Top Banner
siemens.com/tip-cs Totally Integrated Power Technical Series Edition 13.2 Electric Power Distribution in the Data Center with Tap-Off Units
10

Totally Integrated Power Technical Series Edition 13

Oct 16, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
TIP technical series | Edition 13.2 | Electric power distribution in data centers using L-PDUsTotally Integrated Power
Technical Series Edition 13.2 Electric Power Distribution in the Data Center with Tap-Off Units
Short innovation cycles in the field of information technol- ogy and the change dynamics of customer requirements in the data center market complicate the operators’ capac- ity planning. Apart from the demand for a high availability of the data center, these factors significantly influence the planning of electric power distribution. A spatially simple and quickly adaptable technology with standardized com- ponents is becoming increasingly important. In this con- text, it shall be possible to adapt the components, switch- gear, and systems of electric power distribution to changed room structures, new customers and task defini- tions, as well as to desired load management demands. It is demonstrated in the following that busbar trunking sys- tems are highly suitable to fulfill those requirements when used to design a line power distribution unit in the server rooms of the data center. For the sake of simplification, the line power distribution unit is abbreviated as L-PDU.
As opposed to costly and resource-intensive overdimen- sioning, a modular concept with a clear structure and a reduced number of compatible components lends itself to the purpose. On the example of a typical power demand in the range of 600 kVA for a server room, the systematic design of IT power supply (IT: information technology) is introduced for different rack configurations.
The most important aspect for data center operation is a high level of availability. IT availability can be increased, among others, by reducing dangers in the server room. This, in turn, can be achieved by reducing fire loads and improving the access and modification possibilities for power supply.
1. Introduction: Power distribution systems
While power distribution is preferred by means of point power distribution units (PDUs and radially outgoing cable connections) in the American data center market, line power distribution units with busbar trunking systems (BTS with distributed tap-off units) are increasingly being used in the European data center market (Fig. 1). As illus- trated in the following, the use of busbar trunking sys- tems with variably deployable and standardized tap-off units is appropriate to obtain a flexible, modular system. In line with the PDU, this is defined here as L-PDU.
First, the advantages of power distribution by means of busbar trunking systems are introduced in comparison with a cable-based solution. Subsequently, the marginal conditions are described for the considered server room and power distribution to the racks. The functional con- cept for the design of a L-PDU is then implemented exem- plarily for the considered server room, and a type list is deducted. In this process, the space requirements and the used standard elements are estimated for the different configurations. Finally, implementation examples with SIMARIS design are presented, and selectivity evaluations are performed. This clearly shows that the automated con- sideration of operation-related derating factors leads to more reliable results during dimensioning.
Fig. 1: Comparison of power distribution solutions with cables or busbar trunking systems (BTS) in the data center
PDU
UPSMV sitchgear Transformer LV switchboard LV distribution
LV distribution
Transmission busbar
Distribution busbar
Distribution busbar
2
Compared with classical cable installation, BTS offer many advantages in terms of grid and system technology, as the comparisons in Tab. 1 and Fig. 1 show. As a rule, any changes and modifications of the electric power distribution imply a significantly higher effort in terms of time and expenses for cable installations compared with a BTS solution.
Apart from considerable time savings during installation, BTS offer a higher level of flexibility for rack connection options during operation. When comparing costs between BTS and cable solutions, too, BTS can be expected to provide an advantage of up to 30 % [1]. One significant reason for this are the lower operating costs due to lower power losses when using BTS.
2. Comparison of power supply solutions with BTS and with cables
Features Busbar trunking system Cable installation
Network configuration Linear configuration with serially arranged load tap- offs via tap-off units
High cable accumulation at the infeed point due to the radial supply to the loads
Security of operation Design verification according to IEC 61439-6 (VDE 0660-600) ensures a high current-carrying capacity and short-circuit withstand strength
Depending on the respective execution quality More complicated verification of conformity with standards
Flexibility
- Flexible during expansions (additional tap-off units) - Flexible during modifications (installation and removal of tap-off units) - Flexible during maintenance (installation also possible while energized)
High effort due to splicing, clamping points, junctions, parallel cables, etc.; Installation work only possible in de-energized state
Fire load
- Very low fire load, tested and certified: Possible fire resistance classes S 60, S 90, S 120 according to DIN 4102-9 and fire resistance classes EI 60, EI 90, EI 120 according to EN 13501-2 (system-dependent) - Fire barrier is either pre-assembled at the factory (MIF) or mounted on site (MOS) - Suitable for solid walls/ceilings and lightweight walls - Easy handling and installation
- Higher fire load: PVC cables: up to 10 times higher fire load compared with BTS PE cables: up to 30 times higher fire load compared with BTS - Increased effort when installing the fire barrier - Project-specific design, depending on the quantity and cross-section of the cables
Electromagnetic compatibility (EMC)
Design-related benefits for EMC thanks to the metal enclosure and special arrangement of conductors
Strong interference in case of standard cables; in case of single-core cables, the EMC strongly depends on the type of bundling (see [1])
Current-carrying capacity
Due to system design, higher current-carrying capacity compared with cables of the same cross-section
Installation type, accumulation and operating conditions determine the permissible current-carrying capacity
Halogen-free / PVC- free design On principle, trunking units are halogen-free Standard cables are not halogen-free and PVC-free;
halogen-free cables are expensive
High space requirements due to bending radii, installation type, accumulation, as well as current- carrying capacity (consideration of derating factors)
Weight Weight reduction to half or even a third compared with cables Up to 3 times the weight of a comparable BTS
Installation Easy installation possible with simple auxiliary tools and short installation times
Complicated installation is only possible with numerous auxiliary tools; significantly longer installation times (also especially for the installation of the cable bracket systems)
Tab. 1: Comparison of characteristic features of BTS and cable installation
3
A power supply solution with BTS in the server room also has advantages over a cable solution in the event of a subsequent power increase in the individual racks. By opening the distribution busbar systems, followed by a simple and fast exchange with prepared tap-off units, and then doubling the transport busbars as shown in Fig. 2,
the power of the racks can be doubled quickly and safely in part with the existing material. In case of a cable solu- tion, the entire power distribution of the server room (all cables and PDUs) must be exchanged and reconnected again.
Fig. 2: Doubling of power with BTS in the server room
BTS A BTS B BTS A1 BTS B1 BTS A2 BTS B2
10 kVA per rack 20 kVA per rack 20 kVA per rack
4
In the data center, servers and IT equipment with different performance requirements are usually connected to the power supply. In addition, frequent changes to the structur- ing and use of the server room must be reckoned with in the data center, which makes a variable and modular con- cept for power supply in the server room an advantage. The design of BTS with standardized tap-off units [2] is ideal for their use in such a concept.
Such a concept from the medium-voltage level down to the connection of the servers and their end consumers is described in the application manual [1] for one or more server rooms with a power demand of 600 kVA.
Accordingly, these are the selected marginal conditions for the power supply modules:
• For a server room, an electric power demand in the range of 600 kVA is assumed.
• The power transmission to and within the server room is done using a transmission busbar system, also called "backbone" distribution unit, in the server room (compara- ble with the spinal column of the human nervous system, the central data cable harness is called "backbone" in IT). In case of a redundant supply system, two transport bus- bar systems (A/B) are commonly laid through the server room.
• Power distribution from the transport busbar to the server racks is done either using 4 busbar runs (standard BTS with an operational current of 250 A each) at a rack power demand of less than 10 kVA, or using 2 busbar runs (standard BTS with an operational current of 630 A each) at a rack power demand of greater than or equal to 10 kVA.
3. Design of a modular busbar trunking system for data centers
Tab. 2: Recommended product series for the design of an L-PDU
Modular component Product series
Power transport into the server room SIVACON 8PS, LI system
Fuse protection of transport tap-off units Molded-case circuit-breakers (MCCBs, e.g. 3VA)
Measurement / monitoring in the transport tap-off units 7KM PAC4200 measuring devices
Power distribution from the transport busbar to the server racks SIVACON 8PS, BD2 system
Distribution tap-off units [2] (respective versions: - with / without measuring device - with / without switching the N conductor)
- up to a rack power of 3.6 kVA: NL2: 800439, 800489, 800420, 800468 - up to a rack power of 7.2 kVA: NL2: 800438, 800488, 800421, 800469 - up to a rack power of 11 kVA: NL2: 800440, 800490, 800418, 800470 - up to a rack power of 22 kVA: NL2: 800441, 800491, 800419, 800471
5
Up to a rack power of 7.2 kVA, it is recommended to supply the server racks with 1-phase alternating current. This brings with it the advantage of lower short-circuit currents compared with those for a corresponding 3-phase supply. This is advantageous for personnel and equipment safety as well as for system availability due to more favorable selectiv- ity conditions. Another advantage of the alternating current version is that, in the case of the 1-phase fuse protection, the two phases not affected by the fault and the racks con- nected to them remain in operation in the case of fault. Beyond 10 kVA, power supply for the racks commonly becomes economically viable with three-phase current.
With the four ratings of tap-off units (3.6 / 7.2 / 11 and 22 kVA) for the busbar trunking system BD2 [2], the server racks can be supplied with a correspondingly different power demand. To do this, tap-off units with measurement and switchable N conductor are selected. The following two examples show an exemplary design for modular power supply systems in a server room which are equipped with racks that amount to a total power demand of approxi- mately 600 kVA. The space requirements for racks depend significantly on the access and service possibilities, and less on the power and air conditioning demand of the servers in the rack.
Assumption for determining the space requirements of the server room: 3 m2 surface per rack (consideration of necessary surfaces, for example, for aisles and cooling equipment)
4. Typical configurations for server rooms with a power demand of approx. 600 kVA
4.1 Version 1 with 1-phase tap-off units up to a rack power demand of 3.6 kVA (Fig. 3)
In a server room with racks featuring a maximum power demand of 3.6 kVA each, there are 168 racks which can absorb a total power of 604.8 kVA. When installed in 4 rows, 42 racks are lined up in each row. Space requirement F for 168 racks: F (3.6 kVA) = 168 · 3 m2 = 504 m2
The racks are to be supplied redundantly. The components for power transport and power distribution in the server room are to be determined according to Tab. 2 (Fig. 3): - 2 transport busbar systems - 8 tap-off units with MCCBs - 8 distribution busbar systems - 112 tap-off units
i) Power transport into the server room:
Minimum rated current of the BTS: In = 608.4 kVA / ( √3 · 400 V) = 880 A Selected busbar trunking system: LI-A1000 MCCB for tap-off units (250 A): 3VA22
ii) Power distribution from the transport busbar to the server racks:
Minimum rated current of the BTS: In = 880 A / 4 = 220 A Selected busbar trunking system: BD2A-250 Selected tap-off unit: NL2:800439 (see [2]; 3.6 kVA, 3 socket outlets, 1-phase, 16 A, character- istic C with measurement + N conductor switching)
4.2 Version 2 with 3-phase tap-off units up to a rack power demand of 22 kVA (Fig. 4)
In a server room with racks featuring a maximum power demand of 22 kVA each, there are 28 racks which can absorb a total power of 616 kVA. When installed in 2 rows, 14 racks are lined up in each row. Space requirement F for 28 racks: F (22 kVA) = 28 · 3 m2 = 84 m2
The racks are to be supplied redundantly. The components for power transport and power distribution in the server room are to be determined according to Tab. 2 (Fig. 4): - 2 transport busbar systems - 4 tap-off units with MCCBs - 4 distribution busbar systems - 56 tap-off units
i) Power transport into the server room:
Minimum rated current of the BTS: In = 616 kVA / ( √3 · 400 V) = 890 A Selected busbar trunking system: LI-A1000 MCCB for tap-off units (630 A): 3VA24
ii) Power distribution from the transport busbar to the server racks:
Minimum rated current of the BTS: In = 890 A / 2 = 445 A Selected busbar trunking system: BD2A-630 Selected tap-off unit: NL2:800441 (see [2]; 22 kVA, 1 socket outlet, 3-phase, 32 A, characteris- tic C with measurement + N conductor switching)
6
Fig. 3: Version 1: Server room (approx. 600 kVA) with 1-phase rack supply (maximum rack power demand of 3.6 kVA)
1
2
2
2
2
1
2
2
2
2
4 4 4 4
3
Legend: BTS LI-A1000 2 pcs. MCCB VA22 8 pcs. BTS BD2A-250 8 pcs. NL2: 800439 112 pcs.
