Top Banner
Normal Modes Analysis of RiverSonde Data in a Tidal Channel Calvin C. Teague, Donald E. Barrick CODAR Ocean Sensors, Ltd. Mountain View, CA David Honegger Oregon State University Corvallis, OR
20

TU3.T10.2.pdf

Jan 28, 2018

Download

Technology

grssieee
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: TU3.T10.2.pdf

Normal Modes Analysis of RiverSonde Data in a

Tidal Channel

Calvin C. Teague, Donald E. BarrickCODAR Ocean Sensors, Ltd.

Mountain View, CA

David HoneggerOregon State University

Corvallis, OR

Page 2: TU3.T10.2.pdf

RiverSonde Description

• UHF (435 MHz, 70-cm wavelength) radar

• Bragg scattering from 35-cm wavelength waves

• Based on SeaSonde hardware

• 1 W transmit power

• MUSIC direction finding using 3-yagi antenna array

• 5–15 m range bins, 1° angle bins

• Typically installed on a river bank

Page 3: TU3.T10.2.pdf

AntennasCenter array used for Transmit & Receive

Side arrays used for receive only

Page 4: TU3.T10.2.pdf

Typical Geometry

Radar Field of View Mean Flow

Radar

River

1 2 3

Page 5: TU3.T10.2.pdf

Newport Experiment

• CODAR student grant program

• Installed in September 2010 at Newport, Oregon

• Channel connecting Yaquina Bay to Pacific Ocean

• Tidal flow between parallel jetties

Page 6: TU3.T10.2.pdf

Experiment Location

Page 7: TU3.T10.2.pdf

Radial Vectors2010-12-07-13:00 UTC

Page 8: TU3.T10.2.pdf

Velocity Vector Estimation

• From a single site, find along- and cross-channel components from least-squares fit to radials

• If 2 sites are available, find full vectors by combining radial measurements from both sites

• From a single site, use Normal Modes Analysis of radial measurements to infer full vectors

• For arbitrary boundary, numerical solution required

• For rectangular boundary, closed-form solution possible

• Useful for dynamic flow conditions like tidal reversals

Page 9: TU3.T10.2.pdf

Normal Modes Analysis

• Assume water incompressible

• Express horizontal flow in terms of velocity potentials and stream func-

tions

• Boundary conditions

– Zero normal flow at banks

– No impedance to tangential flow at banks

– Periodic boundary at ends of analysis region

• Horizontal surface velocity vector−→U

−→U = ∇× [z(−Ψ) +∇× (zΦ)]

where z is the vertical unit vector, Ψ is the stream function, and Φ is

the velocity potential

• Allow up to 20 modes across river, only 2 along river

• Closed-form solutions in terms of sines and cosines

Page 10: TU3.T10.2.pdf

Homogeneous Equations• Stream function satisfying Dirichlet condition at bank

∇2ψn + νnψn = 0, where ψn|Γ = 0�uD

n , vDn

�=

�−∂ψn

∂y,

∂ψn

∂x

where ψn is the n-th eigenfunction of the stream function Ψ, νn is thecorresponding n-th eigenvalue and uD

n and vDn are the velocity compo-

nents in the x and y directions, respectively.

• Velocity function satisfying Neumann condition at bank

∇2φn + µnφn = 0, where (λ ·∇φn)���Γ

=∂φn

∂λ

����Γ

= 0

[uNn , vN

n ] =

�∂φn

∂x,

∂φn

∂y

where φn is the n-th eigenfunction of the velocity potential Φ, µn is thecorresponding n-th eigenvalue and λ is the direction perpendicular tothe boundary.

Page 11: TU3.T10.2.pdf

Normal Modes SolutionsVelocity potential modes with a periodic boundary at x = ±L/2 and bank at y = ±W/2

φn(x, y) =

cos(j2πx/L) cos(mπy/W )for j = 0,1,2,3, . . . ; m = 0,2,4,6, . . .

cos(j2πx/L) sin(mπy/W )for j = 0,1,2,3, . . . ; m = 1,3,5,7, . . .

sin(j2πx/L) cos(mπy/W )for j = 0,1,2,3, . . . ; m = 0,2,4,6, . . .

sin(j2πx/L) sin(mπy/W )for j = 0,1,2,3, . . . ; m = 1,3,5,7, . . .

