Top Banner
REPORT NO. EERC 76-6 MARCH 1976 PB 260 556 EARTHQUAKE ENGINEERING RESEARCH CENTER TIME AND FREQUENCY DOMAIN ANALYSES OF THREE DIMENSIONAL GROUND MOTIONS SAN FERNANDO EARTHQUAKE by TETSUO KUBO JOSEPH PENZIEN Report to the National Science Foundation COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA • Berkeley, California
244

TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

Oct 15, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

REPORT NO.

EERC 76-6

MARCH 1976

PB 260 556

EARTHQUAKE ENGINEERING RESEARCH CENTER

TIME AND FREQUENCY DOMAIN ANALYSES OF THREE DIMENSIONAL GROUND MOTIONS SAN FERNANDO EARTHQUAKE

by

TETSUO KUBO

JOSEPH PENZIEN

Report to the National Science Foundation

COLLEGE OF ENGINEERING

UNIVERSITY OF CALIFORNIA • Berkeley, California

Page 2: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …
Page 3: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED

FROM THE BEST COpy FURNISHED US BY

THE SPONSORING AGENCY. ALTHOUGH IT

IS RECOGNIZED THAT CERTAIN PORTIONS

ARE ILLEGIBLE, IT IS BEING RELEASED

IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

Page 4: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …
Page 5: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

BIBLIOGRAPHIC DATA 1 1. Report No. SHEET EERC 76-6

3. Recipient's Accession No.

4. Title and Subtitle

"Time and Frequency Domain Analysis of Three Dimensional Ground Motions San Fernando Earthquake"

5. Report Date

March 1976

6.

7. A uthor(s)

Tetsuo Kubo and Joseph Penzien 9. Performing Organization Name and Address

Earthquake Engineering Research Center University of California, Berkeley 1301 S. 46th Street Richmond, California 94804

12. Sponsoring Organization Name and Address

National Science Foundation 1800 G Street Washington, D. C. 20550

15. Supplementary Notes

16. Abstracts

8. Performing Organization Rept. No. --+e-l.Q..".

10. Project/Task/Work Unit No.

11. Contract/Grant No.

GI-36387

13. Type of Report & Period Covered

14.

Principal directions and components are generated for the strong ground motions recorded during the San Fernando earthquake of February 9, 1971. Characteristics of the principal components are investigated using the moving-window technique applied in both the time and frequency domains. A nonstationary random process is defined reflecting these same characteristics in a statistical sense. A computer program for generating principal directions and components of motion, wave-form characteristics, and sample accelerograms from the nonstationary random process is listed.

17. Key Words and Document Analysis. 170. Descriptors

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement 19. Security Class (This Report)

UNCLASSIFIED 20. Security Class (This

21. No. of Pages

"-""', Page L-.~~~~~~~~ ________ ~ __________________________ ~~ __ ~U~N~C~L£A~S~S~IF~I~E~D~ __ -L~ __ ~'~-~'~'~'~--J FORM NTtS-35 tREY. 3 72) USCOMM.DC 14952.P72

Page 6: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …
Page 7: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

EARTHQUAKE ENGINEERING RESEARCH CENTER

TIME AND FREQUENCY DOMAIN ANALYSES OF THREE DIMENSIONAL GROUND MOTIONS

SAN FERNANDO EARTHQUAKE

by

Tetsuo Kubo

Joseph Penzien

Report to National Science Foundation

Report No. EERC 76-6

College of Engineering , University of California

Berkeley, California

March 1976

fa.'

Page 8: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …
Page 9: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ACKNOWLEDGMENT

The study presented herein is an extension of an investigation

previously conducted by the authors in collaboration with Dr. M. Watabe,

Mr. R. Iwasaki, and Mr. K. Ishida at the University of Tokyo. The

authors are indebted to Mrs. Shirley Edwards for her excellence in typing

the original manuscript. The financial support provided by the National

Science Foundation under Grant No. GI-36387 is hereby acknowledged with

sincere thanks and appreciation.

Page 10: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …
Page 11: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ii

TABLE OF CONTENTS

ACKNOWLEDGMENT . . i

TABLE OF CONTENTS ii

1. INTRODUCTION . . . . .. ~ . 1

A. SCOPE OF INVESTIGATION 1

B. SAN FERNANDO EARTHQUAKE 4

C. STRONG GROUND MOTION ACCELEROGRAMS . 5

II. PRINCIPAL AXES FOR GROUND MOTION 29

A. FIXED PRINCIPAL AXES . . 29

B. TIME DEPENDENT PRINCIPAL AXES 35

C. MAXIMUM VARIANCES AND COVARIANCES 38

III. CHARACTERISTICS OF GROUND MOTION FROM MOVING-WINDOW ANALYSIS 43

A. TIME DOMAIN ANALYSIS 43

1. General 43

2. Results at Station No. 264, Basement of the Millikan Library, CALTECH . . . . • 45

3. Results Through the Time Domain 46

4. Observation of Results 49

B. FREQUENCY Dm-1AIN ANALYSIS 53

1. General 53

2. Results at Station No. 264 54

3. Results Through the Frequency Domain 55

4. Observation of Results .•.. 55

C. MAXIMUM VARIANCES AND COVARIANCES 57

1. General 57

2. Results of Maximum Variances and Covariances 57

Page 12: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …
Page 13: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

iii

3. Observation of Re~3Ults ...••..•.•.

IV. FREQUENCY CONTENT OF GROUND MOTIONS ALONG PRINCIPAL AXES . . . •

58

101

A. GENERAL 101

B. NORMALIZED FOURIER AMPLITUDE SPECTRUM WITH MOVING-WINDOW TECHNIQUE . 103

C. RESULTS AT STATION NO. 264 106

D. RESULTS OF MOVING-WINDOW FOURIER ~WLITUDE SPECTRUM ANALYSIS 107

E. OBSERVATION OF RESULTS 107

V. GENERATION OF THREE COMPONENTS OF GROUND MOTION

A. GENERAL

B. SIMULATION OF A NONgTATIONARY PROCESS

1. Generation of a Rqndom Process Having an Arbitrary Power Spectral Density . . •

2. Generation of a Random Process Having Nonstationary Frequency Content

C. EXAMPLES IN ONE-DIMENSIONAL FOru~ . •

1. Review of Past Simulated Motions

2. Characteristics of Simulated Motions • .

3. Presentation of Examples

4. Observation of Results . .

D. EXAMPLES IN THREE-DIMENSIONAL FORM

1. Characteristics of Simulated Motions •

2. Presentation of Examples

3. Observation of Results ..

ll7

ll7

ll8

ll8

120

123

123

124

127

127

128

128

131

132

VI. CONCLUDING STATEMENT . • • . • • . • . . . . . . . . . .. 148

VII. REFERENCES. • • • • • . . . . . . . . . • • . • . . . .. 149

Page 14: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …
Page 15: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

iv

APPENDIX A Results of (i) time dependent directions of principal axes and square root of principal variances, (ii) frequency dependent directions of principal axes and square root of principal variances, (iii) time depen­dent principal variances and principal cross cor­relation coefficients, and (iv) time dependent fre-quency distribution for motions in area F . . . . 0 • • 154

APPENDIX B Results of time dependent directions of principal axes and square root of principal variances at stations not included in area groups A through F. • 164

APPENDIX C Results of frequency dependent directions of principal axes and square root of principal variances for motions in area groups C, D and E ...•.••. 0 185

APPENDIX D Results of time dependent principal variances and principal cross correlation coefficients for motions in area groups C, D and E .......... 0 0 189

APPENDIX E Results of time dependent frequency distribution for motions in area groups C, D and E . 193

APPENDIX F computer program listings . • 197

Page 16: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …
Page 17: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

1

I. INTRODUCTION

A. SCOPE OF INVESTIGATION

Up to the present time, most analytical investigations of the

dynamic response of structural systems subjected to strong earthquake

excitations have considered only one component of ground motion. It is

becoming increasingly evident, however, that responses of some important

structural systems such as three-dimensional piping systems, certain

nuclear power plant components, highway bridge structures and earthfill

dams are significantly affected by more than one component of earthquake

motion. Fortunately, with the recent advances in techniques and

facilities of high speed digital computers, it is becoming possible to

conduct investigations of the dynamic response of such systems con-

sidering the multi-component influence of ground motion. Because of

this awareness, there will obviously be an increasing demand in the

future of dynamic response analyses of selected systems using multi-

components of ground motion excitation.

Ground motion at a point 0 has six components, three trans-

. [* lational and three rotatl0nal 36] . While the three rotational

components, two about horizontal axes (Rayleigh Waves) and one about a

vertical axis (Love Waves), may influence overturing moments and

torsional vibration of structural systems, it is usually sufficien-t to

consider only the three translational components. Presently, the

available earthquake accelerograms are not sufficient to perm:U: a_a

estimate of the rotational components.

A very simple approach to defining the three translational

components of motion would be to assume that certain recorded ground

* Numbers in square brackets refer to corresponding references.

Page 18: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

2

motions of a part earthquake are representative of future site ground

motions. This simple approach, however , is subject to question as two

recorded accelerograms even at the same site location often have quite

dissimilar characteristics.

Another approach is to generate accelerograms synthetically

which have proper intensities and appropriate spectral densities.

Recognizing that seismic waves are initiated by irregualr breaks and

slippage along faults followed by numerous random reflections, refractions

and attenuations within the complex ground fOrmations through which they

pass, stochastic modelling of strong ground motions is a realistic form

for practical use. Defining earthquake inputs to a structural system in

this manner has the distinct advantage that analyses yield mean values

and variances of response consistent with the variations to be expected

in ground motion characteristics.

Representive stochastic models for earthquake ground motion

could be established d~rectly by statistical analysis if unlimited data

were available. Unfortunately, strong ground motion data in the form of

accelerograms are quite limited. Therefore, one is forced to hypothesize

model forms and to use the available strong ground motion data primarily

in checking the appropriateness of these forms. A number of stochastic

models, representing both stationary and non stationary random processes,

have been employed. Most of them, however, deal exclusively with only

one translational component of motion [42,32]. One such model, commonly

used in its one-dimensional form [23,37], defines ground accelerations

at a point along three orthogonal axes (x, y and z), usually two horizontal

and one vertical through the relations

Page 19: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

3

a (t) I;; x (t) b (t) x x

a (t) = I;;y (t) b (t) (1.1) y y

a (t) = I;;z (t) b (t) z z

where b (t), b (t) and b (t) are stationary random processes and x y z

I;; (t), 1;; (t) and I;; (t) are deterministic intensity functions giving x y z

an appropriate nonstationarity to their respective ground motion processes.

functions,

The use of Eqs. (1.1) requires that the appropriate intensity

1;; (t), I;; (t) x y

and I;; (t) be obtained by statistical analyses z

of real accelerograms and that the realistic power spectral density

functions, or corresponding auto-correlation functions, be established

by similar means for processes b (t), b (t) x y

and b (t). z

When extending

the use of this model to two- or three-dimensional form, the question

immediately arises "Should the components of motions be cross correlated

statistically?". If so, in addition to the power spectral density

functions or corresponding auto-correlation functions, one must establish

appropriate cross-spectral density functions or corresponding cross-

correlation functions for processes b (t), b (t) x y

and b (t).·· z

In this report, applying a procedure similar to the orthogonal

transformation used in stress-state problems, an orthogonal set of

principal axes is defined for three-dimensional earthquake ground motions.