Fig. 4: Version 2: Server room (approx. 600 kVA) with 3-phase rack supply (maximum rack power demand of 22 kVA)
1
2
2
1
2
2
4 4 4
3
Legend: BTS LI-A1000 2 pcs. MCCB VA24 4 pcs. BTS BD2A-630 4 pcs. NL2: 800441 56 pcs.
7
The dimensioning of both L-PDU power distribution arrange- ments in Fig. 3 and 4 can be verified with SIMARIS design. In Figs. 5 and 6, the single-line representations from SIMARIS design are displayed with a simple network infeed via a GEAFOL transformer.
The selectivity evaluations (green boxes in Figs. 5 and 6) prove that the molded-case circuit-breakers 3VA22 and 3VA24 were chosen fully selectively. For the selectivity eval- uation, the professional version of SIMARIS design must be used. For the 3 socket outlets of each tap-off unit in Fig. 5 (gray tint), a minimum distance of 0.25 m must be selected for the busbar trunking system in SIMARIS design.
For the configurations in chapter 4, free ambient conditions were assumed for the miniature circuit-breakers (MCBs) (e.g. an ambient air temperature of 20 °C according to IEC 60898-1). In SIMARIS design, the temperature is
adjusted to 45 °C according to the installation in the distri- bution boards. The permissible load currents are determined automatically and considered for the calculations: • MCB 5SY85167: In,perm = 14.88 A at 45 °C (In,max = 16 A) • MCB 5SY86327: In,perm = 29.76 A at 45 °C (In,max = 32 A)
That is why the permissible rack power ratings are reduced to 3.4 kVA and 20 kVA for the standard tap-off units. Accordingly, more realistic total power ratings for the server rooms are 571.2 kVA (Fig. 5: 168 racks with 3.4 kVA) resp. 560 kVA (Fig. 6: 28 racks with 20 kVA).
Additional information or support for the use of the SIMARIS tools is provided by TIP Consultant Support of Siemens:
www.siemens.com/tip-cs
5. Dimensioning with SIMARIS design and selectivity considerations
Fig. 5: Version 1: Server room (approx. 571.2 kVA) with 1-phase rack supply (maximum rack power demand of 3.4 kVA)
MS-LS 1.1 Circuit-breaker CB-f AR In switch) = 630 A Transformer current = 50/1 A DMT: 7SJ8
Transformer 1.1 Sn = 800 kVA, ukr = 6 % 20/0.4 kV Dyn5 4GX59643E
NS-LS 1.1b Circuit-breaker In = 1,250 A 3WL1112
NS-LS 2.1a Circuit-breaker In = 1,000 A 3WL1110
30 m busbar LI-AM1250
Inp ut
dis ttr
ibu tio
Ca ble
/lo ad
In = 14.7 A Un = 400 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Dummy load In = 177 A Un = 400 V 3-pole
Server room with 168 x 3.4 kVA racks
Racks 1.4 to 1.39
Rack 1.2 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Rack 1.3 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
4.25 m 4.5 m 4.75 m 12.25 m 20.5 m 20.75 m 21 m
TN -S
U n =
Rack 1.40 In = 14.7 A Un = 400 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Rack 1.41 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Rack 1.42 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Tab-off unit 14
Rack 2.1 In = 14.7 A Un = 400 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Dummy load In = 177 A Un = 400 V 3-pole
Racks 2.4 to 2.39Rack 2.2 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Rack 2.3 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
4.25 m 4.5 m 4.75 m 12.25 m 20.5 m 20.75 m 21 m
TN -S
U n =
Rack 2.40 In = 14.7 A Un = 400 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Rack 2.41 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Rack 2.42 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Tab-off unit 28
Rack 3.1 In = 14.7 A Un = 400 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Dummy load In = 177 A Un = 400 V 3-pole
Racks 3.4 to 3.39Rack 3.2 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Rack 3.3 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
4.25 m 4.5 m 4.75 m 12.25 m 20.5 m 20.75 m 21 m
TN -S
U n =
Rack 3.40 In = 14.7 A Un = 400 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Rack 3.41 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Rack 3.42 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Tab-off unit 42
Rack 4.1 In = 14.7 A Un = 400 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Dummy load In = 177 A Un = 400 V 3-pole
Racks 4.4 to 4.39Rack 4.2 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Rack 4.3 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
4.25 m 4.5 m 4.75 m 12.25 m 20.5 m 20.75 m 21 m
TN -S
U n =
Rack 4.40 In = 14.7 A Un = 400 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Rack 4.41 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Rack 4.42 In = 14.7 A Un = 230 V 1+N-pole
MCB Miniature circuit-breaker In = 16 A, Char. C 5SY
Cable/load 10 m Cu 1(1x2,5/2,5/2,5)
Tab-off unit 56
8
Fig. 6: Version 2: Server room (approx. 560 kVA) with 3-phase rack supply (maximum rack power demand of 20 kVA)
MS-LS 1.1 Circuit-breaker CB-f AR In (switch) = 630 A Transformer current = 50/1 A DMT: 7SJ8
Transformer 1.1 Sn = 800 kVA, ukr = 6 % 20/0.4 kV Dyn5 4GX59643E
NS-LS 1.1b Circuit-breaker In = 1,250 A 3WL1112
NS-LS 2.1a Circuit-breaker In = 1,000 A 3WL1110
30 m busbar LI-AM1250
Inp ut
dis trib
uti on
bu sb
ar Ci
rcu it-b
re ak
er In
Ca ble
/lin e
Transport busbar 10 m LI-AM1000 Rack 1.1
In = 28.9 A Un = 400 V 3+N-pole
MCB Miniature circuit-breaker In = 32 A, char. C 5SY
Cable/line 10 m Cu 1(3x6/6/6)
Dummy load In = 231 A Un = 400 V 3-pole
Server room with 28 x 20 kVA racks
Racks 1.4 to 1.11
4.25 m 4,5 m 4,75 m 6 m 10.5 m 10.75 m 11 m
TN -S
U n =
Rack 1.2 In = 28.9 A Un = 400 V 3+N-pole
MCB Miniature circuit-breaker In = 32 A, char. C 5SY
Cable/line 10 m Cu 1(3x6/6/6)
Tap-off unit 2
Rack 1.3 In = 28.9 A Un = 400 V 3+N-pole
MCB Miniature Circuit-breaker In = 32 A, char. C 5SY
Cable/line 10 m Cu 1(3x6/6/6)
Tap-off unit 3
Rack 1.12 In = 28.9 A Un = 400 V 3+N-pole
MCB Miniature circuit-breaker In = 32 A, char. C 5SY
Cable/line 10 m Cu 1(3x6/6/6)
Tap-off unit 12
Rack 1.13 In = 28.9 A Un = 400 V 3+N-pole
MCB Miniature circuit-breaker In = 32 A, char. C 5SY
Cable/line 10 m Cu 1(3x6/6/6)
Tap-off unit 13
Rack 1.14 In = 28.9 A Un = 400 V 3+N-pole
MCB Miniature circuit-breaker In = 32 A, char. C 5SY
Cable/line 10 m Cu 1(3x6/6/6)
Tap-off unit 14
Rack 2.1 In = 28.9 A Un = 400 V 3+N-pole
MCB Miniature circuit-breaker In = 32 A, char. C 5SY
Cable/line 10 m Cu 1(3x6/6/6)
Dummy load In = 231 A Un = 400 V 3-pole
Racks 2.4 to 2.11
4.25 m 4.5 m 4.75 m 6 m 10.5 m 10.75 m 11 m
TN -S
U n =
Rack 2.2 In = 28.9 A Un = 400 V 3+N-pole
MCB Miniature circuit-breaker In = 32 A, char. C 5SY
Cable/line 10 m Cu 1(3x6/6/6)
Tap-off unit 16
Rack 2.3 In = 28.9 A Un = 400 V 3+N-pole
MCB Miniature Circuit-breaker In = 32 A, char. C 5SY
Cable/line 10 m Cu 1(3x6/6/6)
Tap-off unit 17
Rack 2.12 In = 28.9 A Un = 400 V 3+N-pole
MCB Miniature circuit-breaker In = 32 A, char. C 5SY
Cable/line 10 m Cu 1(3x6/6/6)
Tap-off unit 26
Rack 2.13 In = 28.9 A Un = 400 V 3+N-pole
MCB Miniature circuit-breaker In = 32 A, char. C 5SY
Cable/line 10 m Cu 1(3x6/6/6)
Tap-off unit 27
Rack 2.14 In = 28.9 A Un = 400 V 3+N-pole
MCB Miniature circuit-breaker In = 32 A, char. C 5SY
Cable/line 10 m Cu 1(3x6/6/6)
Tap-off unit 28
The preconfigured modules described in here for electric power distribution in server rooms simplify planning and constitute a flexible and cost-efficient solution at the same time. As demonstrated, coordinated products and systems are indispensable in order to fulfill the high demands
regarding security of supply and selectivity in the data cen- ter. The verification with SIMARIS design makes it clear that safety factors have to be considered for simple rough calculations.
If there are any questions, please contact your local partner:
www.siemens.com/tip-cs/contact
6. Conclusion
[1] Siemens AG, 2013, Application Models for Power Distribution – Data Centres, Order No.: IC1000-G320-H1482
[2] Siemens AG, 2016, Busbars a winner for data centers, Order No.: EMMS-B10020-01-7600
7. References
Two sample files are attached to this PDF file which can be opened in SIMARIS design 10 (professional version for selectivity considerations):
- TS_13_2_56x32A_en.sdx
- TS_13_2_112x16A_en.sdx
9
For the U.S. published by Siemens Industry Inc.
100 Technology Drive Alpharetta, GA 30005 United States
© Siemens 2020
general descriptions and/or performance features
which may not always specifically reflect those
described, or which may undergo modification in the
course of further development of the products. The
requested performance features are binding only when
they are expressly agreed upon in the concluded
contract.
rights of Siemens AG, its affiliated companies or other
companies whose use by third parties for their own
purposes could violate the rights of the respective
owner.
