66(3)

C(109)l 9551(4) 1370(4) 5104(3; 65(3)

C(110)l 9637(4) 1866(3) 5306(3; 60(3)

P(lll)l 9460(1) 2412(1) 5015(i; 51(1)

C(112)l 9657(3) 2907(4) 5351(3; 49(2)

C(113)l 9456(4) 3038(5) 5707(4; 78(4)

C(114)l 9632(5) 3386(6) 5975(4; 96(5)

C(115)l 10009(4) 3583(5) 5887(4; 86(4)

C(116)l 10208(4) 3464(4) 5548(4; 67(3)

C(117)l 10035(3) 3131(4) 5276(3; 59(3)

C(118)l 8892(3) 2424(4) 5051(3; 61(3)

C(119)l 8668(4) 2723(5) 4793(4; 77(4)

C(120)l 8221(5) 2755(6) 4805(5; 107(5)

C(121)l 8029(5) 2479(9) 5071(7; 142(8)

C(122)l 8256(6) 2166(10) 5351(7; 171(10

C(123)l 8684(5) 2124(7) 5327(5; 114(6)

C(124)l 10099(4) 1417(4) 3907(4; 63(3)

C(125)l 10518(5) 1432(6) 4021(5; 112(5)

C(126)l 10839(5) 1336(8) 3757(6; 131(7)

C(127)l 10734(7) 1189(9) 3380(8; 165(9)

C(128)l 10320(7) 1212(8) 3225(6; 141(7)

C(129)l 9987(5) 1317(6) 3494(4; 102(5)

C(130)l 9211(4) 1356(4) 4085(3; 58(3)

C(131)l 9143(4) 864(4) 4031(4; 74(4)

C(132)l 8759(5) 676(5) 3909(5; 93(5)

C(133)l 8437(5) 985(6) 3836(5; 108(5)

C(134)l 8491(5) 1479(6) 3888(7; 138(7)

C(135)l 8877(4) 1666(5) 4006(5; 88(4)

Pt(l)2 7981(1) 9354(1) 5101(1] 50(1)

C(2)2 7429(3) 9487(4) 5380(3; 56(3)

C(3)2 7079(3) 9561(4) 5516(3; 54(3)

C(4)2 6670(3) 9694(4) 5641(3; 54(3)

C(5)2 6453(3) 9359(4) 5869(3; 48(2)

C(6)2 6658(3) 8890(4) 5954(3; 52(3)

C(7)2 6783(3) 8467(4) 6020(3; 53(3)

Pt(8)2 6921(1) 7754(1) 6112(1] 47(1)

C(9)2 7050(3) 7714(3) 5506(3; 44(2)

C(10)2 7059(3) 7733(3) 5120(3; 42(2)

C(ll)2 6992(3) 7756(4) 4681(3; 43(2)

C(12)2 7206(3) 8109(4) 4467(3; 45(2)

C(13)2 7495(3) 8415(3) 4692(3; 42(2)

C(14)2 7712(3) 8728(4) 4852(3; 47(2)

Page 259: Two-dimensional acetylenic scaffolding - Research Collection

234 Appendix

Cu(15)2 7286(1) 8902(1) 5797(1) 52(1)

Cl(16)2 7859(1) 8420(1) 5936(1) 56(1)

Cu(17)2 7537(1) 8212(1) 5320(1) 45(1)

C(18)2 6693(3) 7430(4) 4501(3) 53(3)

C(19)2 6447(3) 7138(4) 4356(3) 60(3)

C(20)2 6158(3) 6797(4) 4172(4) 59(3)

C(21)2 6146(4) 6720(5) 3755(4) 82(4)

C(22)2 5875(5) 6379(5) 3578(4) 104(5)

C(23)2 5596(4) 6109(5) 3806(4) 86(4)

C(24)2 5598(4) 6205(5) 4228(4) 83(4)

C(25)2 5876(4) 6536(5) 4393(4) 74(3)

N(26)2 5345(4) 5753(5) 3622(4) 118(5)

C(27)2 5095(7) 5416(8) 3897(6) 155(9)

C(28)2 4673(7) 5557(11) 3946(10) 231(15)

C(29)2 5146(12) 4871(11) 3731(10) 260(17)

C(30)2 5298(12) 5692(10) 3114(13) 290(2)

C(31)2 5108(11) 6190(14) 3013(13) 290(2)

C(32)2 5618(15) 5508(16) 2962(18) 340(3)

C(33)2 7141(3) 8177(4) 4031(3) 48(2)

C(34)2 7086(3) 8226(4) 3661(3) 56(3)

C(35)2 7003(3) 8280(4) 3226(3) 49(2)

C(36)2 7278(4) 8528(4) 2966(3) 64(3)

C(37)2 7190(4) 8590(4) 2558(3) 69(3)

C(38)2 6829(3) 8396(4) 2362(3) 57(3)

C(39)2 6562(4) 8142(4) 2622(4) 65(3)

C(40)2 6648(3) 8093(4) 3038(3) 54(3)

N(41)2 6754(3) 8430(3) 1934(3) 64(2)

C(42)2 6920(6) 8823(7) 1703(5) 111(6)

C(43)2 6880(6) 9340(6) 1844(6) 140(7)

C(44)2 7302(8) 8752(10) 1545(7) 182(10)

C(45)2 6375(4) 8219(6) 1741(4) 83(4)

C(46)2 6420(5) 7967(7) 1367(7) 156(9)

C(47)2 5986(4) 8526(5) 1806(4) 85(4)

C(48)2 6497(4) 10165(4) 5530(3) 65(3)

C(49)2 6372(4) 10557(5) 5449(4) 77(4)

C(50)2 6209(5) 11039(6) 5352(6) 104(5)

C(51)2 6027(5) 11319(6) 5626(6) 116(6)

C(52)2 5869(6) 11790(7) 5538(8) 148(8)

C(53)2 5907(6) 11987(7) 5158(10) 157(10)

C(54)2 6066(7) 11700(7) 4850(7) 154(8)

C(55)2 6201(6) 11231(6) 4949(7) 128(6)

N(56)2 5721(8) 12464(9) 5033(8) 217(9)

C(57)2 5452(10) 12675(12) 5343(11) 224

C(58)2 5623(10) 12968(14) 5639(10) 249

C(59)2 5064(14) 12860(2) 5097(15) 440

C(60)2 5892(14) 12825(15) 4749(12) 460

C(61)2 5729(13) 12630(2) 4332(16) 430

C(62)2 6375(13) 12816(19) 4735(14) 370

C(63)2 6045(3) 9433(4) 6019(3) 55(3)

C(64)2 5714(3) 9513(4) 6171(3) 53(3)

C(65)2 5334(3) 9655(4) 6361(3) 55(3)

C(66)2 5253(4) 9551(4) 6782(3) 68(3)

C(67)2 4911(3) 9726(4) 6969(3) 63(3)

C(68)2 4617(3) 10031(4) 6758(3) 56(3)

C(69)2 4685(3) 10118(4) 6335(3) 61(3)

C(70)2 5038(3) 9935(4) 6142(3) 62(3)

N(71)2 4268(3) 10216(4) 6957(3) 62(2)

C(72)2 4298(3) 10384(5) 7395(3) 70(3)

C(73)2 4715(4) 10667(5) 7485(4) 89(4)

C(74)2 4199(4) 9982(6) 7703(4) 98(5)

Page 260: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 235

C(75)2 3914(3) 10413(5) 6706(4) 68(3)

C(76)2 3490(3) 10302(6) 6910(4) 98(5)

C(77)2 3968(4) 10952(5) 6603(4) 85(4)

P(78)2 8210(1) 10084(1) 5377(1) 72(1)

C(79)2 8780(7) 10215(10) 5356(8) 180(10)

C(80)2 9000(4) 10079(5) 4967(5) 90(4)

C(81)2 9047(4) 9535(5) 4986(4) 81(4)

P(82)2 8599(1) 9186(1) 4784(1) 56(1)

C(83)2 7873(5) 10594(5) 5212(7) 153(8)

C(84)2 7459(7) 10698(8) 5323(9) 250

C(85)2 7279(6) 11161(8) 5209(7) 180

C(86)2 7419(8) 11358(9) 4837(8) 230

C(87)2 7822(11) 11241(14) 4690(12) 410

C(88)2 8058(8) 10869(14) 4897(11) 370

C(89)2 8212(7) 10064(8) 5937(5) 150

C(90)2 8027(10) 10469(10) 6136(9) 230

C(91)2 7938(14) 10425(12) 6568(9) 340

C(92)2 8065(16) 10004(14) 6801(7) 380

C(93)2 8220(13) 9599(11) 6581(7) 320

C(94)2 8198(6) 9631(7) 6145(6) 140

C(95)2 8590(4) 9289(4) 4236(4) 66(3)

C(96)2 8214(5) 9292(4) 4022(4) 78(4)

C(97)2 8196(7) 9354(5) 3591(5) 117(6)

C(98)2 8558(8) 9389(6) 3384(5) 137(9)

C(99)2 8932(7) 9380(7) 3603(6) 140(8)

C(100)2 8937(5) 9333(6) 4010(5) 104(5)

C(101)2 8779(3) 8550(4) 4854(3) 58(3)

C(102)2 9024(4) 8314(5) 4570(4) 72(3)

C(103)2 9162(4) 7839(5) 4650(4) 79(4)

C(104)2 9061(4) 7598(5) 5017(4) 92(4)

C(105)2 8825(4) 7843(5) 5307(5) 93(5)

C(106)2 8678(4) 8316(5) 5227(4) 70(3)

P(107)2 7037(1) 6928(1) 6185(1) 56(1)

C(108)2 7203(4) 6736(5) 6701(4) 78(4)

C(109)2 6911(5) 6893(5) 7046(4) 95(5)

C(110)2 6955(5) 7444(5) 7154(4) 93(5)

P(lll)2 6723(1) 7864(1) 6781(1) 64(1)

C(112)2 6854(4) 8474(5) 6984(4) 79(4)

C(113)2 6560(5) 8831(5) 7044(4) 87(4)

C(114)2 6678(6) 9299(6) 7185(5) 111(5)

C(115)2 7083(7) 9401(8) 7263(7) 160(9)

C(116)2 7377(7) 9057(10) 7185(9) 218(14)

C(117)2 7266(5) 8575(7) 7059(6) 146(8)

C( 118)2 6167(4) 7821(5) 6836(4) 75(4)

C( 119)2 5991(5) 7719(5) 7209(5) 100(5)

C(120)2 5544(7) 7704(7) 7239(7) 139(8)

C(121)2 5299(6) 7778(11) 6896(8) 178(11)

C(122)2 5461(5) 7894(13) 6531(7) 223(15)

C(123)2 5910(5) 7893(10) 6495(6) 163(10)

C(124)2 7446(3) 6672(4) 5874(3) 59(3)

C(125)2 7821(4) 6897(5) 5856(4) 82(4)

C(126)2 8153(5) 6697(7) 5641(5) 99(5)

C(127)2 8131(5) 6286(7) 5450(5) 101(5)

C(128)2 7760(7) 6046(7) 5463(7) 151(8)

C(129)2 7412(5) 6226(6) 5693(6) 121(6)

C(130)2 6567(3) 6577(4) 6066(4) 65(3)

C(131)2 6279(4) 6764(5) 5779(4) 78(4)

C(132)2 5925(4) 6510(7) 5648(5) 103(5)

C(133)2 5857(5) 6069(8) 5815(7) 131(7)

C(134)2 6142(7) 5866(7) 6090(7) 141(7)

Page 261: Two-dimensional acetylenic scaffolding - Research Collection

236 Appendix

C(135)2 6495(5) 6122(5) 6233(6) 109(6)

Cl(l)2 6938 9420 4251 170

Cl(2)2 6586 10163 4345 237

Cl(3)2 7340 10286 4053 260

C(201)2 6990 9957 4386 85

Cl(4)2 5000 5000 5000 92

Cl(5)2 5048 4323 4897 124

Cl(6)2 10000 10000 5000 125

Cl(7)2 9986 10136 5631 96

Table 7 15 Bond lengths [Â] and angles [°] for 54

Pt(l)l-C(2)l 2 019(10) C(2)2-C(3)2 1 227(14)

Pt(l)l-C(14)l 2 026(10) C(2)2-Cu(15)2 2 139(11)

Pt(l)l-P(78)l 2 291(2) C(3)2-C(4)2 1 419(14)

Pt(l)l-P(82)l 2 290(2) C(3)2-Cu(15)2 2 107(10)

C(2)l-C(3)l 1 242(12) C(4)2-C(5)2 1 371(14)

C(2)l-Cu(15)l 2 153(9) C(4)2-C(48)2 1 437(15)

C(3)l-C(4)l 1 420(12) C(5)2-C(63)2 1 412(14)

C(3)l-Cu(15)l 2 086(8) C(5)2-C(6)2 1 455(15)

C(4)l-C(5)l 1 382(12) C(6)2-C(7)2 1 235(14)

C(4)l-C(48)l 1 437(13) C(6)2-Cu(15)2 2 077(9)

C(5)l-C(63)l 1 397(13) C(7)2-Pt(8)2 2 008(11)

C(5)l-C(6)l 1 434(13) C(7)2-Cu(15)2 2 132(10)

C(6)l-C(7)l 1 234(13) Pt(8)2-C(9)2 2 006(10)

C(6)l-Cu(15)l 2 097(9) Pt(8)2-P(lll)2 2 279(3)

C(7)l-Pt(8)l 2 032(10) Pt(8)2-P(107)2 2 289(3)

C(7)l-Cu(15)l 2 131(9) C(9)2-C(10)2 1 244(13)

Pt(8)l-C(9)l 1 998(9) C(9)2-Cu(17)2 2 157(9)

Pt(8)l-P(lll)l 2 280(3) C(10)2-C(ll)2 1 425(13)

Pt(8)l-P(107)l 2 292(3) C(10)2-Cu(17)2 2 093(9)

C(9)l-C(10)l 1238(13) C(ll)2-C(12)2 1 373(13)

C(9)l-Cu(17)l 2 139(9) C(ll)2-C(18)2 1 414(14)

C(10)l-C(ll)l 1 454(14) C(12)2-C(33)2 1 427(13)

C(10)l-Cu(17)l 2 066(9) C(12)2-C(13)2 1 424(14)

C(ll)l-C(12)l 1 358(13) C(13)2-C(14)2 1 206(13)

C(ll)l-C(18)l 1 424(13) C(13)2-Cu(17)2 2 096(9)

C(12)l-C(33)l 1 434(13) C(14)2-Cu(17)2 2 145(10)

C(12)l-C(13)l 1 442(13) Cu(15)2-Cl(16)2 2 286(3)

C(13)l-C(14)l 1 228(12) Cu(15)2-Cu(17)2 2 5663(17)

C(13)l-Cu(17)l 2 099(9) Cl(16)2-Cu(17)2 2 282(3)

C(14)l-Cu(17)l 2 128(9) C(18)2-C(19)2 1 203(14)

Cu(15)l-Cl(16)l 2 266(2) C(19)2-C(20)2 1 425(15)

Cu(15)l-Cu(17)l 2 5764(16) C(20)2-C(25)2 1 360(15)

Cl(16)l-Cu(17)l 2 276(3) C(20)2-C(21)2 1 360(16)

C(18)l-C(19)l 1 183(13) C(21)2-C(22)2 1 380(17)

C(19)l-C(20)l 1 459(14) C(22)2-C(23)2 1 380(18)

C(20)l-C(21)l 1 364(15) C(23)2-N(26)2 1 379(16)

C(20)l-C(25)l 1 387(16) C(23)2-C(24)2 1 383(18)

C(21)l-C(22)l 1 372(16) C(24)2-C(25)2 1 362(16)

C(22)l-C(23)l 1 377(16) N(26)2-C(27)2 1 52(2)

C(23)l-N(26)l 1 385(14) N(26)2-C(30)2 1 64(4)

C(23)l-C(24)l 1 412(16) C(27)2-C(28)2 1 41(3)

C(24)l-C(25)l 1 347(16) C(27)2-C(29)2 1 59(4)

N(26)l-C(27)l 1 430(16) C(30)2-C(32)2 1 25(5)

N(26)l-C(30)l 1 442(19) C(30)2-C(31)2 1 518(19)

C(27)l-C(28)l 1 50(2) C(33)2-C(34)2 1 205(13)

C(27)l-C(29)l 1 55(2) C(34)2-C(35)2 1 426(14)

C(30)l-C(32)l 1 59(4) C(35)2-C(40)2 1 370(14)

Page 262: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 237

C(30)l-C(31)l 1 53(3) C(35)2-C(36)2 1 399(14)

C(33)l-C(34)l 1 181(13) C(36)2-C(37)2 1 348(14)

C(34)l-C(35)l 1 429(14) C(37)2-C(38)2 1 400(14)

C(35)l-C(36)l 1 371(14) C(38)2-C(39)2 1 394(15)

C(35)l-C(40)l 1 399(14) C(38)2-N(41)2 1 393(13)

C(36)l-C(37)l 1 380(14) C(39)2-C(40)2 1 365(14)

C(37)l-C(38)l 1 414(14) N(41)2-C(42)2 1 416(18)

C(38)l-N(41)l 1 369(12) N(41)2-C(45)2 1 462(14)

C(38)l-C(39)l 1 420(14) C(42)2-C(44)2 1 34(2)

C(39)l-C(40)l 1 387(14) C(42)2-C(43)2 1 48(2)

N(41)l-C(45)l 1461(13) C(45)2-C(46)2 1 396(19)

N(41)l-C(42)l 1 485(14) C(45)2-C(47)2 1 513(17)

C(42)l-C(43)l 1 48(2) C(48)2-C(49)2 1 166(15)

C(42)l-C(44)l 1 497(18) C(49)2-C(50)2 1 440(19)

C(45)l-C(46)l 1 521(17) C(50)2-C(51)2 1 31(2)

C(45)l-C(47)l 1 506(17) C(50)2-C(55)2 1 40(2)

C(48)l-C(49)l 1 205(12) C(51)2-C(52)2 1 40(2)

C(49)l-C(50)l 1413(13) C(52)2-C(53)2 1 34(3)

C(50)l-C(55)l 1 387(13) C(53)2-C(54)2 1 37(3)

C(50)l-C(51)l 1 403(14) C(53)2-N(56)2 1 48(3)

C(51)l-C(52)l 1 366(14) C(54)2-C(55)2 1 38(2)

C(52)l-C(53)l 1 403(15) N(56)2-C(57)2 1 45(3)

C(53)l-N(56)l 1 365(13) N(56)2-C(60)2 1 46(2)

C(53)l-C(54)l 1417(15) C(57)2-C(58)2 1 34(4)

C(54)l-C(55)l 1 387(14) C(57)2-C(59)2 1 536(19)

N(56)l-C(60)l 1 486(15) C(60)2-C(61)2 1 52(2)

N(56)l-C(57)l 1491(15) C(60)2-C(62)2 1 540(19)

C(57)l-C(58)l 1 525(17) C(63)2-C(64)2 1 196(13)

C(57)l-C(59)l 1 517(18) C(64)2-C(65)2 1 424(14)

C(60)l-C(61)l 1491(16) C(65)2-C(70)2 1 392(14)

C(60)l-C(62)l 1 516(19) C(65)2-C(66)2 1 416(14)

C(63)l-C(64)l 1 183(13) C(66)2-C(67)2 1 346(14)

C(64)l-C(65)l 1 442(16) C(67)2-C(68)2 1411(14)

C(65)l-C(66)l 1 362(18) C(68)2-N(71)2 1 391(12)

C(65)l-C(70)l 1 377(17) C(68)2-C(69)2 1 405(14)

C(66)l-C(67)l 1 38(2) C(69)2-C(70)2 1 393(14)

C(67)l-C(68)l 1 36(2) N(71)2-C(75)2 1 472(13)

C(68)l-N(71)l 1 395(19) N(71)2-C(72)2 1 482(13)

C(68)l-C(69)l 1 39(2) C(72)2-C(74)2 1 513(17)

C(69)l-C(70)l 1391(19) C(72)2-C(73)2 1 560(16)

N(71)l-C(75)l 1 55(3) C(75)2-C(76)2 1 547(15)

N(71)l-C(72)l 1 59(3) C(75)2-C(77)2 1 516(17)

C(72)l-C(73)l 1 55(4) P(78)2-C(89)2 1 801(17)

C(72)l-C(74)l 1 62(4) P(78)2-C(79)2 1 85(2)

C(75)l-C(76)l 1 514(18) P(78)2-C(83)2 1 827(14)

C(75)l-C(77)l 1 559(19) C(79)2-C(80)2 1 50(3)

P(78)l-C(79)l 1 801(10) C(80)2-C(81)2 1 490(18)

P(78)l-C(89)l 1 814(10) C(81)2-P(82)2 1 822(12)

P(78)l-C(83)l 1 823(10) P(82)2-C(95)2 1 786(12)

C(79)l-C(80)l 1 542(15) P(82)2-C(101)2 1 837(11)

C(80)l-C(81)l 1 530(15) C(83)2-C(88)2 1 401(9)

C(81)l-P(82)l 1 827(10) C(83)2-C(84)2 1 403(9)

P(82)l-C(95)l 1 796(10) C(84)2-C(852 1 429(9)

P(82)l-C(101)l 1 810(10) C(85)2-C(86)2 1 398(10)

C(83)l-C(84)l 1 369(15) C(86)2-C(87)2 1 415(17)

C(83)l-C(88)l 1 389(15) C(87)2-C(88)2 1 417(16)

C(84)l-C(85)l 1 378(15) C(89)2-C(94)2 1 358(15)

C(85)l-C(86)l 1 342(17) C(89)2-C(90)2 1 410(17)

C(86)l-C(87)l 1 37(2) C(90)2-C(91)2 1 432(18)

C(87)l-C(88)l 1 368(18) C(91)2-C(92)2 1 422(18)

Page 263: Two-dimensional acetylenic scaffolding - Research Collection

238 Appendix

C(89)l-C(94)l 1381(15) C(92)2-C(93)2 1 409(17)

C(89)l-C(90)l 1 390(14) C(93)2-C(94)2 1 408(16)

C(90)l-C(91)l 1 379(16) C(95)2-C(100)2 1 345(17)

C(91)l-C(92)l 1 337(19) C(95)2-C(96)2 1 367(17)

C(92)l-C(93)l 1 39(2) C(96)2-C(97)2 1 398(18)

C(93)l-C(94)l 1 359(17) C(97)2-C(98)2 1 35(2)

C(95)l-C(100)l 1 366(15) C(98)2-C(99)2 1 369(17)

C(95)l-C(96)l 1 398(15) C(99)2-C(100)2 1 32(2)

C(96)l-C(97)l 1 401(16) C(101)2-C(102)2 1 375(15)

C(97)l-C(98)l 1 38(2) C(101)2-C(106)2 1 402(14)

C(98)l-C(99)l 1 41(2) C(102)2-C(103)2 1 389(16)

C(99)l-C(100)l 1 390(18) C(103)2-C(104)2 1 398(17)

C(101)l-C(102)l 1 369(14) C(104)2-C(105)2 1 383(19)

C(101)l-C(106)l 1 378(14) C(105)2-C(106)2 1 392(17)

C(102)l-C(103)l 1 404(18) P(107)2-C(108)2 1 807(12)

C(103)l-C(104)l 1 360(19) P(107)2-C(130)2 1 810(11)

C(104)l-C(105)l 1 346(19) P(107)2-C(124)2 1 804(11)

C(105)l-C(106)l 1 388(16) C(108)2-C(109)2 1 527(17)

P(107)l-C(130)l 1811(11) C(109)2-C(110)2 1 544(19)

P(107)l-C(108)l 1813(10) C(110)2-P(lll)2 1 803(13)

P(107)l-C(124)l 1813(11) P(lll)2-C(118)2 1 790(13)

C(108)l-C(109)l 1510(15) P(lll)2-C(112)2 1 829(14)

C(109)l-C(110)l 1 521(14) C(112)2-C(117)2 1 356(19)

C(110)l-P(lll)l 1 835(10) C(112)2-C(113)2 1 369(18)

P(lll)l-C(118)l 1818(11) C(113)2-C(114)2 1 399(19)

P(lll)l-C(112)l 1 829(10) C(114)2-C(115)2 1 34(2)

C(112)l-C(117)l 1 378(14) C(115)2-C(116)2 1 35(3)

C(112)l-C(113)l 1 374(14) C(116)2-C(117)2 1 41(3)

C(113)l-C(114)l 1 388(17) C(118)2-C(119)2 1 367(17)

C(114)l-C(115)l 1351(18) C(118)2-C(123)2 1 37(2)

C(115)l-C(116)l 1317(17) C(119)2-C(120)2 1 43(2)

C(116)l-C(117)l 1 369(15) C(120)2-C(121)2 1 35(3)

C(118)l-C(119)l 1 354(16) C(121)2-C(122)2 1 33(3)

C(118)l-C(123)l 1 388(17) C(122)2-C(123)2 1 44(2)

C(119)l-C(120)l 1 428(18) C(124)2-C(129)2 1 351(18)

C(120)l-C(121)l 131(2) C(124)2-C(125)2 1 346(16)

C(121)l-C(122)l 1 42(3) C(125)2-C(126)2 1 389(18)

C(122)l-C(123)l 1 37(2) C(126)2-C(127)2 1 28(2)

C(124)l-C(125)l 1 378(18) C(127)2-C(128)2 1 35(2)

C(124)l-C(129)l 1 393(17) C(128)2-C(129)2 1 44(2)

C(125)l-C(126)l 1 37(2) C(130)2-C(135)2 1 372(17)

C(126)l-C(127)l 131(2) C(130)2-C(131)2 1 382(16)

C(127)l-C(128)l 1 40(3) C(131)2-C(132)2 1 378(18)

C(128)l-C(129)l 1 42(2) C(132)2-C(133)2 1 34(2)

C(130)l-C(131)l 1 367(15) C(133)2-C(134)2 1 37(2)

C(130)l-C(135)l 1 376(16) C(134)2-C(135)2 1 39(2)

C(131)l-C(132)l 1 373(17) Cl(l)2-C(201)2 1 5290

C(13201-C(133)l 1 34(2) C1(1)2-C1(2)2 2 3349

C(133)l-C(134)l 1 37(2) Cl(2)2-C(201)2 14089

C(134)l-C(135)l 1 376(18) Cl(3)2-C(201)2 1 8031

Pt(l)2-C(2)2 2 028(11) C1(4)2-C1(5)2 1 8775

Pt(l)2-C(14)2 2 059(11) C1(4)2-C1(5)2#1 1 8776

Pt(l)2-P(82)2 2 288(3) C1(6)2-C1(7)2#2 2 0660

Pt(l)2-P(78)2 2 289(3) C1(6)2-C1(7)2 2 0661

C(2)l-Pt(l)l-C(14)l 87 7(4) C(14)2-Pt(l)2-P(78)2 174 0(3)

C(2)l-Pt(l)l-P(78)l 87 3(3) P(82)2-Pt(l)2-P(78)2 94 41(11

C(14)l-Pt(l)l-P(78)l 173 3(3) C(3)2-C(2)2-Pt(l)2 174 4(9)

C(2)l-Pt(l)l-P(82)l 178 1(3) C(3)2-C(2)2-Cu(15)2 71 8(7)

C(14)l-Pt(l)l-P(82)l 90 5(3) Pt(l)2-C(2)2-Cu(15)2 110 3(5)

Page 264: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 239

P(78)l-Pt(l)l-P(82)l 94 56(9) C(2)2-C(3)2-C(4)2 173 3(11)

C(3)l-C(2)l-Pt(l)l 177 2(8) C(2)2-C(3)2-Cu(15)2 74 7(7)

C(3)l-C(2)l-Cu(15)l 70 0(6) C(4)2-C(3)2-Cu(15)2 112 0(7)

Pt(l)l-C(2)l-Cu(15)l 112 6(4) C(5)2-C(4)2-C(3)2 117 6(9)