Corresponding stream modes

ψn(x, y) =

cos(j2πx/L) cos(mπy/W )for j = 0,1,2,3, . . . ; m = 1,3,5,7, . . .

cos(j2πx/L) sin(mπy/W )for j = 0,1,2,3, . . . ; m = 0,2,4,6, . . .

sin(j2πx/L) cos(mπy/W )for j = 0,1,2,3, . . . ; m = 1,3,5,7, . . .

sin(j2πx/L) sin(mπy/W )for j = 0,1,2,3, . . . ; m = 0,2,4,6, . . .

Page 12: TU3.T10.2.pdf

Velocity Mode Examples 1

IfBdoPlotModes, BlockB8n, x0, y0, L, W<, L = x2 - x1; W = y2 - y1; x0 =x1 + x2

2; y0 =

y1 + y2

2;

For@n = 1, n § Length@uPhiD, n++, title = "n = " <> ToString@nD; title = modeIDPnT;plt = HVectorPlot@8uPhiPnT, vPhiPnT<, 8x, x1, x2<, 8y, y1, y2<, Frame Ø True,

PlotLabel Ø title, AspectRatio Ø Automatic, DisplayFunction Ø IdentityDL;Print@Show@plt, Graphics@8RGBColor@1, 0, 0D, Disk@80, 0<, 82, 2<D<D,

PlotRange Ø 88x1 - 10 - 0.01`, x2 + 10<, 8yp1, yp2<<,

ImageSize Ø modesPlotWidth, DisplayFunction Ø $DisplayFunctionDDD;F;F;

-400 -200 0 200 4000

50

100

150

200

250

300

35081, 0, -1, Null, Null<

-400 -200 0 200 4000

50

100

150

200

250

300

35082, 0, 0, Null, Null<

-400 -200 0 200 4000

50

100

150

200

250

300

35083, 0, 1, Null, Null<

-400 -200 0 200 4000

50

100

150

200

250

300

35084, 1, -1, Null, Null<

-400 -200 0 200 4000

50

100

150

200

250

300

35085, 1, 0, Null, Null<

-400 -200 0 200 4000

50

100

150

200

250

300

35086, 1, 1, Null, Null<

-400 -200 0 200 4000

50

100

150

200

250

300

35087, 2, -1, Null, Null<

2 FitModes6-ModePlots.nb

j = 1m = 0

j = 1m = 1

Page 13: TU3.T10.2.pdf

-400 -200 0 200 4000

50

100

150

200

250

300

35084, 1, -1, Null, Null<

-400 -200 0 200 4000

50

100

150

200

250

300

35085, 1, 0, Null, Null<

-400 -200 0 200 4000

50

100

150

200

250

300

35086, 1, 1, Null, Null<

-400 -200 0 200 4000

50

100

150

200

250

300

35087, 2, -1, Null, Null<

2 FitModes6-ModePlots.nb

-400 -200 0 200 4000

50

100

150

200

250

300

35088, 2, 0, Null, Null<

-400 -200 0 200 4000

50

100

150

200

250

300

35089, 2, 1, Null, Null<

-400 -200 0 200 4000

50

100

150

200

250

300

350810, 3, -1, Null, Null<

-400 -200 0 200 4000

50

100

150

200

250

300

350811, 3, 0, Null, Null<

FitModes6-ModePlots.nb 3

Velocity Mode Examples 2

j = 0m = 1

j = 0m = 2

Page 14: TU3.T10.2.pdf

Velocity Mode Examples 3

IfBdoPlotModes,

BlockB8n, x0, y0, L, W<, L = x2 - x1; W = y2 - y1; x0 =x1 + x2

2; y0 =

y1 + y2

2; For@n = 1,

n § Length@uPsiD, n++, title = "n = " <> ToString@nD; title = modeIDPLength@uPhiD + nT;plt = HVectorPlot@8uPsiPnT, vPsiPnT<, 8x, x1, x2<, 8y, y1, y2<, Frame Ø True,

PlotLabel Ø title, AspectRatio Ø Automatic, DisplayFunction Ø IdentityDL;Print@Show@plt, Graphics@8RGBColor@1, 0, 0D, Disk@80, 0<, 82, 2<D<D,

PlotRange Ø 88x1 - 10 - 0.01`, x2 + 10<, 8yp1, yp2<<,

ImageSize Ø modesPlotWidth, DisplayFunction Ø $DisplayFunctionDDD;F;F;