TS_13_2_112x16A_en.pod
¬ísr,com.siemens.simaris.design.model.ElecProjectæ¾J=ÞDL mDefaultst?Lcom/siemens/simaris/design/Project/Knoten/Verwaltung/CVorgabe;LmEnergyCalculationTypet6Lcom/siemens/simaris/enc/kernel/EnergyCalculationType;L mIDfactoryt-Lcom/siemens/simaris/design/model/IDRegistry;LmNetstLjava/util/List;LmProjecttLCommon/Stammdaten/CProject;L mStateMngrtHLcom/siemens/simaris/design/Project/Knoten/Einspeisung/SourceSwitchMngr;xpsr=com.siemens.simaris.design.Project.Knoten.Verwaltung.CVorgabe–›F^Ÿs ZmSPcommunicationZmVDropOnlyLVLmDefaultsConnectionMVtZLcom/siemens/simaris/design/Project/Knoten/Verwaltung/Mittelspannung/CVorgabeVerbindungMS;LmDefaultsSourceMVt[Lcom/siemens/simaris/design/Project/Knoten/Verwaltung/Mittelspannung/CVorgabeEinspeisungMS;LmEnergyCalcTypetLjava/lang/String;LmFrequencyConverterBuildTypeq~L$mFrequencyConverterInstallationPlaceq~LmFrequencyConverterLineEmcTypeq~L mFrequencyConverterOutputEmcTypeq~LmInstallPlaceMoveConsq~LmInstallationPlaceq~LmSumVoltageDropReferencetFLcom/siemens/simaris/design/model/calculation/SumVoltageDropReference;LmSurgeProtectiontLLcom/siemens/simaris/design/Project/Geraete/protection/SurgeProtection$Type;xrBcom.siemens.simaris.design.Project.Knoten.Verwaltung.CVorgabeBasic¾=—Ÿ7ý\'xrFcom.siemens.simaris.design.Project.Knoten.Verwaltung.CVorgabeAllgemein.2¡V{ý!Lm_Paramst:Lcom/siemens/simaris/design/Globals/Component/CParamTable;xpsr8com.siemens.simaris.design.Globals.Component.CParamTable®êoîÇxrjava.util.Hashtable»%!Jä¸F loadFactorI thresholdxp?@Œw»„tID_VorgabeSchalter_Auswahlt,pod_combo_Schalter_Auswahl_Leistungsschaltert ID_VorgabeMotor_NennWirkleistungsrjava.lang.Double€³ÂJ)kûDvaluexrjava.lang.Number†¬•”à‹xp@ÍLtID_VorgabeBezeichnungNSUVt#pod_combo_BezeichnungVerteiler_NSUVt ID_VorgabeVerbrMehr_AnzahlPhasentpod_combo_AnzahlPhasen_1tID_StreckeRefSchalterMSt)pod_title_LasttrennschalterMitSicherungMStID_VorgabeMotor_SourceFactor_ydsq~@tID_VorgabeAuswahlGeraetetpod_combo_AuswahlGeraete_IcutID_VorgabeMotor_SourceFactorsq~?ðtID_VorgabeMotor_CosPhisq~?é™™™™™štID_VorgabeBezeichnungNSTSEt$pod_combo_BezeichnungVerteiler_NSTSEtID_VorgabeVerbrKondFrequenzsq~@It!ID_VorgabeMotor_AusnutzungsFaktorsq~?ðtID_VorgabeMotor_StartClass_softtpod_combo_Motor_Class10t#ID_VorgabeECar_IntegratedProtectiont#sd_e_car_with_integrated_protectiont$ID_VerbindAllg_Fire_Protection_Class~rTcom.siemens.simaris.design.Project.Geraete.Verbindung.FireProtection$ProtectionClassxrjava.lang.EnumxptE60t#ID_VorgabeVerbindung_LeiterMaterialt&pod_combo_Verbindung_LeiterMaterial_Cut$ID_VorgabeSammelSchiene_AnzahlPhasentpod_combo_AnzahlPhasen_3PlusNtID_iSelKurzUndUebersrjava.lang.Integerâ ¤÷‡8Ivaluexq~tID_MotorBuildTypet"pod_combo_motor_build_without_fuset ID_VorgabeVerbrMehrBelastungsartt,pod_combo_Verbraucher_BelastungsArt_induktivtID_VorgabeECar_DeviceTypetsd_e_car_type_wallboxt!ID_VorgabeMotor_SourceFactor_softsq~?û333333t$ID_VorgabeMotor_AusnutzungsFaktor_ydsq~?ðt(ID_VorgabeMotor_AusnutzungsFaktor_directsq~?ðtID_VorgabeGAusloeserBeiACBsrjava.lang.BooleanÍ r€ÕœúîZvaluexpt'ID_VorgabeMotor_StartCurrentRel_reversesq~@t#ID_VorgabeVerbrMehrNennWirkleistungsq~@¹û9ÀëîtID_VorgabeBezeichnungNSHVt#pod_combo_BezeichnungVerteiler_NSHVtID_VorgabeSelAbstandsq~?ðtID_VorgabeDiBausteinBeiMCCBsq~LtID_VerbindAllg_Fire_Protection~rDcom.siemens.simaris.design.Project.Geraete.Verbindung.FireProtectionxq~5tNO_FIRE_PROTECTIONtID_VorgabeBezeichnungNSTTt#pod_combo_BezeichnungVerteiler_NSTTtID_VorgabeCminNSsq~?ìÌÌÌÌÌÍt$ID_VorgabeVerbrAllgAusnutzungsFaktorsq~?ðtID_VorgabeBezeichnungNSTSt#pod_combo_BezeichnungVerteiler_NSTStID_VorgabeMotor_RToX_dynsq~?ÚáG®zátID_VorgabeVerbrAllgNennStromsq~@YtID_VorgabeKabelQuerschnittMaxsq~@nt ID_VorgabeAnzahlParallelSchienensq~=tID_VorgabeTminIKmaxsq~=tID_VorgabeECar_AnzahlPhasentpod_combo_AnzahlPhasen_3PlusNtID_VorgabeCmaxNSsq~?ñ™™™™™št+ID_VorgabeMotor_AusnutzungsFaktor_frequencysq~?ðtID_RCDbyFuse_Grundq~WtID_VorgabeECar_Locationtsd_e_car_location_privatetID_VorgabeFiSchutzBeiMCBq~MtID_VorgabeMotor_Efficiencysq~?ìÌÌÌÌÌÍtID_VorgabeMotor_StartCurrentRelsq~@tID_VorgabeSpannungsfallsq~@tID_VorgabeTAbschaltBusbarsq~=PtID_VorgabeSumLoadNominalLoadsq~@ë4ᛑtID_VorgabeECar_Belastungsartt-pod_combo_Verbraucher_BelastungsArt_kapazitivtID_VorgabeBezeichnungNSGSt!pod_combo_BezeichnungVerteiler_GStID_VorgabeIcmFaktorsq~@tID_VorgabeSumLoadCosPhisq~?é™™™™™štID_VorgabeSumLoadNominalCurrentsq~@YtID_VorgabeSpannungsfallMotorsq~@t&ID_VorgabeMotor_AusnutzungsFaktor_softsq~?ðtID_NennSpannungNSsq~=tID_VorgabeVerbindung_Auswahlt"pod_combo_Verbindung_Auswahl_Kabelt%ID_VorgabeMotor_SourceFactorFrequencysq~?ðtID_VorgabeTUmgebungGeraetsq~=-tID_VorgabeKabelFgesTUmgebungsq~=t"ID_VorgabeMotor_StartCurrentRel_ydsq~?û333333tID_VorgabeFiSchutzBeiSichq~Mt&ID_VorgabeVerbrKondStufenBlindLeistungsq~@ØjtID_VorgabeRealVoltageFactorsq~?ðt$ID_VorgabeVerbindung_IsolierMaterialt*pod_combo_Verbindung_IsolierMaterial_PVC70t"ID_VorgabeVerbrKondVerlustleistungsq~?àtID_VorgabeBezeichnungMSHVt#pod_combo_BezeichnungVerteiler_MSHVt ID_VorgabeECar_AusnutzungsFaktorsq~?ðt(ID_VorgabeMotor_StartCurrentRelFrequencysq~?ðtID_VorgabeECar_NennSpannungsq~@ytID_MotorStartTypetpod_combo_motor_type_directtID_VorgabeTAbschaltq~tID_iSelDimTargetq~>tID_VorgabeTminIKmaxBusbarq~mtID_MotorRelationTypetpod_combo_motor_mapping_type_2tID_VorgabeVerbindung_DS_Auswahlt$pod_combo_Verbindung_Auswahl_SchienetID_VorgabeECar_CosPhisq~?ðtID_VorgabeVerbrAllgCosPhisq~?é™™™™™štID_VorgabeSumLoadBelastungsartt,pod_combo_Verbraucher_BelastungsArt_induktivt&ID_VorgabeVerbrKondStufenEingeschaltetsq~=tID_VorgabeFrequenzsq~=2tID_VorgabeVerbrKondNennSpannungsq~@yt ID_VorgabeVerbrAllgBelastungsartt,pod_combo_Verbraucher_BelastungsArt_induktivtID_VorgabeVerbrKondAnzahlStufensq~= tID_VorgabeECar_NominalCurrentsq~@@tID_VorgabeVerbrMehrCosPhisq~?é™™™™™štID_VorgabeMotor_RToX_statsq~?¹™™™™™štID_VorgabeVerbindung_VerlegeArtt!pod_combo_Verbindung_Verlegeart_CtID_VorgabeI2Defaultsq~?÷333333tID_Vorgabe_RequestedPolzahlq~>t'ID_VorgabeVerbindung_ReducedQuerschnittq~WtID_MotorConfVoltagesq~@yt)ID_VorgabeMotor_AusnutzungsFaktor_reversesq~?ðt"ID_VorgabeVerbraucher_AnzahlPhasentpod_combo_AnzahlPhasen_3PlusNtID_MotorOverloadRelaisTypet$pod_combo_motor_overload_relais_nonet ID_FrequenzNSq~¿tID_VorgabeMotor_StartClass_ydtpod_combo_Motor_Class10t"ID_Default_SurgeProtectionFuseTypet-pod_combo_Schalter_Auswahl_SicherungMitSockelt"ID_VorgabeMotor_StartClass_reversetpod_combo_Motor_Class10tID_VorgabeFiSchutzBeiMCB_Grundq~WtID_VorgabeVerbrMehrNennStromsq~@)t$ID_VorgabeMotor_StartCurrentRel_softsq~@tID_VorgabeNormBezeichnungq~kt$ID_VorgabeVerbrMehrAusnutzungsFaktorsq~?ðtID_VorgabeMaxVoltageDropsq~@tID_Vorgabe_MotorCircuittpod_motorstartertID_iSelDimModusCircToCircq~>tID_VorgabeVerbrAllgNennSpannungsq~@yt&ID_VorgabeMotor_StartCurrentRel_directsq~@tID_VorgabeGAusloeserBeiMCCBq~Mt#ID_VorgabeMotor_StartClassFrequencytpod_combo_Motor_Class10tID_VorgabeAnzahlParallelKabelq~mt$ID_VorgabeMotor_SourceFactor_reversesq~?