These principal axes are defined along which the components of ground

motion have maximum, minimum and intermediate values of variances and

have zero values of covariances. This property suggests that components

of motions need not be cross correlated statistically provided they are

directed along principal axes, i.e. provided the x, y and z axes in

Eqs. (1.1) are treated as principal axes.

Page 20: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

4

In this report, using the concept of an orthogonal set of

principal axes and applying a moving-window technique to the accelerograms

recorded during the San Fernando, California, earthquake of February 9,

1971, analyses of three-dimensional ground motions along principal axes

are carried out. In these analyses, the time-dependent and the frequency­

dependent characteristics of the principal values and the corresponding

directions of principal axes of ground motions are determined and time­

dependent characteristics of frequency content are examined through a

moving-window fourier amplitude spectrum analysis.

It is concluded that realistic three components of ground

motion can be generated stochastically using statistically uncorrelated

nonstationary random processes along the prinicipal axes provided

appropriate intensity functions and time-dependent frequency characteristics

are used.

B. SAN FERNANDO EARTHQUAKE

The San Fernando, California, earthquake which occurred at

6:00:41.8 a.m. local time on February 9, 1971 has been assigned a

location at 34 0 24' 00" Nand 118 0 23' 42" W, a magnitude of 6.6 on the

Richter scale and a depth of about 13 km. The epicenter of the earth­

quake has been located in the San Gabriel Mountains 14 km north of San

Fernando, California. It has been reported that the fault slippage

began at a depth of 13 km and progressed southward and upward at

approximately 45°. A narrow band of surface faulting has been observed

to run east-west in the foothills of the San Gabriel Mountains [3]. It

has been reported that the faults slip zone spread to the south of

epicenter [20] and the "energy center" was located approximately 3 km

southwesterly of the epicenter [14]. The strong motion lasted about

Page 21: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

5

12 seconds and a maximum intensity of XI has been assigned to the site of

the Olive View Hospital located north of the Sylmar area [39].

As one can observe in Fig. 1.1, the local geological conditions

around the fault slip zone are quite complex. This complexity is most

likely the cause of weak correlations to exist between certain ground

motion characteristics and the epicenter location as shown subsequently

in this report.

C. STRONG GROUND MOTION ACCELEROGRAMS

The accelerograms used in this investigation were compiled and

issued by the Earthquake Engineering Research Laboratory of the California

Institute of Technology, Pasadena, in a report series entitled "STRONG

MOTION EARTHQUAKE ACCELEROGRAMS: VOLUME II CORRECTED ACCELEROGRAMS AND

INTEGRATED GROUND VELOCITY AND DISPLACEMENT CURVES" parts C through S

[48]. Detailed information, such as directions of accelerometer axes and

fundamental periods and damping ratios of transducers, are also available

in these reports.

Corrections were applied to the recorded accelerograms using a

procedure proposed by Trifunac [46,47,49,50]. In brief, the corrections

were applied to the high and low frequency ranges in such a way that the

resulting accelerograms would correspond to those recorded by accelero­

graphs having the characteristics shown in Fig. 1.2. In the first stage

of this procedure, the uncorrected accelerograms were passed through a

Ormsby low-pass filter having a cut-off frequency and roll-off termination

frequency of 25 cps and 27 cps respectively. In the second stage, a base­

line correction was performed by passing the accelerograms through a high­

pass filter having a cut-off frequency and roll-off termination frequency

of 0.07 cps and 0.05 cps, respectively. In some cases, a cut-off fre­

quency of 0.125 cps was used instead of 0.07 cps [17].

Page 22: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

6

Hereafter in this report, accelerograph locations are identified

using numbers given in "Annual List of Stations" issued by the Seismological

Field Survey, NOS-NOAA [29]. The locations of accelerograph stations for

which ground motions have been analyzed in this investigation are shown

in Figs. 1.3, 1.4 and 1.5. Figure 1.3 shows the locations of stations in

central and southern California. Figure 1.4 is an enlargement of the

small rectangular area in Fig. 1.3 showing the extended Los Angeles and

San Fernando region. Similarly, Fig. 1.5 is an enlargement of the small

rectangular area in Fig. 1.4 showing the cities of Los Angeles, Hollywood

and Beverly Hills. Table 1.1 summarizes station location, location

coordinates for Figs, 1.3 - 1.5, approximate distances to the epicenter,

directions to the epicenter, building structural types and general site

geology for each station.

Page 23: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

1.1

A

CC

EL

ER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

[2

9J

ST

AT

ION

IDE

NT

IFIC

AT

ION

*

1

NU

MB

ER

27

52

96

10

2

10

3

10

4

ST

AT

ION

L

OC

AT

ION

SIT

E

NA

ME

Gra

pev

ine

Teh

ach

ap

i P

um

pin

g

Pla

nt.

Oso

P

um

pin

g

Pla

nt.

Tejo

n

Wh

eele

r R

idg

e

An

za

San

ta A

nit

a

Dam

*1

1

MA

P K

EY

1 C

-3

2 B

-1

1 C

-3

1 C

-2

1 E

-4

2 D

-4

APP

RO

XIM

AT

E

DIS

TA

NC

E

TO

EP

ICE

NT

ER

(KM

)

72

.0

53

.5

69

.7

87

.3

18

4.4

42

.1

DIR

EC

TIO

N

TO

EP

ICE

NT

ER

(DE

GR

EE

)

14

8

14

7

13

8

14

2

-59

-55

10

8

Carb

on

2

E-5

7

4.3

-4

3

Can

yo

n

Dam

*se

e

foo

tno

tes at

en

d o

f ta

ble

BU

ILD

ING

STR

UC

TU

RA

L

TY

PE

Sm

all

b

uil

ing

.

Sm

all

b

uil

ing

.

Sm

all

b

uil

ing

.

Sm

all

b

uil

ing

.

Sm

all

b

uil

ing

.

Sm

all

b

uil

ing

.

Earth

fil

l d

am,

heig

ht

99

',

crest

len

gth

2

,61

0'.

SIT

E

GE

OL

OG

Y

*rII

)

IS'

of

all

uv

ium

o

ver

gn

eis

s

(I)

All

uv

ium

(I

)

Gra

nit

ic

(H)

All

uv

ium

2

00

'-3

00

' .

(S)

All

uv

ium

(S

)

Gra

nit

e d

iorit

e

co

mp

lex

. (H

)

Th

in all

uv

ium

o

ver

po

orl

y

cem

en

ted

sil

tsto

ne.

(I)

'-.]

Page 24: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

1.1

A

CC

ELER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

[2

9]

-(C

ON

TIN

UE

D)

STA

TIO

N

APP

RO

XIM

AT

E

DIR

EC

TIO

N

BU

ILD

ING

S

ITE

ST

AT

ION

L

OC

AT

ION

I

IDE

NT

IFIC

AT

ION

D

IST

AN

CE

TO

ST

RU

CT

UR

AL

G

EOLO

GY

*

1

*1

1

( *

11

1

NU

MB

ER

SIT

E

NA

ME

MA

P K

EY

TO

EP

ICE

NT

ER

T

YPE

)

,

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

11

0

Casta

ic

2 B

-2

29

.5

12

6

Sm

all

b

uil

d-

San

dst

on

e

ing

. (I

)

11

3

Co

lto

n

1 D

-3

10

6.5

-6

9

Sm

all

b

uil

d-

All

uv

ium

in

g.

>5

00

' (S

)

11

4

Co

sta

Mes

a 2

E-6

9

4.5

-2

7

IS-s

tory

T

err

ace d

ep

osit

s

00

RC

*IV

(I

) b

uil

din

g

12

1

Fair

mo

nt

2 C

-2

34

.0

17

5

Gra

nit

ic

Reserv

oir

(H

)

12

2

Gle

nd

ale

, 2

D-4

3

2.6

-2

5

3-s

tory

A

llu

viu

m

63

3 E

ast

bu

ild

ing

(I

) B

road

way

12

3

Hem

et

1 E

-4

15

0.2

-6

0

Sm

all

b

uil

d-

All

uv

ium

in

g

(S)

12

5

Lak

e 2

C-2

3

0.9

1

72

S

mall

b

uil

d-

Gra

nit

ic

Hu

gh

es,

in

g

(H)

No

. 1

12

6

Lak

e 2

C-2

2

S.0

1

64

S

mall

b

uil

d-

Weath

ere

d

Hu

gh

es,

ing

g

ran

itic

N

o.

4 (H

)

Page 25: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

1.1

A

CC

ELER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

[2

9]

-(C

ON

TIN

UE

D)

ST

AT

ION

A

PPR

OX

IMA

TE

D

IRE

CT

ION

B

UIL

DIN

G

SIT

E

IDE

NT

IFIC

AT

ION

ST

AT

ION

L

OC

AT

ION

D

IST

AN

CE

TO

ST

RU

CT

UR

AL

G

EOLO

GY

*

1

NU

MB

ER

SIT

E

NA

ME

*1

1

MA

P K

EY

TO

EP

ICE

NT

ER

T

YPE

(

) *

IIr

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

12

7

Lak

e 2

B-2

2

7.7

1

47

S

mall

b

uil

d-

Gn

eis

s H

ug

hes,

in

g

(H)

No.

9

12

8

Lak

e 2

B-2

2

4.4

1

42

S

mall

b

uil

d-

Eo

cen

e sa

nd

sto

ne

Hu

gh

es,

ing

b

elo

w

a sh

al-

No

. 1

2

low

(1

0'

+)

\.0

lay

er

of

all

uv

ium

I

(I)

13

0

Lo

ng

B

each

, 2

D-5

7

2.4

-1

2

Sm

all

b

uil

d-

All

uv

ium

; T

erm

inal

ing

w

ate

r ta

ble

Is

lan

d

at

<

20

' (S

)

13

1

Lo

ng

B

each

, 2

D-5

7

2.5

-1

5

3-s

tory

bu

ild

-A

llu

viu

m;

Uti

lity

in

g

wate

r ta

ble

B

uil

din

g

at

IS'

(S)

13

2

Lo

ng

B

each

, 2

D-5

7

4.1

-2

1

9-s

tory

bu

ild

-U

nco

nso

lid

ate

d

Sta

te

ing

sil

t-san

d-

Co

lleg

e

cla

y (S

) -~-

----.-~.-.-

-----

--

--

Page 26: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

1.1

A

CC

ELER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

[2

9]

-(C

ON

TIN

UE

D)

STA

TIO

N

APP

RO

XIM

AT

E

DIR

EC

TIO

N

BU

ILD

ING

IDE

NT

IFIC

AT

ION

ST

AT

ION

L

OC

AT

ION

D

IST

AN

CE

TO

ST

RU

CT

UR

AL

*

1

NU

MB

ER

SIT

E

NA

ME

*1

1

MA

P K

EY

TO

EP

ICE

NT

ER

T

YPE

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

13

3-S

L

os

An

gele

s,

3 C

-l

3S

.7

-9

14

-sto

ry

RC

Ho

lly

wo

od

b

uil

din

g

Sto

rag

e

13

7-9

L

os

An

gele

s,

3 F

-2

41

.1

-19

*V

lS

-sto

ry S

t.

Wate

r an

d

bu

ild

ing

P

ow

er

Bu

ild

ing

14

0

Lo

s A

ng

ele

s,

3 A

-2

37

.4

8 7

-sto

ry b

uil

d-

U.C

.L.A

. in

g

14

1

Lo

s A

ng

ele

s,

2 C

-4

32

.S

-16

C

on

cre

te p

ier

Gri

ffit

h

on

b

ed

-P

ark

Ob

-ro

ck

serv

ato

ry.