C(2)l-C(3)l-C(4)l 173 2(9) C(5)2-C(4)2-C(48)2 122 0(9)

C(2)l-C(3)l-Cu(15)l 75 9(6) C(3)2-C(4)2-C(48)2 120 4(10)

C(4)l-C(3)l-Cu(15)l 110 4(6) C(4)2-C(5)2-C(63)2 124 8(9)

C(5)l-C(4)l-C(3)l 119 5(8) C(4)2-C(5)2-C(6)2 116 9(9)

C(5)l-C(4)l-C(48)l 120 4(8) C(63)2-C(5)2-C(6)2 118 2(9)

C(3)l-C(4)l-C(48)l 120 1(8) C(7)2-C(6)2-C(5)2 172 1(11)

C(4)l-C(5)l-C(63)l 122 6(8) C(7)2-C(6)2-Cu(15)2 75 3(7)

C(4)l-C(5)l-C(6)l 116 4(8) C(5)2-C(6)2-Cu(15)2 111 8(7)

C(63)l-C(5)l-C(6)l 121 0(8) C(6)2-C(7)2-Pt(8)2 173 5(9)

C(7)l-C(6)l-C(5)l 172 5(10) C(6)2-C(7)2-Cu(15)2 70 5(7)

C(7)l-C(6)l-Cu(15)l 74 6(6) Pt(8)2-C(7)2-Cu(15)2 115 0(5)

C(5)l-C(6)l-Cu(15)l 1113(6) C(9)2-Pt(8)2-C(7)2 87 7(4)

C(6)l-C(7)l-Pt(8)l 167 1(8) C(9)2-Pt(8)2-P(lll)2 173 9(3)

C(6)l-C(7)l-Cu(15)l 71 5(6) C(7)2-Pt(8)2-P(lll)2 87 0(3)

Pt(8)l-C(7)l-Cu(15)l 114 8(5) C(9)2-Pt(8)2-P(107)2 90 6(3)

C(9)l-Pt(8)l-C(7)l 88 3(4) C(7)2-Pt(8)2-P(107)2 175 9(3)

C(9)l-Pt(8)l-P(lll)l 175 3(3) P(lll)2-Pt(8)2-P(107)2 94 48(11)

C(7)l-Pt(8)l-P(lll)l 90 3(3) C(10)2-C(9)2-Pt(8)2 168 1(8)

C(9)l-Pt(8)l-P(107)l 86 8(3) C(10)2-C(9)2-Cu(17)2 70 2(6)

C(7)l-Pt(8)l-P(107)l 173 0(3) Pt(8)2-C(9)2-Cu(17)2 113 8(5)

P(lll)l-Pt(8)l-P(107)l 94 12(10) C(9)2-C(10)2-C(ll)2 170 1(9)

C(10)l-C(9)l-Pt(8)l 169 1(8) C(9)2-C(10)2-Cu(17)2 75 8(6)

C(10)l-C(9)l-Cu(17)l 69 7(6) C(ll)2-C(10)2-Cu(17)2 1115(7)

Pt(8)l-C(9)l-Cu(17)l 119 2(4) C(12)2-C(ll)2-C(10)2 117 7(8)

C(9)l-C(10)l-C(ll)l 170 7(10) C(12)2-C(ll)2-C(18)2 124 8(9)

C(9)l-C(10)l-Cu(17)l 76 1(6) C(10)2-C(ll)2-C(18)2 117 5(9)

C(ll)l-C(10)l-Cu(17)l 112 0(6) C(ll)2-C(12)2-C(33)2 121 6(9)

C(12)l-C(ll)l-C(18)l 125 5(9) C(ll)2-C(12)2-C(13)2 118 5(8)

C(12)l-C(ll)l-C(10)l 117 5(8) C(33)2-C(12)2-C(13)2 120 0(9)

C(18)l-C(ll)l-C(10)l 116 6(9) C(14)2-C(13)2-C(12)2 170 7(10)

C(ll)l-C(12)l-C(33)l 123 4(9) C(14)2-C(13)2-Cu(17)2 75 7(6)

C(ll)l-C(12)l-C(13)l 117 4(8) C(12)2-C(13)2-Cu(17)2 111 1(7)

C(33)l-C(12)l-C(13)l 119 2(8) C(13)2-C(14)2-Pt(l)2 168 3(8)

C(14)l-C(13)l-C(12)l 170 8(10) C(13)2-C(14)2-Cu(17)2 71 3(6)

C(14)l-C(13)l-Cu(17)l 74 4(6) Pt(l)2-C(14)2-Cu(17)2 112 4(4)

C(12)l-C(13)l-Cu(17)l 1116(6) C(6)2-Cu(15)2-C(3)2 79 9(4)

C(13)l-C(14)l-Pt(l)l 170 0(8) C(6)2-Cu(15)2-C(7)2 34 1(4)

C(13)l-C(14)l-Cu(17)l 71 8(6) C(3)2-Cu(15)2-C(7)2 112 8(4)

Pt(l)l-C(14)l-Cu(17)l 111 1(4) C(6)2-Cu(15)2-C(2)2 112 8(4)

C(3)l-Cu(15)l-C(6)l 81 1(4) C(3)2-Cu(15)2-C(2)2 33 6(4)

C(3)l-Cu(15)l-C(7)l 114 1(4) C(7)2-Cu(15)2-C(2)2 143 1(4)

C(6)l-Cu(15)l-C(7)l 33 9(3) C(6)2-Cu(15)2-Cl(16)2 135 6(3)

C(3)l-Cu(15)l-C(2)l 34 0(3) C(3)2-Cu(15)2-Cl(16)2 144 4(3)

C(6)l-Cu(15)l-C(2)l 114 3(4) C(7)2-Cu(15)2-Cl(16)2 102 7(3)

C(7)l-Cu(15)l-C(2)l 144 6(4) C(2)2-Cu(15)2-Cl(16)2 1116(3)

C(3)l-Cu(15)l-Cl(16)l 139 9(3) C(6)2-Cu(15)2-Cu(17)2 116 9(3)

C(6)l-Cu(15)l-Cl(16)l 138 9(3) C(3)2-Cu(15)2-Cu(17)2 117 8(3)

C(7)l-Cu(15)l-Cl(16)l 106 0(3) C(7)2-Cu(15)2-Cu(17)2 92 5(3)

C(2)l-Cu(15)l-Cl(16)l 106 8(3) C(2)2-Cu(15)2-Cu(17)2 95 4(3)

C(3)l-Cu(15)l-Cu(17)l 115 1(2) Cl(16)2-Cu(15)2-Cu(17)2 55 74(7)

C(6)l-Cu(15)l-Cu(17)l 119 9(3) Cu(17)2-Cl(16)2-Cu(15)2 68 37(8)

C(7)l-Cu(15)l-Cu(17)l 96 8(3) C(13)2-Cu(17)2-C(10)2 80 8(4)

C(2)l-Cu(15)l-Cu(17)l 90 9(3) C(13)2-Cu(17)2-C(14)2 33 0(3)

Cl(16)l-Cu(15)l-Cu(17)l 55 61(7) C(10)2-Cu(17)2-C(14)2 113 1(4)

Cu(15)l-Cl(16)l-Cu(17)l 69 11(7) C(1302-Cu(17)2-C(9)2 113 9(4)

C(10)l-Cu(17)l-C(13)l 80 6(4) C(10)2-Cu(17)2-C(9)2 34 0(3)

Page 265: Two-dimensional acetylenic scaffolding - Research Collection

240 Appendix

C(10 )1-Cu(17)l-C(14)l 113 3(4) C(14)2-Cu(17)2-C(9)2 144 0(4)

C(13 )1-Cu(17)l-C(14)l 33 8(3) C(13)2-Cu(17)2-Cl(16)2 142 1(3)

C(10 )1-Cu(17)l-C(9)l 34 2(3) C(10)2-Cu(17)2-Cl(16)2 136 8(3)

C(13 )1-Cu(17)l-C(9)l 113 9(4) C(14)2-Cu(17)2-Cl(16)2 109 2(3)

C(14 )1-Cu(17)l-C(9)l 143 8(4) C(9)2-Cu(17)2-Cl(16)2 103 0(3)

C(10 )1-Cu(17)l-Cl(16)l 137 9(3) C(13)2-Cu(17)2-Cu(15)2 111 8(3)

C(13 )1-Cu(17)l-Cl(16)l 141 4(3) C(10)2-Cu(17)2-Cu(15)2 113 8(3)

C(14 )1-Cu(17)l-Cl(16)l 108 0(3) C(14)2-Cu(17)2-Cu(15)2 91 9(3)

C(9)l -Cu(17)l-Cl(16)l 104 0(3) C(9)2-Cu(17)2-Cu(15)2 93 2(3)

C(10 )1-Cu(17)l-Cu(15)l 1119(3) Cl(16)2-Cu(17)2-Cu(15)2 55 89(8)

C(13 )1-Cu(17)l-Cu(15)l 116 5(3) C(19)2-C(18)2-C(ll)2 177 4(11)

C(14 )1-Cu(17)l-Cu(15)l 95 2(2) C(18)2-C(19)2-C(20)2 178 2(12)

C(9)l -Cu(17)l-Cu(15)l 89 4(3) C(25)2-C(20)2-C(21)2 115 7(11)

Cl(16 )1-Cu(17)l-Cu(15)l 55 28(7) C(25)2-C(20)2-C(19)2 123 5(11)

C(19 )1-C(18)1-C(11)1 170 4(11) C(21)2-C(20)2-C(19)2 120 8(11)

C(18 )1-C(19)1-C(20)1 178 9(12) C(20)2-C(21)2-C(22)2 120 9(13)

C(21 )1-C(20)1-C(25)1 116 4(10) C(21)2-C(22)2-C(23)2 122 9(14)

C(21 )1-C(20)1-C(19)1 122 4(10) N(26)2-C(23)2-C(24)2 122 8(13)

C(25 )1-C(20)1-C(19)1 121 0(10) N(26)2-C(23)2-C(22)2 121 3(13)

C(20 )1-C(21)1-C(22)1 122 2(11) C(24)2-C(23)2-C(22)2 115 8(12)

C(23 )1-C(22)1-C(21)1 122 3(11) C(25)2-C(24)2-C(23)2 119 6(12)

C(22 )1-C(23)1-N(26)1 122 0(11) C(20)2-C(25)2-C(24)2 125 0(12)

C(22 )1-C(23)1-C(24)1 114 8(10) C(23)2-N(26)2-C(27)2 118 8(13)

N(26 )1-C(23)1-C(24)1 123 1(11) C(23)2-N(26)2-C(30)2 122 3(14)

C(25 )1-C(24)1-C(23)1 122 4(12) C(27)2-N(26)2-C(30)2 118 9(14)

C(24 )1-C(25)1-C(20)1 121 8(12) C(28)2-C(27)2-C(29)2 113(2)

C(23 )1-N(26)1-C(27)1 121 5(10) C(28)2-C(27)2-N(26)2 115(2)

C(23 )1-N(26)1-C(30)1 1218(11) C(29)2-C(27)2-N(26)2 108 0(18)

C(27 )1-N(26)1-C(30)1 116 1(11) C(32)2-C(30)2-C(31)2 127(4)

N(26 )1-C(27)1-C(28)1 110 0(15) C(32)2-C(30)2-N(26)2 112(4)

N(26 )1-C(27)1-C(29)1 1110(13) C(31)2-C(30)2-N(26)2 98(3)

C(28 )1-C(27)1-C(29)1 116 1(16) C(34)2-C(33)2-C(12)2 179 0(12)

N(26 )1-C(30)1-C(32)1 111(2) C(33)2-C(34)2-C(35)2 177 8(12)

N(26 )1-C(30)1-C(31)1 115 4(18) C(40)2-C(35)2-C(36)2 115 9(9)

C(32 )1-C(30)1-C(31)1 115 8(19) C(40)2-C(35)2-C(34)2 121 7(10)

C(34 )1-C(33)1-C(12)1 178 0(10) C(36)2-C(35)2-C(34)2 122 4(9)

C(33 )1-C(34)1-C(35)1 176 6(11) C(37)2-C(36)2-C(35)2 121 7(10)

C(36 )1-C(3501-C(40)1 117 2(9) C(36)2-C(37)2-C(38)2 122 8(11)

C(36 )1-C(35)1-C(34)1 121 9(9) C(39)2-C(38)2-N(41)2 122 3(9)

C(40 )1-C(35)1-C(34)1 120 8(9) C(39)2-C(38)2-C(37)2 115 0(10)

C(35 )1-C(36)1-C(37)1 122 6(10) N(41)2-C(38)2-C(37)2 122 6(10)

C(36 )1-C(37)1-C(38)1 122 3(10) C(40)2-C(39)2-C(38)2 121 9(10)

N(41 )1-C(38)1-C(39)1 122 5(9) C(39)2-C(40)2-C(35)2 122 7(10)

N(41 )1-C(38)1-C(37)1 123 3(9) C(38)2-N(41)2-C(42)2 120 8(10)

C(39 )1-C(38)1-C(37)1 114 2(9) C(38)2-N(41)2-C(45)2 120 9(10)

C(40 )1-C(39)1-C(38)1 122 9(10) C(42)2-N(41)2-C(45)2 112 9(11)

C(39 )1-C(40)1-C(35)1 120 8(10) C(44)2-C(42)2-N(41)2 116 5(19)

C(38 )1-N(41)1-C(45)1 122 5(9) C(44)2-C(42)2-C(43)2 109 8(18)

C(38 )1-N(41)1-C(42)1 119 4(9) N(41)2-C(42)2-C(43)2 1212(15)

C(45 )1-N(41)1-C(42)1 116 4(9) C(46)2-C(45)2-N(41)2 117 2(12)

N(41 )1-C(42)1-C(43)1 108 4(12) C(46)2-C(45)2-C(47)2 119 5(12)

N(41 )1-C(42)1-C(44)1 112 4(11) N(41)2-C(45)2-C(47)2 113 2(11)

C(43 )1-C(42)1-C(44)1 113 1(12) C(49)2-C(48)2-C(4)2 177 1(13)

N(41 )1-C(45)1-C(46)1 114 5(11) C(48)2-C(49)2-C(50)2 178 9(14)

N(41 )1-C(45)1-C(47)1 114 0(10) C(51)2-C(50)2-C(552 114 0(16)

C(46 )1-C(45)1-C(47)1 1118(10) C(51)2-C(50)2-C(49)2 123 2(16)

C(49 )1-C(48)1-C(4)1 174 7(10) C(55)2-C(50)2-C(49)2 122 6(16)

C(48 )1-C(49)1-C(50)1 173 3(10) C(50)2-C(51)2-C(52)2 124 0(18)

C(55 )1-C(50)1-C(51)1 115 9(9) C(53)2-C(52)2-C(51)2 1205(19)C(55)1-C(50)1-C(49)11240(9)C(52)2-C(53)2-C(54)21183(17)

Page 266: Two-dimensional acetylenic scaffolding - Research Collection

£££££££%

Ah^5^%%QQQ%%%%%%QQQQQQ

22^££0000000000000000

z;z;z;oooooooo

OOO

O^ö^ö^

"oo

'ôo

'ôo

'ôo

>>-~J^o^,

A,OO^O

><

00

I—'

00

"oo

00

h-O

K>£

1'

'<L,L,LIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

33^oooz;z;oz;z;ooooooooz;oooooooooooooooooooooooo

-J

V-!V-!

V-!

oowww

OOOMOOJ^O^ai4^MOai^UJM^OOJ^ai^M^^M^^OOOO^OOOJOK-^MK-4^0aiUJLOaiOOMOiaiK-^K-^OMK-tJiUJK-tjJK<0

WK)

U)MO^M

O\-J^I4iI/-0^vimO\HtOMUHHHHUOO'

oooo

oooo

ooooooooooooooooooooooooooo

z1z1O

z1z1OOOOOO

z1z1oooooooo

z1z1

z1ooooooooo

^o

^o

^o

00

00

00

00

00

00

00

00

h-

00

^o

00

^o

^O

00

^1

00

00

^i

00

^i

00

00

^1

^1

^1

^1

^1

^1

^1

On

On

On

^1

On

^1

^1

On

On

On

^1

^1

On

On

On

!/l

!/l

!/l

Ut

Ut

On

(Ji

<Ji

(Ji

(Ji

(Ji

<Ji

o-1^

-1^

LiJ

On

l/l

On

LiJ

-1^

00

00O

k^

i/i

K^

l/l

l/iO

^no

u>

^n

^n

yo

yo

yo

On

-1^

l/l

00

00

l/iO

^1

On

^1

OnOO

ijj

-1^

k^

tTN

tTN

tTN

00

00O

^1

^1

-1^

UJ

-1^

K)

MMMMMMMMMMM

^-^MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

ooooooooooo

ihd

hd

hd

hd

hdOOO

hd

hd

hd

hd

hd

hdooooooz^z^ooooooooooooooooo^^^,^^^^

00

00

00

00

00

00

00

00

00

00

00

00

00

^1

^1

^1

^1

^1

^1

^1

^1

^1

^1

^1

On

On

On

On

On

On

On

On

On

On

On

On

On

On

t/i

l/i

l/i

t/i

t/i

!/l

l/i

l/i

l/i

l/i

^n

yo

^n

00

^1

On

t/l

-1^

U)

U)

U)

UÜMMMMM

k^o

^n

uo

t/1

!/l

!/l

K>

K>

K>

O^n

00

00

00

^1

On

t/i

t/i

t/i

-1^

U)O

<->

<->

^1

^1

^1

On

On

On

t/i

-1^

U)

U)

lo

toM

toMMMMMMMM

i hd

MMM

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

hd

hdoooooo

hd

hdn

hd

hdOOO

hdn

idhd

hd

hdoooooooooooooooooooooooooooooz;oooooz;z;

^o

00

00

00

00

00

00

/i_i

s^^

^^

^^

^^

00

^-i

k^

^^

^i

^1

^1

^1

^1

^1

^1

^1

^1

On

On

On

On

On

On

On

On

On

On

On

Ui

On

On

On

!/l

Ui

t/i

t/i

!/l

On

Ui

Ui

!/l

!/l

UÜo

^1

00

^1

-1^

</l

-1^

ii.

'.

'<_J

<_J

k^M

K^

.'.

'.

'MJ

^i

^1

On

l<J

-|_

K)M

^n

00

yo

^1

00

</i

-1^

-1^

On

</i^—'

K>

K)

yo

tTN

^O

</i

tTN

tTN

i^>

i^>

i^>

i^>

i^>

toMMMMM

MM

K>

K>

MMMMMMMMMMMMMMMMMMMMM

MMMMMMMMMMMMM

M4^^ai^^O^OK-^OK-^004^^^0aiMK-M^^K-004^ai^^OOOiUJMMK-^OM4^00J^OOJ0^4^MM4^M^^^^^^^^

Page 267: Two-dimensional acetylenic scaffolding - Research Collection

ooooooooooooooooooooooooooooooooooooo

0>^aiOiCCH-OH-CCL^^^C>aiC>ai^L^^^OtOCCtOCCCC^CC^^CCOCCOOH-^ai^H-C>tOtO^Oww

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

H-*

II

II

K-t

H-*

II

II

II

II

I

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

I(*

"")

I(~*)

(~*)

(~*)

(~*)

II

(~*)

(~*)

(~*)

(~*)

(~*)

(~*)

(~*)

(~*)

(~*)

^^^^^^^^^^^^^^^^^^^^

i—'

i—'

i—'

i—'

i—'

i—^^^

i-'

i-'

i-'

i-'

i-'h-^^^^^^^'Z;oS

oo

-o

a\ui'S'S

-^

oj

k>

i—o

^o

^o

^o

oo

^^^^^^^^^^^^^^^^^^^^

K-

K-

K-

K-

K-k-^^^

K-

K-

K-

K-

K-k-^^^^^^^^

i'OO03

^^00000335,0

0^05PP50^SOnOn0^03

330pn^n^

WM^SSuO^

00So§S

K>OOk>K>K>K>h-K>^^K>h-h-h-h-h-^^h-

*s

*~s^-^

K-

K-

K-

K-

K-O

^-^^-^^-^K>K>OoOOOOt°t°0

^-^

^-^

h-

h-

h-^

^-^

^_^h-h-h-h-h-^^h-h-

4^0^000000K-OOMK-OO^OK-^OK-^OOK-0^aiaiOK-^^^OJaiUJON04^aN4^0K<^lK-K-004^^IK<OO^O^OOOOUJOOK-OOK-OOOOUJOOK-

00000000000000000000000000000000000000

tOtOtOtOtOtOtOtOH-tOtOtOH-tOH-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-OOOtOL^OOJOOOOOOOOOOaiCC^CCOiC>00

^_^

^_^

^_^

^_^

^_^

^_^^_^^_^^_^^_^^_^^_^^_^^_^^_^^_^^_^

•*—/

•*—/^_^^_^^_^^_^^_^^_^^_^^_^^_^^_^^_^^_^^_^

•*—/^_^^_^^_^^_^^_^^_^

^_^

^_^

^_^

•*—/

•*—/

•*—/

•*—/

•*—/

to

to

to

to

to

to

^_^

^_^

to

to

to

to

to

totototototototototototototototototototototototototototototototototototoM

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1n

(j

(j

(j

(j

(j

11

(j

(j

(j

(j

(j

0000000000000000000000003333330003333330000000

^^^^^^^^^^^^^^^^^^^^^^^^

1—'

1—'

1—'

1—'

1—'^-^^^

;-

;-

;-

i-'

i-'h-^^^^^^^^

O^O

00

^1

OnUi'S'S

4^

oj

K<

1—o

mmmmmmmmmmmmmmmmmmmmmmmm^^^^^^mmm^^^^^^mmmmmmmm'OOO

II

II

II

II

II

II

II

II

II

II

II

II

Jj

Jj

J_j

II

II

II

J_j

Jj

Jj

II

II

II

II

II

I()

/—\

/—\

/—\/—\

^T^;

^3

(1

'—^

'—^

^—^

^—^

^—^

000003300000033000000330333000^0333300000000

5g^

^3S'ôo'S5S5o2

mmmmmoommmm^m^^m^^^^^^^^^^^^^^^^os?5s?5s?5mmS5ooooSSo^Smmm

OMJi

vlO

4iO

"^^

'^

^^^UiUiKIUiUiMOUiOUi-|iOM^O>ÛMlû^^UvJWljJ

-OHH

lO

^^^MMwig^^^oai^jai-jui^Migvo^vjoo^o

Page 268: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 243

C(127)l-C(126)l-C(125)l 116.9(18) C(135)2-C(130)2-C(131)2 118.7(12)

C(126)l-C(127)l-C(128)l 122.2(18) C(135)2-C(130)2-P(107)2 122.6(10)

C(129)l-C(128)l-C(127)l 120.4(18) C(131)2-C(130)2-P(107)2 118.6(9)

C(124)l-C(129)l-C(128)l 116.4(15) C(130)2-C(131)2-C(132)2 122.9(13)

C(131)l-C(130)l-C(135)l 117.2(11) C(133)2-C(132)2-C(131)2 117.9(15)

C(131)l-C(130)l-P(107)l 123.4(9) C(132)2-C(133)2-C(134)2 120.7(16)

C(135)l-C(130)l-P(107)l 119.3(8) C(133)2-C(134)2-C(135)2 122.1(17)

C(130)l-C(131)l-C(132)l 122.5(13) C(130)2-C(135)2-C(134)2 117.5(15)

C(133)l-C(132)l-C(131)l 119.3(12) C(201)2-C1(1)2-C1(2)2 35.6

C(132)l-C(133)l-C(134)l 120.0(14) C(201)2-C1(2)2-C1(1)2 39.2

C(135)l-C(134)l-C(133)l 120.5(15) C1(2)2-C(201)2-C1(1)2 105.2

C(134)l-C(135)l-C(130)l 120.4(13) C1(2)2-C(201)2-C1(3)2 109.0

C(2)2-Pt(l)2-C(14)2 88.0(4) C1(1)2-C(201)2-C1(3)2 111.7

C(2)2-Pt(l)2-P(82)2 178.8(3) C1(5)2-C1(4)2-C1(5)2#1 180.0

C(14)2-Pt(l)2-P(82)2 90.9(3) C1(7)2#2-C1(6)2-C1(7)2 180.0

C(2)2-Pt(l)2-P(78)2 86.8(3)

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z+1; #2 -x+2, -y+2, -z+1.

Table 7.16. Anisotropic displacement parameters (Â2 x 103) for 54. The anisotropic displacement factor

exponent takes the form: -2TC2[Â2a*2£/n +...

+ 2hka*b*U\2].