ðtID_VorgabeMotor_StartClasstpod_combo_Motor_Class10tID_VorgabeVerbindung_Anordnungt pod_combo_VA_Kabeltyp_mehradrigetID_VorgabeBeruerungsSpannungsq~=tID_DefaultDisconnectorDesignt)pod_combo_LasttrennschalterMitSich_Leistet#ID_VorgabeVerbrAllgNennWirkleistungsq~@ë4ᛑtID_VorgabeTSpannungsfallBusbarsq~=7t#ID_VorgabeMotor_SourceFactor_directsq~?ðt!ID_VorgabeMotor_StartClass_directtpod_combo_Motor_Class10tID_VorgabeKabelQuerschnittMinsq~?øtID_VorgabeVerbrMehrNennSpannungsq~@ytID_VorgabeBezeichnungNSTSSt$pod_combo_BezeichnungVerteiler_NSTSStID_VerbindAllg_Theta_Firesq~tID_VorgabeSelektivitaetq~WtID_VorgabeMotor_AnzahlPhasentpod_combo_AnzahlPhasen_3tID_VorgabeTSpannungsfallq~tID_VorgabeMotor_NennSpannungsq~@yxsrXcom.siemens.simaris.design.Project.Knoten.Verwaltung.Mittelspannung.CVorgabeVerbindungMSexTs”ЇIm_Index_AnordnungIm_Index_VerbindungArtDm_dQuerschnittMaxDm_dQuerschnittMinxq~p@@@A€srYcom.siemens.simaris.design.Project.Knoten.Verwaltung.Mittelspannung.CVorgabeEinspeisungMS3$ùïRÔ* DmNominalVoltageMVIm_Index_SternPunktBehandlungDm_R0zuX0maxDm_R0zuX0minDm_Z0zuZ1maxDm_Z0zuZ1minDm_dErdKurzSchlussStromDm_dErdSchlussRestStromDm_dKapazitiverErdSchlussStromL mSchaltGruppeq~xq~sq~?@wt ID_EinspKurzschlussLeistungMinMSsq~@YtID_EinspNennSpannungMSsq~@ÓˆtID_EinspR1_X1maxMSsq~?É™™™™™štID_VorgabeCmaxMSsq~?ñ™™™™™št ID_EinspKurzschlussLeistungMaxMSsq~@@tID_VorgabeCminMSsq~?ðtID_EinspR1_X1minMSsq~?É™™™™™šx@Óˆ?ð?ð?ð?ð?ð?ø@ItDyn5tPHASE_SPECIFICtsd_fused_frequency_convertertsd_fc_distributedtsd_emc_type_withouttsd_emc_type_withouttpod_interiortpod_interior~rDcom.siemens.simaris.design.model.calculation.SumVoltageDropReferencexq~5tVDROP_SECONDARY~rJcom.siemens.simaris.design.Project.Geraete.protection.SurgeProtection$Typexq~5tNONE_SPD~r4com.siemens.simaris.enc.kernel.EnergyCalculationTypexq~5tPHASE_SPECIFICsr+com.siemens.simaris.design.model.IDRegistryƶ®›/¹ImDistributionIDI mElementIDImNetIDxp·sr&java.util.Collections$SynchronizedList”cïãƒD|Llistq~xr,java.util.Collections$SynchronizedCollection*aøM œ™µLctLjava/util/Collection;LmutextLjava/lang/Object;xpsrjava.util.ArrayListxÒ™ÇaIsizexpwsr(com.siemens.simaris.design.model.ElecNet¨[¬ùÌDmCmaxLVDmCmaxMVDmCminLVDmCminMVD mFrequencyImIDImIndexNetSystemImNetIDDmR0zuX0maxMSDmR0zuX0minMSDmR1zuX1maxMSDmR1zuX1minMSD mSscMVmaxD mSscMVminDmVoltageFactorDmZ0zuZ1maxMSDmZ0zuZ1minMSLmConnectionSetsq~LmDefaultNameq~LmNameq~LmNodesq~LmSlackNodeMVt-Lcom/siemens/simaris/design/model/ElecSource;LmStrIDq~LmUnomLVt(Lcom/siemens/simaris/enc/model/IVoltage;LmUnomMVq~ELmVDropGettert@Lcom/siemens/simaris/design/model/calculation/VoltageDropGetter;L mVDropRefq~xp?ñ™™™™™š?ñ™™™™™š?ìÌÌÌÌÌÍ?ð@I?ð?ð?É™™™™™š?É™™™™™š@@@Y?ð?ð?ðsr&java.util.Collections$UnmodifiableListü%1µìLlistq~xr,java.util.Collections$UnmodifiableCollectionB€Ë^÷Lcq~>xpsq~Awsr:com.siemens.simaris.design.model.TransformerConnectionLineË<¥g¼I×LmPrimaryConnectiont8Lcom/siemens/simaris/design/model/TransformerConnection;LmSecondaryConnectionq~MLmTransformerConnectiont>Lcom/siemens/simaris/design/model/TransformerDeviceConnection;xr2com.siemens.simaris.design.model.ElecConnectionSetkøë*5ÒÆxr/com.siemens.simaris.design.model.ElecConnectionÐc"pg I mConnectionIDImCopyIDImNetSystemIndexD mPlossAbsD mPlossRelD mRaOnlyITD mReOnlyTTImRequestedNetSystemIndexImSelDimModeCircToCircI mSelDimTargetDmSelDistanceImSelKurzUndUeberLmCircuitTypet.Lcom/siemens/simaris/design/model/CircuitType;LmConnectiont:Lcom/siemens/simaris/design/model/IDimableImpedanceHolder;LmDefaultNameq~L mFixImpedancetDLcom/siemens/simaris/design/Project/Geraete/Verbindung/FixImpedance;LmInnerConnSubnetPos0t>Lcom/siemens/simaris/design/Berechnung/Kernel/InnerConnSubnet;LmInnerConnSubnetPos1q~TL mMcbSelectiont8Lcom/siemens/simaris/design/Project/Knoten/McbSelection;LmNameq~LmOVPU0tNLcom/siemens/simaris/design/Project/Geraete/protection/OvervoltProtectionUnit;LmOVPU1q~VLmSeparateProtectiontBLcom/siemens/simaris/design/Project/Knoten/SeparateProtectionType;LmSourcet+Lcom/siemens/simaris/design/model/ElecNode;LmStrIDq~LmSwitchingDevice0t6Lcom/siemens/simaris/design/model/device/SwitchDevice;LmSwitchingDevice1q~YLmTargetq~XLmTargetDistributiontELcom/siemens/simaris/design/Project/Geraete/Verteiler/CVerteilerAllg;xr.com.siemens.simaris.enc.model.impl.EConnectionC!¼º¨+ImIDLmDifferenceVoltageq~EL mLFcurrentt,Lcom/siemens/simaris/enc/model/ILoadCurrent;LmSourcet*Lcom/siemens/simaris/enc/model/impl/ENode;LmTargetq~]L mZloadFlowt*Lcom/siemens/simaris/enc/model/IImpedance;LmZmaxq~^LmZminq~^xpsr*com.siemens.simaris.enc.model.impl.Voltage0Ü^bQó±LmUlinesNt-Lorg/apache/commons/math3/linear/FieldVector;LmUsymq~axpsr0org.apache.commons.math3.linear.ArrayFieldVectorj#Ñy 'FŠ[datat([Lorg/apache/commons/math3/FieldElement;Lfieldt Lorg/apache/commons/math3/Field;xpur+[Lorg.apache.commons.math3.complex.Complex;2[/(Ç›æxpsr(org.apache.commons.math3.complex.Complexª“ò·[ôD imaginaryDrealxpq~jq~jsr-org.apache.commons.math3.complex.ComplexFieldªì“[®OÂxpsq~cuq~gq~jq~jq~jq~lsr.com.siemens.simaris.enc.model.impl.LoadCurrentEj4…\áÐLmIlinesq~aLmIsymq~aLmPhasest+Lcom/siemens/simaris/enc/model/impl/EPhase;xpsq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~l~r)com.siemens.simaris.enc.model.impl.EPhasexq~5tL1L2L3pppppÿÿÿÿÿÿÿÿ?ð~r,com.siemens.simaris.design.model.CircuitTypexq~5tTRANSFORMER_MV_LVptLVMD 1.1ppp~r6com.siemens.simaris.design.Project.Knoten.McbSelectionxq~5tICNppp~r@com.siemens.simaris.design.Project.Knoten.SeparateProtectionTypexq~5tSP_NONEpt1.1pppsrCcom.siemens.simaris.design.Project.Geraete.Verteiler.CVerteilerAllg ärwˆÞfZmHasGroupRCDZm_bL1Zm_bL2Zm_bL3LmSeparateProtectionq~Wxr:com.siemens.simaris.design.Project.Geraete.CloneableDevice/®—±xr2com.siemens.simaris.design.Project.Geraete.CDeviceiÕšÛ§9ydLmUserdefinedNameq~Lm_Paramsq~xppsq~?@wtID_ZielVerNennLeistungsq~t ID_Netzsystemq~ktID_Bezeichnungtt!ID_ZielVerGleichZeitigkeitsFaktorsq~?ðtID_Spannungsfallsq~@t ID_Polzahlsq~=xq~†sr6com.siemens.simaris.design.model.TransformerConnectionèIÉ>ˆbˆøZmPrimaryLmTransformerConnectionLinet<Lcom/siemens/simaris/design/model/TransformerConnectionLine;xq~Psq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿ?ð~q~~tTRANSFORMER_MVsr>com.siemens.simaris.design.Project.Geraete.Verbindung.CKabelMSPÌÚ»ÆD m_Inominalxr@com.siemens.simaris.design.Project.Geraete.Verbindung.CKabelAllg¢ÚQ™Ð…ËxxrEcom.siemens.simaris.design.Project.Geraete.Verbindung.CVerbindungAllg’@2›÷aZmBuildingTransitionLmFireProtectiontFLcom/siemens/simaris/design/Project/Geraete/Verbindung/FireProtection;LmFireProtectionClasstVLcom/siemens/simaris/design/Project/Geraete/Verbindung/FireProtection$ProtectionClass;xq~Špsq~?@!w-tID_KEY_Polzahltpod_combo_AnzahlPhasen_1tID_MS_iAnordnungq~>tID_KabelAllg_IndexAnordnungq~>tID_KabelAllg_EinhalbPENq~Wt#ID_VerbindAllg_Querschnitt_n_Leitersq~?