14

2-4

L

os

An

gele

s,

3 B

-2

36

.1

-2

9-s

tory

RC

1

20

b

uil

din

g

Ro

bert

son

14

S-7

L

os

An

gele

s,

3 E

-2

40

.4

-19

1

7-s

tory

RC

2

22

S

ou

th

bu

ild

ing

F

igu

ero

ao

I -----_

.. _------

-----

... _

-----------~-

_l__

___

_ _

__

__

__

_

...

-

SIT

E

GEO

LOG

Y

( )

*1

11

70

0'

± o

f all

uv

ium

(S

)

Mio

cen

e silt-

sto

ne

(I)

70

' o

f all

uv

ium

o

ver

S,O

OO

' o

f se

dim

en

tary

ro

ck

(8)

Gra

nit

ic

(H)

All

uv

ium

(5

)

2S

' o

f all

uv

ium

o

ver

sh

ale

; w

ate

r ta

ble

at

20

' .

(I)

I I i ,

.....

o

Page 27: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E 1

.1

AC

CEL

ERO

GR

APH

S

ITE

IN

FOR

MA

TIO

N

[29

] -

(CO

NT

INU

ED

)

ST

AT

ION

A

PPR

OX

IMA

TE

D

IRE

CT

ION

B

UIL

DIN

G

IDE

NT

IFIC

AT

ION

S

TA

TIO

N

LO

CA

TIO

N

DIS

TA

NC

E

TO

STR

UC

TU

RA

L

*1

*

11

N

UM

BER

S

ITE

N

AM

E M

AP

KEY

TO

E

PIC

EN

TE

R

TY

PE

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

l48

-S0

L

os

An

gele

s,

3 E

-2

40

.4

-18

1

7-s

tory

RC

2

34

S

ou

th

bu

ild

ing

F

igu

ero

a.

lSl-

3

Lo

s A

ng

ele

s,

3 F

-2

41

. 4

-20

IS

-sto

ry S

t.

2S

0 E

ast

bu

ild

ing

F

irst

15

4-6

L

os

An

gele

s,

3 E

-2

41

.1

-19

1

6-s

tory

st.

4

20

S

ou

th

bu

ild

ing

G

ran

d.

15

7-9

L

os

An

gele

s,

3 E

-2

40

.6

-18

3

9-s

tory

St.

4

4S

S

ou

th

bu

ild

ing

F

igu

ero

a.

16

0-2

L

os

An

gele

s,

3 E

-2

40

.6

-18

1

0-s

tory

R

C

S3

3

So

uth

b

uil

din

g.

Fre

mo

nt.

16

3-S

L

os

An

gele

s,

3 E

-3

41

.1

-18

4

3-s

tory

S

t.

61

1

Wes

t b

uil

din

g

Six

th.

I 1

66

-8

Lo

s A

ng

ele

s,

I 3

E-3

4

1.

3 -1

8

8-l

ev

el

RC

, 6

46

S

ou

th

I p

ark

ing

I O

liv

e.

I ~~----

__

L

ram

p.

SIT

E

GEO

LOG

Y

( )

*1

11

2S

' o

f all

uv

ium

o

ver

sh

ale

, w

ate

r ta

ble

at

20

'.

(I)

All

uv

ium

(S

)

Sh

ale

an

d sil

'c-

sto

ne sev

era

l 1

,00

0'

. (

)

Sh

ale

(S

)

All

uv

ium

(S

)

All

uv

ium

(S

)

All

uv

ium

(S

)

I

I I I

I-'

I-'

Page 28: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E 1

.1

AC

CEL

ERO

GR

APH

S

ITE

IN

FOR

MA

TIO

N

[29

] -

(CO

NT

INU

ED

)

STA

TIO

N

APP

RO

XIM

AT

E

DIR

EC

TIO

N

BU

ILD

ING

IDE

NT

IFIC

AT

ION

ST

AT

ION

L

OC

AT

ION

D

IST

AN

CE

TO

ST

RU

CT

UR

AL

*

1

NU

MB

ER

SIT

E

NA

ME

*1

1

MA

P K

EY

TO

EP

ICE

NT

ER

T

YPE

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

17

2-4

L

os

An

gele

s,

3 E

-2

40

.4

-19

3

1-s

tory

S

t.

80

0 W

est

bu

ild

ing

. F

irst.

17

5-7

L

os

An

gele

s,

3 E

-3

42

.7

-18

8

-lev

el

RC

80

8

So

uth

p

ark

ing

O

liv

e.

ram

p.

18

1-3

L

os

An

gele

s,

2 D

-4

41

.3

-24

7

-sto

ry

RC

1

64

0

bu

ild

ing

. M

aren

go

.

18

4-6

L

os

An

gele

s,

3 B

-2

37

.9

3 2

7-s

tory

S

t.

19

00

b

Uil

din

g.

Av

enu

e o

f S

tars

.

18

7-9

L

os

An

gele

s,

3 B

-2

38

.5

3 1

9-s

tory

S

t.

19

01

b

uil

din

g.

Av

enu

e o

f S

tars

.

L-

---.----~

--~.---

SIT

E

GEO

LOG

Y

( )

*1

11

Pli

ocen

e

sil

tsto

ne.

(I)

All

uv

ium

(S

)

Ple

isto

cen

e

all

uv

ium

; w

ate

r ta

ble

at

35

'.

(S)

Sil

t an

d

san

d

lay

ers

; w

ate

r le

vel

at

70

'.

(S)

Sil

t an

d

san

d

lay

ers

; w

ate

r ta

ble

at

70

'-8

0'.

(S

)

!

I-'

N

Page 29: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

1.1

A

CC

EL

ER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

[2

9]

-(C

ON

TIN

UE

D)

ST

AT

ION

A

PPR

OX

IMA

TE

D

IRE

CT

ION

B

UIL

DIN

G

IDE

NT

IFIC

AT

ION

S

TA

TIO

N

LO

CA

TIO

N

DIS

TA

NC

E

TO

STR

UC

TU

RA

L

*1

*

11

N

UM

BER

S

ITE

N

AM

E M

AP

KEY

TO

E

PIC

EN

TE

R

TY

PE

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

19

0-2

L

os

An

gele

s,

2 D

-4

41

. 7

-25

9

-sto

ry

RC

2

01

1

bu

ild

ing

. Z

on

al.

19

6-8

L

os

An

gele

s,

3 D

-2

38

.6

-14

1

2-s

tory

RC

3

34

5

bu

ild

ing

. W

ilsh

ire.

19

9-2

01

L

os

An

gele

s,

3 D

-2

38

.6

-14

7

sto

rie

s;

2 3

40

7

Wes

t st.

an

d

5 S

ixth

. R

C

20

2-4

L

os

An

gele

s,

3 D

-2

38

.5

-13

3

1-s

tory

st.

3

41

1

bu

ild

ing

. W

ilsh

ire.

20

5-7

L

os

An

gele

s,

3 E

-3

43

.2

-14

1

2-s

tory

R

C

34

40

U

ni-

bu

ild

ing

. v

ers

ity

, U

. S.C

.

SIT

E

GEO

LOG

Y

( )

*1

11

Sh

ale

at

east

en

d o

f b

uil

din

g;

8'

of

fill at

west

en

d

(I)

All

uv

ium

(S

)

All

uv

ium

(S

)

Sil

tsto

ne;

wate

r ta

ble

at

base

men

t le

vel.

(I

)

40

0'

of

all

u-

viu

m o

ver

cla

y

an

d sh

ale

; w

ate

r ta

ble

at

27

5'

. (S)

f-'

W

Page 30: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

1.1

A

CC

ELER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

[2

9]

-(C

ON

TIN

UE

D)

STA

TIO

N

APP

RO

XIM

AT

E

DIR

EC

TIO

N

BU

ILD

ING

IDE

NT

IFIC

AT

ION

ST

AT

ION

L

OC

AT

ION

D

IST

AN

CE

TO

ST

RU

CT

UR

AL

*

I M

AP *

II

KEY

N

UM

BER

S

ITE

N

AM

E TO

E

PIC

EN

TE

R

TY

PE

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

20

8-1

0

Lo

s A

ng

ele

s,

3 D

-2

38

.7

-13

ll

-sto

ry

R

C

34

70

W

ilsh

ire.

bu

ild

ing

.

21

1-3

L

os

An

gele

s,

3 D

-2

38

.6

-13

2

1-s

tory

S

t.

35

50

b

uil

din

g.

Wil

sh

ire.

21

7-9

L

os

An

gele

s,

3 D

-2

38

.5

-12

1

1-s

tory

RC

3

71

0

bu

ild

ing

. W

ilsh

ire.

22

0-2

L

os

An

gele

s,

2 C

-4

29

.4

-6

20

-sto

ry

RC

3

83

8

bu

ild

ing

. L

an

ker-

shim

.

22

3-5

L

os

An

gele

s,

3 D

-2

38

.1

-9

7-s

tory

R

C

46

80

b

uil

din

g.

Wil

sh

ire.

22

6-8

L

os

An

gele

s,

3 D

-l

34

.8

-16

8

-sto

ry

RC

48

67

b

uil

din

g.

Su

nse

t.

-

SIT

E

GEO

LOG

Y

( ) *

III

All

uv

ium

(S

)

All

uv

ium

; w

ate

r ta

ble

at

35

r •

(S)

All

uv

ium

(I

)

Inte

rlay

ere

d

so

ft

san

d-

sto

ne

an

d

sh

ale

. (I

)

All

uv

ium

(I

)

Sh

all

ow

all

uv

ium

ov

er

Mio

cen

e silt-

sto

ne.

(I)

......

>I»

Page 31: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

1.1

A

CC

EL

ER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

[2

9]

-(C

ON

TIN

UE

D)

STA

TIO

N

APP

RO

XIM

AT

E

DIR

EC

TIO

N

BU

ILD

ING

IDE

NT

IFIC

AT

ION

S

TA

TIO

N

LO

CA

TIO

N

DIS

TA

NC

E

TO

ST

RU

CT

UR

AL

*

1

*1

1

NU

MB

ER

SIT

E

NA

ME

MA

P K

EY

TO

EP

ICE

NT

ER

T

YPE

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

22

9-3

1

Lo

s A

ng

ele

s 2

C-5

5

0.6

-2

7

-sto

ry S

t.

52

60

b

uil

din

g.

Cen

tury

.

23

2-4

L

os

An

gele

s,

3 D

-l

34

.2

-10

1

4-s

tory

St.

6

43

0

bu

ild

ing

. S

un

set.

23

5-7

L

os

An

gele

s,

3 D

-l

34

.2

-10

ll

-sto

ry

S

t.

64

64

b

uil

din

g.

Su

nset.

23

8-4

0

Lo

s A

ng

ele

s,

3 C

-l

33

.5

-8

Il-

sto

ry

R

C

70

80

b

uil

din

g.

Ho

lly

wo

od

.

24

1-3

L

os

An

gele

s,

2 C

-4

21

.1

19

7

-sto

ry

RC

8

24

4

bu

ild

ing

. O

rio

n.

24

4-6

L

os

An

gele

s,

2 C

-5

49

.0

3 1

2-s

tory

R

C

86

39

b

uil

din

g.