Un U22 U33 U23 t/l3 Uu

Pt(l)l 34(1) 36(1) 42(1) 3(1) -2(1) -1(1)

C(2)l 44(6) 37(5) 44(5) 8(4) -10(5) -4(4)

C(3)l 43(5) 29(5) 40(5) -1(4) -2(4) 3(4)

C(4)l 43(5) 27(5) 44(5) -1(4) -2(4) 5(4)

C(5)l 42(5) 38(5) 36(5) 0(4) 0(4) 1(4)

C(6)l 45(5) 39(6) 43(5) 7(4) -1(4) 5(4)

C(7)l 48(5) 47(6) 38(5) 1(4) 2(4) -14(5)

Pt(8)l 49(1) 31(1) 43(1) 6(1) -1(1) -1(1)

C(9)l 48(6) 37(5) 41(6) 4(4) 0(4) -4(4)

C(10)l 41(5) 32(5) 59(7) 2(5) -3(5) -8(4)

C(H)1 54(6) 45(6) 44(6) -4(5) -7(5) -2(5)

C(12)l 51(6) 43(6) 37(5) -5(4) -2(4) -1(5)

C(13)l 47(5) 44(6) 38(5) 4(4) 1(4) 1(5)

C(14)l 46(5) 38(5) 37(5) 4(4) 2(4) 7(4)

Cu(15)l 43(1) 34(1) 47(1) 4(1) -1(1) 5(1)

Cl(16)l 47(1) 46(1) 46(1) 5(1) -10(1) 10(1)

Cu(17)l 45(1) 38(1) 42(1) 2(1) -5(1) 1(1)

C(18)l 63(7) 40(6) 53(6) -2(5) 1(5) -18(5)

C(19)l 57(6) 43(6) 67(7) -5(5) 7(5) -17(5)

C(20)l 67(7) 60(7) 52(6) 10(5) -14(6) -20(6)

C(21)l 97(10) 70(8) 79(9) 21(7) -24(8) -27(7)

C(22)l 88(9) 81(9) 80(9) 8(7) -38(7) -20(8)

C(23)l 73(8) 63(8) 77(8) 15(6) -29(6) -31(6)

C(24)l 83(9) 70(9) 124(12) 36(8) -34(9) -30(7)

C(25)l 64(8) 75(9) 120(11) 22(8) -30(8) -29(7)

N(26)l 71(7) 61(7) 128(9) 28(6) -32(6) -23(5)

C(27)l 69(9) 86(10) 134(13) 33(9) -22(9) -29(7)

C(28)l 260(3) 158(19) 122(16) 18(14) -98(18) -5(18)

C(29)l 89(13) 190(2) 260(3) 90(2) -38(15) -25(14)

C(30)l 130(15) 98(14) 240(3) 74(15) -95(16) -72(12)

C(31)l 210(2) 63(12) 330(4) 12(16) -100(2) 22(14)

C(32)l 104(14) 240(3) 260(3) 150(2) -76(17) -89(16)

C(33)l 47(6) 56(6) 46(6) -3(5) 0(5) -13(5)

C(34)l 63(7) 60(7) 40(6) -3(5) -9(5) -14(5)

C(35)l 63(7) 61(7) 45(6) -5(5) -8(5) -22(6)

C(36)l 62(7) 85(8) 44(6) 8(6) -16(5) -29(6)

Page 269: Two-dimensional acetylenic scaffolding - Research Collection

244 Appendix

C(37)l 64(7) 82(8) 60(7) 11(6) -7(6) -35(6)

C(38)l 67(7) 82(8) 40(6) 9(5) -16(5) -34(6)

C(39)l 73(8) 89(9) 49(7) 10(6) -19(6) -37(7)

C(40)l 77(8) 80(8) 45(6) 20(6) -5(6) -28(6)

N(41)l 69(6) 99(8) 50(5) 18(5) -16(5) -42(6)

C(42)l 83(9) 104(11) 58(8) 21(7) -7(6) -45(8)

C(43)l 184(18) 119(14) 90(11) 36(10) -43(11) -84(13)

C(44)l 105(11) 140(14) 65(9) 42(9) 11(8) -25(10)

C(45)l 65(8) 101(10) 56(7) 20(7) -17(6) -18(7)

C(46)l 77(8) 108(11) 64(8) -8(7) -20(7) -24(8)

C(47)l 85(9) 94(10) 89(10) 6(8) -5(8) -22(8)

C(48)l 42(5) 48(6) 40(5) -5(4) 0(4) 2(5)

C(49)l 52(6) 34(6) 47(6) 3(4) -2(5) 4(5)

C(50)l 37(5) 35(5) 60(6) 5(5) -1(5) 8(4)

C(51)l 59(7) 53(7) 65(7) 7(5) 4(6) 2(5)

C(52)l 51(6) 64(7) 80(8) -4(6) 14(6) 31(6)

C(53)l 53(6) 42(6) 74(7) 10(5) -7(6) 17(5)

C(54)l 70(7) 49(7) 68(7) 9(6) -5(6) 12(6)

C(55)l 60(7) 61(7) 60(7) 8(6) 10(5) 19(6)

N(56)l 70(6) 58(6) 79(7) 1(5) -13(5) 20(5)

C(57)l 67(8) 54(7) 115(11) -8(7) 1(8) 34(6)

C(58)l 84(9) 102(11) 81(9) -16(8) -4(7) 33(8)

C(59)l 82(10) 90(11) 154(15) -11(10) 16(10) 38(9)

C(60)l 83(9) 49(7) 101(10) 6(7) -8(8) 17(6)

C(61)l 117(11) 44(7) 112(11) 6(7) -4(9) 13(7)

C(62)l 180(17) 71(10) 95(11) 0(8) -30(11) 30(10)

C(63)l 50(6) 37(6) 53(6) 1(4) 11(5) 5(5)

C(64)l 58(7) 57(7) 81(8) 2(6) 25(6) 2(6)

C(65)l 62(7) 66(8) 109(10) 10(7) 40(7) 1(6)

C(66)l 105(13) 98(12) 270(2) 68(14) 87(15) 35(10)

C(67)l 82(11) 138(17) 310(3) 83(18) 89(15) 39(11)

C(68)l 65(9) 98(12) 220(2) 1(13) 36(11) 20(9)

C(69)l 65(10) 87(12) 320(3) 48(15) 26(14) 8(9)

C(70)l 48(7) 69(9) 201(18) 13(10) 11(9) 5(7)

N(71)l 72(9) 128(13) 320(3) -14(15) 50(12) 10(9)

C(72)l 73(13) 190(3) 450(6) -20(3) 70(2) 42(16)

C(73)l 170(3) 180(3) 360(5) 0(3) -30(3) 60(2)

C(74)l 260(4) 710(11) 260(4) 180(6) 30(4) 220(5)

C(75)l 220(3) 250(4) 580(7) 130(4) 280(4) 120(3)

C(76)l 220(3) 650(9) 310(4) -40(5) 180(3) 20(4)

P(78)l 46(1) 40(1) 50(2) -2(1) -2(1) -7(1)

C(79)l 50(6) 55(7) 92(9) -6(6) -7(6) -10(5)

C(80)l 49(6) 71(8) 83(8) -13(6) 11(6) -11(6)

C(81)l 40(6) 52(7) 83(8) 7(6) 2(5) -3(5)

P(82)l 37(1) 46(2) 53(2) 5(1) 1(1) 1(1)

C(83)l 78(8) 40(6) 45(6) 8(5) 8(5) -7(5)

C(84)l 69(8) 44(6) 78(8) 7(6) -12(6) -6(6)

C(85)l 90(9) 61(8) 87(9) 7(7) -25(8) 3(7)

C(86)l 130(12) 50(8) 67(8) 21(6) 13(8) 10(8)

C(87)l 145(15) 62(9) 103(11) 40(8) 52(11) -1(9)

C(88)l 108(10) 55(8) 100(10) 18(7) 36(8) -1(7)

C(89)l 57(6) 48(6) 42(5) 0(5) -13(5) -9(5)

C(90)l 79(8) 52(7) 58(7) 8(5) -14(6) -13(6)

C(91)l 116(11) 92(10) 39(7) 11(7) -19(7) -25(9)

C(92)l 117(12) 128(14) 41(7) -26(8) 2(7) -10(10)

C(93)l 144(14) 91(11) 59(9) -11(8) -4(9) 19(10)

C(94)l 117(10) 57(8) 49(7) -3(6) -9(7) 6(7)

C(95)l 61(7) 51(6) 52(6) 16(5) 17(5) 6(5)

C(96)l 78(8) 63(7) 58(7) 11(6) 2(6) 2(6)

C(97)l 134(12) 70(9) 60(8) 10(7) -11(8) 2(8)

Page 270: Two-dimensional acetylenic scaffolding - Research Collection

QQQQQ^Q^QQQQQQ^QQQQQQ^QQQQQQQQQQQQQQQQQQQQQQQQ^QQQ^QQQQQQQQQ

to

to

to

i—

i—

,

WhO

iO50h

^^^^^w

"

H-

4^

LiJ

tO

H-O

--^-3

3^^

^_^

to

to

to

to

to

to

^i—bboooooooo^ooo

K-oo-t^tji-t^-t^-t^-t^-t^ijj^ijjtjjtjj^tjitjjtjiaNtjiaN-t^^i^iooK-

UHUi4iOOO-|iUiOOOUO\MaUiO\lûO^OO^HOOOUiH

OK-Oi^OOO^O^-OOOOOtOOtO

00

On

to

00

,oo

to

^i

oo

,

4^

i—'

00

i—'

On

00

-

HONUiffiO\L«vlLftU^UiUiU14iUiUivOJiUiUi^UiL«OOH^4iUiHHlOHH^HMtJHOOONOlON>CHOOUi-|iUI/UUO\ONUi~0-J^HHOO

OiOVOl»OMO\vlOiHHOOOHHHHlOOHUUHO-JOiO(OOWOOHiO^^Ui-JIOIOOWO\OlOH^HUiOSOOOW-J-jHiOOVOOU4i

i—

--^

(jj

io^ww

y,

ui^^U

--^

to

--^

o4^

--^

4^

4^

4^

4^

<Ji

Ut

4^

4^

00

i—

4^

i—'

4^

4^

vO

i—'

•^o

00

-O

On

i—'

i—'

i—'

4-UiUiUiO(Uii-tJ^M00Ui00K'i-MM^^MK'i-VO»O\0N00O\ff\4'-t'Ui-|i0NUivO^^^O\'JiVO»O^

•jHO-liOI'UUiliJOOi^UOUiKlOOOOMftWOOOHOiUivHOHlOHUHO-liOIOOHtlSOO^OOO

to

--^

4^

h-

^4^^

l»M

MVO

OSU^

--^

to

H-

to

ww

-Jill

<5

oo

h-

io

^On^^

4^-

UJ

|K-

to

II

4^

K-

i—'

i—'/X;

ai

ai^

;__!

IOn

to

<Ji

,

Oi

'

1'

''X

*~-

4^OO^

—^

(Jl

(Jl

(Jl

Ito

00

<~;3

-O

4^

i—'

OJ

-

UO^'

I4^

1114-

Ut

UJO

On

'

^^^^O

u)

oo

i—

uj

i—

|vo

>oa

oo

oo

00'

II

On

to

II

4^

K-

HHHH

00

Ol'

MO\hhiOO\hUh

I4^4^0NtO

--:^UlU)---:^;00UiMK)K)'-.4i(Jia\

00

00^

On

'

00

i—

^o

II

II

On

I|

U)

-J

|K-

H-H-ONH-T-tO^O^-^-tO^-

VO00^^

^--^

--^

IIM

Ui

J^^O

-Im

to

4^

4^

--^--^--^

(j,--^--^

(j,

CTn^-^

I|

||

|MWUiNUiOO-IMhU

WO\MUMM04'tOO\'^'r;0HUC;

-o

ai

^o

ojo

^-'--'~-'~-'~-^2s2)-9r~-r~--9

Smm'SQuI^WOnm

too

-HO

Ji

IHUM

II

II—•

IhhhMUi

W

-^-^-^^^^^-^-^^^5^'ôs'oo'3^^j--^'oo^^

II

i—i

00

i—

4^

to

to

On

<J>^S^^^^

^Q

^

o-^

JiOOMvJUlO\UIU

I

-^--^

(Jl--^--^--^--^--^

<Jl

00

i—'

II

II

I1

11

1-—,

|—i

|—i

tO

<Jl

1—

—1

(..J

4^

i—i

i—i

—1

i—i

—1

—1

^Ul

UlUipX*

—'—'—'—'

—j—'

i—i

00

On

On

—-^©www

|IW

U)w

UJ

00

to

00

Onh-I

IIIOIh-I

II

Ii—•

I4^oj<Jitotji<r>tO'—.ppuiH^oo

"^3^^^^^

"^

~°^^w

t->w

^w--

^o

<-"

-

^UivlWO^hhh^

On

On

00

wwww

oUi

K)

--^ww

00

s

©Q

Ito

II

+1

H-

MHHlOUWaiHlOH

^—iH-oaNH-^ot-naN

Page 271: Two-dimensional acetylenic scaffolding - Research Collection

246 Appendix

C(23)2 80(9) 93(10) 84(10) 9(8) -21(7) -36(8)

C(24)2 73(8) 88(10) 88(10) -3(8) 3(7) -22(7)

C(25)2 58(7) 87(9) 77(8) -24(7) 8(6) -7(7)

N(26)2 130(11) 120(10) 102(9) -1(8) -22(8) -63(9)

C(27)2 180(2) 173(19) 107(13) -1(13) 10(13) -122(17)

C(28)2 103(16) 280(4) 310(4) -40(3) 30(2) -80(2)

C(29)2 350(4) 190(3) 240(3) -50(2) 40(3) -170(3)

C(30)2 270(4) 240(3) 370(5) -80(3) -120(4) -170(3)

C(33)2 56(6) 50(6) 39(6) -11(5) -7(5) 11(5)

C(34)2 64(7) 47(6) 56(7) -11(5) -9(5) 15(5)

C(35)2 55(6) 51(6) 42(6) -6(5) -5(5) 9(5)

C(36)2 62(7) 76(8) 54(7) -1(6) -19(6) -9(6)

C(37)2 66(7) 80(8) 59(7) 17(6) -7(6) -29(6)

C(38)2 55(6) 59(7) 55(7) -4(5) -13(5) -2(5)

C(39)2 60(7) 66(8) 68(8) -1(6) -16(6) -16(6)

C(40)2 64(7) 50(6) 49(6) 7(5) -5(5) -2(5)

N(41)2 81(6) 65(6) 46(5) 0(5) -13(5) -21(5)

C(42)2 128(14) 142(16) 62(9) -5(9) -3(9) -48(12)

C(43)2 177(18) 68(10) 172(18) 0(11) -66(14) -38(11)

C(44)2 180(2) 230(3) 143(19) 67(19) -2(17) -30(2)

C(45)2 80(9) 114(11) 55(7) -28(7) -28(6) 3(8)

C(46)2 111(13) 129(15) 230(2) -109(15) -59(14) 11(11)

C(47)2 82(9) 79(9) 95(10) 13(8) -14(8) -12(7)

C(48)2 81(8) 52(7) 62(7) 3(6) 15(6) 4(6)

C(49)2 94(9) 57(8) 82(9) 10(7) 20(7) 18(7)

C(50)2 101(11) 73(10) 139(14) 23(10) 35(11) 13(9)

C(51)2 101(11) 85(11) 162(16) 18(11) 38(11) 31(9)

C(52)2 140(16) 93(13) 220(2) 38(14) 80(16) 47(12)

C(53)2 107(13) 71(12) 290(3) 63(17) 27(17) 40(10)

C(54)2 210(2) 85(13) 170(2) 43(13) 38(17) 56(14)

C(55)2 134(15) 93(13) 156(18) 14(12) -1(13) 16(11)

C(63)2 55(7) 55(7) 56(6) -7(5) 9(5) 10(5)

C(64)2 58(7) 49(6) 54(6) -1(5) 5(5) 13(5)

C(65)2 57(6) 52(6) 55(6) -8(5) 4(5) 8(5)

C(66)2 65(7) 83(8) 56(7) 9(6) -3(6) 23(6)

C(67)2 53(6) 90(9) 47(6) 6(6) 11(5) 16(6)

C(68)2 54(6) 69(7) 46(6) 2(5) 5(5) 9(5)

C(69)2 59(7) 77(8) 48(6) 1(6) 7(5) 22(6)

C(70)2 68(7) 74(8) 44(6) -6(5) -2(5) 18(6)

N(71)2 53(5) 86(7) 46(5) -7(5) 7(4) 13(5)

C(72)2 52(6) 99(9) 58(7) -10(7) -4(5) 21(6)

C(73)2 53(7) 131(12) 82(9) -42(8) -19(6) -2(7)

C(74)2 78(9) 155(14) 62(8) 10(9) 17(7) 14(9)

C(75)2 41(6) 104(10) 60(7) -7(7) 5(5) 7(6)

C(76)2 36(6) 171(15) 87(9) 11(10) 3(6) 4(8)

C(77)2 69(8) 89(10) 98(10) -1(8) 17(7) 24(7)

P(78)2 57(2) 67(2) 92(2) -18(2) 9(2) -12(2)

C(79)2 146(18) 230(3) 170(2) -20(2) -16(17) -93(18)

C(80)2 58(8) 85(10) 127(13) 10(9) 28(8) -1(7)

C(81)2 55(7) 89(10) 97(10) 24(8) -12(7) -11(7)

P(82)2 38(1) 65(2) 65(2) 18(2) 2(1) 0(1)

C(83)2 174(19) 69(11) 220(2) -15(12) 19(17) -59(12)

C(95)2 66(7) 62(7) 72(8) 21(6) 17(7) 20(6)

C(96)2 120(11) 52(7) 62(8) 18(6) 3(8) 1(7)

C(97)2 210(2) 77(10) 60(9) 18(8) -35(11) -17(12)

C(98)2 290(3) 69(10) 59(10) 35(8) 52(14) 32(14)

C(99)2 190(2) 117(15) 116(15) 51(12) 66(14) 72(14)

C(100)2 105(11) 122(12) 87(10) 67(9) 31(9) 54(9)

C(101)2 44(6) 68(7) 61(7) 27(6) -3(5) 3(5)

C(102)2 59(7) 80(9) 79(8) 27(7) 12(6) 12(6)

Page 272: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 247

C(103)2 79(8) 78(9) 83(9) 10(7) 24(7) 30(7)

C(104)2 83(9) 99(11) 94(10) 38(9) 18(8) 40(8)

C(105)2 74(9) 104(11) 102(11) 57(9) 2(8) 17(8)

C(106)2 65(7) 77(8) 68(8) 23(7) 3(6) 6(6)

P(107)2 52(2) 58(2) 59(2) 9(1) 6(1) 2(1)

C(108)2 83(8) 80(9) 71(8) 16(7) 12(7) 14(7)

C(109)2 126(12) 100(11) 60(8) 45(8) 8(8) 28(9)

C(110)2 124(12) 104(12) 51(7) 16(7) 16(8) 27(9)

P(lll)2 68(2) 78(2) 47(2) -1(2) 10(1) 5(2)

C(112)2 73(8) 108(11) 54(7) -24(7) 8(6) -12(8)

C(113)2 83(9) 92(11) 86(10) 6(8) 16(8) 4(8)

C(114)2 125(14) 75(10) 135(14) -31(10) 34(12) 2(10)

C(115)2 111(14) 166(19) 200(2) -121(17) 15(14) -17(14)

C(116)2 97(14) 220(3) 330(4) -180(3) -21(18) 9(16)

C(117)2 77(11) 147(16) 210(2) -109(15) -7(12) 4(10)

C( 118)2 80(8) 81(9) 65(8) -4(7) 30(7) -14(7)

C( 119)2 110(11) 87(10) 105(11) 15(8) 57(9) 6(9)

C(120)2 151(18) 114(14) 157(18) -32(13) 107(15) -43(13)

C(121)2 88(14) 290(3) 160(2) -30(2) 65(15) -61(17)

C(122)2 55(10) 480(5) 137(18) 0(2) 12(11) -6(18)

C(123)2 83(12) 320(3) 91(13) 0(16) 29(10) -41(15)

C(124)2 54(7) 62(7) 62(7) 5(6) -5(5) 11(6)

C(125)2 63(8) 87(10) 96(10) 4(8) -3(7) 17(7)

C(126)2 78(10) 117(13) 104(12) 14(10) 17(9) 18(10)

C(127)2 77(10) 132(15) 95(11) 8(11) 6(9) 38(11)

C(128)2 155(18) 112(14) 190(2) -77(14) 44(16) 27(14)

C(129)2 82(10) 113(13) 169(17) -53(12) 25(11) 0(9)

C(130)2 58(7) 53(7) 84(8) 6(6) 2(6) -3(6)

C(131)2 64(8) 82(9) 88(9) 10(7) 3(7) -12(7)

C(132)2 72(9) 120(13) 118(12) 25(10) -5(9) -21(9)

C(133)2 78(11) 140(17) 173(19) 21(15) -18(12) -35(11)

C(134)2 129(16) 99(13) 200(2) 36(13) 18(15) -39(12)

C(135)2 79(9) 79(10) 169(16) 55(10) -8(10) -17(8)

Table 7.17. Torsion angles [°] for 54.

C(14)l-Pt(l)l-C(2)l-C(3)l -98(16) P(82)2-Pt(l)2-C(2)2-C(3)2 -66(21)

P(78)l-Pt(l)l-C(2)l-C(3)l 78(16) P(78)2-Pt(l)2-C(2)2-C(3)2 128(9)

P(82)l-Pt(l)l-C(2)l-C(3)l -116(16) C(14)2-Pt(l)2-C(2)2-Cu(15)2 61.1(5)

C(14)l-Pt(l)l-C(2)l-Cu(15)l 64.0(4) P(82)2-Pt( 1)2-C(2)2-Cu( 15)2 44(15)

P(78)l-Pt(l)l-C(2)l-Cu(15)l -120.5(4) P(78)2-Pt(l)2-C(2)2-Cu(15)2 -121.8(4)

P(82)l-Pt(l)l-C(2)l-Cu(15)l 46(8) Pt(l)2-C(2)2-C(3)2-C(4)2 -62(16)

Pt(l)l-C(2)l-C(3)l-C(4)l 3(23) Cu(15)2-C(2)2-C(3)2-C(4)2 -174(10)

Cu(15)l-C(2)l-C(3)l-C(4)l -160(8) Pt(l)2-C(2)2-C(3)2-Cu(15)2 112(9)

Pt(l)l-C(2)l-C(3)l-Cu(15)l 162(16) C(2)2-C(3)2-C(4)2-C(5)2 165(9)

C(2)l-C(3)l-C(4)l-C(5)l 148(7) Cu(15)2-C(3)2-C(4)2-C(5)2 -8.5(12)

Cu(15)l-C(3)l-C(4)l-C(5)l -10.7(10) C(2)2-C(3)2-C(4)2-C(48)2 -15(10)

C(2)l-C(3)l-C(4)l-C(48)l -30(8) Cu( 15)2-C(3)2-C(4)2-C(48)2 171.2(8)

Cu(15)l-C(3)l-C(4)l-C(48)l 171.3(7) C(3)2-C(4)2-C(5)2-C(63)2 179.6(10)

C(3)l-C(4)l-C(5)l-C(63)l -174.3(8) C(48)2-C(4)2-C(5)2-C(63)2 -0.1(16)

C(48)l-C(4)l-C(5)l-C(63)l 3.8(14) C(3)2-C(4)2-C(5)2-C(6)2 -1.5(14)

C(3)l-C(4)l-C(5)l-C(6)l 3.5(12) C(48)2-C(4)2-C(5)2-C(6)2 178.9(9)

C(48)l-C(4)l-C(5)l-C(6)l -178.5(8) C(4)2-C(5)2-C(6)2-C(7)2 -143(7)

C(4)l-C(5)l-C(6)l-C(7)l -135(7) C(63)2-C(5)2-C(6)2-C(7)2 36(8)

C(63)l-C(5)l-C(6)l-C(7)l 43(8) C(4)2-C(5)2-C(6)2-Cu( 15)2 10.8(11)

C(4)l-C(5)l-C(6)l-Cu(15)l 5.7(10) C(63)2-C(5)2-C(6)2-Cu(15)2 -170.2(7)

C(63)l-C(5)l-C(6)l-Cu(15)l -176.6(7) C(5)2-C(6)2-C(7)2-Pt(8)2 5(14)

C(5)l-C(6)l-C(7)l-Pt(8)l 21(10) Cu( 15)2-C(6)2-C(7)2-Pt(8)2 -150(8)

Cu( 15) 1 -C(6) 1 -C(7) 1 -Pt(8) 1 -121(3) C(5)2-C(6)2-C(7)2-Cu(15)2 155(7)

Page 273: Two-dimensional acetylenic scaffolding - Research Collection

248 Appendix

C(5)l-C(6)l-C(7)l-Cu(15)l 142(7)

C(6)l-C(7)l-Pt(8)l-C(9)l 66(3)

Cu(l 5)1-C(7)l-Pt(8)l-C(9)l -51.1(5)

C(6)l-C(7)l-Pt(8)l-P(lll)l -110(3)

Cu(15)l-C(7)l-Pt(8)l-P(lll)l 133.5(4)

C(6)l-C(7)l-Pt(8)l-P(107)l 20(5)

Cu(15)l-C(7)l-Pt(8)l-P(107)l -97(2)

C(7)l-Pt(8)l-C(9)l-C(10)l -84(4)

P(lll)l-Pt(8)l-C(9)l-C(10)l -11(7)

P(107)l-Pt(8)l-C(9)l-C(10)l 91(4)

C(7)l-Pt(8)l-C(9)l-Cu(17)l 58.1(5)

P(lll)l-Pt(8)l-C(9)l-Cu(17)l 131(3)

P(107)l-Pt(8)l-C(9)l-Cu(17)l -127.0(4)

Pt(8)l-C(9)l-C(10)l-C(ll)l -6(9)

Cu(17)l-C(9)l-C(10)l-C(ll)l -151(6)

Pt(8)l-C(9)l-C(10)l-Cu(17)l 145(4)

C(9)l-C(10)l-C(ll)l-C(12)l 141(6)

Cu(17)l-C(10)l-C(ll)l-C(12)l -8.6(11)

C(9)l-C(10)l-C(ll)l-C(18)l -32(6)

Cu(17)l-C(10)l-C(ll)l-C(18)l 178.0(7)

C(18)l-C(l 1)1-C(12)1-C(33)1 -2.2(16)

C(10)l-C(l 1)1-C(12)1-C(33)1 -175.0(9)

C(18)l-C(l 1)1-C(12)1-C(13)1 175.5(9)

C(10)l-C(l 1)1-C(12)1-C(13)1 2.7(13)

C(ll)l-C(12)l-C(13)l-C(14)l -125(6)

C(33)l-C(12)l-C(13)l-C(14)l 53(6)

C(ll)l-C(12)l-C(13)l-Cu(17)l 4.5(11)

C(33)l-C(12)l-C(13)l-Cu(17)l -177.8(7)

C(12)l-C(13)l-C(14)l-Pt(l)l 23(10)

Cu(17)l-C(13)l-C(14)l-Pt(l)l -109(4)

C(12)l-C(13)l-C(14)l-Cu(17)l 132(6)

C(2)l-Pt(l)l-C(14)l-C(13)l 44(4)

P(78)l-Pt(l)l-C(14)l-C(13)l 3(6)

P(82)l-Pt(l)l-C(14)l-C(13)l -136(4)

C(2)l-Pt(l)l-C(14)l-Cu(17)l -60.7(4)

P(78)l-Pt(l)l-C(14)l-Cu(17)l -102(2)

P(82)l-Pt(l)l-C(14)l-Cu(17)l 118.7(4)

C(2)l-C(3)l-Cu(15)l-C(6)l -167.3(6)

C(4)l-C(3)l-Cu(15)l-C(6)l 10.2(6)

C(2)l-C(3)l-Cu(15)l-C(7)l -159.0(6)

C(4)l-C(3)l-Cu(15)l-C(7)l 18.5(7)

C(4)l-C(3)l-Cu(15)l-C(2)l 177.5(10)

C(2)l-C(3)l-Cu(15)l-Cl(16)l 17.4(8)

C(4)l-C(3)l-Cu(15)l-Cl(16)l -165.2(4)

C(2)l-C(3)l-Cu(15)l-Cu(17)l -48.3(6)

C(4)l-C(3)l-Cu(15)l-Cu(17)l 129.1(5)

C(7)l-C(6)l-Cu(15)l-C(3)l 166.4(6)

C(5)l-C(6)l-Cu(15)l-C(3)l -8.7(6)

C(5)l-C(6)l-Cu(15)l-C(7)l -175.1(10)

C(7)l-C(6)l-Cu(15)l-C(2)l 158.6(6)

C(5)l-C(6)l-Cu(15)l-C(2)l -16.5(8)

C(7)l-C(6)l-Cu(15)l-Cl(16)l -18.1(8)

C(5)l-C(6)l-Cu(15)l-Cl(16)l 166.8(4)

C(7)l-C(6)l-Cu(15)l-Cu(17)l 52.4(6)

C(5)l-C(6)l-Cu(15)l-Cu(17)l -122.7(6)

C(6)l-C(7)l-Cu(15)l-C(3)l -14.8(7)

Pt(8)l-C(7)l-Cu(15)l-C(3)l 153.1(4)

Pt(8)l-C(7)l-Cu(15)l-C(6)l 167.9(9)

C(6)l-C(7)l-Cu(15)l-C(2)l -35.0(9)

Pt(8)l-C(7)l-Cu(15)l-C(2)l 132.9(6)

C(6)2-C(7)2-Pt(8)2-C(9)2 89(8)

Cu(15)2-C(7)2-Pt(8)2-C(9)2 -59.8(5)

C(6)2-C(7)2-Pt(8)2-P(l 11)2 -88(8)

Cu(15)2-C(7)2-Pt(8)2-P(lll)2 123.3(5)

C(6)2-C(7)2-Pt(8)2-P(107)2 23(11)

Cu(15)2-C(7)2-Pt(8)2-P(107)2 -125(4)

C(7)2-Pt(8)2-C(9)2-C(10)2 -48(4)

P(l 11)2-Pt(8)2-C(9)2-C(10)2 -19(6)

P(107)2-Pt(8)2-C(9)2-C(10)2 128(4)

C(7)2-Pt(8)2-C(9)2-Cu(17)2 58.7(5)

P(l 11)2-Pt(8)2-C(9)2-Cu(17)2 89(3)

P(107)2-Pt(8)2-C(9)2-Cu(17)2 -125.0(4)

Pt(8)2-C(9)2-C(10)2-C(l 1)2 -27(9)

Cu(17)2-C(9)2-C(10)2-C(l 1)2 -138(6)

Pt(8)2-C(9)2-C(10)2-Cu(17)2 112(4)

C(9)2-C(10)2-C(l 1)2-C(12)2 129(5)

Cu(17)2-C(10)2-C(l 1)2-C(12)2 -6.8(10)