øtID_VerbindAllg_Laengesq~@It(ID_VerbindAllg_Querschnitt_aussen_Leitersq~?øtID_Kabel_AnzahlParallelerLeiterq~ktID_VerbindAllg_Theta_minsq~@4tID_MS_Kabel_dx1sq~?Êe+ÓÃatID_MS_Kabel_dx0sq~øtID_MS_dUmrechnungsfaktorsq~?ðtID_MS_Kabel_dr1sq~?á/Ÿ¾vÉtID_MS_iBemessungsspannungq~ýtID_MS_Kabel_dr0sq~øt ID_VerbindAllg_NotYetDimensionedsq~Lq~—q~>tID_KabelAllg_VerlegeArttpodMS_combo_Verbindung_LufttID_VerbindAllg_Theta_maxsq~@TtID_MS_dNennFrequenzsq~@Iq~q~>tID_MS_iKabelTypq~>t!ID_KabelAllg_IndexIsolierMaterialq~>tID_MS_iKabelbauartq~>t"ID_VerbindAllg_IndexLeiterMaterialq~>tID_KabelAllg_UmrechnungsFaktorsq~?ðq~‘t MV-C/L 1.1t$ID_VerbindAllg_Querschnitt_pe_Leitersq~?øtID_VerbindAllgWireMaterialt&pod_combo_Verbindung_LeiterMaterial_CutID_MS_iQuerschnittsq~=tID_VerbindAllg_TypNrsq~=xpp@m`q~psr<com.siemens.simaris.design.Berechnung.Kernel.InnerConnSubnet~HœH2Âxr?com.siemens.simaris.design.model.internals.AbstrInternalConnSetÅá=d‚ôVoLmBaseConnectiont1Lcom/siemens/simaris/design/model/ElecConnection;L mInternalNodet9Lcom/siemens/simaris/design/model/internals/InternalNode;LmLowerConnectionsq~LmUpperConnectionsq~xq~Pnsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~«pppppq~ƒpppq~†ppppppq~›sr7com.siemens.simaris.design.model.internals.InternalNodeôÐîØ”2- L mBaseNodeq~XLmConnectionsq~xr)com.siemens.simaris.design.model.ElecNodeá])«à¯ZmCentralEarthPointImCopyIDImDistributionIDZmMaindistributionImNetSystemIndexImRequestedNetSystemIndexLmCircuitTypeq~QL mDistributionq~ZLmLeftConnectiont/Lcom/siemens/simaris/design/model/ElecCoupling;LmNett*Lcom/siemens/simaris/design/model/ElecNet;LmNodeVoltaget*Lorg/apache/commons/math3/complex/Complex;LmRightConnectionq~úLmStrIDq~LmSurgeProtectionq~ xr(com.siemens.simaris.enc.model.impl.ENode œ ô24bdImIDLmConnectionsq~LmLoadsq~LmNameq~LmOperatingVoltageq~ELmSourcesq~L mTransformersq~xposq~Hsrjava.util.Collections$EmptyListz¸´<§Þxpq~sq~Hq~q~psq~`sq~cuq~gsq~i@lÞ\±OÞsq~iÀiÀ\Þ\±OÞsq~i@iÀ\Þ\±OÞq~lsq~cuq~gsq~isq~i@lÞ\±OÝsq~i=q~lsq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿ~q~~tINTERNALpppppq~’q~5sr+com.siemens.simaris.design.model.ElecSourceM’M˜,*EDZmLinesSourceZmNsourceLmMainDevicetELcom/siemens/simaris/design/Project/Geraete/Hauptgeraet/CHauptGeraet;xq~ùsq~Hsq~Awq~›xq~sq~Hq~q~pq~sq~Hsq~Awq~xq~sq~Hq~q~ÿÿÿÿÿÿÿÿ~q~~t SLACK_NODEsq~‰psq~?@wq~q~q~q~kq~‘tNetwork q~“sq~?ðq~•sq~@q~—q~˜xq~†pq~Gsq~i@Óˆpq~’q~5srHcom.siemens.simaris.design.Project.Geraete.Hauptgeraet.GeneralElecSource€}”ò,ŒDmCmaxDmCminD mR0toX0maxD mR0toX0minD mR1toX1maxD mR1toX1minD mZ0toX0maxD mZ0toX0minD mZ0toZ1maxD mZ0toZ1minLmPsccmaxq~üLmPsccminq~üLmUnomNetq~üLmUnomSCq~üxrCcom.siemens.simaris.design.Project.Geraete.Hauptgeraet.CHauptGeraetèð¼ø–|aD mFrequencyD mInfeedFactorxq~Špsq~?@wtID_KnotenAutoDimFlagq~Wq~q~>q~‘q~’tID_KnotenNotYetDimq~WtID_Knotentypsq~=»tID_Schalter_AutoDimq~MtID_HauptGerManufacturerTypq~’q~—q~˜x@I?ð?ñ™™™™™š?ð?ð?ð?É™™™™™š?É™™™™™š?ð?ðsq~i@@sq~i@Ysq~i@ysq~i@Óˆsq~Awsr=com.siemens.simaris.design.model.internals.InternalConnectionBiAk'§DmImpedanceFactorLmBaseConnectionq~æL mImpedanceq~^LmSourceq~XLmTargetq~Xxq~Ppsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~«pppppq~ƒpppq~†pppppp?ðq~›sr,com.siemens.simaris.enc.model.impl.ImpedanceâÏíãÞö>LmY0_nq~üLmY0_peq~üLmY1q~üxpsq~iÁ½ÍdÿÿÿÿA½Ídÿÿÿÿq~Eq~Epq~þsq~2qsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~«pppppq~ƒpppq~†pppppp?ðq~›pq~þpxsq~Awq~Fxsq~Awq~3xsq~äjsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~«pppppq~ƒpppq~†ppppppq~›sq~øksq~Hq~q~sq~Hq~q~psq~`sq~cuq~gsq~i@lÞ\±OÝsq~iÀiÀ\Þ\±OÝsq~i@iÀ\Þ\±OÝq~lsq~cuq~gsq~isq~i@lÞ\±OÝsq~i=q~lsq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5sr0com.siemens.simaris.design.model.TransformerNode$ªê–$WµÈZmPrimaryLmTransformert?Lcom/siemens/simaris/design/Project/Geraete/Hauptgeraet/CTrafo;LmVoltageq~Exq~ùsq~Hsq~Awq~›sr<com.siemens.simaris.design.model.TransformerDeviceConnectionfhJöÞwLmTransformerConnectionLineq~šxq~Psq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿ?ð~q~~tTRANSFORMERsr=com.siemens.simaris.design.Project.Geraete.Hauptgeraet.CTrafo2‹ÊA-iã×xq~$psq~?@ w+tID_TrafoFreiLeerlaufVerlustsq~?Ù™™™™™štID_TrafoVerhaeltnisR0zuR1sq~?ðq~(sq~LtID_TrafoIsolationtkey_isolation_dryq~'q~WtID_TrafoVentilationsq~LtID_TrafoOberSpannungsq~@ÓˆtID_TrafoSchaltGruppeq~)tID_TrafoNennLeistungsq~@‰tID_TrafoKeyBemessungsAuswahlt.pod_combo_Trafo_BemessungsAuswahlListe_SIEMENStID_TrafoVentilationRequestq~›q~,q~’tID_TrafoFrequenzsq~@ItID_TrafoVerhaeltnisX0zuX1sq~?îfffffftID_TrafoFreiAusfuehrungq~’q~+q~›q~‘tTransformer 1.1q~)sq~=¸q~q~>tID_TrafoFreiIsolationtkey_isolation_drytID_TrafoFreeTypq~›tID_TrafoMLFBt 4GX59643EtID_TrafoKurzSchlussVerlustsq~@¿@t%ID_TrafoFreiBemessKurzSchlussSpannungsq~@tID_TrafoFreiKurzSchlussVerlustsq~@›XtID_TrafoFreiNennLeistungsq~@YtID_TrafoAusfuehrungt GEAFOL NeotID_TrafoUnterSpannungsq~@yq~—q~˜t!ID_TrafoBemessKurzSchlussSpannungsq~@tID_TrafoLeerlaufVerlustsq~?ò¸Që…¸x@I?ðq~pppq~ƒpppq~†q~zq~ˆppsq~xsq~Hsq~Awq~~sq~™sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|ppppp?ð~q~~tTRANSFORMER_LVsr@com.siemens.simaris.design.Project.Geraete.Verbindung.CSchieneNSÓÏYïÚÞIiBusbarSelectionTypeZmDefaultProtectionZmHasCableSourceI temperaturLm_oFEDataSett8Lcom/siemens/simaris/design/Globals/Tools/BusbarDataSet;Lm_oSSDataSetq~ÖL m_sBusbarNameq~xq~¯psq~?@w%q~Ñsq~@Tq~´tpod_combo_AnzahlPhasen_3PlusNtID_ConnectionFireSectionStartsq~q~q~ktID_VerbindNS_NennFrequenzsq~@Iq~¿sq~=q~Þq~9tID_ConnectionFireSectionsq~tID_VerbindNS_Spannungsfallsq~@q~âsq~=q~Ùsq~?ðq~¸q~Wq~‘tB 1.1q~Øq~áq~Àsq~@4q~Íq~ÎtID_VerbindAllg_Theta_dUsq~@K€q~+q~Îq~»sq~@>q~¹sq~@‚¸q~sq~q~—q~˜q~Üsq~@£âtID_CABLE_ALPHAsq~?pbMÒñ©üq~½sq~@‚¸xq~Zq~6#sr6com.siemens.simaris.design.Globals.Tools.BusbarDataSet6E·pï4جIIDDaLeadDaNDaPEDiLowerBoundDicwDinominalDkZmCableSourcePossibleDmReductionFactorInetIDIpolIDDr0ph_nDr0ph_peDr1IvoltageDx0ph_nDx0ph_peDx1Lbezeichnungq~LconductorConfigq~Lmaterialq~LmountTypq~L protectionq~Ltypeq~xpÿÿÿÿ¿ð¿ð¿ð¿ð¿ð¿ð¿ðøÿÿÿÿÿÿÿÿ¿ð¿ð¿ð¿ð¿ð¿ðq~’q~’pq~’q~’q~’sq~ñ@‚¸@‚¸@£â@@@N@“ˆ@Yøÿÿÿÿ?Í‘hr° Å?ÂMÒñ©ûç?«"Ðå`A‰è?³333333?±©ûçl‹D?Œ¬1&éytLI-AM12505H-55tL3NPE+GtALtHHtIP55tLIAq~’q~psq~äfsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~Ópppppq~ƒpppq~†ppppppq~Ãsq~øgsq~Hq~q~sq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5q~Àsq~Awsq~2hsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~Ópppppq~ƒpppq~†pppppp?ðq~Ãq~Dpq~ sq~2isq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~Ópppppq~ƒpppq~†pppppp?ðq~Ãpq~ pxsq~Awq~ xsq~Awq~xsq~äbsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~Ópppppq~ƒpppq~†ppppppq~Ãsq~øcsq~Hq~q~sq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5sq~ùsq~Hsq~Awq~Ãsq~Psq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|ppppp?ð~q~~tTRUNK_SOURCE_CONNsr<com.siemens.simaris.design.Project.Geraete.Verbindung.CKabelÓÏYïÚÞI mCSCacheIDLm_dataSetNewtGLcom/siemens/simaris/design/Project/Geraete/Verbindung/CableDataSetNew;xq~®psq~?