Lin

co

ln.

---------

' ~ ~~

~~.

~ -

SIT

E

GEO

LOG

Y

( )

*1

11

All

uv

ium

(S

)

All

uv

ium

; w

ate

r ta

ble

at

55

'.

(S)

All

uv

ium

; w

ate

r ta

ble

at

55

'.

(S)

All

uv

ium

(S

)

All

uv

ium

(S

)

Terr

ace

dep

osit

s--

san

d.

(S)

_ .. -

I I , , I I I

I-'

U1

Page 32: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

1.1

A

CC

ELER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

(2

9]

-(C

ON

TIN

UE

D)

STA

TIO

N

APP

RO

XIM

AT

E

DIR

EC

TIO

N

BU

ILD

ING

IDE

NT

IFIC

AT

ION

ST

AT

ION

L

OC

AT

ION

D

IST

AN

CE

TO

ST

RU

CT

UR

AL

*

1

*1

1

NU

MB

ER

SIT

E

NA

ME

MA

P K

EY

TO

EP

ICE

NT

ER

T

YPE

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

24

7-9

L

os

An

gele

s 2

C-5

5

0.5

-1

1

4-s

tory

RC

9

84

1

bu

ild

ing

. A

irp

ort

B

ou

lev

ard

.

25

3-5

L

os

An

gele

s,

2 C

-4

28

.1

11

1

2-s

tory

R

C

14

72

4

bu

ild

ing

. V

en

tura

.

26

2

Palm

dale

2

D-2

3

2.6

-1

27

S

mall

b

uil

d-

ing

.

26

4-5

P

asa

den

a,

2 D

-4

38

.4

-40

9

-sto

ry

RC

Mil

lik

an

b

uil

din

g.

Lib

rary

, C

.LT

.

26

6

Pasa

den

a,

2 D

-4

34

.7

-36

2

-sto

ry b

uil

d-

Seis

mo

-in

g.

log

ical

Lab

ora

tory

.

26

7-8

P

asa

den

a,

2 D

-4

30

.1

-42

9

-sto

ry S

t.

Jet

Pro

-b

uil

din

g.

pU

lsio

n

Lab

ora

tory

. ~-

SIT

E

GEO

LOG

Y

( )

*1

11

All

uv

ium

(S

)

All

uv

ium

(S

)

All

uv

ium

(S

)

Ap

pro

xim

ate

ly

1,0

00

' o

f all

uv

ium

up

on

g

ran

ite.

(S)

Weath

ere

d

gra

nit

ic.

(H)

San

dy

-gra

vel.

(I

)

I

......

(J)

Page 33: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

1.1

A

CC

ELER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

[2

9]

-(C

ON

TIN

UE

D)

ST

AT

ION

A

PPR

OX

IMA

TE

D

IRE

CT

ION

B

UIL

DIN

G

IDE

NT

IFIC

AT

ION

S

TA

TIO

N

LO

CA

TIO

N

DIS

TA

NC

E

TO

ST

RU

CT

UR

AL

*

I *

rI

NU

MB

ER

SIT

E

NA

ME

MA

P K

EY

TO

EP

ICE

NT

ER

T

YPE

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

26

9

Pearb

loss

om

2

E-2

4

5.0

-1

06

S

mall

b

uil

d-

ing

.

27

2

Po

rt

1 B

-3

79

.0

69

S

mall

b

uil

d-

Hu

enem

e.

ing

.

27

4

San

B

ern

ar-

1 D

-3

10

7.2

-7

2

6-s

tory

bu

ild

-d

ino

. in

g.

27

8

Pu

dd

ing

sto

ne

2 E

-4

63

.7

-57

S

mall

b

uil

d-

Dam

. in

g.

27

9

Pac

oim

a 2

C-3

7

.2

1 S

mall

b

uil

d-

Dam

. in

g.

SIT

E

GEO

LOG

Y

( ) *

rIr

~---

40

0'

of

all

u-

viu

m o

ver

14

,00

0'

of

sed

imen

tary

ro

ck

. (S

)

All

uv

ium

, >

1

,00

0'.

(S

)

All

uv

ium

, 1

,00

0';

w

ate

r ta

ble

at

30

'.

(S)

Vo

lcan

ic

cla

sti

cs

an

d

intr

usio

ns

wit

h asso

-cia

ted

sh

ale

s.

(H)

Hig

hly

jo

inte

d

dio

rit

e

gn

eis

s.

(H)

f-'

-.J

Page 34: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

10

1

AC

CEL

ERO

GR

APH

S

ITE

IN

FOR

MA

TIO

N

[29

] -

(CO

NT

INU

ED

)

ST

AT

ION

A

PPR

OX

IMA

TE

D

IRE

CT

ION

B

UIL

DIN

G

IDE

NT

IFIC

AT

ION

ST

AT

ION

L

OC

AT

ION

D

IST

AN

CE

TO

ST

RU

CT

UR

AL

*

I *

II

NU

MB

ER

SIT

E N

AM

E M

AP

KEY

TO

E

PIC

EN

TE

R

TY

PE

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

28

0

San

O

no

fre

1 D

-4

13

8.6

-3

4

Sm

all

b

uil

d-

ing

.

28

1

San

ta

Ana

2

E-5

8

7.1

-3

4

3-s

tory

b

uil

d-

ing

.

28

2

San

ta

1 B

-3

13

3.5

9

0

2-s

tory

bu

ild

-B

arb

ara

, in

g.

Un

ivers

ity

o

f C

ali

--fo

rnia

.

28

4-5

S

an

ta F

eli

cia

2

A-3

3

3.3

1

02

E

arth

fil

l d

am;

Dam

. h

eig

ht

20

0',

crest

len

gth

1

,26

0'

28

7

San

A

nto

nio

2

F-4

7

1.1

-6

8

Earth

fil

l d

am;

Dam

. h

eig

ht

16

0',

crest

len

gth

3

,85

0' •

28

8

Vern

on

2

D-4

4

8.0

-2

2

6-s

tory

bu

ild

-in

g.

-

SIT

E

GEO

LOG

Y

( ) *

III

Lig

htl

y

cem

en

ted

P

lio

cen

e

san

d-

sto

ne>

3

25

' d

ep

th. (I)

All

uv

ium

(S

)

All

uv

ium

v

en

eer

ov

er

san

dst

on

e.

(I)

San

dst

on

e-

sh

ale

co

m-

ple

x.

(I)

Up

to

15

0'

of

all

uv

ium

ov

er

gra

nit

ics.

(S)

> 1

,00

0'

of

all

uv

ium

; w

ate

r ta

ble

at

>

30

0'.

(S

)

I-' m

Page 35: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TAB

LE

1.1

A

CC

ELER

OG

RA

PH

SIT

E

INFO

RM

ATI

ON

[2

9]

-(C

ON

TIN

UED

)

STA

TIO

N

APP

RO

XIM

ATE

D

IRE

CT

ION

B

UIL

DIN

G

IDE

NT

IFIC

AT

ION

ST

ATI

ON

LO

CA

TIO

N

DIS

TAN

CE

TO

STR

UC

TUR

AL

*I

NU

MBE

R S

ITE

NA

ME

*II

M

AP

KEY

TO

E

PIC

EN

TE

R

TYPE

EPI

CE

NT

ER

(D

EGR

EE)

(KM

)

289

Wh

itti

er

2 D

-4

52

.7

-37

E

art

hfi

ll d

am;

Nar

row

s h

eig

ht

56

'.

Dam

. cre

st

len

gth

1

4,9

60

' .

290

Wri

ghtw

ood

2 F

-3

70

.1

-86

S

mal

l b

uil

d-

ing

.

29

2-4

H

oo

ver

D

am,

1 G

-l

37

8.1

-1

18

C

on

cre

te d

am.

Nev

.

4ll

P

alo

s V

erd

es

2 C

-5

66

.7

-1

2-s

tory

bu

ild

-E

state

s.

ing

.

41

3-5

L

os

An

gel

es,

3 B

-2

38

.3

0 A

rcu

ate

-ll

77

sh

aped

7

-B

ever

ly

sto

ry R

C D

riv

e.

bu

ild

ing

. I

~ ..

~-.----

---

---

-

SIT

E

GEO

LOG

Y

( ) *

III

Mor

e th

an

1

,00

0'

of

all

uv

ium

. (S

)

All

uv

ium

v

en

eer

on

ig

neo

us

met

amo

rph

ic

com

ple

x.

(I)

Sev

era

l 1

00

' o

f v

olc

an

ic

bre

ccia

o

ver

basalt

. (H

)

Sh

allo

w

Ple

isto

cen

e

san

ds

ov

er

shale

-vo

lcan

ic

com

ple

x.

(I)

All

uv

ium

(S

)

-.

f-J

\D

Page 36: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

1.1

A

CC

EL

ER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

[2

9]

-(C

ON

TIN

UE

D)

ST

AT

ION

A

PPR

OX

IMA

TE

D

IRE

CT

ION

B

UIL

DIN

G

IDE

NT

IFIC

AT

ION

S

TA

TIO

N

LO

CA

TIO

N

DIS

TA

NC

E

TO

STR

UC

TU

RA

L

NU

MB

ER *

1

SIT

E

NA

ME

*1

1

MA

P K

EY

TO

EP

ICE

NT

ER

T

YPE

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

41

6-8

B

ev

erl

y H

ills

, 3

B-2

3

7.1

-1

1

0-s

tory

R

C

91

00

b

uil

din

g.

Wil

sh

ire.

42

5-7

L

os

An

gele

s,

3 B

-2

37

.5

3 IS

-sto

ry

RC

1

80

0

bu

ild

ing

. C

en

tury

P

ark

E

ast.

42

8-3

0

Lo

s A

ng

ele

s,

3 C

-2

37

.7

-5

3l-

sto

ry S

t.

59

00

b

uil

din

g.

Wil

sh

ire.

43

1-3

L

os

An

gele

s,

3 D

-2

38

.6

-13

1

6-s

tory

R

C

61

6

So

uth

b

uil

din

g.

No

rman

die

.

43

7-9

L

os

An

gele

s 3

E-3

4

1.5

-1

7

10

-sto

ry S

t.

11

50

S

ou

th

bu

ild

ing

. H

ill.

44

0-2

L

os

An

gele

s,

3 B

-2

37

.6

3 1

6-s

tory

S

t.

18

80

b

uil

din

g.

Cen

tury

P

ark

E

ast.

SIT

E

GEO

LOG

Y

( )

*1

11

All

uv

ium

; w

ate

r ta

ble

at

40

'.

(S)

Sil

t an

d

san

d

lay

ers

; w

ate

r ta

ble

at

70

' -8

0'.

(S

)

All

uv

ium

--asp

halt

ic

san

ds.

(I)

All

uv

ium

, sil

tsto

ne at

25

' . (I

)

50

0'

of

gra

vell

y

san

d

ov

er

sh

ale

. (S

)

Sil

t an

d

san

d

lay

ers

; w

ate

r ta

ble

at

I 7

0'-

80

'.

(S)

to

o

Page 37: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

1.1

A

CC

ELER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

[2

9J

-(C

ON

TIN

UE

D)

STA

TIO

N

APP

RO

XIM

AT

E

DIR

EC

TIO

N

BU

ILD

ING

IDE

NT

IFIC

AT

ION

S

TA

TIO

N

LO

CA

TIO

N

DIS

TA

NC

E

TO

STR

UC

TU

RA

L

*1

*

11

N

UM

BER

S

ITE

N

AM

E M

AP

KEY

TO

E

PIC

EN

TE

R

TY

PE

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

44

3-5

L

os

An

gele

s,

3 C

-2

37

.6

-5

17

-sto

ry

RC

62

00

b

uil

din

g.