C(9)2-C(10)2-C(l 1)2-C(18)2 -47(6)

Cu(17)2-C(10)2-C(l 1)2-C(18)2 176.4(7)

C(10)2-C(l 1)2-C(12)2-C(33)2 -176.6(8)

C(18)2-C(l 1)2-C(12)2-C(33)2 -0.1(14)

C(10)2-C(l 1)2-C(12)2-C(13)2 2.8(13)

C(18)2-C(l 1)2-C(12)2-C(13)2 179.4(9)

C(l 1)2-C(12)2-C(13)2-C(14)2 -134(6)

C(33)2-C(12)2-C(13)2-C(14)2 46(6)

C(l 1)2-C(12)2-C(13)2-Cu(17)2 2.6(10)

C(33)2-C(12)2-C(13)2-Cu(17)2 -178.0(7)

C(12)2-C(13)2-C(14)2-Pt(l)2 28(9)

Cu(17)2-C(13)2-C(14)2-Pt(l)2 -110(4)

C(12)2-C(13)2-C(14)2-Cu(17)2 138(6)

C(2)2-Pt(l)2-C(14)2-C(13)2 44(4)

P(82)2-Pt(l)2-C(14)2-C(13)2 -137(4)

P(78)2-Pt(l)2-C(14)2-C(13)2 14(6)

C(2)2-Pt(l)2-C(14)2-Cu(17)2 -62.6(5)

P(82)2-Pt(l)2-C(14)2-Cu(17)2 117.1(4)

P(78)2-Pt(l)2-C(14)2-Cu(17)2 -92(3)

C(7)2-C(6)2-Cu(15)2-C(3)2 164.9(7)

C(5)2-C(6)2-Cu(15)2-C(3)2 -11.5(7)

C(5)2-C(6)2-Cu(15)2-C(7)2 -176.4(11)

C(7)2-C(6)2-Cu(15)2-C(2)2 157.9(7)

C(5)2-C(6)2-Cu(15)2-C(2)2 -18.5(8)

C(7)2-C(6)2-Cu(15)2-Cl(16)2 -18.6(8)

C(5)2-C(6)2-Cu(15)2-Cl(16)2 165.0(5)

C(7)2-C(6)2-Cu(15)2-Cu(17)2 48.7(7)

C(5)2-C(6)2-Cu(15)2-Cu(17)2 -127.6(6)

C(2)2-C(3)2-Cu(15)2-C(6)2 -168.3(7)

C(4)2-C(3)2-Cu(15)2-C(6)2 10.9(7)

C(2)2-C(3)2-Cu(15)2-C(7)2 -159.2(7)

C(4)2-C(3)2-Cu(15)2-C(7)2 20.0(9)

C(4)2-C(3)2-Cu(15)2-C(2)2 179.2(12)

C(2)2-C(3)2-Cu(15)2-Cl(16)2 15.9(10)

C(4)2-C(3)2-Cu(15)2-Cl(16)2 -164.9(5)

C(2)2-C(3)2-Cu(15)2-Cu(17)2 -53.2(7)

C(4)2-C(3)2-Cu(15)2-Cu(17)2 126.1(7)

Pt(8)2-C(7)2-Cu(15)2-C(6)2 176.4(10)

C(6)2-C(7)2-Cu(15)2-C(3)2 -16.2(8)

Pt(8)2-C(7)2-Cu(15)2-C(3)2 160.2(5)

C(6)2-C(7)2-Cu(15)2-C(2)2 -35.3(10)

Pt(8)2-C(7)2-Cu(l 5)2-C(2)2 141.1(6)

C(6)2-C(7)2-Cu(15)2-Cl(16)2 166.7(6)

Page 274: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 249

C(6)l-C(7)l-Cu(15)l-Cl(16)l 167.7(5)

Pt(8)l-C(7)l-Cu(15)l-Cl(16)l -24.4(5)

C(6)l-C(7)l-Cu(15)l-Cu(17)l -136.2(6)

Pt(8)l-C(7)l-Cu(15)l-Cu(17)l 31.7(4)

Pt(l)l-C(2)l-Cu(15)l-C(3)l -179.1(8)

C(3)l-C(2)l-Cu(15)l-C(6)l 13.8(7)

Pt(l)l-C(2)l-Cu(15)l-C(6)l -165.2(4)

C(3)l-C(2)l-Cu(15)l-C(7)l 34.4(9)

Pt(l)l-C(2)l-Cu(15)l-C(7)l -144.7(5)

C(3)l-C(2)l-Cu(15)l-Cl(16)l -168.4(5)

Pt(l)l-C(2)l-Cu(15)l-Cl(16)l 12.5(4)

C(3)l-C(2)l-Cu(15)l-Cu(17)l 137.4(5)

Pt(l)l-C(2)l-Cu(15)l-Cu(17)l -41.7(4)

C(3)l-Cu(15)l-Cl(16)l-Cu(17)l -89.2(4)

C(6)l-Cu(15)l-Cl(16)l-Cu(17)l 97.7(4)

C(7)l-Cu(15)l-Cl(16)l-Cu(17)l 87.3(3)

C(2)l-Cu(15)l-Cl(16)l-Cu(17)l -79.2(3)

C(9)l-C(10)l-Cu(17)l-C(13)l -167.0(7)

C(ll)l-C(10)l-Cu(17)l-C(13)l 8.2(7)

C(9)l-C(10)l-Cu(17)l-C(14)l -158.4(6)

C(ll)l-C(10)l-Cu(17)l-C(14)l 16.8(8)

C(ll)l-C(10)l-Cu(17)l-C(9)l 175.2(11)

C(9)l-C(10)l-Cu(17)l-Cl(16)l 9.9(8)

C(ll)l-C(10)l-Cu(17)l-Cl(16)l -174.9(5)

C(9)l-C(10)l-Cu(17)l-Cu(15)l -52.1(6)

C(ll)l-C(10)l-Cu(17)l-Cu(15)l 123.1(6)

C(14)l-C(13)l-Cu(17)l-C(10)l 165.7(6)

C(12)l-C(13)l-Cu(17)l-C(10)l -7.0(7)

C(12)l-C(13)l-Cu(17)l-C(14)l -172.7(10)

C(14)l-C(13)l-Cu(17)l-C(9)l 157.7(6)

C(12)l-C(13)l-Cu(17)l-C(9)l -14.9(8)

C(14)l-C(13)l-Cu(17)l-Cl(16)l -10.9(8)

C(12)l-C(13)l-Cu(17)l-Cl(16)l 176.4(5)

C(14)l-C(13)l-Cu(17)l-Cu(15)l 55.8(6)

C(12)l-C(13)l-Cu(17)l-Cu(15)l -116.9(6)

C(13)l-C(14)l-Cu(17)l-C(10)l -15.4(7)

Pt(l)l-C(14)l-Cu(17)l-C(10)l 154.5(4)

Pt(l)l-C(14)l-Cu(17)l-C(13)l 169.9(8)

C(13)l-C(14)l-Cu(17)l-C(9)l -35.9(9)

Pt(l)l-C(14)l-Cu(17)l-C(9)l 133.9(5)

C(13)l-C(14)l-Cu(17)l-Cl(16)l 172.9(5)

Pt(l)l-C(14)l-Cu(17)l-Cl(16)l -17.3(4)

C(13)l-C(14)l-Cu(17)l-Cu(15)l -132.0(6)

Pt(l)l-C(14)l-Cu(17)l-Cu(15)l 37.8(4)

Pt(8)l-C(9)l-Cu(17)l-C(10)l -172.9(9)

C(10)l-C(9)l-Cu(17)l-C(13)l 14.1(7)

Pt(8)l-C(9)l-Cu(17)l-C(13)l -158.9(4)

C(10)l-C(9)l-Cu(17)l-C(14)l 35.0(9)

Pt(8)l-C(9)l-Cu(17)l-C(14)l -137.9(5)

C(10)l-C(9)l-Cu(17)l-Cl(16)l -173.2(6)

Pt(8)l-C(9)l-Cu(17)l-Cl(16)l 13.9(5)

C(10)l-C(9)l-Cu(17)l-Cu(15)l 132.9(6)

Pt(8)l-C(9)l-Cu(17)l-Cu(15)l -40.0(4)

Cu(15)l-Cl(16)l-Cu(17)l-C(10)l -84.9(4)

Cu(15)l-Cl(16)l-Cu(17)l-C(13)l 90.0(4)

Cu(15)l-Cl(16)l-Cu(17)l-C(14)l 83.7(3)

Cu(15)l-Cl(16)l-Cu(17)l-C(9)l -79.3(3)

C(3)l-Cu(15)l-Cu(17)l-C(10)l -91.5(4)

C(6)l-Cu(15)l-Cu(17)l-C(10)l 2.7(4)

C(7)l-Cu(15)l-Cu(17)l-C(10)l 29.1(4)

Pt(8)2-C(7)2-Cu(15)2-Cl(16)2 -16.9(5)

C(6)2-C(7)2-Cu(15)2-Cu(17)2 -137.8(6)

Pt(8)2-C(7)2-Cu(15)2-Cu(17)2 38.6(5)

C(3)2-C(2)2-Cu(15)2-C(6)2 12.5(8)

Pt(l)2-C(2)2-Cu(15)2-C(6)2 -162.1(4)

Pt(l)2-C(2)2-Cu(15)2-C(3)2 -174.5(10)

C(3)2-C(2)2-Cu(15)2-C(7)2 33.0(10)

Pt(l)2-C(2)2-Cu(15)2-C(7)2 -141.5(5)

C(3)2-C(2)2-Cu(15)2-Cl(16)2 -170.1(6)

Pt(l)2-C(2)2-Cu(15)2-Cl(16)2 15.3(5)

C(3)2-C(2)2-Cu(15)2-Cu(17)2 134.6(7)

Pt(l)2-C(2)2-Cu(15)2-Cu(17)2 -39.9(4)

C(6)2-Cu(15)2-Cl(16)2-Cu(17)2 95.0(4)

C(3)2-Cu(15)2-Cl(16)2-Cu(17)2 -90.9(5)

C(7)2-Cu(15)2-Cl(16)2-Cu(17)2 84.4(3)

C(2)2-Cu(15)2-Cl(16)2-Cu(17)2 -81.6(3)

C(14)2-C(13)2-Cu(17)2-C(10)2 168.6(7)

C(12)2-C(13)2-Cu(17)2-C(10)2 -4.7(6)

C(12)2-C(13)2-Cu(17)2-C(14)2 -173.3(10)

C(14)2-C(13)2-Cu(17)2-C(9)2 160.6(6)

C(12)2-C(13)2-Cu(17)2-C(9)2 -12.7(7)

C(14)2-C(13)2-Cu(17)2-Cl(16)2 -5.3(8)

C(12)2-C(13)2-Cu(17)2-Cl(16)2 -178.7(4)

C(14)2-C(13)2-Cu(17)2-Cu(15)2 56.6(6)

C(12)2-C(13)2-Cu(17)2-Cu(15)2 -116.7(6)

C(9)2-C(10)2-Cu(17)2-C(13)2 -166.8(6)

C(ll)2-C(10)2-Cu(17)2-C(13)2 6.1(6)

C(9)2-C(10)2-Cu(17)2-C(14)2 -160.1(6)

C(l 1)2-C(10)2-Cu(17)2-C(14)2 12.8(7)

C(l 1)2-C(10)2-Cu(17)2-C(9)2 172.9(10)

C(9)2-C(10)2-Cu(17)2-Cl(16)2 7.8(8)

C(l 1)2-C(10)2-Cu(17)2-Cl(16)2 -179.3(5)

C(9)2-C(10)2-Cu(17)2-Cu(15)2 -57.0(6)

C(ll)2-C(10)2-Cu(17)2-Cu(15)2 115.9(6)

Pt(l)2-C(14)2-Cu(17)2-C(13)2 168.2(9)

C(13)2-C(14)2-Cu(17)2-C(10)2 -12.2(7)

Pt(l)2-C(14)2-Cu(17)2-C(10)2 156.0(4)

C(13)2-C(14)2-Cu(17)2-C(9)2 -31.1(9)

Pt(l)2-C(14)2-Cu(17)2-C(9)2 137.0(5)

C(13)2-C(14)2-Cu(17)2-Cl(16)2 176.5(5)

Pt(l)2-C(14)2-Cu(17)2-Cl(16)2 -15.3(5)

C(13)2-C(14)2-Cu(17)2-Cu(15)2 -129.1(6)

Pt(l)2-C(14)2-Cu(17)2-Cu(15)2 39.1(4)

C(10)2-C(9)2-Cu(17)2-C(13)2 14.3(7)

Pt(8)2-C(9)2-Cu(17)2-C(13)2 -153.7(4)

Pt(8)2-C(9)2-Cu(17)2-C(10)2-168.0(8)C(10)2-C(9)2-Cu(17)2-C(14)232.2(9)Pt(8)2-C(9)2-Cu(17)2-C(14)2-135.8(5)C(10)2-C(9)2-Cu(17)2-Cl(16)2-174.5(5)Pt(8)2-C(9)2-Cu(17)2-Cl(16)217.5(4)C(10)2-C(9)2-Cu(17)2-Cu(15)2129.8(6)Pt(8)2-C(9)2-Cu(17)2-Cu(15)2-38.2(4)Cu(15)2-Cl(16)2-Cu(17)2-C(13)281.9(4)Cu(15)2-Cl(16)2-Cu(17)2-C(10)2-89.4(4)Cu(15)2-Cl(16)2-Cu(17)2-C(14)278.8(3)Cu(15)2-Cl(16)2-Cu(17)2-C(92)-84.9(3)C(6)2-Cu(15)2-Cu(17)2-C(13)292.3(4)C(3)2-Cu(15)2-Cu(17)2-C(13)2-0.3(4)C(7)2-Cu(15)2-Cu(17)2-C(13)2117.3(4)C(2)2-Cu(15)2-Cu(17)2-C(13)2

-26.7(4)

Page 275: Two-dimensional acetylenic scaffolding - Research Collection

o2ooooooooooooooooooooooooo^oooooooooooooooooooooooooooooooo

U)'S

U)

U)

U)

U)

4^

U)

U)

k^

K^

k^

to

to

to

to

U)

to

U)

toMM

to

to

k^

K<

K<13

K<

K<

K<

K<

K^

K<

k^

k^

k^

k^

K^

K<

^1

a>

OJ

^""^

K<

^1

On

U)

^^

K<

^i

c\

OJ

^"^

K>

^)

Gs

OJ

^""^

K<

^i

ON

ON

<ji

4^O

U)

U)

to

U)

k^

^1

U)

^1

U)O

U)O

U)

4*.M

4^

to

NO

k^

U)

On

K<

K^

K^O

^o

(Ji

00

00

k^O

K<

^—'

^—^

^—^

^—^

^»T^—'

^—'

^—'

^—'

rr

^—'

^—^

~*—s^—^

^»r^—'

^—^

^—^

^—^

^»T^—'

Gn

o>

Gn

Gn

ii

ii

ii

ii

i1

1i

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

nnnnnnnnnnnnz;z;z;z;z;z;z;ZO

ii

ii

ii

ii

ii

ii

ii

ii

ii

oooooooooooooooooo

OOOO

cc

cc

i o

OOOO

cc

ccO

OOOO

cc

cc

i o

OOOO

cc

cc

i o

O

K^M

U)

U)

U)

U)

U)

U)

U)

U)

U)

U)

K^

k^

to

to

to

to

to

to

to

as

L*J

to

to

to

to

K<

K<

K<

K>

K>

K>

K>

K>

K<

k^

k^

k^

K^

k^

H-1

H-1

H-1

H-1c

H-1

k^

k^

k^c

H-1

H-1

H-1

H-1c

H-1

H-1

H-1

H-1c

H-1

00

00

^1

^1

On

<Jl

<Jl

4^

4^

U)

to

to

ON

On

On

On

On

ON

ON

U)

U)

U)OO

4^

U)

U)

K<

K<

k^OO

^O

^O

00

K^

k^

Ui

Ol

Ol

Ol

^^

Ol

(Ji

(Ji

ai

'^

Ol

Ol

Ol

Ui

^^

Ui

Ui

Ol

Ol

^^

Ui

^^

K^

^^

^^

^^

^^

^^

^^

^^

^^

^^

^^

k^

k^

k^

k^

k^

k^

k^

ii

^^

>-^

^^

>-^

^^

^^

K^

^^

^^

^^

^^

^^

^^

^^

^^

^^

^^

^^

i—'

i—'

i—'

i—'

L/l

i—'

^^

^^

^^

Ui

i—'

i—'

i—'

i—'

L/l

i—'

i—'

i—'

i—'

Ui

i—'

ii

ii

ii

ii

ooooooooooooooooooo

ozI

z;z;z;ooooooooooooooooooo

>^o666^ôôôô

^ôôôô

^o

Ki

K^

pp

ppO

cc

ccO

sp

ppO

sp

ppO

cU)

U)

U)

U)

U)

U)

U)

U)

U)

U)

U)

U)

U)

U)

U)

U)

to

to

to

^1

Q\

to

to

to

K<

K<

K<

K<

K<

K<

K<

K<

K<

K<

K<

K<

k^

K^

k^

no

no

00

00

^1

On

On

<Jl

<Jl

4^

U)

U)OOOO

^1

^1

^1

ON

ON

On

(Ji

(Ji

(Ji

4^

4^

U)

U)

K<

OO

^O

00

00

cc

cc

III,

oooz;oooooooooooooooon

ii

ii

ii

ii

ii

ii

ii

ii

ii

oooooooooz;oooooooo

i1

11

11

11

11

11

1

^1

ML*J

Onn

f]

O!)[](]

Or

3f

3r

3O

r3

f3

f3

o4^

4^

L*J

4^

L*J

L*J

L*J

4^

L*J

L*J

L*J

L*J

U)

U)

U)

U)

to

to

to

00^

U)

to

to

K<

K<

K<

K<

K>

K>

K>

K>

K<

K<

K<

K<

K<

oo

ooo

no

00

^1

^1o

On

<Jl

4^

4^

^^

^^

to

to

NO

NO

00

o<\

^1

4^

4^O

<J\

(Jl

4^

On

U)

K>

K<

(Ji

k^O

^o

^o

^"^

^"^

^"^

^"^o

^D

^O

^O

^O

K-1

K-1

K-1

K-1

H-*

K-1

H-1

H-1

K^

-i-

-1-

-1-

+-

L*J

L*J

L*J

L*J

o1—1^

1—1^

1—1

1—1

1—1

1—1

1—1

1—1

1—1

1—1^^^^^^^

^^^

1—1

1—1

1—1^

1—1

1—1^

1—1

1—1

1—1

1—1

1—1

1—1

1—1

1—1

Gs

c>

Gs

Gn

^o

1—1

1—1

1—1

1—1

4^

U)

o

oK-l

IOI

II

OJ

|Ik-k-I

lOOLftl

|^0|K-K-|K-

00

^1

tsi,

.

O

K<

On

^O

K<O

.,

.,

_.

u)

uj

<jj

tjjy1^-^^-^~

i—

(Ji

4^^

^-^

00

<jJ

^^w

^^

00

^^

•^

On

On1^

I

^i-t

00_

..

_

M^;MU

^1

K)

00

Ut

UJ

Oh-

||

^1

O 4^

00

4^

k-k-OIOk-I

|k-|k-|

|h-h-|K>I

I|k-k-k-K»I

|K-

VO

IK-

|

^00

?*

^^^

C3^

-vo.^r

ON

ONHa

'-JH

-°°^

'^

4-^yÖ

4-^^

-vo.^

00

ooz;ooooooooooooooooooooooooooz;

00

^1

4^

U)

K-

On

On

(Ji

U)

4^

4^O

II

oo

^O

00

II

oo

4^

tjJ

o^o

00

-J

oo

^O

00

II

oo

^1

On

II

oo

00

^1

II

on

II

on

On

On

II

on

4^

4^

II

on

II

on

U)

I—'

II

on

4^

tjJ

^1

U)

^1

U)

U)

K<

U)

OUJo

4^

K<

4^

<jJ

K<

On

on

M1ooooooooo

o^o

Ut

oo

K>

K<

K<

K>

K<

On

On

ii

OO

oo

On

On

Toü

i

on

oo

K<

K<

K<

ii

i

G\

G\

G\

K>

K<

K<

ii

i

poo

—a

—a

—a

On^

^^

1o1o

^1

On

ii

OO

M1o

To15

II

z^

M1o

On

On

to

to

II

op

1o1o

U)

4^

II

^p

1o

to

On

<J>

to

to

II

op

M1o

oo

To15 i

op

M1o

Ut

Ut

tO

(sj

no

to1o

to10

II

no

K>1o

4^

4^

to

to

ii

op

M1o

to

to

Tolo

II

op

M1o

to

to

II

on

to1o

K-o

Tolo

II

on

to1o

to

K-

to

to

II

on

toÇ^

0^o

Tolo

1I

pp

to1o

K-o

00

i—'o

Tololo

ii

npp

1OO0H

to

to

to

ii

OlOOO

to

to

i

nn

Hj

4^

UtO

to

to

Oh-

to

to

II

OO

^o

oo

to

to

II

pp

^1

^1

to

to

II

pp

OnO

to

to

II

pp

Ut

4^

to

to

II

pp

to

to

II

pp

to

to

to

to

to

II

I

to1o1o

»Û

vo»

to

to

II

pp

00o

to

to

II

pp

U)

to

O^1

to

to

1o

to

^1o

to

to

II

pp

M1o

4^

4^

to

to

oo

to1o

Ut

Ut

to

to

o^

to1o

4^

On

to

to

II

pp

to1o

U)

to

to

to

II

pp

to1o

to

K-

to

to

to

II

I

to1oÇ^

UiO

VO

totOK<totototototototototototototototototototototototototototototototototototo

^1

"to"t

o^1

"to

^1

"to

nnnn

nnp 1o

lo I n Ut

"to

n ^1

"to

o 4^

"to

oG

OS^

to

On

P^

Än

to

u<

pV

Än

~J^

to

^l

n^

^n

4^^

toO "to

pp

To

"to

i

nn

To

"to

II

nn

To

"to

II

pp

oo

"to"t

o

0OO

IjJ'ô

s^

to

to

CTn

nn^

ÄÄ

n

01

(Jl^

to

to

u<

nn^

ÄÄ

n

-J

-J^

to

to

^l

nnV

^^

noo^

to

to

OJ

"to

I Ö^1

K-

^1

^1

~oy

K-

.

K-l

ItOK-IONK-lK-l

|O

4^

II

VO

IK-

K-

|V|OH-nOlHUl«KlHOlHUs|H00-0H-J-J-J

-J^O^^

ON

K>

iTl

ON

U)

to

-J

'

00

Ito

NO^^

VNO

^1

to

Ut

K-IO0I

I|k-k-|k-|k-|

oo;n!i:vis)vioiS)OooiN)w4i

to

^_

^NO

^5»

^S

Ut

I—'

<jj

<Jl

(Jl

OON

o^

"tO"t

O<J>y

NO

ONT1

Ony

4^^^

4^

Ol

IIO

K-

S.

K-

4^

K-^

4^

4^

.-J\q

to

4^

K>

K-

K-

|to

|U

Oni—'l*)i—'OOOO'i—'

•„

NO

K-

K-

•_

NO^

UJ

00

•-

aiS

;..ut

no

U)

4^-^

4^

ON

NO

,

(Jl

.

Page 276: Two-dimensional acetylenic scaffolding - Research Collection

oooooo^ooooooooooooooooooooooooooo^ooooooooooooooooooooooooo

On

On

-O

no

On

On

-O

00

On

On

-O

^am

On

On

-O

On

On

On

On

<Ji

On

-O

4^O

On

On

4^(jJ4^(jJ4^(jJ4^(jJ(jJ(jJ(jJ(jJ(jJ(jJ(jJ

11

11

11

11

11

11

11

1

ooooooooooooooo

On

On

On

On

On

On

On

On

On

On

On

On

On

On

On

00

00

00

no

t/i

t/i

00

00

^1

^1

On

Ul

Ul

4^

4^

11

11

11

11

11

11

11

1

^^^OOOOOOOOOOOO

-o

-o

^1

~~\

^1

^1

On

On

On

On

On

On

On

On

©N

oOO

no

no

00

00

^1

On

On

l/i

l/i

www

wwwwwww

11

11

11

11

11

11

11

1

ooooooooooooooo

-o

-o

^1

On

On

On

^1

^1

On

^1

On

On

On

^1

On

to

tji

t/l

l/i

no

no

<-)O

no

00

^1

^1O

On

1 oi

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

i

02222222OOOOOOOOOOOOOOOO

t/l

t/l

t/1

t/1

t/i

t/i

t/1

t/1

Ol

Ul

Ul

Ul

Ul

Ul

Ul

Ul

t/l

Ui

Ul

Ul

Ul

Ul

4^

4^

^J""

On

On

On

On

On

On

On

On

U)

U)

U)

U)oo

4^

U)

t*>

ho

ho

K^oo

NO

NO

o On

11

11

11

11

11

11

11

11

11

11

11

11

oooooooo^^^^oooooooooooo

On

On

On

On

t/i

t/i

t/i

t/i

t/i

t/1

t/1

t/1

Ul

Ul

Ul

Ul

t/l

Ul

Ul

Ul

Ul

Ul

Ul

Ul

oooo

^1

^1

^1

^1

On

On

On

On

Ul

Ul

Ul

4^

4^

U)

U)

lo

K^

K^oo

o On4^

,

oooooooooooooooooo^ooooo

On

On

On

On

t/i

t/i

t/i

t/i

t/i

t/i

On

On

Ul

Ul

Ul

Ul

t/i

Ul

t/1

Ul

Ul

Ul

Ul

Ul

'to

to

no

no

00

00

^1

^1OO

4*.