@w)q~àsq~q~¿sq~=q~¸q~Wq~·q~>tID_VerbindAllg_Theta_Firesq~@i q~Ùsq~?æfffffftID_KabelAllg_VerlegeArtt!pod_combo_Verbindung_Verlegeart_Eq~Ñsq~@Tq~¹sq~@g tID_Schalter_AutoDimq~—q~Ûsq~tID_Connection_NumberPerDeviceq~áq~âsq~=q~Àsq~@4q~âsq~@q~Üsq~@WÀq~Ýsq~@Iq~Öq~>q~—q~˜q~q~kq~½sq~@g q~´q~Úq~Íq~Îq~»sq~@q~‘tC/L 2.1q~îsq~?o!-w1Åq~èsq~@K€q~Øq~>xq~Zq~6srEcom.siemens.simaris.design.Project.Geraete.Verbindung.CableDataSetNewCtý)»…™2J m2ndIDPartJ m3rdIDPartImMainCacheIDZmValidDm_dAlphaDm_dCableTempD m_dCrossND m_dCrossPEDm_dCrossWireDm_dF1Dm_dF2Dm_dF3Dm_dIzDm_dKD m_dMaxTempDm_dR1D m_dR_ph_nD m_dR_ph_peIm_dWireCountDm_dX1D m_dX_ph_nD m_dX_ph_peDm_fges_52D_EarthTempDm_fges_52D_dEarthResDm_fges_T15_SurrTempIm_fges_T17_wire_countLm_buildq~Lm_cabletypeq~Lm_fges_52E_distanceq~Lm_fges_52E_orderq~Lm_fges_52E_subInstTypeq~Lm_fges_52E_systemCountq~Lm_fges_T17_orderq~Lm_fges_T1819_bridgeCountq~Lm_fges_T1819_orderTypeq~Lm_fges_T1819_systemCountq~Lm_fges_T1819_systemDistanceq~Lm_fges_T1819_systemOrderq~Lm_isoMatq~L m_materialq~Lm_netsystemq~Lm_nrofpolesq~L m_tableOneq~Lm_tableThreeq~L m_tableTwoq~L m_va_additionq~L m_va_orderq~L m_va_placeq~Lm_va_sub_instTypeq~Lm_verlegeartq~xp?o!-w1Å@Q€@g @WÀ@g ?ð?ð?ð@vÀ@\À?¹™™™™™š?ÙxÔýó¶F?åÊÀƒn˜ÿÿÿÿ?´záG®{?Ò° Ä›¥ã?Ò° Ä›¥ãøøtpod_combo_Kabelbauart_Cu_PVC70t pod_combo_VA_Kabeltyp_mehradrigeppppppppppt*pod_combo_Verbindung_IsolierMaterial_PVC70q~9tpod_combo_NetzSystem_TN_Sq~Úq~’q~’q~’ppppq~ft LVTS-I 2.1psq~äsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~Zpppppq~ƒpppq~†ppppppq~Jsq~ø sq~Hq~q~sq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5q~Gsq~Awsq~2sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~Zpppppq~ƒpppq~†pppppp?ðq~Jq~Dpq~sq~2sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~Zpppppq~ƒpppq~†pppppp?ðq~Jpq~pxsq~Awq~£xsq~Awq~“xsq~äsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~Zpppppq~ƒpppq~†ppppppq~Jsq~øsq~Hq~q~sq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5sr8com.siemens.simaris.design.model.busbarsystem.SectionEnd4Öbǵdxq~ù sq~Hsq~Awq~Jsr9com.siemens.simaris.design.model.busbarsystem.SectionParte’6@²QLmSectiont=Lcom/siemens/simaris/design/model/busbarsystem/BusbarSection;xq~Psq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ð~q~~tTRUNK_SECTIONPARTsrCcom.siemens.simaris.design.Project.Geraete.Verbindung.RawConnectionçäûS@9Lm_parentConntGLcom/siemens/simaris/design/Project/Geraete/Verbindung/CVerbindungAllg;xq~¯psq~?@wq~¸q~Wq~¹q~q~âsq~=q~àsq~q~Ñsq~@Tq~Íq~Mq~Ùsq~?ðq~»sq~@q~Øq~>q~½q~q~—q~>q~Ûsq~q~Üq~q~¿q~kq~q~kq~Àsq~@4q~‘q~’xppsq~Õpsq~?@w%q~Ñsq~@Tq~´q~Úq~Ûsq~q~q~kq~Ýsq~@Iq~¿q~ßq~Þq~9q~àsq~q~âsq~@q~âsq~=q~Ùsq~?ðq~¸q~Wq~‘tB 2.2q~Øq~áq~Àsq~@4q~Íq~Îq~èsq~@K€q~+q~Îq~»[email protected]~¹sq~@0q~sq~q~—q~˜q~Üsq~@¢˜q~îsq~?pbMÒñ©üq~½sq~@0xq~Zq~6#sq~ñÿÿÿÿ¿ð¿ð¿ð¿ð¿ð¿ð¿ðøÿÿÿÿÿÿÿÿ¿ð¿ð¿ð¿ð¿ð¿ðq~’q~’pq~’q~’q~’sq~ñ @0@0@¢˜@‰@I@@@Yøÿÿÿÿ?ÑxÔýó¶F?ÄÝ/Ÿ¾w?° Ä›¥ãTè?¸“t¼j~ú?³÷ÎÙ‡+?bMÒñ©ütLI-AM10005H-55q~õq~ötHHtIP55tLIAq~’ppsq~ä%sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~àpppppq~ƒpppq~†ppppppq~Ðsq~ø&sq~Hq~q~sq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5q~Ësq~Awsq~2'sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~àpppppq~ƒpppq~†pppppp?ðq~Ðq~Dpq~sq~2(sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~àpppppq~ƒpppq~†pppppp?ðq~Ðpq~pxsq~Awq~+xsq~Awq~xsq~ä)sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~àpppppq~ƒpppq~†ppppppq~Ðsq~ø*sq~Hq~q~sq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5sr4com.siemens.simaris.design.model.busbarsystem.TapOffãæꕪ¾­èLmSectionq~Ïxq~ùsq~Hsq~Awq~Ðsq~P!sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|ppppp?ðq~Zsq~\psq~?@w)q~àsq~q~¿q~áq~¸q~Wq~·q~>q~bsq~@i q~Ùsq~?æffffffq~et!pod_combo_Verbindung_Verlegeart_Eq~Ñsq~@Tq~¹sq~@g q~iq~—q~Ûsq~q~kq~áq~âsq~=q~Àsq~@4q~âsq~@q~Üsq~@WÀq~Ýsq~@Iq~Öq~>q~—q~˜q~q~kq~½sq~@g q~´q~Úq~Íq~Îq~»sq~@q~‘tC/L 4.1q~îsq~?o!-w1Åq~èsq~@K€q~Øq~>xq~Zq~6sq~v?o!-w1Å@Q€@g @WÀ@g ?ð?ð?ð@vÀ@\À?¹™™™™™š?ÙxÔýó¶F?åÊÀƒn˜ÿÿÿÿ?´záG®{?Ò° Ä›¥ã?Ò° Ä›¥ãøøq~xq~yppppppppppq~zq~9q~{q~Úq~’q~’q~’ppppq~kt LVTS-I 4.1psq~ä5sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~Zpppppq~ƒpppq~†ppppppq~Vsq~ø6sq~Hq~q~sq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5q~Ssq~Awsq~27sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~Zpppppq~ƒpppq~†pppppp?ðq~Vq~Dpq~‹sq~28sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~Zpppppq~ƒpppq~†pppppp?ðq~Vpq~‹pxsq~Awq~¡xsq~Awq~‘xsq~ä9sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~Zpppppq~ƒpppq~†ppppppq~Vsq~ø:sq~Hq~q~sq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5sq~Ê"sq~Hsq~Awq~Vsq~ÎFsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~àsq~âpsq~?@wq~¸q~Wq~¹q~q~âsq~=q~àsq~q~Ñsq~@Tq~Íq~Mq~Ùsq~?ðq~»sq~@q~Øq~>q~½q~q~—q~>q~Ûsq~q~Üq~q~¿q~kq~q~kq~Àsq~@4q~‘q~’xppsq~Õpsq~?@w%q~Ñsq~@Tq~´q~Úq~Ûsq~q~q~kq~Ýsq~@Iq~¿q~kq~Þq~9q~àsq~q~âsq~@q~âsq~=q~Ùsq~?ðq~¸q~Wq~‘tB 4.2q~Øq~áq~Àsq~@4q~Íq~Îq~èsq~@K€q~+q~Îq~»sq~@6q~¹sq~@[q~sq~q~—q~˜q~Üsq~@[q~îsq~?pbMÒñ©üq~½sq~@[xq~Zq~6#sq~ñÿÿÿÿ¿ð¿ð¿ð¿ð¿ð¿ð¿ðøÿÿÿÿÿÿÿÿ¿ð¿ð¿ð¿ð¿ð¿ðq~’q~’pq~’q~’q~’sq~ñ¹@[@[@[@d@$@o@@W@øÿÿÿÿ?õp£× =q?ñ"Ðå`A‰?ÓS÷ÎÙ‡²?è?â$Ý/Ÿ¾?ÀÄ›¥ãSøt BD2A-3-250tL3NPEq~ötHHtIP52tBD2Aq~’tLVTS-S 4.-1psq~äJsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~àpppppq~ƒpppq~†ppppppq~Ësq~øKsq~Hq~q~sq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5q~Èsq~Awsq~2Lsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~àpppppq~ƒpppq~†pppppp?ðq~Ëq~Dpq~sq~2Msq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~àpppppq~ƒpppq~†pppppp?ðq~Ëpq~pxsq~Awq~$xsq~Awq~xsq~äNsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~àpppppq~ƒpppq~†ppppppq~Ësq~øOsq~Hq~q~sq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5sq~REsq~Hsq~Awq~Ësr)com.siemens.simaris.design.model.ElecLoadÉqµr5 xq~PIsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|ppppp?ð~q~~tLOAD_CIRCUITsq~\psq~?@w'q~îsq~?o!-w1Åq~Üsq~@q~q~kq~èsq~@K€q~¸q~WtID_Schalter_AutoDimsq~LtID_Connection_NumberPerDevicesq~=q~Ûsq~q~—q~>q~Ýsq~@Iq~¹sq~@q~âsq~=q~Ùsq~?ë333333q~‘t C/L 4.2.1q~¿q~áq~âsq~@q~àsq~q~Íq~Îq~Àsq~@4tID_KabelAllg_VerlegeArtt!pod_combo_Verbindung_Verlegeart_Eq~½sq~@q~Ñsq~@Tq~»sq~@$q~Öq~>tID_VerbindAllg_Theta_Firesq~@i q~Øq~>q~´q~µq~·q~>xq~Zq~6sq~v?o!-w1Å@Q€@@@?ð?ð?ð@>@\À@vÈ´9X@=wKƧï@=wKƧïÿÿÿÿ?¼í‘hr°!?Üýó¶E¡Ë?Üýó¶E¡Ëøøq~xq~yppppppppppq~zq~9q~{q~µq~’q~’q~’ppppq~tppsq~äZsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~_pppppq~ƒpppq~†ppppppq~Osq~ø[sq~Hq~q~sq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5q~Ksq~Awsq~2\sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~_pppppq~ƒpppq~†pppppp?ðq~Oq~Dpq~‹sq~2]sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~_pppppq~ƒpppq~†pppppp?ðq~Opq~‹pxsq~Awq~¡xsq~Awq~‘xsq~ä^sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~_pppppq~ƒpppq~†ppppppq~Osq~ø_sq~Hq~q~sq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5sr,com.siemens.simaris.design.model.LoadEndNode˜)#feDµÑI mQuantityLmLoadtKLcom/siemens/simaris/design/Project/Geraete/EndVerbraucher/CEndVerbraucher;xq~ùHsq~Hsq~Awq~Oxq~Ìsq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿ~q~~tGENERAL_LOADsq~‰psq~?