Wil

sh

ire.

44

6-8

L

os

An

gele

s,

3 C

-l

33

.4

-9

22

-sto

ry

RC

1

76

0

No

rth

b

uil

din

g.

Orc

hid

.

44

9-5

1

Lo

s A

ng

ele

s,

3 E

-2

39

.3

-16

1

3-s

tory

RC

2

50

0

bu

ild

ing

. W

ilsh

ire.

45

2-4

B

ev

erl

y H

ills

3

B-2

3

5.8

-1

1

0-s

tory

RC

4

35

N

ort

h

bu

ild

ing

. O

ak

hu

rst.

45

5-7

B

ev

erl

y H

ills

3

B-2

3

6.9

2

10

-sto

ry

RC

4

50

N

ort

h

I b

uil

din

g.

Ro

xb

ury

. " I

I

SIT

E

GEO

LOG

Y

( )

*1

11

Th

in la

yer

of

all

uv

ium

o

ver

asp

halt

ic

san

ds.

(I

)

All

uv

ium

(S

)

All

uv

ium

; sil

tsto

ne at

20

'-3

0'

; an

d w

ate

r ta

ble

at

35

'.

(I)

All

uv

ium

; w

ate

r ta

ble

at

22

'.

(S)

All

uv

ium

(S

)

r-J

f-'

Page 38: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

1.1

A

CC

ELER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

[2

9]

-(C

ON

TIN

UE

D)

ST

AT

ION

A

PPR

OX

IMA

TE

D

IRE

CT

ION

B

UIL

DIN

G

IDE

NT

IFIC

AT

ION

ST

AT

ION

L

OC

AT

ION

D

IST

AN

CE

TO

ST

RU

CT

UR

AL

*

1

*1

1

NU

MB

ER

SIT

E

NA

ME

MA

P K

EY

TO

EP

ICE

NT

ER

T

YPE

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

45

8-6

0

Lo

s A

ng

ele

s,

2 C

-4

33

.5

-47

C

ircu

lar

7-

15

10

7

sto

ry

RC

V

ano

wen

. b

uil

din

g.

46

1-3

L

os

An

gele

s,

2 C

-4

27

.8

16

1

7-s

tory

S

t.

15

91

0

bu

ild

ing

. V

en

tura

.

46

5

San

Ju

an

2

F-7

1

21

. 3

-33

S

mall

b

uil

d-

Cap

istr

an

o.

ing

.

46

6-8

L

os

An

gele

s,

2 C

-4

28

.1

13

1

2-s

tory

RC

1

52

50

b

uil

din

g.

Ven

tura

.

46

9-7

1

Lo

s A

ng

ele

s,

3 E

-3

40

.5

-16

1

0-s

tory

RC

1

62

5

bu

ild

ing

. O

lym

pic

.

47

2-4

O

ran

ge,

2 E

-5

83

.0

-34

1

9-s

tory

RC

4

00

0

Wes

t b

uil

din

g.

Ch

apm

an.

SIT

E

GEO

LOG

Y

( )

*1

11

All

uv

ium

5

00

';

wate

r ta

ble

at

70

'.

(S)

All

uv

ium

; w

ate

r ta

ble

at

35

'.

(S)

All

uv

ium

(S

)

All

uv

ium

; w

ate

r ta

ble

at

55

'.

(S)

All

uv

ium

(S

)

All

uv

ium

>

3

00

' o

ver

sh

ale

. (S

)

I ! I I

to

to

Page 39: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E 1

.1

AC

CE

LE

RO

GR

APH

S

ITE

IN

FOR

MA

TIO

N

[29

] -

(CO

NT

INU

ED

)

ST

AT

ION

A

PPR

OX

IMA

TE

D

IRE

CT

ION

B

UIL

DIN

G

SIT

E

IDE

NT

IFIC

AT

ION

S

TA

TIO

N

LO

CA

TIO

N

DIS

TA

NC

E

TO

STR

UC

TU

RA

L

GEO

LOG

Y

*1

*

11

(

*1

11

N

UM

BER

S

ITE

N

AM

E M

AP

KEY

TO

E

PIC

EN

TE

R

TY

PE

)

EP

ICE

NT

ER

(D

EG

RE

E)

(KM

)

47

5

Pasa

den

a,

2 D

-4

38

.4

-41

2

-sto

ry b

uil

d-

Ap

pro

xim

ate

ly

C.L

T.

ing

. 1

,00

0'

of

Ath

enae

um

. all

uv

ium

u

po

n g

ran

ite.

(S)

47

6-7

8

Fu

llert

on

, 2

E-5

1

08

.8

-58

la

-sto

ry

RC

All

uv

ium

2

60

0

bu

ild

ing

. (S

) N

utw

oo

d.

48

2-4

A

lham

bra

, 2

D-4

4

1.

7 -3

3

12

-sto

ry S

t.

Few

lO

a'

of

90

0

So

uth

b

uil

din

g.

all

uv

ium

F

rem

on

t.

ov

er

silt-

sto

ne.

(S)

*1

P

erm

an

en

t Id

en

tifi

cati

on

n

um

ber

in

an

nu

al

list o

f sta

tio

ns

issu

ed

b

y th

e

Seis

mo

log

ical

Fie

ld

Serv

ey

, N

OS-

NO

AA

.

*1

1

Map

n

um

ber

s 1

, 2

an

d

3 co

rresp

on

d to

F

igs.

1.3

, 1

.4 an

d 1

.5,

resp

ecti

vely

.

*1

11

)

rep

resen

ts

an

ab

bre

via

ted

sit

e cla

ssif

icati

on

. (S

),

(I)

an

d

(H)

co

rresp

on

d to

so

ft,

in

term

ed

iate

an

d h

ard

sit

e cla

ssif

icati

on

s,

resp

ecti

vely

[5

1].

*IV

R

C

rein

forc

ed

co

ncre

te.

*V

St.

ste

el.

I'J

W

Page 40: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

SOn Fernando

Fig. 1.1

I.IJ o ::J f­.-J a.. ::a <X

z o f­U Z ::J u.. ex: I.IJ

Map 0

24

° 4

~ EPICENTER Kilome1ers N

SAN GABRIEL MOUIv

t

PACOIMA R V.terall' ACCELERQMETE

O~o HO'pltal VETERANS

FAULT 0

." '.""do ~ FAULT ZONE

34°[5' ~-- 1118°15'

f surface fau Ferna It traces, San n do earthquake. [3]

by's filter pass Orms

ff frequency cut-o .

ff terminatlon roll-o frequency

f He 0.07 0.125

by's filter Low pass Orms

ff frequency cut-o . f

LC: ff terminatlon roll-o

f LT : frequency

~ O~-"--Li~~~}5-L-'-LLLLll~--~"-L1LLu1---':3~'~1 'II 1~ILlII .. I I III I 50 100 I I I II Ii -~ - 1;5 10 ~~~~~~D-__ ~_ 100 ... 55 I 0.01

Fig. 1.2

109,0 f, (HZ)

. for functlon Transfe~ f strong correctlons 0

d baseline ment an instru lerograms. motion acce

Page 41: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

A

36

°0

0'

35

°00

'

34

°0

0'

33

°0

0'

;() ~0: ~ o

B °0 (C'~.-

.t-

a 2

0

40

lo

w...

lo

w...

S

CA

LE

IN M

ILE

S

c

.BA

KE

RS

FIE

LD

SE

E E

NL

AR

GE

ME

NT

12

0°0

0'

119

00

0'

118°

00

'

D

E

F

G

~ ~

SP

RIN

GS

.10

3

BLY

TH

--..

--.. --.

. ----.

11

7°0

0'

11

6°0

0'

Fig

, 1

.3

Accele

rog

rap

h sit

e lo

cati

on

s

in cen

tral

an

d

so

uth

ern

C

ali

forn

ia.

2 3 4 5

N

Ul

Page 42: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

34°45'

34° 30'

34° IS'

34° 00'

26

A B C D E F

·52

.121 LANCASTER

.125 .126

.127

.128 PALMDALE

.269

.284

.290

241.

.104

461 .287

SAN BERNARDINO FWAY .278

POMONA

MALIBU

.108

o 2 4 6 8 10 Iwoo.( Iwoo.( I""",i SCALE IN MILES

118°00'

Fig. 1.4 Accelerograph site locations in extended Los Angeles area.

2

3

4

5

6

7

Page 43: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

A

34

" 0

7'

G&

140

B

• 416

142

o :3 CD

c

HO

LLY

WO

OD

SU

NS

ET

B

LV

D

w ;;

w

>

<{

<{ w '" m <

{

44

6 -

23

8 S

AN

TA

M

ON

ICA

-13

3

--' I

B

EV

ER

LY

B

LV

o w

>

<{ z '" w f- ~ I

43

_1

99

...

..-L-

WIL

SH

IRE

I BL

VD

"

20

2 -a.

196 ~ I

44

3

'"'4

28

J -2

28

2

17

· 21

~ -2

08

'

_4

13

PIC

O

BL

VD

WA

SH

ING

TO

N

BL

VD

JEF

FE

RS

ON

B

LV

D

CU

LV

ER

C

ITY

o 0

.5

.... S

CA

LE

IN

M

ILE

S

IIS

O 2

2'

30

" 11

80 2

0'0

010

IIS

O

17

'30

"

Fig

0 L

5 l\

ccele

rog

rap

h sit

e lo

cati

on

s

in cen

tral

Lo

s A

ng

ele

s.

2 3 4

118

01

5'0

0"

tv

-..J

Page 44: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

28

AREA B AREA E Q)

3 rd. ai

> J <1 St. c -~

c Q) 0

t; 202 E

~ 431 \.i9 ~ Q)

> Wilshire - !96 Blvd.

2i7 2il-208

L..--_W_it~s.hire Blvd.

.0 o~,u 425'

o ~ '440 o~~ _-184 Blvd.

c" 187

8~ St.

AREA F

Fig. 1.6 Accelerograph site locations along Wilshire Boulevard, Santa Monica Boulevard and Figueroa Street.

Page 45: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

29

II. PRINCIPAL AXES FOR GROUND MOTION

A. FIXED PRINCIPAL AXES

a (t), a (t) x y

Suppose three components of ground motion, and

a (t) at a point 0 along an arbitrary set of orthogonal axes x, y and z

z are defined through the following stochastic model

a (t) x

a (t) y

a (t) z

t; (t) b ' (t) x

t; (t) b' (t) y

t; (t) b ' (t) z

where b ' (t), b' (t) and b' (t) are stationary random processes and x y z

(2.1)

t;(t) is a deterministic intensity function. This model represents an

approximation to that defined by Eqs. (1.1). In this model, it is

assumed that the intensity functions in the three directions vary with

time in identically the same manner even though they may differ by a

scalar factor. Considering recorded earthquake motion, these components

normally represent accelerations measured along the instrument axes of

accelerometers. For the purpose of discussion here, however, these

components could equally well represent velocities or displacements.