4^o

Ul

t/i

4^

On

U)

lo

lo

K^

Ul

OOO

4^

4^

4^

00

n—'

n—'

1nn

11

4^

4^

4^

00

00

NO

n—'

n—'

1nn

114^

4^

t/1

NO

NO

on-^

n-^

ZZZZZZZZpoppppO

4^4^^4^4^4^444^U)L*JOJUJU)OJUl

'S'S'S'S'S'S'S'S'S'S'S'S'S'S'S

inUiUiUiWMMWHHHHOOO

11

11

11

11

11

11

11

1

ooooooooooooooo

4^

4^

4^

4^

4^

4^

4^

4^

4^

4^

4^

4^

U)

U)

U)

^1

^1

On

On

4^

4^

U)

U)

lo

lo

t/i

t/i

NO

NO

Ul

I^

II

INO

PvlUlUlHfj

On

On^^

^w

SP

T"!^

i^

so

U)

'

-^

to

4=>

11

1K-

11

4^

1NO

tJi

1K-

1|

00

K-

|1

K-

K-

1K-0

11

K-

K<

11

NO

11

1

-2;^

so

to

4J00

-7->

U)

^hhUi-Ji-'OhhUi

r-u

?»P

onyH

u)-^

U)

h-w^x^OC;

00^

(sjV-

00X

vJvOU^U)'-'M^tN)K)

^tO^ON^^^.-^K-ON

^1

00

4^

0ç±

to

to

to

^^^^^

^w-^^u^

J^4^^^a\^^

on^-^

^-_3^^5^

G!00

00

1—

k-^-^k-On^-^OO^-^

^_i

^_.^

^_i

^_i

^_.^

^-^

K-

^-^^-^

to

^-^^-^

^-^^-^

0^

0

4^

IO

K-

^^O*H

|I

I'—J

II

'I

|U>

H-

H-

|

r.Kr>

00s^

o\o^

^-^

00

^|k-k-k-k-4^k-noX^!nOk-^-^

-^tjjtjiaNto^-^4^^-^K-K-^-^tsj

On

4^

4^

tO

tO

/—;

K-

-

^^^^^^^^^^^^^

^^

^^^^^^^

^^

^On

On

NO

^1

II

OO

Ôn

'On

00

00

On

On

NO

^1

"to^

II

OO

ON

'ON

00

00

to

to

to

to

'Z'Z

On

On

00

4^

"to^

II

OO

ON

'ON

NO

tji

"to^

II

oo

oo

On

On

On

^1

11

oo

"on'o

ntji

00

1

oo

ONO

^|

CTn

1—

0\

to15

00

On

CTn

00

^1

to

to

1

on

On

0\

no

00

On

On

On

tji

toü

1

on

ON

'ON

^1

On

to^

II

on

ON

'ON

00

^1

On

^1

4^O

toü

II

00

ON

'ON

tjl

tjl

to^

II

00

ON

'ON

On

On

to

to

II

OO

QQ

to

to

to

to

II

OO

QQ

tji

tji

to

to

II

OO

On

'ON

tjl

NO

to

to

II

on

onQ

NOO

to

to

OO

QOn

OSO

to

to

II

%n

QOn

1—'

00

to

to

1

on

ON

'ON

^1

^1

tototototototototototototototo

On

tji

an

On

U)

an

£^

On

4^

an

Q^

<i

tji

to

poo

,!*

J^

1^

OOOOOOOOOOOOOO^OOOOOOOO

tji

tji

^1

U)

tji

tji

^1

U)

On

tji

OU)

On

tji

O4^

tJi

tJi

to

4^

tJi

4^

tO

NO

tJl

tJl

I—'

U)

tJl

tJl

On

to

tJi

tJi

tJi

K-

K-O

4^

tji

NO

tJl

4^

4^

00

00

tjl

tjl,

"to^

OO

to

0\

0\o

to

to

On

On

"to^

1

oo

to

to

%%,

On

On

"to^

1

oo

to

to

%%,

On

On

"toü

1

oo

to

to

Tit

tji

On^

^to

O^

11

op

tji

tji

"to^

II

11

to

to

II

op

tji

tji

U)O

"to^

II

1o

to

to

II

on

tjl

tjl

O4^

to^

II

oo

to

to

Ût

Ut

to

to

II

OO

to

to

to

II

I

pop

tji

tji

tji

to

to

K-

to

to

to

II

I

000

to

to

II

op

tjl

tjl

0o

"to^

1I

OO

to

to

II

op

NO

NO

"to^

II

OO

K>^

On

On

On

On

t/i

t/1

t/1

t/i

t/i

t/i

t/i

t/i

tji

tJi

tJi

t/1

tjl

tjl

tjl

tjl

tjl

tjl

tjl

tjl

OOOO

^1

^1

^1

^1

On

On

On

On

Ul

Ul

Ul

4^

4^

U)

U)

to

>-^

>-^00

00

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

On4^

On4^OOOOOOOOOOOOOOOOO^OOOOOO

\-—'

^-—'On

On

On

On

t/i

t/1

t/1

t/1

On

On

t/i

t/i

Ul

Ul

Ul

t/1

Ul

t/1

Ul

Ul

Ul

Ul

Ul

Ul

to

to

NO

NO

00

00OO

^1

^1

4^

4^0

tjl

Ul

On

4^

U)

to

to

Ul

op

"toü

1

OO

'S'S

"to^

1

OO

'S'S

00

00

"toü

1

OO

'S'S

NO

NO

OOOOOOOOOOOOOO

4^

U)

to

00

"toü

S'S

4^

U)

to

00

toü

S'S

4^

U)

tJi

00

toü

%%,

S'S

4^

U)

tJi

00

toü

%%,

S'S

^1

NO

to^

II

pp

00

00

^1

NO

toü

II

pp

00

00

4^

On

toü

1

OO

tjl

tjl

to

to

II

OO

'S'S

tjl

tjl

II

oo

'S'S

^1

^1

to

to

II

pp

S'S

tjl

tjl

"to^

II

pp

S'S

On

On

to

to

II

pp

S'S

to

to

"to^

II

pp

S'S

to

to

II

pp

S'S

to

to

to^

II

pp

S'S

4^

4^

to

to

II

'Z'Z

'S'S

II

oo

'S'S

tjl

tjl

S'S

to^

II

pp

S'S

to

to

to

to

II

OO

'S'S

oo 1

OO

NO

NO

totototototototototototototototototototototototo

totototototototototototototo

IU)

K-

IO

^'~j

'no

°^^

-J

4^ir

)£wm

u)

1—;

Ito

IH-

LO

^!j

s*)

^1

U)

tjl

NO

00

II

1—'

II

00

4^

NO

-,

tj,.

-SSM

o?ç*-^

-jh^^;

ioh

00

to

11^

00

11

On

00

1|

h-

h-

|1

00

|1

00

to

to

On

mOONOOi^^On^I^T;

-^

4^

00

tji

/-r-,totjJ^^OOtJiONtO^

-J<it>

^1

^->r->r->

4^

CTn

4^

4^r->r->r->r->

4^

On

^

1—'

tjl

U)

^-^

^X;^^4^4^tjJtO^

4^

s_^s_^

U)

OJ

^-^^-^^-^^-^

~J

to

|k-On|k-|

14^1

|h-

|<1

0\

|h-

||nOk-L>J|k-k-|

W-J^tJ^JU.MOOMUitO^ICTi^lMO^MO^I-tJUi^lO

In^wT!

^O^ï

*s)

~!N

0\W

vl

,

,W»

00m

VO^

00

Ui

NO

4^

r-N^-^

t-^>

•n>J

HN

00

HN

^-N

r-N

*'

'^1

*r-N

If,H

\_:

•to

^!,)

r»*,n_^

n_^

^—

Nyi

Nij^-^

^~

U)

00

tjl

'

K-

On

tji^-^

K-

/=N

-J

,

NO

I—'

'

00

4.o^

Page 277: Two-dimensional acetylenic scaffolding - Research Collection

252 Appendix

C(69)l-C(68)l-N(71)l-C(72)l 11(4)

C(68)l-N(71)l-C(72)l-C(73)l -85(3)

C(75)l-N(71)l-C(72)l-C(73)l 110(3)

C(68) 1 -N(71 ) 1 -C(72) 1 -C(74) 1 48(4)

C(75) 1 -N(71) 1 -C(72) 1 -C(74) 1 -116(3)

C(68)l-N(71)l-C(75)l-C(76)l 135(3)

C(72)l-N(71)l-C(75)l-C(76)l -61(4)

C(68)l-N(71)l-C(75)l-C(77)l -104(3)

C(72) 1 -N(71) 1 -C(75) 1 -C(77) 1 60(4)

C(2)l-Pt(l)l-P(78)l-C(79)l 156.5(5)

C(14)l-Pt(l)l-P(78)l-C(79)l -162(2)

P(82)l-Pt(l)l-P(78)l-C(79)l -23.1(5)

C(2)l-Pt(l)l-P(78)l-C(89)l 37.6(4)

C(14)l-Pt(l)l-P(78)l-C(89)l 79(2)

P(82)l-Pt(l)l-P(78)l-C(89)l -141.9(4)

C(2)l-Pt(l)l-P(78)l-C(83)l -80.8(4)

C(14)l-Pt(l)l-P(78)l-C(83)l -39(2)

P(82)l-Pt(l)l-P(78)l-C(83)l 99.6(4)

C(89) 1 -P(78) 1 -C(79) 1 -C(80) 1 170.3(9)

C(83)l-P(78)l-C(79)l-C(80)l -79.1(9)

Pt(l)l-P(78)l-C(79)l-C(80)l 45.7(10)

P(78)l-C(79)l-C(80)l-C(81)l -72.4(12)

C(79) 1 -C(80) 1 -C(81) 1 -P(82) 1 77.1(11)

C(80) 1 -C(81 ) 1 -P(82) 1 -C(95) 1 69.2(9)

C(80)l-C(81)l-P(82)l-C(101)l -179.0(8)

C(80)l-C(81)l-P(82)l-Pt(l)l -55.3(9)

C(2)l-Pt(l)l-P(82)l-C(95)l 100(8)

C(14)l-Pt(l)l-P(82)l-C(95)l 82.0(5)

P(78)l-Pt(l)l-P(82)l-C(95)l -93.6(4)

C(2)l-Pt(l)l-P(82)l-C(101)l -24(8)

C(14)l-Pt(l)l-P(82)l-C(101)l -41.4(4)

P(78)l-Pt(l)l-P(82)l-C(101)l 143.0(4)

C(2)l-Pt(l)l-P(82)l-C(81)l -139(8)

C(14)l-Pt(l)l-P(82)l-C(81)l -157.3(5)

P(78)l-Pt(l)l-P(82)l-C(81)l 27.2(4)

C(79)l-P(78)l-C(83)l-C(84)l -176.0(9)

C(89) 1 -P(78) 1 -C(83 ) 1 -C(84) 1 -67.6(10)

Pt(l)l-P(78)l-C(83)l-C(84)l 55.4(9)

C(79)l-P(78)l-C(83)l-C(88)l 3.3(11)

C(89)l-P(78)l-C(83)l-C(88)l 111.7(10)

Pt(l)l-P(78)l-C(83)l-C(88)l -125.3(9)

C(88)l-C(83)l-C(84)l-C(85)l -0.5(17)

P(78)l-C(83)l-C(84)l-C(85)l 178.9(9)

C(83)l-C(84)l-C(85)l-C(86)l 1.6(19)

C(84)l-C(85)l-C(86)l-C(87)l -1(2)

C(85)l-C(86)l-C(87)l-C(88)l 0(2)

C(86)l-C(87)l-C(88)l-C(83)l 1(2)

C(84)l-C(83)l-C(88)l-C(87)l -0.7(19)

P(78)l-C(83)l-C(88)l-C(87)l 179.9(11)

C(79) 1 -P(78) 1 -C(89) 1 -C(94) 1 93.4(10)

C(83)l-P(78)l-C(89)l-C(94)l -18.1(11)

Pt(l)l-P(78)l-C(89)l-C(94)l -139.5(9)

C(79) 1 -P(78) 1 -C(89) 1 -C(90) 1 -85.2(9)

C(83)l-P(78)l-C(89)l-C(90)l 163.4(8)

Pt(l)l-P(78)l-C(89)l-C(90)l 41.9(9)

C(94)l-C(89)l-C(90)l-C(91)l 2.1(16)

P(78)l-C(89)l-C(90)l-C(91)l -179.3(9)

C(89) 1 -C(90) 1 -C(91) 1 -C(92) 1 -1.8(19)

C(90)l-C(91)l-C(92)l-C(93)l 1(2)

C(91)l-C(92)l-C(93)l-C(94)l 0(2)

C(68)2-N(71)2-C(72)2-C(74)2 -91.4(13)

C(75)2-N(71)2-C(72)2-C(74)2 109.8(11)

C(68)2-N(71)2-C(72)2-C(73)2 40.1(15)

C(75)2-N(71)2-C(72)2-C(73)2 -118.7(11)

C(68)2-N(71)2-C(75)2-C(76)2 144.8(11)

C(72)2-N(71)2-C(75)2-C(76)2 -56.0(14)

C(68)2-N(71)2-C(75)2-C(77)2 -87.5(13)

C(72)2-N(71)2-C(75)2-C(77)2 71.7(12)

C(2)2-Pt(l)2-P(78)2-C(89)2 62.1(8)

C(14)2-Pt(l)2-P(78)2-C(89)2 92(3)

P(82)2-Pt(l)2-P(78)2-C(89)2 -117.6(8)

C(2)2-Pt(l)2-P(78)2-C(79)2 167.8(10)

C(14)2-Pt(l)2-P(78)2-C(79)2 -163(3)

P(82)2-Pt(l)2-P(78)2-C(79)2 -11.9(9)

C(2)2-Pt(l)2-P(78)2-C(83)2 -57.7(8)

C(14)2-Pt(l)2-P(78)2-C(83)2 -28(3)

P(82)2-Pt(l)2-P(78)2-C(83)2 122.6(7)

C(89)2-P(78)2-C(79)2-C(80)2 156.2(19)

C(83)2-P(78)2-C(79)2-C(80)2 -93(2)

Pt(l)2-P(78)2-C(79)2-C(80)2 41(2)

P(78)2-C(79)2-C(80)2-C(81)2 -75(2)

C(79)2-C(80)2-C(81)2-P(82)2 85.8(15)

C(80)2-C(81)2-P(82)2-C(95)2 69.5(12)

C(80)2-C(81)2-P(82)2-C(101)2 179.3(10)

C(80)2-C(81)2-P(82)2-Pt(l)2 -57.4(11)

C(2)2-Pt(l)2-P(82)2-C(95)2 90(15)

C(14)2-Pt(l)2-P(82)2-C(95)2 73.6(5)

P(78)2-Pt(l)2-P(82)2-C(95)2 -103.5(5)

C(2)2-Pt(l)2-P(82)2-C(81)2 -148(15)

C(14)2-Pt(l)2-P(82)2-C(81)2 -164.7(5)

P(78)2-Pt(l)2-P(82)2-C(81)2 18.3(5)

C(2)2-Pt(l)2-P(82)2-C(101)2 -31(15)

C(14)2-Pt(l)2-P(82)2-C(101)2 -48.0(5)

P(78)2-Pt(l)2-P(82)2-C(101)2 134.9(4)

C(89)2-P(78)2-C(83)2-C(88)2 136(3)

C(79)2-P(78)2-C(83)2-C(88)2 34(3)

Pt(l)2-P(78)2-C(83)2-C(88)2 -102(3)

C(89)2-P(78)2-C(83)2-C(84)2 -52(3)

C(79)2-P(78)2-C(83)2-C(84)2 -154(2)

Pt(l)2-P(78)2-C(83)2-C(84)2 70(2)

C(88)2-C(83)2-C(84)2-C(85)2 -19(5)

P(78)2-C(83)2-C(84)2-C(85)2 169.9(18)

C(83)2-C(84)2-C(85)2-C(86)2 32(4)

C(84)2-C(85)2-C(86)2-C(87)2 -27(5)

C(85)2-C(86)2-C(87)2-C(88)2 9(7)

C(84)2-C(83)2-C(88)2-C(87)2 -1(7)

P(78)2-C(83)2-C(88)2-C(87)2 172(4)

C(86)2-C(87)2-C(88)2-C(83)26(8)C(79)2-P(78)2-C(89)2-C(94)2-103(2)C(83)2-P(78)2-C(89)2-C(94)2139.7(18)Pt(l)2-P(78)2-C(89)2-C(94)218(2)C(79)2-P(78)2-C(89)2-C(90)2107(2)C(83)2-P(78)2-C(89)2-C(90)2-10(2)Pt(l)2-P(78)2-C(89)2-C(90)2-132(2)C(94)2-C(89)2-C(90)2-C(91)215(5)P(78)2-C(89)2-C(90)2-C(91)2167(3)C(89)2-C(90)2-C(91)2-C(92)26(7)C(90)2-C(91)2-C(92)2-C(93)2-10(9)C(91)2-C(92)2-C(93)2-C(94)2-6(8)C(90)2-C(89)2-C(94)2-C(93)2

-33(4)

Page 278: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 253

C(92) 1 -C(9 3 ) 1 -C(94) 1 -C(89) 1 1(2)

C(90) 1 -C(8 9) 1 -C(94) 1 -C(93 ) 1 -1.6(19)

P(78)l-C(89)l-C(94)l-C(93)l 179.8(11)

C(101)l-P(82)l-C(95)l-C(100)l -77.5(11)

C(81)l-P(82)l-C(95)l-C(100)l 29.0(12)

Pt(l)l-P(82)l-C(95)l-C(100)l 155.4(10)

C(101)l-P(82)l-C(95)l-C(96)l 101.0(9)

C(81)l-P(82)l-C(95)l-C(96)l -152.6(9)

Pt(l)l-P(82)l-C(95)l-C(96)l -26.1(10)

C(100)l-C(95)l-C(96)l-C(97)l -3.1(18)

P(82)l-C(95)l-C(96)l-C(97)l 178.3(9)

C(95)l-C(96)l-C(97)l-C(98)l 4.2(19)

C(96)l-C(97)l-C(98)l-C(99)l -4(2)

C(97)l-C(98)l-C(99)l-C(100)l 3(3)

C(98)l-C(99)l-C(100)l-C(95)l -2(3)

C(96)l-C(95)l-C(100)l-C(99)l 2(2)

P(82)l-C(95)l-C(100)l-C(99)l -179.3(12)

C(95)l-P(82)l-C(101)l-C(102)l 22.4(11)

C(81)l-P(82)l-C(101)l-C(102)l -87.4(10)

Pt(l)l-P(82)l-C(101)l-C(102)l 148.3(9)

C(95)l-P(82)l-C(101)l-C(106)l -161.6(9)

C(81)l-P(82)l-C(101)l-C(106)l 88.6(9)

Pt(l)l-P(82)l-C(101)l-C(106)l -35.8(9)

C(106)l-C(101)l-C(102)l-C(103)l 0.1(18)

P(82)l-C(101)l-C(102)l-C(103)l 176.1(11)

C(101)l-C(102)l-C(103)l-C(104)l -1(2)

C(102)l-C(103)l-C(104)l-C(105)l 2(2)

C(103)l-C(104)l-C(105)l-C(106)l -2(2)

C(102)l-C(101)l-C(106)l-C(105)l 0.0(17)

P(82)l-C(101)l-C(106)l-C(105)l -176.3(9)

C(104)l-C(105)l-C(106)l-C(101)l 1(2)

C(9)l-Pt(8)l-P(107)l-C(130)l -84.5(5)

C(7)l-Pt(8)l-P(107)l-C(130)l -38(2)

P(lll)l-Pt(8)l-P(107)l-C(130)l 90.9(4)

C(9)l-Pt(8)l-P(107)l-C(108)l 157.3(5)

C(7)l-Pt(8)l-P(107)l-C(108)l -157(2)

P(lll)l-Pt(8)l-P(107)l-C(108)l -27.3(5)

C(9)l-Pt(8)l-P(107)l-C(124)l 35.4(5)

C(7)l-Pt(8)l-P(107)l-C(124)l 81(2)

P(lll)l-Pt(8)l-P(107)l-C(124)l -149.2(4)

C(130)l-P(107)l-C(108)l-C(109)l -69.7(9)

C(124)l-P(107)l-C(108)l-C(109)l 178.5(8)

Pt(8)l-P(107)l-C(108)l-C(109)l 51.9(9)

P(107)l-C(108)l-C(109)l-C(110)l -73.2(11)

C(108)l-C(109)l-C(110)l-P(lll)l 72.7(12)

C(109)l-C(110)l-P(lll)l-C(118)l 73.1(10)

C(109)l-C(110)l-P(lll)l-C(112)l -176.5(9)

C(109)l-C(110)l-P(lll)l-Pt(8)l -50.3(10)

C(9)l-Pt(8)l-P(lll)l-C(118)l 7(3)

C(7)l-Pt(8)l-P(lll)l-C(118)l 80.1(5)

P(107)l-Pt(8)l-P(lll)l-C(118)l -94.5(4)

C(9)l-Pt(8)l-P(lll)l-C(112)l -114(3)

C(7)l-Pt(8)l-P(lll)l-C(112)l -40.6(4)

P(107)l-Pt(8)l-P(lll)l-C(112)l 144.8(4)

C(9)l-Pt(8)l-P(lll)l-C(110)l 128(3)

C(7)l-Pt(8)l-P(lll)l-C(110)l -159.1(5)

P(107)l-Pt(8)l-P(lll)l-C(110)l 26.3(4)

C(118)l-P(lll)l-C(112)l-C(117)l -153.4(9)

C(110)l-P(lll)l-C(112)l-C(117)l 96.1(9)

Pt(8)l-P(lll)l-C(112)l-C(117)l -30.0(9)

P(78)2-C(89)2-C(94)2-C(93)2 177(2)

C(92)2-C(93)2-C(94)2-C(89)2 29(6)

C(81)2-P(82)2-C(95)2-C(100)2 36.1(13)

C(101)2-P(82)2-C(95)2-C(100)2 -71.1(13)

Pt(l)2-P(82)2-C(95)2-C(100)2 162.8(11)

C(81)2-P(82)2-C(95)2-C(96)2 -148.7(10)

C(101)2-P(82)2-C(95)2-C(96)2 104.1(10)

Pt(l)2-P(82)2-C(95)2-C(96)2 -22.0(11)

C(100)2-C(95)2-C(96)2-C(97)2 -2.3(19)

P(82)2-C(95)2-C(96)2-C(97)2 -177.8(10)

C(95)2-C(96)2-C(97)2-C(98)2 3(2)

C(96)2-C(97)2-C(98)2-C(99)2 -2(2)

C(97)2-C(98)2-C(99)2-C(100)2 1(3)

C(96)2-C(95)2-C(100)2-C(99)2 1(2)

P(82)2-C(95)2-C(100)2-C(99)2 175.9(13)

C(98)2-C(99)2-C(100)2-C(95)2 0(3)

C(95)2-P(82)2-C(101)2-C(102)2 25.4(11)

C(81)2-P(82)2-C(101)2-C(102)2 -84.2(11)

Pt(l)2-P(82)2-C(101)2-C(102)2 152.1(9)

C(95)2-P(82)2-C(101)2-C(106)2 -158.2(9)

C(81)2-P(82)2-C(101)2-C(106)2 92.2(10)

Pt(l)2-P(82)2-C(101)2-C(106)2 -31.5(10)

C(106)2-C(101)2-C(102)2-C(103)2 1.4(18)

P(82)2-C(101)2-C(102)2-C(103)2 177.7(10)

C(101)2-C(102)2-C(103)2-C(104)2 -1(2)

C(102)2-C(103)2-C(104)2-C(105)2 -1(2)

C(103)2-C(104)2-C(105)2-C(106)2 2(2)

C(104)2-C(105)2-C(106)2-C(101)2 -2(2)

C(102)2-C(101)2-C(106)2-C(105)2 -0.2(18)

P(82)2-C(101)2-C(106)2-C(105)2-176.7(10)C(9)2-Pt(8)2-P(107)2-C(108)2153.4(5)C(7)2-Pt(8)2-P(107)2-C(108)2-141(4)P(l11)2-Pt(8)2-P(107)2-C(108)2-30.0(5)C(9)2-Pt(8)2-P(107)2-C(130)2-87.0(5)C(7)2-Pt(8)2-P(107)2-C(130)2-21(4)P(l11)2-Pt(8)2-P(107)2-C(130)289.6(4)C(9)2-Pt(8)2-P(107)2-C(124)235.1(5)C(7)2-Pt(8)2-P(107)2-C(124)2101(4)P(l11)2-Pt(8)2-P(107)2-C(124)2-148.3(4)C(130)2-P(107)2-C(108)2-C(109)2-68.4(11)C(124)2-P(107)2-C(108)2-C(109)2-179.2(10)Pt(8)2-P(107)2-C(108)2-C(109)254.7(11)P(107)2-C(108)2-C(109)2-C(l10)2-75.3(14)C(108)2-C(109)2-C(l10)2-P(111)274.2(14)C(109)2-C(l10)2-P(111)2-C(l18)273.6(11)C(109)2-C(l10)2-P(111)2-C(112)2-176.9(10)C(109)2-C(l10)2-P(111)2-Pt(8)2-52.1(12)C(9)2-Pt(8)2-P(l11)2-C(118)253(3)C(7)2-Pt(8)2-P(l11)2-C(118)282.8(6)P(107)2-Pt(8)2-P(lll)2-C(118)2-93.4(5)C(9)2-Pt(8)2-P(l11)2-C(110)2175(3)C(7)2-Pt(8)2-P(l11)2-C(110)2-154.8(7)P(107)2-Pt(8)2-P(l11)2-C(110)229.0(6)C(9)2-Pt(8)2-P(l11)2-C(112)2-65(3)C(7)2-Pt(8)2-P(l11)2-C(112)2-34.6(6)P(107)2-Pt(8)2-P(l11)2-C(112)2149.3(5)C(l18)2-P(111)2-C(112)2-C(117)2167.3(14)C(l10)2-P(l11)2-C(112)2-C(117)256.0(15)Pt(8)2-P(l11)2-C(112)2-C(117)2-70.4(14)C(l18)2-P(111)2-C(112)2-C(113)2

-15.8(13)

Page 279: Two-dimensional acetylenic scaffolding - Research Collection

254 Appendix

C(l 18)1-P(111)1-C(112)1-C(113)1 32.6(11) C(l 10)2-P(111)2-C(112)2-C(113)2 -127.1(12)

C(l 10)1-P(111)1-C(112)1-C(113)1 -77.9(10) Pt(8)2-P(l 11)2-C(112)2-C(113)2 106.6(11)

Pt(8)l-P(l 11)1-C(112)1-C(113)1 156.0(9) C(l 17)2-C(l 12)2-C(113)2-C(114)2 0(2)

C(117)l-C(112)l-C(113)l-C(114)l 0.3(18) P(l 11)2-C(112)2-C(113)2-C(l 14)2 -177.3(11)

P(l 11)1-C(112)1-C(113)1-C(114)1 174.4(10) C(l 12)2-C(l 13)2-C(114)2-C(115)2 0(3)

C(112)l-C(113)l-C(114)l-C(115)l -2(2) C(l 13)2-C(l 14)2-C(115)2-C(116)2 3(4)

C(113)l-C(114)l-C(115)l-C(116)l 2(2) C(l 14)2-C(l 15)2-C(116)2-C(117)2 -6(4)

C(114)l-C(115)l-C(116)l-C(117)l 0(2) C(l 13)2-C(l 12)2-C(117)2-C(116)2 -2(3)

C(115)l-C(116)l-C(117)l-C(112)l -1.5(18) P(l 11)2-C(112)2-C(117)2-C(l 16)2 175.0(19)

C(113)l-C(112)l-C(117)l-C(116)l 1.4(16) C(l 15)2-C(l 16)2-C(117)2-C(112)2 5(4)

P(lll)l-C(112)l-C(117)l-C(116)l -172.8(9) C(l 10)2-P(111)2-C(l 18)2-C(119)2 31.4(13)

C(l 12)1-P(111)1-C(118)1-C(119)1 86.9(10) C(l 12)2-P(111)2-C(l 18)2-C(119)2 -78.6(12)

C(l 10)1-P(111)1-C(118)1-C(119)1 -165.9(10) Pt(8)2-P(l 11)2-C(118)2-C(119)2 158.8(10)

Pt(8)l-P(lll)l-C(118)l-C(119)l -39.6(11) C(l 10)2-P(111)2-C(118)2-C(123)2 -148.5(16)

C(112)l-P(lll)l-C(118)l-C(123)l -95.0(12) C(l 12)2-P(111)2-C(118)2-C(123)2 101.5(16)

C(110)l-P(lll)l-C(118)l-C(123)l 12.2(13) Pt(8)2-P(l 11)2-C(118)2-C(123)2 -21.2(17)

Pt(8)l-P(lll)l-C(118)l-C(123)l 138.6(11) C(123)2-C(l 18)2-C(119)2-C(120)2 -2(2)

C(123)l-C(118)l-C(119)l-C(120)l 2(2) P(l 11)2-C(118)2-C(119)2-C(120)2 178.2(12)

P(lll)l-C(118)l-C(119)l-C(120)l -179.5(11) C(118)2-C(119)2-C(120)2-C(121)2 2(3)

C(118)l-C(119)l-C(120)l-C(121)l -1(3) C(119)2-C(120)2-C(121)2-C(122)2 -4(4)

C(119)l-C(120)l-C(121)l-C(122)l 2(3) C(120)2-C(121)2-C(122)2-C(123)2 6(5)

C(120)l-C(121)l-C(122)l-C(123)l -5(4) C(l 19)2-C(l 18)2-C(123)2-C(122)2 4(3)

C(119)l-C(118)l-C(123)l-C(122)l -5(2) P(l 11)2-C(118)2-C(123)2-C(122)2 -176(2)

P(lll)l-C(118)l-C(123)l-C(122)l 177.3(16) C(121)2-C(122)2-C(123)2-C(l 18)2 -6(4)