@wq~q~q~q~kq~‘tRack: 1-phase, 3.6kVAq~“sq~?ðq~•sq~@q~—q~>xq~†pq~Gsq~i@ypq~’q~5sr>com.siemens.simaris.design.Project.Geraete.EndVerbraucher.LoadôÁ?@<ÍêLmInstallationPlaceq~xrJcom.siemens.simaris.design.Project.Geraete.EndVerbraucher.CAllgVerbraucherE ´³µ„xrIcom.siemens.simaris.design.Project.Geraete.EndVerbraucher.CEndVerbraucherb¬îEÌ}Î+ZmL1ZmL2ZmL3xq~ŠtRack: 1-phase, 3.4 kVAsq~?@wtID_EndVerWirkLeistungsq~@øjtID_EndVerBelastungsStromq~tID_EndVerStufenBlindLeistungq~tID_EndVerAusnutzungsFaktorsq~?ðtID_EndVerVerlustLeistungq~q~q~tID_EndVerEtaq~q~Úq~tID_EndVerAnzahlStufenq~>q~sq~=tID_EndVerCosPhisq~?ðq~)sq~=MtID_EndVerNennWirkleistungsq~@ªtID_EndVerNennSpannungsq~@ytID_EndVerNennFrequenzq~q~‘tL 4.2.1tID_EndVerBelastungsArtFaktorsq~¿ðq~—sq~=tID_EndVerStufenEingeschaltetq~>xq~0sq~Awsq~2`sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~_pppppq~ƒpppq~†pppppp?ðq~Oppq~Ãsq~2asq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~_pppppq~ƒpppq~†pppppp?ðq~Oq~Dq~Ãpxsq~Awq~xsq~Awq~öx~q~‚tICUpppq~†q~Kt4.2.1sr4com.siemens.simaris.design.model.device.SwitchDevice:gàüc,þLmSwitchtHLcom/siemens/simaris/design/Project/Geraete/Schalter/CSchalterAllgemein;xpsrHcom.siemens.simaris.design.Project.Geraete.Schalter.CLeistungsSchalterNSÏÜ~'ïWL m_oProdHoldertILcom/siemens/simaris/design/Project/Geraete/Schalter/CProdCircuitBreaker;xrFcom.siemens.simaris.design.Project.Geraete.Schalter.CSchalterAllgemein¢¶Š3îìyZmMcbSelectionIcuZmRCD_ACBLmBaseDevicetHLcom/siemens/simaris/design/Project/Geraete/Schalter/ISchalterAllgemein;LmCurvesProxytALcom/siemens/simaris/design/Project/Geraete/Schalter/CurvesProxy;xq~‹t CB 4.2.1asq~?@#w/ tID_Schalter_FiSchutzBeiMCBq~—tID_Schalter_bRCDselektivitaetsq~LtID_dIselDynsq~@ÇptID_Schalter_MLFBtt%ID_LtsSchalter_SchutzRelaisStromGrosssq~tID_Schalter_FiSchutzBeiSichq~—tID_Schalter_NetzSystemIndexq~çtID_FI_hasToHavesq~Lt$ID_LtsSchalter_SchutzRelaisZeitGrosssq~?¹™™™™™štID_Schalter_GAusloeserBeiMCCBq~—tID_Schalter_NumberOfPolesq~ótID_LtsSchalter_BelastungsStromsq~tID_Schalter_TypKeyt,pod_combo_Schalter_Auswahl_LeistungsschaltertID_RCDbyFuse_Grundq~Ît ID_LtsSchalter_SchutzRelaisStromsq~tID_ProtectiveDevicesr?com.siemens.simaris.tripchar.model.device.StatefulDeviceWrapper*ÎÀ=x0exLdevicet=Lcom/siemens/simaris/tripchar/model/device/IProtectiveDevice;xpsr-com.siemens.simaris.tripchar.model.device.McbÊÓ´:Ò™¼LcurrentstLjava/util/Map;L cutOffCurrentt?Lcom/siemens/simaris/tripchar/model/curve/ICharacteristicCurve;LletThroughEnergyq~DLmTolerancesq~CL referencesq~CLtrippingCharacteristict9Lcom/siemens/simaris/tripchar/model/curve/IToleranceBand;LtrippingCharacteristicsq~Cxpsr%java.util.Collections$UnmodifiableMapñ¥¨þtõBLmq~Cxpsr/com.siemens.simaris.tripchar.model.device.Mcb$2xR8Ëá¨Lthis$0t/Lcom/siemens/simaris/tripchar/model/device/Mcb;xrjava.util.HashMapÚÁÃ`ÑF loadFactorI thresholdxp?@w~r3com.siemens.simaris.tripchar.model.constant.Currentxq~5tIcusq~@ÝL~q~MtInsq~@0~q~MtIisq~@T~q~MtIrsq~@0xq~Fsr2com.siemens.simaris.tripchar.model.curve.BaseCurveÍ?¤ÕMJ{Z mProtected[mPointst6[Lcom/siemens/simaris/tripchar/model/curve/CurvePoint;xpur6[Lcom.siemens.simaris.tripchar.model.curve.CurvePoint;D†êZ8˜Qxpsr:com.siemens.simaris.tripchar.model.curve.CurvePoint$DoublefÏQ WöûºDxDyxr3com.siemens.simaris.tripchar.model.curve.CurvePointyùXQI×ðYL mPartTypet>Lcom/siemens/simaris/tripchar/model/curve/CurvePoint$PartType;LmTagsq~Cxppp@T@\HÅÿÜ¢5sq~_pp@mõ/@tè;¶Nsq~_pp@@@ƒ`sq~_pp@@@hsq~_pp@§p@£sq~_pp@·p@¬ sq~_pp@È@²·sq~_pp@ÍL@·sq~_pp@Óˆ@º^sq~_pp@Øj@½Lsq~_pp@ÝL@Àsq~_pp@èj@Å1sq~Zuq~])sq~_pp@d@psq~_pp@g @rƒ\(õÂsq~_pp@j9G®zá@uÊáG®{sq~_pp@mEÂ\(ö@yï\(õÂsq~_pp@p1ë…¸R@(õÂ\sq~_pp@qêzáG®@‚‘ =p£×sq~_pp@sÝG®zá@†/× =p¤sq~_pp@võÂ\)@Š|záG®sq~_pp@x™™™™š@•p£× =sq~_pp@{báG®{@’ÍáG®{sq~_pp@~Ÿ…¸Qì@–[záG®sq~_pp@(õÂ\)@š‰× =p¤sq~_pp@ƒE33333@ŸvzáG®sq~_pp@…­…¸Qì@¢ W =p¤sq~_pp@ˆs =p£×@¦¨õÂ\sq~_pp@‹«\(õÂ@©ô#× =qsq~_pp@g™™™™š@®‡®záHsq~_pp@‘Þ33333@±ë”záG®sq~_pp@”` =p£×@µ8Që…sq~_pp@—G\(õÂ@¸’aG®{sq~_pp@š£@¼¶\(õÂsq~_pp@ˆ\(õÂ@À¿ÚáG®sq~_pp@¡‡®záH@ÂáG®{sq~_pp@¤-záG®@Æ­ð£× =sq~_pp@§I¸Qì@ÊK^¸Që…sq~_pp@ªùÇ®zá@Î^ÕÂ\)sq~_pp@¯h(õÂ\@ÑrN¸Që…sq~_pp@²e£× =q@Óç…¸Rsq~_pp@µ§áG®{@Ö‘· =p¤sq~_pp@¹¤ =p£×@Ùcë…¸Rsq~_pp@¾˜ =p¤@Ü9S× =qsq~_pp@ÂYZáG®@ߊáG®sq~_pp@Æü(õÂ@á0£× =sq~_pp@ÊŒþ¸Që…@⤙™™šsq~_pp@ÏýÌÌÌÍ@äYÿ =p¤sq~_pp@ÓB³× =q@æ=aë…¸sq~_pp@×2ôzáG®@èJÃ…¸Rsq~_pp@ÛñXQë…@ꈰõÂ\sq~_pp@àÔ ™™™š@ìûŒzáG®sq~_pp@äDó× =q@ï¨@õÂ\sq~_pp@èj@ñJ\(ösr?com.siemens.simaris.curves.construct.ProtectiveDeviceFactory$11s5-c{ubxq~K?@w~r>com.siemens.simaris.tripchar.model.constant.ProtectiveFunctionxq~5tIsq~?þ¸Që…¸~q~›tLsq~?ðxsq~Gsr/com.siemens.simaris.tripchar.model.device.Mcb$3f·he$JaöLthis$0q~Jxq~K?@wq~Tq~Qxq~Fsr:com.siemens.simaris.tripchar.model.curve.BaseToleranceBand1D¸¥’Llowerq~DLupperq~Dxpsq~Zuq~]sq~_~r<com.siemens.simaris.tripchar.model.curve.CurvePoint$PartTypexq~5tPART_Lp@0ÌÌÌÌÌÍ@¬ sq~_q~«p@1Bˆ‡ @‰±1ôosq~_q~«p@2!!@kš‰yÓ+sq~_q~«p@37PËN@QEúõÌÖsq~_q~«p@4ýäòì@8ðI^î¢àsq~_q~«p@6ÀýÁ¦@$‘On9ïsq~_q~«p@9?¬—Ö©x@1GØèsq~_q~«p@<T¨·f*¤@kP—-jsq~_q~«p@@§VÏ"E?÷I8P(Œfsq~_q~«p@BUÓÌ×oÏ?í²H¤Vsq~_q~«p@E7¸Èõ?ä›ãxŠÖ2sq~_q~«p@Hdixû¥?ÞÕŸ^ª…Osq~_q~«p@LRÞ ‰ÍÊ?ØŸÔJ´.sq~_q~«p@P|¡aö%r?ÔÊN Õ€®sq~_q~«p@S71û¿mX?Ò`î#Öì-sq~_~q~ªtPART_Ip@T?Ñ÷#Ó¬í»sq~_q~¼p@T?PbMÒñ©üsq~_q~¼pAj?PbMÒñ©üsq~Zuq~]sq~_q~«sq~K?@wt FACTOR_IKsq~?ðtSWITCHq~#x@4ÌÌÌÌÌÍ@¬ sq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@5k(0 ±¼@—ñ °å«sq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@6m¶ÍÖÁ@†÷Dç5sq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@7ÝÇo•º@uó´uªã)sq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@9É÷¸¢"@gs)© ,sq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@<Fñ¶2£ä@Z̸7>†sq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@?pѯ,@POÝ¢–Äsq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@Aµå—ì<Ì@EÊû;u!sq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@D47FúKœ@<ÁIÇú«sq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@GRN¶U´@4¥¶¾iBösq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@K86y}‰2@/ÁâAsq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@PÄÃZf@(flÃ;:sq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@SXò×ÅÇ@#é÷kx·sq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@Võ• 1°–@ Òrc °1sq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@[Ïq°Ì@K“(w~£sq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@`øLWœt@/t%õ:³sq~_q~¼sq~K?@wq~Äsq~?ðq~Æq~#x@c333333@ÏÇ\º.ÿsq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#x@c333Da??„záG®{sq~_q~¼sq~K?@wq~Äsq~?ðq~Æq~#x@t?„záG®{sq~_q~«sq~K?@wq~Äsq~?ðq~Æq~#xAj?„záG®{sq~Gsr/com.siemens.simaris.tripchar.model.device.Mcb$4u¾à;šù#_Lthis$0q~Jxq~K?@wq~œsq~¥sq~Zuq~]sq~_q~¼p@T?PbMÒñ©üsq~_q~¼pAj?PbMÒñ©üsq~Zuq~]sq~_q~¼p@c333333?„záG®{sq~_q~¼p@t?„záG®{sq~_q~¼pAj?pbMÒñ©üq~Ÿsq~¥sq~Zuq~]sq~_q~«p@0ÌÌÌÌÌÍ@¬ sq~_q~«p@1Bˆ‡ @‰±1ôosq~_q~«p@2!!