-400 -200 0 200 4000

50

100

150

200

250

300

350864, Null, Null, 1, 0<

-400 -200 0 200 4000

50

100

150

200

250

300

350865, Null, Null, 2, 0<

FitModes6-ModePlots.nb 17

IfBdoPlotModes,

BlockB8n, x0, y0, L, W<, L = x2 - x1; W = y2 - y1; x0 =x1 + x2

2; y0 =

y1 + y2

2; For@n = 1,

n § Length@uPsiD, n++, title = "n = " <> ToString@nD; title = modeIDPLength@uPhiD + nT;plt = HVectorPlot@8uPsiPnT, vPsiPnT<, 8x, x1, x2<, 8y, y1, y2<, Frame Ø True,

PlotLabel Ø title, AspectRatio Ø Automatic, DisplayFunction Ø IdentityDL;Print@Show@plt, Graphics@8RGBColor@1, 0, 0D, Disk@80, 0<, 82, 2<D<D,

PlotRange Ø 88x1 - 10 - 0.01`, x2 + 10<, 8yp1, yp2<<,

ImageSize Ø modesPlotWidth, DisplayFunction Ø $DisplayFunctionDDD;F;F;

-400 -200 0 200 4000

50

100

150

200

250

300

350864, Null, Null, 1, 0<

-400 -200 0 200 4000

50

100

150

200

250

300

350865, Null, Null, 2, 0<

FitModes6-ModePlots.nb 17

j = 0m = 1

j = 0m = 2

Page 15: TU3.T10.2.pdf

Mode Coefficients Determination

• Evaluate model in terms of unknown mode coefficients at each point where radar data are available

• At each point, equate sum of radial components of model to radial radar measurement

• Repeat over all available radar measurements

• Solve overdetermined set of equations for mode coefficients (~5000 equations in ~50 unknowns) using least-squares

• Allow up to 20 modes across river for along-river component (mmax), only 2 along river for both along- and cross-river components (jmax)

Page 16: TU3.T10.2.pdf

Streamline Examples

!200 !100 0 100 20050

100

150

200

250

300

x !m"

y!m"

NWPT_2010_12_07_0600

0.0

0.5

1.0

1.5

2.0

m#s

!200 !100 0 100 20050

100

150

200

250

300

x !m"

y!m"

NWPT_2010_12_07_0945

0.0

0.5

1.0

1.5

2.0

m#s

!200 !100 0 100 20050

100

150

200

250

300

x !m"

y!m"

NWPT_2010_12_07_1300

0.0

0.5

1.0

1.5

2.0

m#s

!200 !100 0 100 20050

100

150

200

250

300

x !m"

y!m"

NWPT_2010_12_07_1530

0.0

0.5

1.0

1.5

2.0

m#s

Page 17: TU3.T10.2.pdf

Mode Limits

u: jmax = 1, mmax = 5v: jmax = 0, mmax = 2

!200 !100 0 100 20050

100

150

200

250

300

x !m"

y!m"

NWPT_2010_12_07_1530

0.0

0.5

1.0

1.5

2.0

m#s

!200 !100 0 100 20050

100

150

200

250

300

x !m"

y!m"

NWPT_2010_12_07_1530

0.0

0.5

1.0

1.5

2.0

m#s u: jmax = 1, mmax = 20

v: jmax = 0, mmax = 2

Page 18: TU3.T10.2.pdf

Lagrangian Particle Trajectories

• Compute velocity vectors at 5-minute intervals

• Seed study area with 100 particles randomly placed every 2 minutes

• Integrate particle velocity in 10-second steps

• Display 10 locations of particles with lighter color for older positions

• Movie covers 2.5 hours around a tidal reversal

Page 19: TU3.T10.2.pdf

Particle Trajectory Example

!200 !100 0 100 20050

100

150

200

250

300

350

x !m"

y!m"

2010!12!07 08:30:00 !0000

Page 20: TU3.T10.2.pdf

Summary• For an arbitrary boundary, Normal Modes solution must be

found numerically

• For the special case of a rectangular boundary, with no normal flow across banks and periodic continuation at open boundaries, a closed-form solution can be found as a series of products of sines and cosines

• Least-squares fit of radial components of Normal Modes to radar radial velocity vectors gives coefficients

• Lagrangian visualization of particle trajectories may be useful in dynamic conditions like tidal reversals

• Future studies

• Compare this 2D fitting to 1D radial data with ADCP or other in-situ measurements, especially during flow reversals

• Determine how many modes are meaningful