C(121)l-C(122)l-C(123)l-C(118)l 6(3) C(108)2-P(107)2-C(124)2-C(129)2 93.2(13)

C(130)l-P(107)l-C(124)l-C(125)l -161.6(11) C(130)2-P(107)2-C(124)2-C(129)2 -16.7(14)

C(108)l-P(107)l-C(124)l-C(125)l -51.7(12) Pt(8)2-P(107)2-C(124)2-C(129)2 -141.4(12)

Pt(8)l-P(107)l-C(124)l-C(125)l 76.4(12) C(108)2-P(107)2-C(124)2-C(125)2 -78.6(11)

C(130)l-P(107)l-C(124)l-C(129)l 27.3(12) C(130)2-P(107)2-C(124)2-C(125)2 171.5(10)

C(108)l-P(107)l-C(124)l-C(129)l 137.1(11) Pt(8)2-P(107)2-C(124)2-C(125)2 46.9(11)

Pt(8)l-P(107)l-C(124)l-C(129)l -94.7(11) C(129)2-C(124)2-C(125)2-C(126)2 4(2)

C(129)l-C(124)l-C(125)l-C(126)l -2(3) P(107)2-C(124)2-C(125)2-C(126)2 175.9(10)

P(107)l-C(124)l-C(125)l-C(126)l -173.8(15) C(124)2-C(125)2-C(126)2-C(127)2 -1(2)

C(124)l-C(125)l-C(126)l-C(127)l -5(3) C(125)2-C(126)2-C(127)2-C(128)2 0(3)

C(125)l-C(126)l-C(127)l-C(128)l 11(4) C(126)2-C(127)2-C(128)2-C(129)2 -3(3)

C(126)l-C(127)l-C(128)l-C(129)l -11(4) C(125)2-C(124)2-C(129)2-C(128)2 -6(2)

C(125)l-C(124)l-C(129)l-C(128)l 3(2) P(107)2-C(124)2-C(129)2-C(128)2 -177.9(14)

P(107)l-C(124)l-C(129)l-C(128)l 174.4(13) C(127)2-C(128)2-C(129)2-C(124)2 6(3)

C(127)l-C(128)l-C(129)l-C(124)l 3(3) C(108)2-P(107)2-C(130)2-C(135)2 -28.3(14)

C(108)l-P(107)l-C(130)l-C(131)l -51.6(11) C(124)2-P(107)2-C(130)2-C(135)2 78.9(13)

C(124)l-P(107)l-C(130)l-C(131)l 58.7(11) Pt(8)2-P(107)2-C(130)2-C(135)2 -153.6(11)

Pt(8)l-P(107)l-C(130)l-C(131)l -177.2(9) C(108)2-P(107)2-C(130)2-C(131)2 155.1(10)

C(108)l-P(107)l-C(130)l-C(135)l 126.2(11) C(124)2-P(107)2-C(130)2-C(131)2 -97.6(10)

C(124)l-P(107)l-C(130)l-C(135)l -123.5(11) Pt(8)2-P(107)2-C(130)2-C(131)2 29.8(11)

Pt(8)l-P(107)l-C(130)l-C(135)l 0.6(11) C(135)2-C(130)2-C(131)2-C(132)2-1(2)C(135)l-C(130)l-C(131)l-C(132)l-0.8(19)P(107)2-C(130)2-C(131)2-C(132)2175.6(11)P(107)l-C(130)l-C(131)l-C(132)l177.0(11)C(130)2-C(131)2-C(132)2-C(133)22(2)C(130)l-C(131)l-C(132)l-C(133)l0(2)C(131)2-C(132)2-C(133)2-C(134)2-4(3)C(131)l-C(132)l-C(133)l-C(134)l-1(3)C(132)2-C(133)2-C(134)2-C(135)25(3)C(132)l-C(133)l-C(134)l-C(135)l1(3)C(131)2-C(130)2-C(135)2-C(134)22(2)C(133)l-C(134)l-C(135)l-C(130)l-2(3)P(107)2-C(130)2-C(135)2-C(134)2-174.1(13)C(131)l-C(130)l-C(135)l-C(134)l2(2)C(133)2-C(134)2-C(135)2-C(130)2-5(3)P(107)l-C(130)l-C(135)l-C(134)l-176.3(14)C1(1)2-C1(2)2-C(201)2-C1(3)2119.9C(14)2-Pt(l)2-C(2)2-C(3)2-49(9)C1(2)2-C1(1)2-C(201)2-C1(3)2-118.1Symmetrytransformationsusedtogenerateequivalentatoms:#1-x+1,-y+1,-z+1;#2-x+2,-y+2,-z+1.

Page 280: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 255

Table 7.18. Crystal data and structure refinement for 97.

Crystal data

Cambridge Crystallographic Data Centre

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system, space group

Unit cell dimensions

Volume

Z

Calculated density

Absorption coefficient

F(000)

Approximate crystal size

Data collection

CCDC-644153

kivalal 1_D_07

C30H20N6

464.52

220(2)K

0.7107 Â

monoclinic, P2\lc

a = 7.5252(5) Â, a= 90°

b = 8.4637(9) Â, ß= 92.608(7)cc = 39.5727(15) Â, ^=90°

2517.8(3) Â3

4

1.225 mgnT30.075 mnT1

968

0.15x0.13 x 0.05 mm

Nonius Kappa-CCD diffractometer with graphite monochromator

Grange for data collection

Index ranges

Reflections collected / unique

Completeness to 20= 25.37

Absorption correction

Solution and refinement

Structure solution

Structure refinement

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [/> 20(1)]

Extinction coefficient

Largest diff peak and hole

2.94 < 6< 25.37°

-9 < h < 9, -9 < K 10, -47 < /< 47

7722/ 4559 (Rmt = 0.054)

98.7%

none

SIR-97 (direct methods)

SHELXL-97 (full-matrix least-squares on F2)4559/0/330

1.060

R(F) = 0.073, wR(F2) = 0.145

0.0048(14)

0.176 and-0.140 eÂ"3

Page 281: Two-dimensional acetylenic scaffolding - Research Collection

256 Appendix

Table 7.19. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Â2 x 103) for 97.

£/(eq) is defined as one third of the trace of the orthogonalized U1} tensor.

X y z t/(eq)

N(14) -216(4) 6590(3) 2950(1) 63(1)

N(19) 14893(5) 10657(3) 1412(1) 92(1)

N(21) 17598(5) 8074(4) 612(1) 93(1)

N(25) 14968(5) 4503(3) 1490(1) 99(1)

N(27) 14406(4) 1866(3) 580(1) 77(1)

N(34) 10748(4) 7100(3) -618(1) 55(1)

C(l) 13499(4) 7370(3) 948(1) 43(1)

C(2) 12018(4) 7520(3) 1149(1) 50(1)

C(3) 10759(5) 7560(4) 1326(1) 54(1)

C(4) 9339(5) 7586(4) 1530(1) 60(1)

C(5) 8126(5) 7562(4) 1718(1) 59(1)

C(6) 6755(5) 7477(4) 1928(1) 58(1)

C(7) 5519(5) 7331(4) 2112(1) 58(1)

C(8) 4082(4) 7131(3) 2326(1) 50(1)

C(9) 4085(4) 7838(4) 2644(1) 56(1)

C(10) 2694(5) 7650(4) 2851(1) 56(1)

C(ll) 1188(4) 6744(3) 2748(1) 48(1)

C(12) 1208(4) 6013(4) 2429(1) 53(1)

C(13) 2616(4) 6204(4) 2225(1) 54(1)

C(15) -177(5) 7304(5) 3284(1) 83(1)

C(16) -1693(4) 5570(4) 2857(1) 71(1)

C(17) 14889(4) 8385(3) 979(1) 50(1)

C(18) 14911(5) 9656(4) 1218(1) 60(1)

C(20) 16394(5) 8213(4) 774(1) 62(1)

C(22) 13525(4) 5994(3) 705(1) 43(1)

C(23) 14122(4) 4602(3) 854(1) 47(1)

C(24) 14617(5) 4561(3) 1207(1) 63(1)

C(26) 14264(4) 3107(4) 690(1) 53(1)

C(28) 12892(4) 6261(3) 365(1) 43(1)

C(29) 12368(4) 7779(3) 254(1) 55(1)

C(30) 11691(5) 8073(4) -65(1) 61(1)

C(31) 11464(4) 6857(3) -305(1) 46(1)

C(32) 12033(4) 5348(3) -199(1) 54(1)

C(33) 12706(4) 5066(3) 118(1) 53(1)

C(35) 10198(6) 8656(4) -737(1) 81(1)

C(36) 10686(5) 5861(4; -872(1) 68(1)

Page 282: Two-dimensional acetylenic scaffolding - Research Collection

^w

^^1

1J|h-

VO

-fi

4^4^4^4^t-ftONtJi^l

K>K>K>K>K>K>K>K>

1313131313^!1313

II^

II

II

I

--;MWf;U^

Ui

Ul

Ç.^

(O

U\W

Jih

CI ç ç ç: c;

c;

H I:

ft y>

T3

h.o

f/i

»o

<n>

ö-

»n

^•a

*o

(ï>&

i'S.

ET

i-ho

OfB

§g »

I fO

»-S

K

ÜW)

Kri»

,ç:

en

+>°

g*S»

*i-i

fO"

H o

OO^^OOOOOOOOOOOOOOOOOOOO

G£oo^oo^^q^^^^^—oo^ZZZZZ

nnnnnnnnn'Z'Z'Z'Z'Z'Z'Z'Z'Z'Z

l—

i—

i—i

i—i©

vp

00

h-OO

K>

^-^

^Ui

UiW

Ui

Ui

C\

OOOOOOOOOiiiiiiiiii

£S££££g£^

oo^^^^

5^S£££M£^o£

4-mwmwmU,4-w4-4-w^^^^4-4-w

ii

OO

K>

4^

ii

OO

U>

"T3oooooooooooo

00

i—'oo

l.

_vop^uu

-o

ui

,Oiw

to

oo

t-o

t-o

i—i

vo

oo^y^

^^^^VOO^

uui(owwki'(o>jww(oiow'w'ÎoQk^vjQ

k-O

>p

00

00

00

On

4^

,l*>

,l*>

,l*>.H

K>

K>o

00

-O^^

^

AA^^A^Oa

OOOOO^^

O

UUlljJK)tOMK)(OK)K)i-h-K'i-K''io0000

MhO»O00MUUKIIO-JvIMhOYYY

11

11

11

11

11

11

11

1(*")

(*")O

UUWU(OUMWIO(OIOkhkmOU^

0000000000000000

On

K>

K>

4^

<Ji

^1

^1

00

(jjO

On

^1

UJ

00

^1

^1

00

^1O

K<

K<

4^O

4^O

On

4^O

4^O

4^

4^

4^

00

4^

4^

(jj

4^

^1O

4^

On

t/i

K>O

00

K>

4^

^OOOO

U>m

Onh

K)

^1

On

^1

On

4^

00

00

t/i

K>

4^

t/i

On

K>

00

^1O

^n

^1

(jjhm

K-

^1

K)

00

^1

K>

UJ

UJ

ijj

IjJ

UJ

U>

u>M

UJ

IjJ

IjJ

4^

ujM

IjJMMM

4^

4^

IjJ

IjJ

UJ

UJ

4^

4^

4^

4^

4^

4^

4^

4^

4^

4^

Ul

4^

4^

4^

4^

4^

4^

4^

Page 283: Two-dimensional acetylenic scaffolding - Research Collection

258 Appendix

C(3) 65(2) 53(2) 44(2) -8(2) 3(2) 3(2)

C(4) 64(2) 65(2) 50(2) -10(2) 6(2) 4(2)

C(5) 59(2) 65(2) 54(2) -6(2) 1(2) 5(2)

C(6) 60(2) 63(2) 52(2) -3(2) 4(2) 6(2)

C(7) 61(2) 55(2) 57(2) -1(2) 1(2) 6(2)

C(8) 51(2) 49(2) 49(2) 2(2) 4(2) 6(2)

C(9) 60(2) 54(2) 53(2) -4(2) -4(2) -5(2)

C(10) 68(2) 59(2) 40(2) -5(2) -1(2) -7(2)

C(H) 58(2) 48(2) 38(2) 0(1) 0(2) -1(2)

C(12) 57(2) 56(2) 46(2) -6(2) 0(2) -8(2)

C(13) 63(2) 56(2) 41(2) -7(2) -5(2) 5(2)

C(15) 97(3) 106(3) 47(2) -16(2) 19(2) -17(2)

C(16) 60(2) 88(3) 64(2) 2(2) 5(2) -11(2)

C(17) 67(2) 34(2) 49(2) -5(1) 4(2) 0(2)

C(18) 89(3) 40(2) 51(2) -1(2) -1(2) -3(2)

C(20) 65(3) 40(2) 82(2) -17(2) 7(2) -11(2)

C(22) 44(2) 40(2) 46(2) -8(1) 5(1) -2(1)

C(23) 54(2) 39(2) 47(2) -5(1) 1(1) 1(1)

C(24) 91(3) 39(2) 56(2) -2(2) -17(2) 4(2)

C(26) 67(2) 43(2) 49(2) 2(2) 5(2) 4(2)

C(28) 47(2) 42(2) 40(2) -6(1) 6(1) -1(1)

C(29) 79(2) 41(2) 46(2) -10(1) 2(2) 4(2)

C(30) 88(3) 47(2) 47(2) -2(2) -5(2) 2(2)

C(31) 49(2) 48(2) 40(2) -3(1) 4(1) -5(1)

C(32) 69(2) 43(2) 48(2) -14(2) 2(2) 3(2)

C(33) 68(2) 41(2) 50(2) -8(1) 1(2) 5(2)

C(35) 116(:S) 59(2) 65(2) 4(2) -17(2) -10(2)

C(36) 80(3) 71(2) 53(2) -11(2) -9(2) -7(2)

Table 7.22. Hydrogen coordinates (x 104) and isotropic displacement parameters (Â2 x 103) for 97.

_y_ ^(eq)

H(13)

H(l)

H(2)

H(14)

H(8)

H(9)

H(10)

H(18)

H(19)

H(20)

H(12)

H(7)

H(ll)

H(3)

H(15)

H(16)

H(17)

H(4)

H(5)

H(6)

5063

2741

240

2594

15

782

-1301

-1270

-2245

-2559

12490

11370

11943

13062

11211

9738

9277

10367

11845

9806

8458

8132

5382

5703

8432

6842

7114

4495

5922

5608

8626

9112

4505

4033

9205

9254

8547

4869

5759

6126

2717

3065

2355

2013

3263

3423

3387

2834

2644

3031

407

-126

-354

176

-824

-551

-915

-768

-967

-1049

67

67

64

64

124

124

124

106

106

106

66

73

64

64

121

121

121

103

103

103

Page 284: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 259

Table 7.23. Torsion angles [°] for 97.

C(17)-C(l)-C(2)-C(3) -128(5) C(17)-C(l)-C(22)-C(23) 94.4(3)

C(22)-C(l)-C(2)-C(3) 49(5) C(2)-C(l)-C(22)-C(23) -83.0(3)

C(l)-C(2)-C(3)-C(4) 16(31) C(17)-C(l)-C(22)-C(28) -87.7(3)

C(2)-C(3)-C(4)-C(5) 19(32) C(2)-C(l)-C(22)-C(28) 94.8(3)

C(3)-C(4)-C(5)-C(6) -61(15) C(28)-C(22)-C(23)-C(26) 1.3(5)

C(4)-C(5)-C(6)-C(7) -5(16) C(l)-C(22)-C(23)-C(26) 178.9(3)

C(5)-C(6)-C(7)-C(8) 20(24) C(28)-C(22)-C(23)-C(24) -176.6(3)

C(6)-C(7)-C(8)-C(9) 121(19) C(l)-C(22)-C(23)-C(24) 0.9(4)

C(6)-C(7)-C(8)-C(13) -58(19) C(22)-C(23)-C(24)-N(25) 109(11)

C(13)-C(8)-C(9)-C(10) -0.6(4) C(26)-C(23)-C(24)-N(25) -69(11)

C(7)-C(8)-C(9)-C(10) 179.8(3) C(22)-C(23)-C(26)-N(27) -173(4)

C(8)-C(9)-C(10)-C(ll) -0.8(5) C(24)-C(23)-C(26)-N(27) 5(5)

C(16)-N(14)-C(ll)-C(12) 4.7(5) C(23)-C(22)-C(28)-C(33) 2.7(5)

C(15)-N(14)-C(ll)-C(12) 177.6(3) C(l)-C(22)-C(28)-C(33) -174.8(3)

C(16)-N(14)-C(ll)-C(10) -175.3(3) C(23)-C(22)-C(28)-C(29) -178.6(3)

C(15)-N(14)-C(ll)-C(10) -2.4(5) C(l)-C(22)-C(28)-C(29) 3.9(4)

C(9)-C(10)-C(ll)-N(14) -178.3(3) C(33)-C(28)-C(29)-C(30) 1.4(4)

C(9)-C(10)-C(ll)-C(12) 1.8(4) C(22)-C(28)-C(29)-C(30) -177.3(3)

N(14)-C(ll)-C(12)-C(13) 178.6(3) C(28)-C(29)-C(30)-C(31) 0.4(5)

C(10)-C(ll)-C(12)-C(13) -1.4(4) C(36)-N(34)-C(31)-C(32) -6.1(4)

C(ll)-C(12)-C(13)-C(8) 1(5) C(35)-N(34)-C(31)-C(32) -178.1(3)

C(9)-C(8)-C(13)-C(12) 0.9(4) C(36)-N(34)-C(31)-C(30) 173.9(3)

C(7)-C(8)-C(13)-C(12) -179.4(3) C(35)-N(34)-C(31)-C(30) 1.8(5)

C(2)-C(l)-C(17)-C(18) -0.1(5) C(29)-C(30)-C(31)-N(34) 177.9(3)

C(22)-C(l)-C(17)-C(18) -177.5(3) C(29)-C(30)-C(31)-C(32) -2.2(5)

C(2)-C(l)-C(17)-C(20) 179.7(3) N(34)-C(31)-C(32)-C(33) -177.9(3)

C(22)-C(l)-C(17)-C(20) 2.3(4) C(30)-C(31)-C(32)-C(33) 2.1(5)

C(l)-C(17)-C(18)-N(19) 9(14) C(31)-C(32)-C(33)-C(28) -0.3(5)

C(20)-C(17)-C(18)-N(19) -171(100) C(29)-C(28)-C(33)-C(32) -1.5(4)

C(l)-C(17)-C(20)-N(21) -116(79) C(22)-C(28)-C(33)-C(32) 177.2(3)

C(18)-C(17)-C(20)-N(21) 64(94)

Page 285: Two-dimensional acetylenic scaffolding - Research Collection

260 Appendix

Table 7.24. Crystal data and structure refinement for 119.

Crystal data

Cambridge Crystallographic Data Centre

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system, space group

Unit cell dimensions

Volume

Z

Calculated density

Absorption coefficient

F(000)

Approximate crystal size

Data collection

CCDC-658467

kivalal4_D_07

C22H15N5

349.39

220(2)K

0.7107 Â

triclinic, P 1 (no. 2)

a = 8.8680(13) Â, a= 101.406(2)°b = 9.2552(14) Â, ß= 93.315(12)°c = 11.7022(14) Â, y= 94.983(2)°

935.2(2) Â3

2

1.241 mgnT30.077 mm"1

364

0.25x0.23 x 0.20 mm

Nonius Kappa-CCD diffractometer with graphite monochromator

Grange for data collection

Index ranges

Reflections collected / unique

Completeness to 28= 26.32

Absorption correction

Solution and refinement

Structure solution

Structure refinement

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [/> 20(1)]

Extinction coefficient

Largest diff peak and hole

-14</< 14

3.03 < 6< 26.32°

-11 <h< 11,-11<K 11,

6407/ 3755 (Rmt = 0.035)

98.6%

none

SIR-97 (direct methods)

SHELXL-97 (full-matrix least-squares on F2)3755/0/247

1.038

R(F) = 0.045, wR(F2) = 0.119

0.053(13)

0.150 and -0.136 e Â~3

Page 286: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 261

(>N25Ö>

C23

N27 C26 \ C19

C7^vC21 , !

CIS

>.

(' C17C9 CIO C16

C22 \ C8 > \ N14..

A

/ \^^r"\Q

\ °3C,2

a5

C3 -^ t

C4 f' C6 N7

./NS Ç>

Table 7.25. Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Â2 x 103) for

119. C/(eq) is defined as one third of the trace of the orthogonalized Ulf tensor.

X y z C/(eq)

N(5) 11770(2) -2377(2) 2584(2) 76(1)

N(7) 8386(2) -1238(2) 5077(1) 62(1)

N(14) 6595(1) 4596(1) 6078(1) 48(1)

N(25) -601(2) -1801(2) -823(1) 70(1)

N(27) 1991(2) -5466(1) -2171(1) 68(1)

C(l) 6938(2) -224(1) 2321(1) 39(1)

C(2) 8404(2) -833(1) 2164(1) 43(1)

C(3) 9258(2) -1227(2) 3013(1) 43(1)

C(4) 10663(2) -1856(2) 2780(1) 54(1)

C(6) 8763(2) -1206(2) 4166(1) 48(1)

C(8) 6842(1) 980(1) 3302(1) 39(1)

C(9) 5519(1) 1161(1) 3913(1) 41(1)

C(10) 5443(2) 2316(2) 4835(1) 43(1)

C(ll) 6683(2) 3417(1) 5199(1) 41(1)

C(12) 8019(2) 3230(2) 4602(1) 44(1)

C(13) 8098(2) 2044(2) 3708(1) 42(1)

C(15) 7901(2) 5672(2) 6494(2) 66(1)

C(16) 5297(2) 4678(2) 6783(2) 62(1)

C(17) 5716(2) -852(1) 1511(1) 39(1)

C(18) 4356(2) -149(1) 1396(1) 40(1)

C(19) 3156(2) -803(1) 653(1) 40(1)

C(20) 3191(2) -2245(1) -59(1) 38(1)

C(21) 4572(2) -2926(1) -1(1) 42(1)

C(22) 5772(2) -2259(1) 741(1) 43(1)

C(23) 1927(2) -2946(1) -789(1) 41(1)

C(24) 528(2) -2312(2) -805(1) 48(1)

C(26) 1961(2) -4349(2) -1552(1) 48(1)

Page 287: Two-dimensional acetylenic scaffolding - Research Collection

262 Appendix

Table 7.26. Bond lengths [Â] and angles [°] for 119.

N(5)-C(4) 1.145(2) C(8)-C(9) 1.4140(18)

N(7)-C(6) 1.141(2) C(9)-C(10) 1.3697(19)

N(14)-C(ll) 1.3550(17) C(10)-C(ll) 1.4168(19)

N(14)-C(16) 1.453(2) C(ll)-C(12) 1.4158(19)

N(14)-C(15) 1.453(2) C(12)-C(13) 1.3683(18)

N(25)-C(24) 1.1448(18) C(17)-C(18) 1.4313(18)

N(27)-C(26) 1.1425(18) C(17)-C(22) 1.4363(18)

C(l)-C(17) 1.4021(18) C(18)-C(19) 1.3518(18)

C(l)-C(8) 1.4457(18) C(19)-C(20) 1.4307(17)

C(l)-C(2) 1.4678(18) C(20)-C(23) 1.3971(18)

C(2)-C(3) 1.3409(19) C(20)-C(21) 1.4287(18)

C(3)-C(4) 1.438(2) C(21)-C(22) 1.3544(19)

C(3)-C(6) 1.440(2) C(23)-C(24) 1.4184(19)

C(8)-C(13) 1.4136(18) C(23)-C(26) 1.4271(18)

C(ll)-N(14)-C(16) 120.86(12) C(12)-C(ll)-C(10) 117.00(12)

C(ll)-N(14)-C(15) 121.19(13) C(13)-C(12)-C(ll) 121.27(12)

C(16)-N(14)-C(15) 116.93(12) C(12)-C(13)-C(8) 122.03(12)

C(17)-C(l)-C(8) 124.05(12) C(l)-C(17)-C(18) 122.89(12)

C(17)-C(l)-C(2) 117.87(12) C(l)-C(17)-C(22) 120.94(12)

C(8)-C(l)-C(2) 118.07(11) C(18)-C(17)-C(22) 116.17(11)

C(3)-C(2)-C(l) 124.56(13) C(19)-C(18)-C(17) 122.18(11)

C(2)-C(3)-C(4) 121.19(13) C(18)-C(19)-C(20) 121.05(12)

C(2)-C(3)-C(6) 122.76(13) C(23)-C(20)-C(21) 121.64(11)

C(4)-C(3)-C(6) 115.71(12) C(23)-C(20)-C(19) 120.99(12)

N(5)-C(4)-C(3) 178.91(19) C(21)-C(20)-C(19) 117.37(11)

N(7)-C(6)-C(3) 177.63(16) C(22)-C(21)-C(20) 121.13(12)

C(13)-C(8)-C(9) 116.38(12) C(21)-C(22)-C(17) 121.90(12)

C(13)-C(8)-C(l) 120.82(12) C(20)-C(23)-C(24) 121.94(11)

C(9)-C(8)-C(l) 122.80(11) C(20)-C(23)-C(26) 121.99(12)

C(10)-C(9)-C(8) 122.05(12) C(24)-C(23)-C(26) 116.06(12)

C(9)-C(10)-C(ll) 121.16(12) N(25)-C(24)-C(23) 179.74(18)

N(14)-C(ll)-C(12) 121.45(12) N(27)-C(26)-C(23) 179.39(18)

N(14)-C(ll)-C(10) 121.55(12)

Table 7.27. Anisotropic displacement parameters (Â2x 103) for 119. The anisotropic displacement factor

exponent takes the form: -2TC2[Â2a*2£/n +...

+ 2hka*b*U\2].

Un u22 U33 U23 Ul3 Ul2

N(5) 59(i; 102(1) 88(1 ) 50(1) 22(1) 34(1)

N(7) 46(i; 83(1) 61(1 ) 32(1) 3(1) 1(1)

N(14) 50(i; 48(1) 46(1 ) 4(1) 4(1) 5(1)

N(25) 50(i; 68(1) 80(1 ) -13(1) -10(1) 22(1)

N(27) 63(i; 47(1) 84(1 ) -8(1) -4(1) 9(1)

C(l) 39(i; 40(1) 40(1 ) 14(1) 2(1) 5(1)

C(2) 4i(i; 44(1) 44(1 ) 8(1) 3(1) 4(1)

C(3) 36(i; 46(1) 50(1 ) 15(1) 2(1) 3(1)

C(4) 44(i; 65(1) 60(1 ) 26(1) 7(1) 11(1)

C(6) 33(i; 58(1) 56(1 ) 24(1) -1(1) 2(1)

C(8) 37(i; 41(1) 39(1 ) H(l) 0(1) 3(1)

C(9) 35(i; 45(1) 42(1 ) 13(1) 0(1) -2(1)

C(10) 36(i; 52(1) 42(1 ) 13(1) 5(1) 3(1)

C(H) 4i(i; 43(1) 40(1 ) H(l) 0(1) 6(1)

C(12) 37(i; 45(1) 47(1 ) 9(1) 1(1) -3(1)

C(13) 34(i; 47(1) 44(1 ) 12(1) 4(1) 1(1)

C(15) 68(i; 51(1) 69(1 ) -4(1) 0(1) -1(1)

C(16) 67(i; 65(1) 53(1 ) 5(1) 16(1) 16(1)

Page 288: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 263

C(17) 42(1) 38(1) 39(1) 10(1) 0(1) 6(1)

C(18) 45(1) 36(1) 40(1) 7(1) 2(1) 9(1)

C(19) 41(1) 40(1) 40(1) 8(1) 2(1) 12(1)

C(20) 42(1) 36(1) 36(1) 9(1) 2(1) 8(1)

C(21) 45(1) 36(1) 43(1) 6(1) -1(1) 11(1)

C(22) 43(1) 40(1) 46(1) 11(1) 0(1) 13(1)

C(23) 41(1) 38(1) 44(1) 5(1) 0(1) 9(1)

C(24) 45(1) 44(1) 48(1) -3(1) -5(1) 7(1)

C(26) 42(1) 41(1) 58(1) 6(1) -4(1) 7(1)

Table 7.28. Hydrogen coordinates (x 104) and isotropic displacement parameters (Â2 x 103) for 119.