If a (t), a (t) and a (t) of Eqs. (2.1) are considered to x y z

be zero-mean process, covariance functions defined by

E [a. (t) a. (t+T)] 1 J

t; (t) t; (t+T) E [b~ (t) b~ (t+T)] 1 J

(2.2)

i,j x,y,z

where E denotes ensemble averages, can be used to characterize the com-

plete ground motion process. If this process is Gaussian, these covariance

functions completely characterize the process in a probabilistic sense [5].

Page 46: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

30

Since random processes b'(t), b'(t) x y

and b' (t) z

are stationary,

all ensemble averages on the right hand side of Eqs. (2.2) are independent

of time t; therefore, showing dependence only upon the time difference T.

Since in the first approximation, real earthquake accelerograms can be

represented by white noise [19,10,35], these processes demonstrate a very

rapid loss in correlation with increasing values of ITI. Therefore, the

influence of coordinate directions on covariance functions can be

investigated using the approximate relations

E [a. (t) a. (t)] 1 J

2 r;; (t) E [b~ (t) b~ (t)]

1 J (2.3)

i,j x,y,z

Adopting matrix notation, Eqs. (2.3) can be written in the more compact

form

l:! (t)

where

]1 .• (t) E [a. (t) a. (t)] 1J 1 J

S.. E [b~(t) b~(t)] 1J 1 J

i,j = x,y,z

Note that because random processes b'(t), b'(t) x y

and b' (t) z

are

stationary, all nine coefficients in matrix S are time invariant.

(2.4)

(2.5)

(2.6)

If the components of ground motion at point 0 are transformed

from coordinate system x,y and z to a new orthogonal coordinate

system x~y' and z' through the relation

a' (t) ax tt) I x

a' (t) A a (t) (2.7) y

a: tt) J a' (t) z

Page 47: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

31

where the transformation matrix A satisfies the condition

I (identity matrix) (2.8)

relations identical to Eqs. (2.4) - (2.6) can be written for the new

coordinate system with

S' (2.9)

(2.10)

This transformation of ground motion is quite identical to the trans-

formation of a three-dimensional state of stress; therefore, it is

apparent that a set of principal axes exist along which the component

variances of motion have maximum, minimum and intermediate values and the

corresponding covariances have zero values. The directions of these

principal axes are found in exactly the same manner as locating the

directions of principal stresses, i.e. by obtaining the eigenvalue

formulation. The resulting three vectors define the principal trans-

formation matrix P; thus, permitting the components of ground motion

along principal axes, 1, 2 and 3 to be given by

al

(t) a (t) x

a2

(t) P a (t) y

(2.11)

a3

(t) a (t) z

where

T I P P (2.12)

Page 48: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

32

The corresponding covariance matrix for ground motion becomes

~ (t) -p

=

=

pT ~(t) p - - -

811

r;;2 (t) 0

0

~ll

0

0

0 0

822 0

0 833

0 0

~22 0

0 ~33 (2.13 )

222 The principal values are given by r;; (t) 8

11, r;; (t) 8

22 and r;; (t) 8

33

and the directions of principal axes are given by the corresponding

column vectors of the transformation matrix P, respectively. Since the

covariance matrix 8 in Eqs. (2.13) is time invariant, the coefficients

of the principal transformation matrix P are also time invariant; that

is, the directions of principal axes are fixed during the entire time

history of motion.

Fortunately for most physical phenomena represented by random

processes, the desired properties can often be estimated using a single

member from each process. This is, of course, strictly true only for

ergodic random processes. Therefore, the covariances in Eqs. (2.13) can

be obtained by time averaging over any single member of the process, say

the th

r member. In this case, B .. 1J

defined by Eqs. (2.6) can be

obtained through the relation

8 .. 1J

< b ~ (t) b ~ (t) > 1r Jr

(2.14)

i,j x,y,z

r = 1,2,3, •••.

Page 49: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

33

where the triangular brackets denote time average.

To further illustrate the physical meaning of principal axes,

consider two stationary random processes xl (t) and x2

(t). The auto-

and cross-correlation functions of these processes are given by

R .. (T) lJ

E [x. (t) x. (t+T)] l J

i,j 1,2

(2.15 )

where E denotes the ensemble averages. These functions can be decomposed

and expressed in the frequency domain by the equivalent relation

and

S .. (w) lJ

R .. (T) lJ

1 2n

00

f -00

00

J -00

R .. (T) lJ

-iwT e dT

S, . (w) +iwt

dw e lJ

i,j 1,2

(2.16 )

(2.17)

These relations which express R .. ('[) lJ

and s .. (w) lJ

as Fourier transform

pairs are usually called the Wiener-Khintchine relations.

Suppose random processes xl (t) and x2

(t) are considered to be

ergodic processes in which case ensemble averages are equivalent to the

corresponding time averages i.e.

E [xl < x > r

(2.18)

where subscript r denote th

r member of ensemble x. Relations between

ensemble averages and temporal averages which are respectively designated

by R .• (T) lJ

and ill .. (T) (i,j = 1,2) lJ

and those between their corresponding

Page 50: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

34

quantities decomposed into the frequency domain s .. (W) 1J

(i,j = 1,2) are obtained by Eqs. (2.15) - (2.18),

R .. (e) E [x. (t) X.(t+e)] 1J 1 J

= < x. (t) x. (t+e) > 1r Jr

= <I> •• (T) 1J

00

S .. (w) 1 I R .. (e) -iwe

de 2n

e 1J 1J

-00

00

1

f <I> •• (e) -iwT

de 2n

e 1J

-00

G .. (w) 1J

i, j = 1,2

and G .. (W) 1J

Principal axes were defined previously along which the components of

(2.19)

(2.20)

motion have maximum and minimum values of variances and have zero values

of covariances for e = O. Intensities of the process along principal

axes can be evaluated by subsituting e = 0 into Eqs. (2.15) - (2.20).

It follows that

<I> •• (0) 1J

T 2

lim 1

IT T T-+<>o

00

I -00

2

G .. (w) dw 1J

x. (t) 1

G (if i j)

o (if i I j)

i,j = 1,2

x. (t) dt J

(2.21)

Page 51: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

35

These properties reveal that components of motion along principal axes

have maximum and minimum values of power [2] and zero values of cross

power. Note that cross-correlation function RI2

(T) and R21 (T) are

not generally even functions; therefore, unlike the power spectral

density functions GIl (w) and G22 (w) which are always real and

positive, the cross-power spectral density functions G12

(w) and

G21

(w) are generally complex. Note also that for principal axes the

cross-power r G12

(w) dw and JOO G21

(w) dw are zero, even though -00 -00

the functions G12

(w) and G21

(w) may not be zero.

It can be concluded, however, that for a first approximation

to modelling of ground motions, it is sufficient to accept the concept

of principal axes which do not require one to establish cross powers

between the individual components of motion.

B. TIME DEPENDENT PRINCIPAL AXES

It is easily shown that the intensity functions along an

orthogonal set of axes, x, y and z (usually taken as instrumental

axes), do not have the same identical shape. For example,observe the

shapes of the intensity functions (sigma vs. time) in Figs. 2.2a through

2.2d for the three components of motion along the instrumental axes at

stations Nos. 266, 475, 264 and 267; see Fig. 1.4 for location. These

intensity functions are defined through the relation [22]

1:;. (t , L':.T) 1 0

= It: (0 t

o

i x,y,z

L':.T +

2

D.T 2

2 a. (t) dt

1 (2.22)

with D.t = 5 seconds. The solid, intermediate-dashed and short-dashed

curves represent the components of motion along the north-south,

Page 52: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

36

east-west and vertical axes, respectively. The upper set of curves in

these figures (theta and phi vs. time) represent the angles shown in

Fig. 2.1. The intermediate-dashed curve represents 8 (degree) cor-

responding to the left side coordinate of the axis and the short-dashed

curve represents ~ (degree) corresponding to the right side coordinate

of the axis. If the intensity functions s (t), s (t) x y

and s (t) z

are

-1 identically the same in magnitude, angles 8 and ~ are 45° (tan 1) and

-1 1 54.7° (cos --), respectively. Further, if the intensity functions

/3 vary with time in identically the same manner even though they may have

different magnitudes, i.e. satisfy Eqs. (2.1), the values of 8 and ~

are invariant with time. In this case, the curves representing angles

e and ~ become straight horizontal lines. As one can see in Figs.

2.2, the intensity functions for actual strong ground motions do not

change with time in the same manner, i.e. the directions of the principal

axes are not time invariant.

Suppose the three components of ground motion are represented

by the relations

a (t) x

a (t) y

I;; (t) b (t) x x

I;; (t) b (t) y y

a (t) = I;; (t) b (t) z z z

(2.23)

where b (t), b (t) and b (t) are stationary random processes and x y z

I;; (t), I;; (t) and I;; (t) are dissimilar deterministic functions along x y z

a (t), a (t) x y

the x, y and z axes, respectively. Assuming and

a (t) to be zero mean processes and applying the procedures previously z

described, covariance functions are defined by

Page 53: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

37

E [a.(t) a.(t+T)] = t;.(t) s.(t+T) E [b.(t) b.(t+T)] 1 J 1 J 1 J

(2.24 )

i, j x,y,z

These covariance functions for a zero value of the time difference T,

can be written in the matrix form

fl (t) I;;(t) 13 I;;(t) (2.25)

where

]1 .. (t) E [a. (t) a. (t) ] 1J 1 J

(2.26)

13 .. E [b. (t) b. (t)] 1J 1 J

(2.27)

s .. (t) 1;;. (t) (i j) 1J 1

0 (i ~ j) (2.28)

i, j = x,y,z

Applying an orthogonal transformation identically similar to the one

previously described, the covariance functions along the principal axes

become

T ]1 (t) fl p p

-p

pT S (t) § f(t) ~

(s (t) p)T 13 (f (t) P)

]1ll 0 0

0 fl22 0 (2.29)

0 0 ]133

Note that because the intensity matrix set) is a diagonal matrix,

T f(t) is equal to set).

Page 54: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

38

In Eqs. (2.29), the principal transformation matrix P is

given as a function of time t, i.e. P = P(t). Since the column vectors

of the principal transformation matrix give the direction cosines of the

corresponding principal axes, the directions of the principal axes are

time-dependent when the three components of motion are defined in

accordance with Eqs. (2.23).

C. MAXIMUM VARIANCES AND COVARIANCES

If one assumes each component of motion to be identically the

same, the direction of the instantaneous resultant acceleration vector

will not change in time; thus, the components will be completely cor-

related, i.e. the cross correlation coefficients obtained from the

relation

P .. 1J

E[a. (t) a. (t)] 1 J

I E[a. (t) a. (t)] E[a. (t) a. (t)] 1 1 J J

i ~ j

(2.30)

will be equal to either +1 or -1 depending upon the pair of components

involved. On the other hand, if the components are actual recorded

ground motions, the cross correlation coefficients will be greatly

reduced showing lack of correlation with each other. Note that a cross

correlation coefficient equal to zero, indicates a complete lack of

correlation.