@kš‰yÓ+sq~_q~«p@37PËN@QEúõÌÖsq~_q~«p@4ýäòì@8ðI^î¢àsq~_q~«p@6ÀýÁ¦@$‘On9ïsq~_q~«p@9?¬—Ö©x@1GØèsq~_q~«p@<T¨·f*¤@kP—-jsq~_q~«p@@§VÏ"E?÷I8P(Œfsq~_q~«p@BUÓÌ×oÏ?í²H¤Vsq~_q~«p@E7¸Èõ?ä›ãxŠÖ2sq~_q~«p@Hdixû¥?ÞÕŸ^ª…Osq~_q~«p@LRÞ ‰ÍÊ?ØŸÔJ´.sq~_q~«p@P|¡aö%r?ÔÊN Õ€®sq~_q~«p@S71û¿mX?Ò`î#Öì-sq~_q~«p@TÌÌÌÌÌÍ?Ñ‘¾“ùòusq~_q~«p@TÌÌÌï(å?„záG®{sq~Zuq~]sq~_q~«p@4ÌÌÌÌÌÍ@¬ sq~_q~«p@5k(0 ±¼@—ñ °å«sq~_q~«p@6m¶ÍÖÁ@†÷Dç5sq~_q~«p@7ÝÇo•º@uó´uªã)sq~_q~«p@9É÷¸¢"@gs)© ,sq~_q~«p@<Fñ¶2£ä@Z̸7>†sq~_q~«p@?pѯ,@POÝ¢–Äsq~_q~«p@Aµå—ì<Ì@EÊû;u!sq~_q~«p@D47FúKœ@<ÁIÇú«sq~_q~«p@GRN¶U´@4¥¶¾iBösq~_q~«p@K86y}‰2@/ÁâAsq~_q~«p@PÄÃZf@(flÃ;:sq~_q~«p@SXò×ÅÇ@#é÷kx·sq~_q~«p@Võ• 1°–@ Òrc °1sq~_q~«p@[Ïq°Ì@K“(w~£sq~_q~«p@`øLWœt@/t%õ:³sq~_q~«p@c333333@ÏÇ\º.ÿsq~_q~«p@c333Da??„záG®{xq~Ft#ID_Schalter_DiBausteinBeiMCCB_Grundq~Ît ID_Schalter_PositionImStromkreissq~=tID_Switch_iMultiplysq~=tID_dTselSCCsq~øtID_Schalter_TypNrsq~=t ID_Schalter_FiSchutzBeiMCB_Grundq~ÎtID_Schalter_NotYetDimensionedq~ÎtID_dTSelShortCirsq~øtID_Schalter_AutoDimq~ÎtID_dTSelOverloadsq~øtID_Schalter_Unsq~@ytID_BezeichnungtLS 4.2.1tID_LtsSchalter_SchutzRelaisZeitsq~tID_Schalter_TyptCircuit-breakertID_Schalter_GAusloeserBeiACBq~—tID_dISelDynsq~øxpsr?com.siemens.simaris.design.Project.Geraete.Schalter.CurvesProxy¢¶Š3îìzImNonSelectedVisibilityImTypNrZmValidForSelectivityLmDescq~LmSelectivityDevicetBLcom/siemens/simaris/design/tools/tripchar/api/ISelectivityDevice;LmString2ForHeaderBlockq~LmString3ForHeaderBlockq~xpq~$q~#t 5SY85167/CpsrGcom.siemens.simaris.design.Project.Geraete.Schalter.CProdCircuitBreaker¢¶‡Ùí'yxrFcom.siemens.simaris.design.Project.Geraete.Schalter.CProdGeneralSwitch¢¶‡R]yL m_oProducttLCommon/Product/CProduct;xpsrCommon.Product.CProduct : ßòÝS Im_iQuantityL m_Attachmentsq~Lm_Attributesq~Lm_VNecessaryTAKsq~Lm_VOptionalTAKsq~L m_strMlfbq~Lm_strProductgroupq~Lm_strProductgroupIDq~Lm_strTextLanguageq~xpsq~Awxsq~Awsr+Configurator.ErzeugnisAPI.CAttributeWithIDs£ÃטÞSIm_RangfolgeLmTypet+LConfigurator/DataServices/Enums/CDataType;xrCommon.Product.CAttribute : ßòÝSZ m_bIsDiskreteZm_bRelevantForSelectionDm_dConvertFactorToBaseUnitIm_iTypeLm_Valueq~?L m_strBaseUnitq~Lm_strBaseUnitIDq~L m_strNameq~L m_strTAKIDq~L m_strUnitq~Lm_strUnitIDq~xp?ðsq~@lÀppt8Bemessungsspannung AC bei Betrieb mit einem AußenleitertAAAB23030000tVt041000sr)Configurator.DataServices.Enums.CDataTypeÕªõi·!sºCm_TypexpNsq~\?ðsq~@lÀppt<Bemessungsspannung AC bei Betrieb mit mehreren AußenleiterntAAAB23040000tVt041000q~fsq~\?ðsq~?ðpptPolzahltAAAC00000000pp2q~fsq~\?ðt1+NpptPolzahltAAAC04000000ppsq~eTsq~\?ðtTpptPolzahl/ +N schaltbar?tAAAC05000000pp<sq~eDsq~\?ðsq~@0pptBemessungsstrom IntAAMZ00000000tAt041700(q~fsq~\?ðsq~@-Â\(õÃpptZulässige BelastungtAAMZ14000000tAt041700Fq~fsq~\?ð[email protected]áG®ppt.Bemessungsstrom In / IEC, DIN/VDE / bei 40 CeltAAMZ140100000000tAt041700q~fsq~\?ðsq~@,ÌÌÌÌÌÍppt.Bemessungsstrom In / IEC, DIN/VDE / bei 50 CeltAAMZ140200000000tAt041700q~fsq~\?ðsq~@*áG®záppt.Bemessungsstrom In / IEC, DIN/VDE / bei 60 CeltAAMZ140300000000tAt041700q~fsq~\?ðq~‚ppt.Bemessungsstrom In / IEC, DIN/VDE / bei 45 CeltAAMZ140600000000tAt041700q~fsq~\?ðsq~@+× =p£×ppt.Bemessungsstrom In / IEC, DIN/VDE / bei 55 CeltAAMZ140700000000tAt041700q~fsq~\?ð[email protected] In / IEC, DIN/VDE / bei 30 CeltAAMZ140900000000tAt041700q~fsq~\?ðsq~@>ppt!Kurzschlussausschaltvermögen IcutABDC00000000tkAt0417052q~fsq~\?ðppptIcmtABDP00000000tkAt041705q~fsq~\?ðsq~@lÀpptBetriebsspannungtABRP00000000tVt041000 q~fsq~\?ðsq~@o@pptBetriebsspannung AC MaxtABRP05020000tVt041000q~fsq~\?ðsq~?÷333333ppt-Auslösecharakteristik, großer Prüfstrom I2tABVC05000000ppq~fsq~\?ðsq~@ppt-Auslösecharakteristik, Prüfstrom I4: haltentABVC06000000ppq~fsq~\?ðsq~@$ppt<Auslösecharakteristik, Prüfstrom I5: spätestens auslösentABVC07000000ppq~fsq~\?ðtCpptAuslösecharakteristiktABVC08000000ppq~usq~\?ðsq~@7pptIcstABVD00000000tkAt041705q~fsq~\?ðt5SY8pptGrundtyptACLQ01000000ppq~usq~\?ðsq~@F€pptUmgebungstemperaturtACNV00000000t°Ct050300<q~fsq~\?ðt AK_5SY8_CpptAuslösekennlinie NummertADTA01000000ppq~usq~\?ðtDE_5SY_C_16pptDurchlaßenergie CharakteristiktAEGK02010000ppsq~eBsq~\?ðtDS_5SY_C_16ppt Kennlinie Durchlaß-I²t-wert/IktGFBK04000000ppq~éxppt5SY85167t LS, 25...70kAt5SY8t00pq~Êpsq~Αsq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~àsq~âpsq~?@wq~¸q~Wq~¹q~q~âsq~=q~àsq~q~Ñsq~@Tq~Íq~Mq~Ùsq~?ðq~»sq~?Ðq~Øq~>q~½q~q~—q~>q~Ûsq~q~Üq~q~¿q~kq~q~kq~Àsq~@4q~‘q~’xppq~ätLVTS-S 2.-1psq~ä–sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~àpppppq~ƒpppq~†ppppppq~òsq~ø—sq~Hq~q~sq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5q~Ksq~Awsq~2˜sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~àpppppq~ƒpppq~†pppppp?ðq~òq~Dpq~sq~2™sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~àpppppq~ƒpppq~†pppppp?ðq~òpq~pxsq~Awq~2xsq~Awq~"xsq~ä’sq~`sq~cuq~gq~jq~jq~jq~lsq~cuq~gq~jq~jq~jq~lsq~osq~cuq~gq~jsq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿÿÿÿÿÿÿÿÿ?ðq~àpppppq~ƒpppq~†ppppppq~òsq~ø“sq~Hq~q~sq~Hq~q~pq~ksq~Hq~q~sq~Hq~q~ÿÿÿÿÿÿÿÿÿÿÿÿq~pppppq~’q~5sq~Rsq~Hsq~Awq~òsq~N‡sq~`sq~cuq~gsq~iq~`q~`q~lsq~cuq~gq~`q~`q~`q~lsq~osq~cuq~gq~`sq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppI?ðq~_sq~\psq~?@w'tID_CABLE_ALPHAsq~?o!-w1Åt$ID_VerbindAllg_Querschnitt_pe_Leitersq~@t ID_Netzsystemsq~=tID_VerbindAllg_Theta_dUsq~@K€tID_KabelAllg_EinhalbPENsq~LtID_Schalter_AutoDimq~gtID_Connection_NumberPerDeviceq~itID_ConnectionFireSectionStartsq~t ID_Polzahlsq~=tID_VerbindNS_NennFrequenzsq~@It#ID_VerbindAllg_Querschnitt_n_Leitersq~@tID_VerbindAllg_TypNrsq~=tID_KabelAllg_UmrechnungsFaktorsq~?ë333333tID_Bezeichnungt C/L 4.2.2tID_Kabel_AnzahlParallelerLeiterq~átID_VerbindNS_Spannungsfallsq~@tID_ConnectionFireSectionsq~t ID_VerbindAllg_NotYetDimensionedq~ÎtID_VerbindAllg_Theta_minsq~@4q~sq~tt(ID_VerbindAllg_Querschnitt_aussen_Leitersq~@tID_VerbindAllg_Theta_maxsq~@TtID_VerbindAllg_Laengesq~@$t!ID_KabelAllg_IndexIsolierMaterialq~~tID_VerbindAllg_Theta_Firesq~@i t"ID_VerbindAllg_IndexLeiterMaterialq~~tID_KEY_Polzahltpod_combo_AnzahlPhasen_1tID_KabelAllg_IndexAnordnungq~~xq~Zq~6sq~v?o!-w1Å@Q€@@@?ð?ð?ð@>@\À@vÈ´9X@=wKƧï@=wKƧïÿÿÿÿ?¼í‘hr°!?Üýó¶E¡Ë?Üýó¶E¡Ëøøtpod_combo_Kabelbauart_Cu_PVC70t pod_combo_VA_Kabeltyp_mehradrigeppppppppppt*pod_combo_Verbindung_IsolierMaterial_PVC70t&pod_combo_Verbindung_LeiterMaterial_Cutpod_combo_NetzSystem_TN_Sq~œtq~¤q~¤ppppq~tppsq~äˆsq~`sq~cuq~gq~`q~`q~`q~lsq~cuq~gq~`q~`q~`q~lsq~osq~cuq~gq~`sq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿZÿÿÿÿÿÿÿÿ?ðq~_pppppq~ƒpppq~†ppppppq~\sq~ø‰sq~Hq~q~sq~Hq~q~psq~`sq~cuq~gsq~i@lÞ\±OÝsq~iÀiÀ\Þ\±OÝsq~i@iÀ\Þ\±OÝq~lsq~cuq~gsq~isq~i@lÞ\±OÝsq~i=q~lsq~Hq~q~sq~Hq~q~[ÿÿÿÿÿÿÿÿÿÿÿÿq~ppppptq~5q~Ysq~Awsq~2Šsq~`sq~cuq~gq~`q~`q~`q~lsq~cuq~gq~`q~`q~`q~lsq~osq~cuq~gq~`sq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿ\ÿÿÿÿÿÿÿÿ?ðq~_pppppq~ƒpppq~†pppppp?ðq~\sq~Csq~iÁ½ÍdÿÿÿÿA½Ídÿÿÿÿq~Øq~Øpq~µsq~2‹sq~`sq~cuq~gq~`q~`q~`q~lsq~cuq~gq~`q~`q~`q~lsq~osq~cuq~gq~`sq~i€sq~i€q~lsq~cuq~gsq~isq~isq~iq~lq~|pppppÿÿÿÿ]ÿÿÿÿÿÿÿÿ