X y z t/(eq)

H(2A) 8770 -954 1416 51

H(9A) 4665 466 3680 49

H(10A) 4553 2380 5233 51

H(12A) 8867 3934 4824 52

H(13A) 9016 1934 3352 50

H(15A) 8702 5189 6821 99

H(15B) 7610 6461 7091 99

H(15C) 8263 6082 5847 99

H(16A) 4367 4475 6275 93

H(16B) 5334 5662 7268 93

H(16C) 5323 3952 7277 93

H(18A) 4295 799 1852 48

H(19A) 2284 -302 604 48

H(21A) 4648 -3852 -485 50

H(22A) 6669 -2730 751 51

Table 7.29. Torsion angles [°] for 119.

C(17)-C(l)-C(2)-C(3) -131.06(14) C(9)-C(8)-C(13)-C(12) -3.4(2)

C(8)-C(l)-C(2)-C(3) 48.77(18) C(l)-C(8)-C(13)-C(12) 177.19(12)

C(l)-C(2)-C(3)-C(4) 178.17(13) C(8)-C(l)-C(17)-C(18) 15.7(2)

C(l)-C(2)-C(3)-C(6) 5.2(2) C(2)-C(l)-C(17)-C(18) -164.51(12)

C(2)-C(3)-C(4)-N(5) -68(9) C(8)-C(l)-C(17)-C(22) -164.37(12)

C(6)-C(3)-C(4)-N(5) 106(9) C(2)-C(l)-C(17)-C(22) 15.44(19)

C(2)-C(3)-C(6)-N(7) 133(4) C(l)-C(17)-C(18)-C(19) -176.48(13)

C(4)-C(3)-C(6)-N(7) -40(4) C(22)-C(17)-C(18)-C(19) 3.57(19)

C(17)-C(l)-C(8)-C(13) -146.91(13) C(17)-C(18)-C(19)-C(20) 0.1(2)

C(2)-C(l)-C(8)-C(13) 33.28(18) C(18)-C(19)-C(20)-C(23) 177.22(12)

C(17)-C(l)-C(8)-C(9) 33.7(2) C(18)-C(19)-C(20)-C(21) -3.41(19)

C(2)-C(l)-C(8)-C(9) -146.14(13) C(23)-C(20)-C(21)-C(22) -177.64(13)

C(13)-C(8)-C(9)-C(10) 1.13(19) C(19)-C(20)-C(21)-C(22) 3.0(2)

C(l)-C(8)-C(9)-C(10) -179.43(12) C(20)-C(21)-C(22)-C(17) 0.7(2)

C(8)-C(9)-C(10)-C(ll) 1.9(2) C(l)-C(17)-C(22)-C(21) 176.06(13)

C(16)-N(14)-C(ll)-C(12) -171.94(14) C(18)-C(17)-C(22)-C(21) -4.0(2)

C(15)-N(14)-C(ll)-C(12) -3.8(2) C(21)-C(20)-C(23)-C(24) 176.56(13)

C(16)-N(14)-C(ll)-C(10) 8.0(2) C(19)-C(20)-C(23)-C(24) -4.1(2)

C(15)-N(14)-C(ll)-C(10) 176.17(14) C(21)-C(20)-C(23)-C(26) -2.7(2)

C(9)-C(10)-C(ll)-N(14) 177.25(13) C(19)-C(20)-C(23)-C(26) 176.67(12)

C(9)-C(10)-C(ll)-C(12) -2.8(2) C(20)-C(23)-C(24)-N(25) 118(50)

N(14)-C(ll)-C(12)-C(13) -179.44(12) C(26)-C(23)-C(24)-N(25) -63(50)

C(10)-C(ll)-C(12)-C(13) 0.6(2) C(20)-C(23)-C(26)-N(27) -99(15)

C(ll)-C(12)-C(13)-C(8) 2.5(2) C(24)-C(23)-C(26)-N(27) 82(15)

Page 289: Two-dimensional acetylenic scaffolding - Research Collection

264 Appendix

Table 7.30. Crystal data and structure refinement for 121.

Crystal data

Cambridge Crystallographic Data Centre

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system, space group

Unit cell dimensions

Volume

Z

Calculated density

Absorption coefficient

F(000)

Approximate crystal size

Data collection

CCDC-658468

kivalal6_D_07

3(C28H19N5)1.5(C2H2C14)

1528.20

173(2)K

0.7107 Â

triclinic, P 1 (no. 2)

a= 11.1429(14) Â, er= 82.970(11)°b = 16.3191(15) Â, ß= 85.747(12)°c = 22.2110(17) Â, ^=81.416(11)°

3957.2(7) Â3

2

1.283 mgnr30.273 mm"1

1578

0.10x0.10x0.10mm

Nonius Kappa-CCD diffractometer with graphite monochromator

Grange for data collection

Index ranges

Reflections collected / unique

Completeness to 26= 22.92

Absorption correction

Solution and refinement

Structure solution

Structure refinement

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [/> 20(1)]

Extinction coefficient

Largest diff peak and hole

2.95 < 6< 22.92°

-\2<h< \2,-\l<k< 17,-24</<23

18424/10703 (Rmt = 0.054)

98.2%

none

SIR-97 (direct methods)

SHELXL-97 (full-matrix least-squares on F2)10703/0/980

0.951

R(F) = 0.111, wR(F2) = 0.288

0.0058(14)

0.723 and-0.846 eÂ"3

Page 290: Two-dimensional acetylenic scaffolding - Research Collection

^lC'N(-/l4^<jJK>H-'c/iS'Üj'K>'^'

OO^IOitJi-^UlMh-0^w

o-juoouioouivi-jaoovi^ooa\iovowKON--ia

0\UlUlUll/lUll/l^^UlUlUlUll/lO\>JO\^0\0\Ul^O\

U)

to

K)MM

I^1

lOM

(JlUl

vj

O00

^OO

K>

4^

4^W

Ui

^1

00m

'S'S'S'S'SS

||

||

L«4iO0tl0HHH^U|HH

H-K>K>H-aNON^OOOH-OH-H-<JiK>K>H-

K-

^1

4^O

-

S'SSS

CiJ

CiJ

,

(Ji

4^

4^

4^

4^

,On

4^

tOMWtOl-K'IOUIIjJtOWtOtOh-MUia<00l-U)IjJ

|00

UiO4^UiU~0CV0MK1OOM^Ui,

c*jc*jc*jk>c*jc*jc*jc*jc*jc*jc*jc*jc*jk>c*j

C.J

C.J

K>

C.J

'

4^CiJCiJCiJCiJCiJCiJ(Ji(JiCiJCiJCiJCiJCiJCiJ(JiCiJ4^CTnCTn4^O0(Ji

UlvJvJtO4^4^Ui00M^I^IULnM4^4^MU00ff\^IUiK)5

h-(

ru

2\

3D

n,/

\

0<

»y

CO

*-

/uj

-

_

z/

n

/

/'e

\0

n

y\

,SC

2\

/n

Qg

J/

2*

\\

tJ

<^"v

n

zn

„1

'

°^°

0

'

\_/'

Gn

'1

<

^S-

\'

Q?

'

,

*n

n/V

CO,,

/f

\^/

*

Page 291: Two-dimensional acetylenic scaffolding - Research Collection

ooooooooooooz;z;z;z;z;ooooooooooooooooooooooooooooz;z;z;z;z;oooooooooo

HH

hiO

00

1^^o

,.

=,.

=

^ON(Jl4^tjJK<K-tJl4^LiJ

4^

U>

K>

i—O

-

VOOO^ICT\Ui4iUlK)MUi4^J^^00^I»Ui4^WK)mOV0

IftOOiOOl^WHOOUOOlUHHSOUUUiUHHOOUiUWOOOJiHHOOOOVO^VOOaiMUOHUlOUi^UHOlliJIOHljJHsJUisjHUiHUi

H^00OWHOU00V0O\a\0\HU001iJiO00l«vl(O00U^iOO-J()SWUiUiHUiVOr;iOIOUiUiH-JKlHlJUiHlOK)H^-J^aiUO-J(OOC

^OOlnMCilJiUUiHONLnH^MK)vlO^^O\^UQOOH^^^^'J^^^^Qj^lftKl^aiUVOHlOVOU^UiUlftO\^OOOOON-04i-J^

HHKIHMUU^ljJUU4i50-jHU4i(0(OIOMUU(OHHHHHMU(OtAl»'J--Jff\Ul^-t'UUUUU

II—'

-^)

U>

U>

L/l

I<Jl(Jl^l<JlK>tjJ4^tjJ

-JPOOOSUiUIOOiOVOiOO^WOVOO-MO-l'iOIOOO^OSWOOilJiHiOOSO^OilOOiOO^lJiKlHUlAUiUOOOlOSHOUOSlJiUO^Oi

00^Q4i^OUii0vl^a\(!0Ovl50W^ai^^O\l«H000NQ^Hl«(!0OUV0CO^^slUO\^4iUWU^gOM50iM^2'2QHUl00

4^ai^4^4^4^0JLOL04^4^4^aiaiUJ4^4^4^ai^^4^4^4^4^^4^4^4^4^0J4^4^4^4^4^4^4^4^4^4^4^ai4^(Ji4^4^<jJ<Ji<Ji

Ut

www

4^

4^

4^

.£>

> "0 "0

m a X

iOUivIUi-JU-JU^|(Ji(OUWOV0h^00OO1JihUO-0^h-Jhv0U00UiU10O-JU^OW^0\O0Nh-JUi

^iOUO\^|iOffi-|iHMl/Ui-J^^IOOUiWOHO\Hl04iVOV0004iUiOiOOU4i

OUIOO(^JtOMvJO\^uuK)K)»v)^JMOUi>OUIWOOa\Ui^lv)(Ji^ai4iOCVOOO

L*JL*J4^L*JL*JL*JL*JL*JL*JL*JL*JL*J4^4^L*JL*JL*JL*J^^

4^L*JL*JL*JL*JL*JL*JL*JL*JL*JL*JL*JL*JL*JL*J

M00Ui-|i00^MMMMK)U)

OM^UOWUOOiOSWh

4^

4^

'

oU)O

-.1

00

t/1

^^

yo

00

4^

00

K>

On

^-i

yo

U)

K>

yo

^1

^1O

^^

^^

4^

00

4^

4^

^1

Ono

yo

^1o

t/1

t/io

k^

4^

t/i

00

.-

N

4^

'N

K^

On

OnO

K>

t/io

On

4^

UJ

UJ

u>

Llj

Llj

Llj

4^

Llj

LiJ

Llj

UJM

LiJ

^-^

^-^

^-^

LlJ

u>

u>

LiJ

UJ

4^

Llj

4^

On

On

<jJ

4^

©Ui

i—'

-J©

U)

<->J

U)

<JJ

4^

vo

toM

tow

U)^V0^4^CT\a\^^^^^4^WL0^4»UWU)WL04^^Ul^-^UUWU)^0\^UlIJlO\4^VO^|tJlO\UltJl4iUWUI(Jl4i

MMMMMMh-h-h-Mh-MOJMh-MMMOJL^MMMh-h-MMh-h-h-h-h-MMMMMMh-h-h-MMMMMMh-L^MMMMMMh-h-MMK>

Page 292: Two-dimensional acetylenic scaffolding - Research Collection

CD

CM

r->r->r->r->r->r->r->r->r->r->r->r->r->r->r->r->^H

^h

^h

^h

in

inm

^t-

^h

^H

^H

(Nl

CO

CO

CO

CO

CO

CO

^H

^H

(Nl

CO

CO

CO

CO

^—'

^—'

^—'

^—'

^—'

^—'^—'^—'^—

wwwwwwwwwwwwwwwwU-)

^o

^o

(N

(Nom

os

<N

ooinoint^inooinint^mooosin^o<Nm<N<N^Hm<Nmin^H

rnrnrnrnrn^^^rnrnrnrnrnrnrnm'—icscS"—loovomrnt-

rnt-t-00'5tt-OO00OfS'5t'5t'—It-VOVIOONCSO'—ioovovi

inosino<Nooooosinorn<N<Nint^int^inoos^H<Noo<N<N

'/^'tOfSOOON'/^'/^CS'—IVOONOO'*'—iCSVI'^tO'—it-fS"—iTht-

^o^ot^t^^o^ot^^o^o^oinininininin^t-in^o^oininososos

><

QZLU

D.

D.

<t^<NOOoos<-noot^^HOOs<-n^Ht^osrnrn^o^o^t-^t-<N^t-inin

int^ooinrno^HOO<Ninos^t-inos^t-^t-oino<Noornos^t-^H

mm

^h

^h

t^

oo

tN

osrooot^fNtNOOsorn^Ht^^t-^H^o^Hrnrnrn^Orninosro^H

cn>—iror--oocNvO'—i"/-!"—ir-tN©"—lOTt-i—iovoonooo©'/-!'—i

ooooooooooooooooooooooooo

,o

<

öiomr-'

H

^-v

^-v

^-v

^-v

^-v

^-v

^-vO

^-v^H

<Nm

^H

^-v

^-v

^-v

^-v

^-vo

^H

^-v

^-v

^-v

^-v

^-v

^-v

^-v

^-v

^-v

^-v

^-^

00

00

00

00

OS

OS

OS^

OS^^^^

00

00

00

OS

OS^^

OS

00

OS

00

00

00

00

00

00

00

OS

OS

\n

in

(N

^H

inm

^H

OSm

00

OS

(N

^H

^H

(N

r-

00

r-

r-

00

00

^1-m

^1-m

^H

^H

OS

\n

00

*m

OS*

<N

<N*

r-o

^O

OS

^o

in*m

^Om*mm***

r-

OSo

ino

^H

^oo

m*m***mm*mmmm

^H

^Hm**

^H

^H*m*******m*

^ot^oo^HOos<N^t-ooin^ot^oor^r^r^jsiH5Njsr^r^r^^r^Z4.r^^r^r^r^

9999999999999ÜÜUÜUÜÜÜUÜUÜÜÜÜÜUÜ

.-—\

.-—\

.-—\

.-—\

.-—\

.-—\

.-—\

.-—\

.-—\

.-—\

.-—\

.-—\

.-—\

ii

ii

ii

ii

ii

ii

ii

ii

ii

ihvbSSôoôo^HrnmTt-ûn^bt^:

--

--

--

r~'P'P'P'P'P'P'P'P'P~r^

^^^^^^c^r^r^r^r^r^r^^r^r^r^r^^^^HfNfN^l-^l-inin^o^ot^oo

OOOOOOOOOOOOOZ

ZZZZZZooooooooooo

^-v

^-v

^-v

^-v

^-v

^-v

^-vo

^-v

^-v

^-v

^-v

^-v

^-v

^-v

^-v

^-v

^-v

^-v

^-v

^-^^-^

^-v

^-v

^-v

^-vOo

^-v

^-v

^-^

00

OS

00

OS

OS

OS

OS

^^

OS

OS

00

OS

00

00

00

00

00

OS

OS

00

00

00

00

OS

OS

OS

^^

^^

00

OS

OS

^1-

ino

^H

inmmo

00

OS

OS

<N

in

r-

in

00

in

r-

^1-

<N

5t

Vi

in

00

<Nmo

r-

OS

<N

^1-

^1-

^1-

00m

in

^1-

in

^1-

inm

\o

00o

^1-oo

00

os

^H

r-m

-5tm

^H

^H

(Noo

inOo

^^m**^^*m*******mm*m

"*

"*m*****m**

r->r->r->0

^h

OSO

s-,s-.

n«IMh

^o^m^oMH(s!HHHHMH(s!(SM(S

ruuu)

r>n

r>

ririmmn

rimX^X^ryU

üÜUUÜUüüüüU

UUUUUUUUÜÜUUUUUUUUU

AAAAAAAAAAAAAAAAAAA^^^u^CoPPoooo^mm

>—icsmmm^'ni—icscs^Th'/^'/^vovot-ooON'—1>—1>—1>—1>—1>—1>—1>—1>—icscscs

Page 293: Two-dimensional acetylenic scaffolding - Research Collection

Gl00

00

t^

ONW

^-^^-^

K>

L*J^-^^-^^-^^-^^-^

L*J^-^^-^^-^

4^

4^

^-^^-^^-^^-^^-^^-^^-^^-^O

^-^^-^

s—y

'Zs

>Zs

>Zs*Zs

>Zs

^L^

''

^—^^Zs

II

II

I\Zs

''

'Zs

ZZ*

II

II

II

II

\Zs

''

iNiNiNiNiNiNiN00''00000'000''OOOOOOOOhL,ZZ

oooooooooooooooz;z;z;z;z;z;z;oooo

Ut

L.J

'

4^

ON

<jJ

<jJ

'

K-

K-o

MMMNOOO^JONONUlIJI-liJi

K>K>H-(ji4^tjJtjJtjJK>H-K>K>K>K>

-^ww^wwwwww

-O

On

(ji

4^

''0000000000000000000

SfiSHVOOOH-vlOlHUltOUJi

i—'

K>

i—'

K>ww

<jJww

4^w

<->jww

<Jl

K>

OJw

ww

w

_7ON0h-Owww

POOO

00

-O

On

(Ji

K-

K-

K>

K>

K>

K>

K-

K>

K>

K>

K>

k-

K>

K>

K>

K>

K>

K>

k-

k-

K>

K>

k-

K>

k-

-O

k-

K>

K>

-O

k-

k-

K>

kkuk1

L)k11

L)

ii,11uk

'Hm1iuhhUUUU

M(oaiKui^jiUi^sjou\ovi-jooKUi4iUioui^-iiio^io-JkK(o»o

oooioawoHiA-ju^ui-joi-JOuoouooovowoi-juw

Oitjio\oioitjiijitjiiyiUiUi(jiUia\0\uiUiUi(jiiji(jiiyiUiUi(jiooa\tjio\^iuia\a\

oooovo^voooioooooiooo>ûH^HOo>ûoovooo^HHHH\o

S;^^1o1o1oQwî'S'2'i^'vo'3lOIOIOtOtOK)K)K)K)Kl'ijl'SlOh-h-h-h-h-^

=iO^^^lOO^l^tJiOO^^H-tOw-

O-O

-O

ON

00

00

<J>

^^^'t-J-JwO^w-J^w-JOO-jaUl^WUUIJHvJw

00

00

00

>J

^J

vj»

=*

ON

Ui

;U

-

^3^

3^3iHHOMtOMtOKI^kMHHOOOOHHWIOWHH

.T.T.T.T^^I—'

=:UOll/ONUOOOO-|ivlOwNONOOHHON-J

13^^^^^^^13131313131313^^^^^^^^^^0

O-3wOi--/ww'-l^U|kWUH0000-vl-JO\^kl'IO:

k^i

ik^i

ii

i=

==

==

==

==

==

==

==

=~-^

VOOYoooOWWWWWWWW

o

0^^0^^^^0000000000000000--;

ooo^

oop

p^^^^'fo'fo'fo^Z;'fo'fo^Z;^Z;^Z;^Z;'fo^Z;

to

^k>

^J^J^J^J

^_3^_

3^_

3^5^5

^_3^5^5^5^5

^_3^5

4^

NO

OnO

^1

^1

4^

K<

4^

^1

^1

00O

K>O

K<

00o

K>

K>O

^1

^1

00

^1

NO

Ut

ON

K<

K<

00

^1

Ut

00

U)

NO

U)O

U)

ON

1—'

ONO

Ut

^1

4^

Uto

NO

00

^1

UtO

K<oo

Ut

U)

i—'o

Ut

Ut

Ut

Ut

Ut

Ut

Ut

<Jl

(Jl

^1

<Ji

(Jl

(Jl

^1

ON

ON

ON

00

^1

00

00

^1

ON

ON

ON

Ut

Ut

^1

00

Ut

Ut

Ut

Ut

Ut

Ut

Ut

K»NOON4^ON^I^IO0LiJLiJLiJLiJ4^tjJLiJ4^tjJ4^tjJ4^tjJ4^4^tjJ4^

iOOOUiOiUUOiNO-JOO-JONO-J^iOlOiOKIkkM-JO

rî'TîWOlOONHUUNOOOUOON-J-JOlKlNOk-liNONOOW

^^HHHHHHHHHiOÜNONOHHHCHNOOOOOOONO

ONOO-JtoMuOHH-^^^^iguo^O^^^^^

Page 294: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 269

C(19)-C(18)-C(17) 120.7(6) C(13")-C(6")-C(7") 116.3(5)

C(20)-C(18)-C(17) 121.2(6) C(13")-C(6")-C(5") 121.2(5)

N(4)-C(19)-C(18) 177.9(7) C(7")-C(6")-C(5") 122.5(5)

N(5)-C(20)-C(18) 179.3(8) C(8")-C(7")-C(6") 121.8(6)

C(22)-C(21)-C(17) 121.4(5) C(7")-C(8")-C(9") 121.4(6)

C(21)-C(22)-C(14) 121.4(6) N(3")-C(9")-C(12") 121.4(6)

C(28)-C(23)-C(24) 119.0(6) N(3")-C(9")-C(8") 121.6(6)

C(28)-C(23)-C(4) 121.6(6) C(12")-C(9")-C(8") 117.0(5)

C(24)-C(23)-C(4) 119.3(5) C(13")-C(12")-C(9") 121.6(6)

C(25)-C(24)-C(23) 119.6(6) C(12")-C(13")-C(6") 122.0(6)

C(24)-C(25)-C(26) 120.0(7) C(5")-C(14")-C(22") 120.9(5)

C(27)-C(26)-C(25) 120.7(7) C(5")-C(14")-C(15") 122.6(5)

C(26)-C(27)-C(28) 120.8(7) C(22")-C(14")-C(15") 116.4(5)

C(27)-C(28)-C(23) 119.8(7) C(16")-C(15")-C(14") 121.6(6)

C(9')-N(3')-C(10') 120.9(6) C(15")-C(16")-C(17") 121.8(6)

C(9')-N(3')-C(ll') 122.1(6) C(18")-C(17")-C(21") 120.3(7)

C(10')-N(3')-C(ll') 116.8(5) C(18")-C(17")-C(16") 122.1(7)

N(l')-C(l')-C(2') 176.8(8) C(21")-C(17")-C(16") 117.6(6)

C(4')-C(2')-C(l') 120.4(6) C(20")-C(18")-C(17") 121.9(8)

C(4')-C(2')-C(3') 126.5(6) C(20")-C(18")-C(19") 116.8(6)

C(l')-C(2')-C(3') 113.1(6) C(17")-C(18")-C(19") 121.3(7)

N(2')-C(3')-C(2') 175.6(9) N(4")-C(19")-C(18") 178.4(9)

C(2')-C(4')-C(23') 126.2(6) N(5")-C(20")-C(18") 179.1(9)

C(2')-C(4')-C(5') 117.0(6) C(22")-C(21")-C(17") 121.0(6)

C(23')-C(4')-C(5') 116.8(6) C(21")-C(22")-C(14") 121.3(6)

C(14')-C(5')-C(6') 127.4(5) C(24")-C(23")-C(28") 119.5(5)

C(14')-C(5')-C(4') 116.5(5) C(24")-C(23")-C(4") 118.6(5)

C(6')-C(5')-C(4') 116.1(5) C(28")-C(23")-C(4") 121.9(6)

C(5')-C(6')-C(7') 123.4(5) C(25")-C(24")-C(23") 121.1(6)

C(5')-C(6')-C(13') 121.2(5) C(24")-C(25")-C(26") 119.5(7)

C(7')-C(6')-C(13') 115.4(5) C(27")-C(26")-C(25") 120.4(6)

C(8')-C(7')-C(6') 122.2(6) C(26")-C(27")-C(28") 120.9(7)

C(7')-C(8')-C(9') 120.6(6) C(27")-C(28")-C(23") 118.6(7)

N(3')-C(9')-C(12') 121.3(6) C(102)-C(101)-C1(4) 109.2(9)

N(3')-C(9')-C(8') 121.2(6) C(102)-C(101)-C1(3) 110.1(9)

C(12')-C(9')-C(8') 117.5(5) C1(4)-C(101)-C1(3) 117.2(10)

C(13')-C(12')-C(9') 121.9(6) C(101)-C(102)-C1(2) 113.8(9)

C(12')-C(13')-C(6') 122.0(6) C(101)-C(102)-C1(1) 110.9(10)

C(5')-C(14')-C(22') 120.9(5) C1(2)-C(102)-C1(1) 110.2(8)

C(5')-C(14')-C(15') 123.5(5) C(201)#1-C(201)-C1(5) 135(2)

C(22')-C(14')-C(15') 115.6(5) C(201)#1-C(201)-C1(6) 103(3)

C(16')-C(15')-C(14') 122.6(5) C1(5)-C(201)-C1(6) 111.0(11)

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z+2.

Table 7.33. Anisotropic displacement parameters (Â2 x 103) for 121. The anisotropic displacement factor

exponent takes the form: -2T?[h2a*2Uu +...

+ 2hka*b*Ul2].

Uu UT Uy Ur ul3 Uu

N(l)

N(2)

N(3)

N(4)

N(5)

C(l)

C(2)

C(3)

C(4)

C(5)

C(6)

48(4)

90(6)

45(3)

56(4)

73(5)

55(5)

47(4)

54(4)

44(4)

31(3)

35(3)

56(4) 51(3)

134(7) 38(4)

41(3) 53(3)

60(4) 84(5)

41(4) 92(5)

45(4) 29(3)

40(4) 32(3)

70(5) 42(4)

24(3) 38(3)

28(3) 32(3)

27(3) 39(3)

9(3) -9(3) -10(3)

-9(4) 5(3) -44(5)

4(3) -6(3) -3(3)

-34(4) -12(4) 5(3)

-14(4) -29(4) 1(3)

4(3) -10(3) -8(3)

-10(3) -3(3) -11(3)

-9(3) 0(3) -26(4)

-8(2) -2(3) -7(3)

-4(2) -3(2) -2(2)

-4(2) 4(3) -1(3)

Page 295: Two-dimensional acetylenic scaffolding - Research Collection

222220000000000000000000000000000222220000000000000000000000

^OiUi^wwmo-VOOO^O\Ul-I^W(Oh-(Ji-I^U)

4^

LO

K)m

O"

H^^^Uvl^00UlO\O(^U^^UIOUUUUl^O(ai4iUWUU^M^Ulvl^^HaiUiai4i^WUIjJU|iUUUWU+.MK)0NUlUU(O

^^

^I^i

^CTj

l^i

^I^i

^CÀ«

^Hj^j

^C7>

^CÀî

^C7>

l^i

^CT3

^I^i

^I^i

'do

^CT5

^CTj

'CTS

'CIS

^I^i

^I^i

^CÀ>

'CÀi

^^i

^CTj

'CTS

^CT3

^I^i

^I^i

'ô^

^I^i

^CÀ>

^^i

'CTi

^CT3

^£i^

^CÀ>

^CÀ>

^C7>

^^i

^^i

l^i

^I^i

^CTj

^I^i

l^i

^I^i

^I^i

'CTS

^CT3

^CT3

^CTj

^CI5

'CTj

^Ca>

^^i

'CTS

^CT3

^CTj

—a

"—'

"—'

~—'

"—'

"—-"—-"—'"—'"—'"—'~—'"—'"—-"—'~—'"—'"—'~—'~—'"—'"—'"—'-—'"—'"—'~—'"—'"—'"—'~—'"—'"—'"—'~—'"—'

—j

"—'"—'

"—'

"—'

"—'

~—'

"—'

"—'

"—'

-—'

"—'

"—'

~—'

"—'"—'

"—'

"—'

~—'

"—'

"—'

~—'

"—'

"—'

^^1

-^

00

00

U4^h

ioh

to

4^CN^00L/lWL^L^4^OJL^L^L^ML^4^MOJL^L^L^ML^L^L^L/lWL/lWL/lWH-00L/lL/lL/l4^OJMW

-JO\UHH^liJ|OM0lV0JüO^KlU00-JUluai00l»UiOUV0V00lV0OOaiH4iOO\^0Nai-J4i|OvlU|gi»K-J0liOHHH

MM^4iL«4^L«^OOUiljJUl^^lJi4i4iU14^UlU4^CT\^llJi-|i-|iUlUl^UiJi4^CT\UilJiW^llJi^lOlIJi-^-^

Hh-^(00\UOOUiUW4i4^0Uh-^4i4iUvJ4^^0»00^4^(JiO-JIO-JU^OOUlvJ(J,UUiUih-4^0lO00Ui00UiWMJiUiOaiff\0\4i^

4^<ji4^4^tjJ(jJ(jJ(jJ(jJ4^4^4^4^tjJ(jJ

K-

4^

K-

4^

<J>^

^MVOIOHliJHO^iO

IIOW

00U

--v

ho

^-^

K-O

^"^

K-

^"^^"^^"^

o>

4^

4^

^"^^"^^"^^"^

L*J^

L*J^-^^

L/l^-^

L*J

L*J

L*J^^^

L*J

L*J

L*J

L*J

4^

(Ji

i—'

i—'

QHjHj

,5?