It is interesting to investigate the characteristics of motion

along sets of axes which give maximum correlated components of motion as

well as along the principal axes which give completely uncorrelated

components of motion. A procedure similar to that previously described

can be used to determine the coordinate transformations which yield

Page 55: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

39

maximum covariances. When transforming from principal axes 1, 2 and 3,

this procedure leads to the following orthogonal transformation matrices

+ 1 0 0

~l 0 +11 - 2 +)1 - 2

0 -/1 + -2 +11 - 2

+J1 - 2 0 +11 - 2

~2 0 + 1 0

-/1 + -2

0 +/1 - 2

+/1 - 2 +)1 - 2

0

~3 -)1 + -2 +/1 - 2

0

0 0 + 1 -

Substituting Eqs. (2.31) separately into the relation

m

gives principal covariances equal to

and

S -m

1, 2, 3

The corresponding

(2.31)

(2.32 )

variances are ~ll (t), ~22(t) and

1 "2 [~22 (t) + ~33 (t)] ,

~33(t), and the corresponding mean

1 "2 [~ll (t) + ~33 (t) ] and variances are

1 "2 [~ll (t) + ~22(t)], respectively. Using these values, the principal

Page 56: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

40

cross correlation coefficients are given by

= [11 11 (t) - 1122 (t) ]

[1111 (t) + 1122 (t) ]

[1122

(t) - 1133 (t) ]

[1122

(t) + 1133 (t) ]

[1111

(t) - 1133 (t)]

P13 [1111

(t) + 1133

(t)]

(2.33)

Note that when two principal variances approach each other in

value, the corresponding principal cross correlation coefficient

approaches zero and the other two cross correlation coefficients approach

the same value. In the limit when these principal variances become equal,

the corresponding principal axes become undefined. This behavior cor-

responds to the three-dimensional stress problem when a deviator stress

along one axis is superposed upon a hydrostatic state of stress resulting

in only one identifiable principal axis which lies along the axis of the

deviator stress. Obviously, it becomes difficult to reliably predict

the directions of the principal axes when principal variances approach

each other in value.

Page 57: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

41

UP

OA: INTENSITY RESULTANT

_I Cy(t) e = TAN Cx(t)

COS-I -;=.====:C~Z=( t=)==:~_ ./C~( t) + C~( t) + C~( t)

\ \

\

----------------'*~~~~--_r------~----~NORTH

/

I // I /

/

EAST

/ /

/

/ /

/

Fig. 2.1 Direction angles of intensity function in three-dimensional space.

Page 58: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

z o -i

:;c ..., -0

:;

c o o c: " OJ r­ rn

a S

TA

TIO

N

NO

. Z

66

3

40

8

55

N.I

IB

10

IS

W

CA

lTE

CH

S

EIS

MO

LO

GIC

AL

L

AB

..

PA

SA

DE

NA

. C

AL

.

< 6

0.0

f-4

5.

0

I-3

0.0

8

0.0

CO

MP

SOO

W

« 60

.01

/1--

..

~ 4

0.0

I

/ \

2 a

. 0

CO

MP

S

90

W

CO

MP

DO

WN

7 5

. 0

6 a

. a

:r:

45

.0

5.0

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.

0

TIM

E

(S

EC

.)

c S

TA

TIO

N

NO

. 2

64

3

40

8

12

N.1

18

0

7

30

W

CA

lTE

CH

M

ILL

IKA

N

LIB

RA

RY

. B

AS

EM

EN

T.

PA

SA

DE

NA

. C

AL

.

CO

MP

N

OD

E

CO

MP

N9

0E

C

OM

P D

OW

N

~ :::

: I

\Pl~~~

-c~---

~t--m-

·-·--r

-----·

··--l·

····m·

·-r -

I

:~::I f1~~ I

« 4

a .

0 l:

VI

20

. a

75

. a

60

.0

::I:

45

.0

5.0

1

0.0

1

5.0

2

0.0

2

5.

a 3

0.0

T

IME

(S

EC

.)

b S

TA

TIO

N

NO

. 4

75

3

40

8

ZO

N.1

18

0

7

17

W

CA

LT

fCH

A

TH

EN

AE

UM

. P

AS

AD

EN

A.

CA

L.

CO

MP

NO

OE

C

OM

P N

90

E

CO

MP

DO

WN

'" f-3

0.0

~ :::: I

>+----

--~~t~

~--~~~

J~~~,-

~-~:lc

«r 7

5.0

60

. 0

:c

45

. 0

60

.0

« 4

0 .

a l:

rJ)

20

.0

d « 6

0.0

f- w

45

.0

'" t-J

0 .

0

« l:

(/l

2

0.0

I JJ;L

J .. J J

5

.0

10

.0

15

.0

20

.0

25

. 0

30

. 0

TIM

E

(S

EC

.l

ST

AT

ION

N

O.

Z6

7

34

12

0

1N

.11

8

10

2

SW

JE

T

PR

OP

UL

SIO

N

LA

B .

. B

AS

EM

EN

T.

PA

SA

DE

NA

. C

AL

.

CO

MP

S8

2E

C

OM

P

S0

8W

C

OM

P D

OW

N

I~Fl'······l>! .+

, .

j _

F

....

I i

75

.0

60

.0

:c

"5

.0

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

a .

a T

IME

(S

EC

.)

Fig

. 2

.2

Tim

e d

ep

en

den

cy

o

f in

ten

sit

y fu

ncti

on

s

alo

ng

in

str

um

en

t ax

es.

"'" to

Page 59: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

43

III. CHARACTERISTICS OF GROUND MOTION FROM MOVING-WINDOW ANALYSIS

A. TIME DOMAIN ANALYSIS

1. General

In a previous paper [32], variances and covariances of

recorded ground motions were evaluated for successive time intervals

using the relation

< [a. (t) a.] [a. (t) a. ] t2 fl .. >

1J 1 1 J J tl

i,j = X,Y,z

in which the time averages are taken over the interval t < t < t 1 = 2

(3.1)

but where the mean values a. 1

and a. J

are found by averaging a. (t), 1

a. (t) over the entire duration of motion. Locations of principal axes J

and magnitudes of corresponding principal variances were obtained for

earthquake motions recorded at three stations in California and three

stations in Japan. The results show that the directions of principal

axes were not fixed for successive time intervals.

In the present investigation, recognizing that intensity

functions for three components change in a different manner with each

other, va~iances and covariances are obtained as continuous functions

of time t using the so-called "moving-window" technique, i.e. using o

the relation

fl .. (t ,L1T) 1J 0

< [a.(t) - a.][a.(t) - a.] > 1 1 J J

i,j = x,y,z

where the time averages are taken over the interval

t o

t o

L1T

L1T +

2

L1T 2

centered at

time t [9]. Having obtained all nine covariance functions for the o

(3.2)

Page 60: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

44

recorded components of motion in accordance with Eqs. (3.2), the

corresponding time dependent directions of principal axes can be

obtained, i.e. giving the principal transformation matrix as a function

of time to and time window length ~T ,i.e. p = p (t , ~T). o - - 0

This time

dependent principal transformation matrix then allows one to obtain the

time dependent directions of principal axes of components of motion

and

and

a (t) and their corresponding principal variances z

One finds increased fluctuations in ~ .. (t , ~T) and the 1J 0

corresponding directions of principal axes as the value of time window

length ~T in Eqs. (3.2) is taken shorter and shorter. In fact, as

~T 7 0, the major principal axis of ground motion coincides with the

instantaneous resultant acceleration vector which changes its direction

rapidly in a random fashion over the entire sphere of space. Therefore,

~T should be taken sufficiently long so that the higher frequency

fluctuations are essentially removed but the slower time dependent

characteristics are retained, i.e. the time average over duration ~T

will be essentially equal to the average taken across the ensemble.

The direction of each principal axis is given by angles ~

and 8 as shown in Fig. 3.1. Angle ~ is the declination of the

principal axis from the vertical axis through point "0"; thus, its value

falls in the range 0° ~ ~ ~ 90°. Angle 8 is measured from the North

axis to the projection of the northerly extension of the principal axis

on a horizontal plane containing point "0". By this definition, 8

lies in the range -90° < 8 < + 90°. The angle 8E

in Fig. 3.1

represents the horizontal direction of an axis passing through the

accelerograph site location (point "a") and the reported epicenter.

Since this angle is measured in a similar manner to that of angle 8,

Page 61: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

45

it also lies in the range -90° < 8E ~ + 90°. Length OA in Fig. 3.1

represents the magnitude of the variance Of principal ground motion.

The square root of this quantity (sigma) can be used to represent the

intensity functions of the corresponding non stationary processes [22].

2. Results At Station No. 264 Basement Of The Millikan Library, CALTECH

Direction angles ~ and 8 and the square root of the

principal variance (0) have been obtained as functions of time t for o

the major, minor and intermediate principal axes of the ground motion

at station No. 264, the basement of the Millikan Library at the

California Institute of Technology, Pasadena, California.

'I'he results are shown in Figs. 3. 2a through 3. 2c. These

results of Figs. 3.2a, 3.2b and 3.2c are respectively obtained by using

time window length ~T equal to two, five and ten seconds at discrete

values of one-half second apart. The solid, short-dashed and

intermediate-dashed curves in these figures represent respectively the

major, minor and intermediate principal axes and the horizontal long-

dashed straight line represents the direction 8E

to the reported

epicenter. It should be noted from the definition of 8 that as the

horizontal direction of a principal axis rotates in a continuous manner

through the east-west direction, the value of e changes instantaneously

by 180°, i.e. changes from +90° to -90° or from -90° to +90° depending

upon whether the horizontal projection of the principal axis is rotating

clockwise or counterclockwise. This explains the sudden jumps which

appear in the functions of e which take place over single spacings of

the prescribed discrete values of

spacings.

t , o

namely over one-half second

In the present report, ~T is taken as two seconds for several

short durations of motion, say less than twenty seconds, and taken as

Page 62: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

46

five seconds for all other records. Angles ¢ and e and 0 are

evaluated for discrete values of t spaced one-half second apart and o

are interpolated by straight lines.

It should be noticed that if ground motion processes are

represented by the product of stationary random processes and deter-

ministic intensity functions and if the intensity functions for three

components vary with time in the same manner, i.e. satisfy Eqs. (2.1),

any two of the principal variance functions differ from each other by a

fixed constant only in which case the directions of principal axes are

fixed, i.e. they are time invariant over the entire duration.

3. Results Through The Time Domain

The time domain moving-window analysis described above has been

applied to the ground motions recorded at numerous stations during the

San Fernando earthquake of February 9, 1971. Acceleration records at

99 stations have been evaluated. Nearly half of them are located in the

high- or intermediate-rise buildings in the cities of Los Angeles,

Hollywood and Beverly Hills, which are sited about 40 km south of the

epicenter.

Some of these accelerograph locations are in basements and at

the ground level of higher buildings, some are in smaller buildings and

some are on free field. The motions can be considered representative

of the ground motions. The accelerograph at each station has its own

characteristics [48] and was triggered independently of other located

nearby. At station No. 290, two accelerographs were installed, one of

which was a temporary accelerograph.

The accelerograph locations were divided into six area groups,

A through F. certain data associated with these stations, such as

Page 63: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

47

station identification number, station location, peak accelerations,

building structural type and local site geology are given in Tables 3.1

through 3.5 and Table A.l,respectively.

Area A (CALTECH)

Area A is located on the campus of California Institute of

Technology which contains four stations, namely No. 267, the Jet

Propulsion Laboratory, No. 266, the Seismological Laboratory, No. 264,

the Millikan Library and No. 475, the Athenaeum. Numerous investigations

on the dynamic behavior and the soil-structure interaction effects of

these buildings have been carried out [27, 12, 21, 15]. The accelero­

graphs at these four stations are reported to have been triggered at

the same time, i.e. to have common time bases [24]. The results for

these stations are shown in Figs. 3.3a through 3.3d.