IOn

ItO

/—;

<Jl

Ui

UlM

00

0\

00

||

K>

i—

||

(jj

(jJ

U)

4^

U>

U>h

lO

S)

00

Ui

S)

(O

(jJ

U)

to

4^

4^©

U/£

00

h-

h-O

Ito

|I

II

II

II

|h-

to

OJ

|I

tjj^-^^-^

(jj^-^^^t;^-^uX

to

toX

tjj

tjj^-^^-^

u)

<jj

—^

^-^

4^(jJLiJ^-^LiJ^-^^-^LiJ^-^^-^

^-^

^-^

II

I—•

II

to

NO

to

K-

K-

^^^XX^^

<J>

4^

4^'

(Ji

4^

U>

U>

^-^^-^^-^

1K-o

11

U)

|1^

11

11

11

11

11

11

11

11

14^

r-^r-^

to

K--Q

to^T;

-^

4^

00

00

4^

K-

4^

00

to

00

4^

(jJ^-^^-^

(jJ

(jJ^-^

L.J

L.J^-^

L.J

UJ

UJ

Llj

(jj

(jj

L.J

LiJ

,--s

<J->

,.—N

,.—N

^-^^-^

^-^^-^

^-^^-^

4^

4^

^-^^-^^-^^-^^-^^-^

4^-^

4^

LiJ

LiJ

LiJ

Ul

Ih-

to

h-

||

ON

-|i

VOW

Ui

K)

'

4^

(jJ

4^

4^

<jJ

<jJ

'

II

II

IIO

II

^^

oj

;Z;

tjj

tjj^-^^i;

to

-

100

to

11

.-—\

.-—\

On

4^

^1

4^

—'—'

i<j

l<J

4^

^-^

^-^

VO

U)

||

||

||

|^^

VOMh

00hW

UI

II

II

II

II

II

II

II

II

II

II

II

II

II

II

II

f^00UHUilO4iON00iOH~jHK)^00Oi«vlH(OiOHH^004iK)H

L*J

L*J

L*J^W

OJ

Kl

OJWW^

L*J^X

|L*J

L*J

L*J

L*J

L*J

L*J

L*J^X

|L*J^^

L*JM

^X|^-^>^

100

I1

11

14^

K-o

1K<

11Oo

11

11

1-^

'T?

-J

t<J

On^

ON'";

K^

'—^

UJ^

4^

K<

/—;

^N

4^

(<J

4^

lo

4^

^-^

<jJ

UJ

ijj

(jj

L.J^-^

L.J^-^

(jj^-^

L.J

L.J^-^

^-^

4^

UJ

UJ

LiJ

to

Page 296: Two-dimensional acetylenic scaffolding - Research Collection

o

IOlHlOUKHO

II

II

II

II

<Ji^

Ui

Ul

»WU

(Ji

iOiOMOOiUiHOOO

HOWOH

JiU

ffiO\OUOOVOHHL»\OtOO\^-JOOlO

vja

o\

-li

-^

-^

-^

Ol

VOO

-JU

0\

-^lOOKlNl-jNlOOOOOOJi

WIO(OHi0HHHHUUIOUU(OUliJUiljJUK)UUKIUU0\0llO^liJ|OK)UUKIU

ffi-JOOOI'OOOlffil'-JOOUiL«4iOJi-Jl/-OUiHW4iOUiHOUiH^ffiUOOUi-J

MuiaiOoouuiMUiuiHvjuoouiWWOiuw-jtjiO

OOON-OK)lOOMOO-|iUOOU

4^(jJ(Ji4^4^4^tjJLiJLiJLiJ4^tjJ4^

h-K>K>h-K>^Oh-h-004^4^(-/iO\4^

WUiK)Uh00MhIOUO\UOOOOiCiCffiHtOUWOOOiH^OUiUOOUiiOHOOl

U)

4^

4^4^CTNCTNCTN(Ji4^4^tjJLiJ4^tJi(Ji4^tjJ4^tjJLiJLiJ4^tjJ4^

> "D

m z a x

II

On

K>

IK-

||

|K<

i—'

Ui

^r->^

K>

K>

K>

^O

-O

UJ

!—

(Ji

On

I

—^

4^

(jJ^-^^-^

U)

'

II

II

II

II

LiJLiJtOK-K-ONtJlLiJ

.-—\

.-—\

.-—\

.-—\

.-—\

<-*J

<-*J

<-*J

<ji4^4^tjJtjJ^-^^-^^-^

Oi—'

i—'

^O

K>

—;

^O

I—'

""

II

K>

4^

K-

4^

K-

Ul

|ON

(Jl

to

I-O

^©^^^

4^

-O

On^^^

K>

*-*T

i—J

II

II

I<Ji

i—'

i—'

i—'

K>

<jJ

00

00^

<Ji

-O

-O

K>^

II

K-

4^

-OO

II

II

II

II

II

C=>

l—'

'ûj^-^^-^Hj'ûj4^4^4^tjJ

O4^

Ii—'

II

It—»

II

II

I

^OtjJ4^tj->H-ir}K>4^H-(-!->^0

K>O

k-

||

Ui

>T->

On

i—'

K>

Q^

©©

—^

^-^

4^

(jJ

II

II

K-

K-

-JWO!

00U

O'

L.J

L.J

L.J

L.J

4^

tjJ

'

11

1On

1On

1K>

14^

11

1<Ji

i—'

00

11

1Ui

ui

oo

14^

1On

11^1

1

00

K>

U)

<->J

i<j

i<j

l<J

l<J

4^

U>

U>

U)

U)

to

K>

K>

1<J

^_^^_^

^-^

^-^

^-^

^-^

^_^

^_^^_^

^_^

^_^

^_^

U)

^-^

U)

Page 297: Two-dimensional acetylenic scaffolding - Research Collection

272 Appendix

H(28) 6594 -112 293 63

H(7') 1650 4437 7180 44

H(8') 1444 5854 6902 46

H(10D) 695 7638 8295 89

H(IOE) -649 7444 8221 89

H(IOF) -129 8187 7792 89

H(11D) 208 7468 6691 82

H(11E) 1592 7062 6775 82

H(11F) 1121 7974 6967 82

H(12') 283 6248 8637 51

H(13') 550 4852 8924 54

H(15') 194 3702 7163 40

H(16') 85 2687 6563 42

H(21') 1530 932 7898 44

H(22') 1628 1947 8493 44

H(24') -981 3615 8800 68

H(25') -2585 3183 9405 91

H(26') -2218 2266 10300 95

H(27') -228 1837 10564 90

H(28') 1367 2281 9970 67

H(7") 7121 3832 7551 46

H(8") 7526 2629 8197 48

H(IOG) 8659 246 7421 91

H(IOH) 7236 206 7552 91

H(IOI) 8164 -153 8069 91

H(11G) 7130 1416 8754 97

H(11H) 8565 1430 8658 97

H(11I) 8046 560 8802 97

H(12") 7613 1266 6782 48

H(13") 7261 2471 6131 45

H(15") 5322 4345 7324 48

H(16") 4302 5575 7581 54

H(21") 5522 6785 5984 54

H(22") 6584 5542 5719 44

H(24") 8808 4836 6197 45

H(25") 10864 4919 6008 58

H(26") 12042 4015 5385 66

H(27") 11151 3068 4930 67

H(28") 9049 3034 5062 50

H(101) 8466 10293 5518 159

H(102) 8680 9092 5070 144

H(201) 5322 5710 9794 254

Table 7.35. Torsion angles [°] for 121.

N(l)-C(l)-C(2)-C(4) -135(8) C(5')-C(14')-C(15')-C(16') 177.2(6)

N(l)-C(l)-C(2)-C(3) 46(8) C(22')-C(14 )-C(15 KX16') -3.6(8)

C(4)-C(2)-C(3)-N(2) 172(10) C(14')-C(15 )-C(16 )-C(17') 1.0(9)

C(l)-C(2)-C(3)-N(2) -8(10) C(15')-C(16 )-C(17 )-C(18') 179.7(6)

C(3)-C(2)-C(4)-C(5) 170.6(6) C(15')-C(16 )-C(17 )-C(21') 1.7(8)

C(l)-C(2)-C(4)-C(5) -9.1(9) C(16')-C(17 )-C(18 )-C(20') -176.7(5)

C(3)-C(2)-C(4)-C(23) -10.9(9) C(21')-C(17 )-C(18 )-C(20') 1.2(9)

C(l)-C(2)-C(4)-C(23) 169.4(6) C(16')-C(17 )-C(18 )-C(19') 0.7(9)

C(2)-C(4)-C(5)-C(14) -55.7(8) C(21')-C(17 )-C(18 )-C(19') 178.7(6)

C(23)-C(4)-C(5)-C(14) 125.7(6) C(17')-C(18 )-C(19 )-N(4') -37(47)

C(2)-C(4)-C(5)-C(6) 126.2(6) C(20')-C(18 )-C(19 )-N(4') 140(46)

C(23)-C(4)-C(5)-C(6) -52.4(7) C(17')-C(18 )-C(20 )-N(5') 41(22)

C(14)-C(5)-C(6)-C(7) -37.4(9) C(19')-C(18 )-C(20 )-N(5') -137(21)

C(4)-C(5)-C(6)-C(7) 140.6(6) C(18')-C(17 )-C(21 )-C(22') -179.6(6)

Page 298: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 273

C(14)-C(5)-C(6)-C(13) 141.8(6)

C(4)-C(5)-C(6)-C(13) -40.2(8)

C(13)-C(6)-C(7)-C(8) -0.5(8)

C(5)-C(6)-C(7)-C(8) 178.8(5)

C(6)-C(7)-C(8)-C(9) -1.7(9)

C(10)-N(3)-C(9)-C(8) -177.0(6)

C(ll)-N(3)-C(9)-C(8) 3.0(9)

C(10)-N(3)-C(9)-C(12) 0.1(9)

C(ll)-N(3)-C(9)-C(12) -179.8(6)

C(7)-C(8)-C(9)-N(3) 179.8(5)

C(7)-C(8)-C(9)-C(12) 2.6(9)

N(3)-C(9)-C(12)-C(13) -178.5(5)

C(8)-C(9)-C(12)-C(13) -1.2(8)

C(9)-C(12)-C(13)-C(6) -1.0(9)

C(7)-C(6)-C(13)-C(12) 1.9(8)

C(5)-C(6)-C(13)-C(12) -177.4(5)

C(6)-C(5)-C(14)-C(22) 165.0(6)

C(4)-C(5)-C(14)-C(22) -12.9(9)

C(6)-C(5)-C(14)-C(15) -15.8(9)

C(4)-C(5)-C(14)-C(15) 166.3(5)

C(5)-C(14)-C(15)-C(16) 179.9(6)

C(22)-C(14)-C(15)-C(16) -0.9(8)

C(14)-C(15)-C(16)-C(17) -0.4(9)

C(15)-C(16)-C(17)-C(18) -178.7(6)

C(15)-C(16)-C(17)-C(21) 1.1(9)

C(16)-C(17)-C(18)-C(19) 0.8(9)

C(21)-C(17)-C(18)-C(19) -179.0(6)

C(16)-C(17)-C(18)-C(20) -177.4(6)

C(21)-C(17)-C(18)-C(20) 2.9(9)

C(20)-C(18)-C(19)-N(4) -179(100)

C(17)-C(18)-C(19)-N(4) 3(22)

C(19)-C(18)-C(20)-N(5) 101(78)

C(17)-C(18)-C(20)-N(5) -81(78)

C(18)-C(17)-C(21)-C(22) 179.3(6)

C(16)-C(17)-C(21)-C(22) -0.5(9)

C(17)-C(21)-C(22)-C(14) -0.8(9)

C(5)-C(14)-C(22)-C(21) -179.3(6)

C(15)-C(14)-C(22)-C(21) 1.5(9)

C(2)-C(4)-C(23)-C(28) -38.3(9)

C(5)-C(4)-C(23)-C(28) 140.3(6)

C(2)-C(4)-C(23)-C(24) 145.1(6)

C(5)-C(4)-C(23)-C(24) -36.4(8)

C(28)-C(23)-C(24)-C(25) 1.1(9)

C(4)-C(23)-C(24)-C(25) 177.8(5)

C(23)-C(24)-C(25)-C(26) -0.8(9)

C(24)-C(25)-C(26)-C(27) 0.3(10)

C(25)-C(26)-C(27)-C(28) -0.2(11)

C(26)-C(27)-C(28)-C(23) 0.6(11)

C(24)-C(23)-C(28)-C(27) -1.0(10)

C(4)-C(23)-C(28)-C(27) -177.7(6)

N(l')-C(l')-C(2')-C(4') -128(16)

N(l')-C(l')-C(2')-C(3') 51(16)

C(4')-C(2')-C(3')-N(2') -168(12)

C(l')-C(2')-C(3')-N(2') 13(13)

C(l')-C(2')-C(4')-C(23') 174.7(6)

C(3')-C(2')-C(4')-C(23') -4.9(11)

C(l')-C(2')-C(4')-C(5') -5.6(9)

C(3')-C(2')-C(4')-C(5') 174.7(6)

C(2')-C(4')-C(5')-C(14') 108.2(7)

C(23')-C(4')-C(5')-C(14') -72.1(7)

C(16')-C(17')-C(21')-C(22') -1.5(8)

C(17')-C(21')-C(22')-C(14') -1.2(9)

C(5')-C(14')-C(22')-C(21') -177.1(6)

C(15')-C(14')-C(22')-C(21') 3.8(8)

C(2')-C(4')-C(23')-C(24') 158.4(7)

C(5')-C(4')-C(23')-C(24') -21.3(9)

C(2')-C(4')-C(23')-C(28') -23.4(10)

C(5')-C(4')-C(23')-C(28') 157.0(6)

C(28')-C(23')-C(24')-C(25') 0.9(11)

C(4')-C(23')-C(24')-C(25') 179.3(7)

C(23 ')-C(24')-C(25')-C(26') -1.0(13)

C(24')-C(25')-C(26')-C(27') 0.6(14)

C(25 ')-C(26')-C(27')-C(28') -0.1(15)

C(26')-C(27')-C(28')-C(23') 0.0(13)

C(24')-C(23')-C(28')-C(27') -0.4(11)

C(4')-C(23')-C(28')-C(27') -178.8(7)

N(l")-C(l")-C(2")-C(4") 172(14)

N(l")-C(l")-C(2")-C(3") -7(14)

C(4")-C(2")-C(3")-N(2") -171(15)

C(l")-C(2")-C(3")-N(2") 8(15)

C(3")-C(2")-C(4")-C(23") -1.3(9)

C(l")-C(2")-C(4")-C(23") 179.5(5)

C(3")-C(2")-C(4")-C(5") 178.0(5)

C(l")-C(2")-C(4")-C(5") -1.2(8)

C(2")-C(4")-C(5")-C(14") -69.5(7)

C(23")-C(4")-C(5")-C(14") 109.8(6)

C(2")-C(4")-C(5")-C(6") 110.8(6)

C(23")-C(4")-C(5")-C(6") -69.9(7)

C(14")-C(5")-C(6")-C(13") 150.0(6)

C(4")-C(5")-C(6")-C(13") -30.3(8)

C(14")-C(5")-C(6")-C(7") -31.4(9)

C(4")-C(5")-C(6")-C(7") 148.3(5)

C(13")-C(6")-C(7")-C(8") -1.9(9)

C(5")-C(6")-C(7")-C(8") 179.3(6)

C(6")-C(7")-C(8")-C(9") -0.1(9)

C(10")-N(3")-C(9")-C(12") -0.5(9)

C(ll")-N(3")-C(9")-C(12") -179.0(6)

C(10")-N(3")-C(9")-C(8") -179.8(6)

C(ll")-N(3")-C(9")-C(8") 1.7(9)

C(7")-C(8")-C(9")-N(3") -179.4(6)

C(7")-C(8")-C(9")-C(12") 1.3(9)

N(3")-C(9")-C(12")-C(13") -179.6(6)

C(8")-C(9")-C(12")-C(13") -0.3(9)

C(9")-C(12")-C(13")-C(6") -1.8(9)

C(7")-C(6")-C(13")-C(12") 2.9(8)

C(5")-C(6")-C(13")-C(12") -178.4(6)

C(6")-C(5")-C(14")-C(22") 166.4(6)

C(4")-C(5")-C(14")-C(22") -13.3(8)

C(6")-C(5")-C(14")-C(15") -12.8(9)

C(4")-C(5")-C(14")-C(15") 167.5(5)

C(5")-C(14")-C(15")-C(16") 175.9(6)

C(22")-C(14")-C(15")-C(16") -3.3(9)

C(14")-C(15")-C(16")-C(17") 0.6(10)

C(15")-C(16")-C(17")-C(18") -177.9(6)

C(15")-C(16")-C(17")-C(21") 2.5(9)

C(21")-C(17")-C(18")-C(20") 4.9(10)

C(16")-C(17")-C(18")-C(20") -174.7(6)

C(21")-C(17")-C(18")-C(19") -175.1(6)

C(16")-C(17")-C(18")-C(19") 5.2(10)

C(20")-C(18")-C(19")-N(4") -5(30)

Page 299: Two-dimensional acetylenic scaffolding - Research Collection

274 Appendix

C(2')-C(4')-C(5')-C(6') -70.8(8) C(17")-C(18")-C(19")-N(4") 175(100)

C(23')-C(4')-C(5')-C(6') 108.9(6) C(17")-C(18")-C(20")-N(5") -155(57)

C(14')-C(5')-C(6')-C(7') -27.5(10) C(19")-C(18")-C(20")-N(5") 25(58)

C(4')-C(5')-C(6')-C(7') 151.4(6) C(18")-C(17")-C(21")-C(22") 177.5(6)

C(14')-C(5')-C(6')-C(13') 153.2(6) C(16")-C(17")-C(21")-C(22") -2.8(9)

C(4')-C(5')-C(6')-C(13') -27.9(9) C(17")-C(21")-C(22")-C(14") 0.1(9)

C(5')-C(6')-C(7')-C(8') 176.6(6) C(5")-C(14")-C(22")-C(21") -176.3(6)

C(13')-C(6')-C(7')-C(8') -4.1(9) C(15")-C(14")-C(22")-C(21") 2.9(8)

C(6')-C(7')-C(8')-C(9') -0.8(9) C(2")-C(4")-C(23")-C(24") 135.3(6)

C(10')-N(3')-C(9')-C(12') -1.0(10) C(5")-C(4")-C(23")-C(24") -44.0(7)

C(ll')-N(3')-C(9')-C(12') 174.0(6) C(2")-C(4")-C(23")-C(28") -43.3(8)

C(10')-N(3')-C(9')-C(8') 179.3(6) C(5")-C(4")-C(23")-C(28") 137.4(5)

C(ll')-N(3')-C(9')-C(8') -5.7(9) C(28")-C(23")-C(24")-C(25") 3.9(8)

C(7')-C(8')-C(9')-N(3') -175.6(6) C(4")-C(23")-C(24")-C(25") -174.8(5)

C(7')-C(8')-C(9')-C(12') 4.7(9) C(23 ")-C(24")-C(25 ")-C(26") -3.5(9)

N(3')-C(9')-C(12')-C(13') 176.8(6) C(24")-C(25")-C(26")-C(27") 0.8(9)

C(8')-C(9')-C(12')-C(13') -3.5(10) C(25")-C(26")-C(27")-C(28") 1.4(10)

C(9')-C(12')-C(13')-C(6') -1.7(11) C(26")-C(27")-C(28")-C(23") -1.0(9)

C(5')-C(6')-C(13')-C(12') -175.3(6) C(24")-C(23")-C(28")-C(27") -1.6(8)

C(7')-C(6')-C(13')-C(12') 5.4(9) C(4")-C(23")-C(28")-C(27") 177.0(5)

C(6')-C(5')-C(14')-C(22') 165.8(6) C1(4)-C(101)-C(102)-C1(2) 69.0(11)

C(4')-C(5')-C(14')-C(22') -13.1(8) C1(3)-C(101)-C(102)-C1(2) -60.9(13)

C(6')-C(5')-C(14')-C(15') -15.1(10) C1(4)-C(101)-C(102)-C1(1) -166.0(7)

C(4')-C(5')-C(14')-C(15') 166.0(5) C1(3)-C(101)-C(102)-C1(1) 64.1(11)

Page 300: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 275

7.2 Abbreviations and Symbols

a linear polarizability

A acceptor

 Angstrom (1 Â= l(T10m)

aq. aqueous

ß first hyperpolarizability

br. broad (IR)

Bu butyl

X macroscopic susceptibility

c speed of light (2.998 x 108 m s-1)

C Coulomb

°c degree centigrade (0 °C = 273.15 K)

calc. calculated

CCDC Cambridge Crystallographic Data Centre

CC column chromatography

CEE cyanoethynylethene

cone. concentrated

CT charge transfer

CV cyclic voltammetry

S chemical shift (NMR)

d doublet (NMR)

d day(s)

D donor

or quinoid character

DAA dialkylanilino

DCTB ^ra«5-2-[3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile

DHA iV,iV-dihexylanilino

DMA iV,iV-dimethylanilino

DMDCS dimethyldichlorosilane

DMF jV,jV-dimethylformamide

dppp 1,3 -bis(diphenylphosphino)propane

Page 301: Two-dimensional acetylenic scaffolding - Research Collection

276 Appendix

e extinction coefficient (mxcm *)

e electric charge (1.602 x 10~19 C)

EDG electron-donating group

e.g. exempli gratia

EI electron impact

equiv. equivalents

Et ethyl

Et20 diethylether

EtOAc ethyl acetate

ESI electrospray ionization

eV electronvolt (1.602 x 10~19 J)

EWG electron-withdrawing group

Fe ferrocene

Fc+ ferricinium

FT-MALDI fourier transform matrix assisted laser desorption/ionization

F4-TCNQ 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane

r second hyperpolarizability

g gram

GPC gel permeation chromatography

h Plank's constant (6.626 x 10~34 m2 kg s_1)

h hour(s)

HOMO highest occupied molecular orbital

HMBC heteronuclear multiple bond correlation (NMR experiment)

3-HPA 3-hydroxypicolinic acid

HR high resolution

HSQC heteronuclear single quantum correlation (NMR experiment)

Hz Hertz (s_1)

i- iso¬

i.e. la est

IR infrared (spectroscopy)

J Joule

J coupling constant (NMR)

k kilo (103)

Page 302: Two-dimensional acetylenic scaffolding - Research Collection

Appendix 277

X wavelength

L liter

LUMO lowest unoccupied molecular orbital

H micro (10-6)

m meter, milli (10~3)

m medium (IR), multiplet (NMR)

M molarity (mol L/1)

Me methyl

MHz megahertz

min minute(s)

M.p. melting point

MS mass spectrometry

V frequency

V wavenumber (cm4)

n nano (10~9)

NA Avogadro's number (6.022 x 1023 mol1)

n.d. not determined

NLO nonlinear optic

NMP iV-methyl-2-pyrrolidone

NMR nuclear magnetic resonance

Nu nucleophile

OLED organic light emitting diode

PCBD l,l,2,4,4-pentacyanobuta-l,3-diene

Ph phenyl

ppm parts per million

Pr propyl

q quartet (NMR)

RDV rotating disc voltammetry

Rt retention factor

r.t. room temperature

s strong (IR), singlet (NMR)

s second(s)

sat. saturated

Page 303: Two-dimensional acetylenic scaffolding - Research Collection

278 Appendix

SCE standard calomel electrode

t triplet (NMR)

TBAF tetrabutylammonium fluoride

TCBD 1,1,4,4-tetracyanobuta-1,3 -diyne

TCNE tetracyanoethene

TCNQ 7,7,8,8-tetracyanoquinodimethane

TEE tetraethynylethene

TFA trifluoroacetic acid

THF tetrahydrofuran

TOF time of flight

TES triethyl silyl

TIPS triisopropylsilyl

TLC thin layer chromatography

TMEDA N,N,N ',N '-tetramethylethylenediamine

TMS trimethylsilyl

Toi tolyl

TTF tetrathiafulvalene

UV ultraviolet

V sweep rate (CV)

V Volt

Vis visible

vs. versus

w weak (TR)

Page 304: Two-dimensional acetylenic scaffolding - Research Collection

Curriculum Vitae

name

DATE OF BIRTH

Milan Kivala

May 10, 1979 in Rakovnik, Czech Republic

EDUCATION 2004-2007: Eidgenössische Technische Hochschule Zürich,Laboratorium für Organische Chemie. Graduate studies under the

supervision of Prof. Dr. F. Diederich: "Two-Dimensional Acetylenic

Scaffolding: Extended Donor-Substituted PerethynylatedDehydroannulenes, Charge-Transfer Chromophores, and Cascade

Reactions ".

1998-2003: Institute of Chemical Technology, Department of

Organic Chemistry, Prague, Czech Republic. Degree awarded:

Engineer of Chemistry (equivalent of M.Sc); summa cum laude,ranked first of the Class of 2003 at ICT.

1994-1998: High School

Rakovnik, Czech Republic.

of Zikmund Winter (Gymnasium),

RESEARCH

EXPERIENCE

1999-2003: Institute of Chemical Technology, Prague, Czech Rep.Masters research in the workgroup of Prof. F. Liska. M.Sc. thesis:

"Study of the Hydrolysis of 4-Nitrophenyl Diphenyl Phosphate

Catalyzed by Quaternary Pyridinium Ketoximes in Various Types of

Micellar Solutions and Microemulsions O/W".

2001-2002: Department of Applied Surface Chemistry, Chalmers

University of Technology, Göteborg, Sweden. Erasmus student in the

workgroup of Prof. K. Holmberg. Research project: "Investigation of

the Reactivity of Functionalized Surfactants in O/W

Microemulsions".

TEACHING

EXPERIENCE

2004-2007: ETH Zürich

Teaching assistant for Organisch-Chemisches Praktikum 1.

Teaching assistant for Exercises in Organische Chemie 1.

SCHOLARSHIPS

AND AWARDS

2003: Josef Hlavka Award

2003: Award of the Chancelor of ICT Prague2002: Hlavka Foundation Scholarship2001: Hlavka Foundation Scholarship1998-2003: Institute of Chemical Technology Scholarship

Milan Kivala

Zürich, December 2007

Page 305: Two-dimensional acetylenic scaffolding - Research Collection