Area B (Wilshire) [12, 17]

Area B having seven stations in the basements of high-rise

buildings is located along Wilshire Boulevard in downtown Los Angeles.

Each instrument in this area was triggered independently upon the arrival

of seismic waves. However, one can estimate a common time base by

reading the arrival time of certain high frequencies in the acceleration

and velocity traces. This procedure is reported to provide an accurate

estimate [17]. The local geology in this area consists of alluvium and

plestocene rock and is classified as an intermediate type or a soft

type. The results for these seven site locations are shown in Figs.

3.4a to 3.4g.

Area C (Lake Hughes)

Area C located in the vicinity of Lake Hughes consists of

four stations array Nos. 1, 4, 9 and 12. The site geology in this area

Page 64: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

48

is designated as a hard soil type. Due to the wide separations between

stations in this area, it is impossible to establish a common time base

for the recorded accelerograms. The results for these stations are

shown in Figs. 3.5a through 3.5d.

Area D (Beverly)

Area D contains four stations; two in basements and two at the

first floor level of high-rise buildings. These four stations, Nos. 137,

148, 172 and 145, are located on intermediate geology at the corner of

Beverly Boulevard and Figueroa Street in downtown Los Angeles and are

very close to each other. The distance from the epicenter to the stations

is about 40 km and the direction to the epicenter is about N 20° W.

Figures 3.6a-3.6d show the time dependent characteristics of principal

axes of motion at these stations.

Area E (Santa Monica) [17]

This area contains four stations located in high-rise buildings

having from 15 to 30 stories. These buildings are located on soft geology

about 40 km from the epicenter along Santa Monica Boulevard near Beverly

Hills in the west part of Los Angeles. The results for these stations are

presented in Figs. 3.7a through 3.7d. Although the wave propagation

paths are different, one may be able to investigate the relative in­

fluence of intermediate to soft geological conditions on ground motion

characteristics by comparing the results for stations in areas D and E.

Area F (Figueroa)

Area F is located about 40 km S 18° E of the epicenter. The

stations in this area are located in intermediate-and high-rise

buildings along Figueroa Street, south of area D (Beverly) in downtown

Page 65: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

49

Los Angeles. It has been reported that the accelerograph at station

No. 154 was installed on the 2nd floor; however, because the floor of

the building is numbered from the adjoining building, this floor actually

corresponds to ground level [29]. The time dependent characteristics of

principal axes of motions for these six stations are included in

Appendix A.

The results obtained for 70 other stations, not included in

area groups A-F, are presented in Appendix B.

4. Observation of Results

Although, the functions of principal transformation shown in

Figs. 3.3 throug-h 3.7 and in Appendices A and B have numerous

unexplainable features, certain correlations should be noted as follows:

(1) Usually during the early periods of low intensity motion,

either the major or the intermediate principal axis is nearly

vertical, i.e. the vertical component represents a large

amount of energy in comparison with the horizontal components.

(2) Later except for several motions recorded in high-rise

building-s and at stations close to the epicenter, the major

and intermediate principal axes shift towards horizontal

positions with the minor principal axis taking the nearly

vertical position; thus, the angle between the horizontal

directions of the major and intermediate principal axes is

about 90°.

(3) Following the shift of the major principal axis towards a

horizontal position, the horizontal directions of the major

and intermediate principal axes are sometimes suddenly inter­

changed. 'Ehis interchange which occurs after the period of

Page 66: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

50

high intensity motion is due to a corresponding change in the

direction along which the seismic waves have maximum energy.

(4) After the major and intermediate principal axes have moved to

their nearly horizontal positions, the minor and intermediate

principal axes (and in some cases, the minor and major

principal axes) retain approximately the same horizontal

direction angles 8 over large time intervals. This pro­

perty suggests geometrically that the plane containing the

minor and intermediate principal axes also contains the

vertical axis. When the minor principal axis takes a nearly

vertical position, slight changes in its direction cause large

fluctuations in the angle 8. Due to this high sensitivity,

the fluctuations in e have little significance in this case.

(5) For many motions measured in high-rise buildings, some of the

more common correlative features related to principal axes

seem to be eliminated due to possible soil-structure inter­

action effects. These interaction effects are most apparent

during the strong motion following that time at which the

minor axis shifts to its nearly vertical position.

(6) Usually during the period of high intensity motion, the

horizontal direction of either the major or the intermediate

principal axis is towards the faults slip zone. This

characteristic suggests that the direction along which seismic

waves contain maximum energy either coincides with the

direction to the fault slip zone or is at right angles to it.

(7) The shape of the intensity functions for the minor principal

axis looks fairly flat for those stations located on soft to

intermediate types of geology.

Page 67: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

51

For area groups A-F, specific correlations and dissimilar

features can be noted as follows:

(1) In Figs. 3.3, the possible interchange of major and inter­

mediate principal axes at stations Nos. 264 and 475 occurs at

a time around 10 second. The directions of principal axes and

corresponding intensities are, however, quite dissimilar with

each other, even though the distance between stations is not

more than 400 m. During the early period of motion, the

direction angle 8 of the major principal axis is approximately

90° for both stations Nos. 267 and 266. Later in the motion,

the direction angle shifts to nearly 45° in each case.

(2) In Figs. 3.4, the general features of principal directions at

various stations agree reasonable well with one another,

especially at stations Nos. 211, 208, 196 and 199 where the

major principal axis is closely directed towards the reported

epicenter during periods of high intensity motion. Also the

intensity functions for stations Nos. 211 and 208 are quite

similar to each other; however for stations Nos. 196 and 199,

they are dissimilar.

(3) In Figs. 3.5, little correlation, if any, can be seen for the

four stations represented. This is to be expected, however,

since these stations are spaced at distances which are large

compared to the significant seismic wave lengths in the

accelerograms and their geological conditions and wave pro­

pagation paths could be quite different with each other.

(4) Among the four stations of area group D represented in Figs.

3.6, the intensity functions look quite similar except for

Page 68: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

52

station No. 148. The directions of principal axes are quite

similar for stations Nos. 145 and 172 and are also similar for

stations Nos. 137 and 148. They are, however, different

between those two groups.

(5) In Figs. 3.7, the directions of the major principal axes for

stations Nos. 440, 184 and 187 are quite similar with one

principal axis directed towards the reported epicenter in each

case. These same features at station No. 425 are, however,

dissimilar.

Figures 3.8 through 3.11 are maps of areas in southern

California showing the horizontal directions of the major and inter­

mediate principal axes at the period when the motions are of highest

intensity. The map in Fig. 3.9 is an enlargement of the small rectan­

gular area in Fig. 3.8 showing the extended Los Angeles and San Fernando

regions. Similarly the map in Fig. 3.10 is an enlargement of the small

rectangular area in Fig. 3.9 showing the cities of Los Angeles,

Hollywood and Beverly Hills. The maps in Figs, 3.11a through 3.11c

show area groups B, E and F,respectively.

While the correlation is not strong, there is a tendency of

the directions of the major principal axis or, in some cases, the inter­

mediate principal axis to point in the general direction of the fault

slip zone as shown in Fig. 3.9 [20] which is also the general direction

towards the previously reported locations of surface fault traces south

of the epicenter [13]. The concept of intensity defined here is

identical to that defined by Arias [2]. Therefore, one can speculate

that the direction of the major principal axis coincides with the

direction to maximum energy release in the fault slip zone.

Page 69: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

53

Obviously, in the case of motions produced by the San Fernando earthquake,

such factors as the complex mechanism of strain energy release, the

dispersion of seismic waves due to variable geological conditions, the

complex geology around the fault slip zone, the closeness of the

recording stations to the fault slip zone and the possible influence of

soil-structure interaction weaken this correlation. It should be

pointed out that the horizontal directions of the major and inter-

mediate principal axes obtained from time averaging over the entire

durations of motion are in most cases quite similar to those shown in

Figs. 3.8 through 3.11.

B. FREQUENCY DOMAIN ANALYSIS

1. General

The moving-window technique, as applied in the time domain

formulation, can be applied in the frequency domain as well. In this

case, however, the variances and covariances are evaluated as con-

tinuous functions of frequency f . o

Using the Fourier integral trans-

formation, variances and covariances are obtained through the relation

].1 •• (f ,b.f) lJ 0

lC~ where

~ {(:+ b.f f + b.f 2 r 2

(2 . f) 2'ITift df + (2 . f) 21Tift A. 1Tl e A. 1Tl e IH

1 b.f 1

2 f -

2 0

b.f f + b.f 2 0 2

(2 . f) 2'ITift A. 'IT 1 e df + J (2 . f) 2'ITift A. 'IT 1 e df} >~ t:.f 2

J

A. (21TH) 1

A. (21Tif) J

J f _ t:.f

o 2

i,j x,y,z

T

J ai

(t)e-2'ITift dt

o T

J aj(t)e-21Tift dt

o

1 dfJ .

(3.3)

(3.4)

Page 70: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

54

and where T denotes the total duration of ground motion.

In the frequency domain formulation, the principal trans-

formation matrix P is given as a function of frequency f and o

frequency bandwidth ~f, i.e. P = P (f ,~f). o

This formulation allows

one to investigate directions of principal axes, variances, covariances,

etc. associated with only those frequencies of ground motion in the

range of (f - ~f ) < f < (f + ~f) Hopefully, this approach can be 02- 02'

used to reveal certain characteristic features of the various types of

seismic waves associated with strong ground motions.

2. Results at Station No. 264

Direction angles ~ and e and the square root of the

principal variance (0) have been obtained as functions of frequence

for the major, minor and intermediate principal axes of the ground

motion at station No. 264, located in the basement of the Millikan

f o

Library at the California Institute of Technology, Pasadena, California.

Using the frequency domain formulation, one can obtain

frequency dependent characteristics of principal axes as shown in

Figs. 3.12a through 3.12c. Again the solid, short-dashed and

intermediate-dashed curves represent the results for the major, minor

and intermediate principal axes, respectively. These figures show

properties of principal axes using different values for frequency band-

width (~f) and for spacings between discrete values of frequencies (f ). o

The values of bandwidth and spacings represented in Figs. 3.12a, 3.12b

and 3.12c are, respectively, 0.488 and 0.244, 0.977 and 0.488, and 1.953

and 0.488 Hz. Based on these results, it was judged that values near

0.977 and 0.488 Hz could be used for the motions recorded at other

stations.

Page 71: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

55

3. Results Through The Frequency Domain

The moving-window formulation in the frequency domain has been

carried out at 29 site stations in the area groups previously described.

The results for those stations in area groups A through F are shown in

Figs. 3.13 and 3.14 and in Appendices A and C. Information on site

locations can be found in Tables 3.1 through 3.5 and in Table A.l.

4. Observation of Results

While many features of the frequency domain functions shown in

Figs. 3.13 and 3.14 and in Appendices A and C are as unexplainable as

certain features of the time domain functions, there are some

characteristics and correlations which can be identified among area

groups or geological conditions as follows:

(1) Usually in the lower frequency range, the major and inter­

mediate principal axes take nearly horizontal positions, while

in the higher frequency range, the minor principal axis shifts

towards a horizontal position with the major principal axis

taking a vertical position.

(2) The major and intermediate principal axes are observed to

interchange their horizontal positions several times at most

stations. At station No. 211 (Fig. 3.14b), they interchange

positions at frequencies around 1.0 and 3.0 Hz. At station

No. 137 (Fig. C.2a), they interchange positions three times

at frequencies around 1.5, 4.5 and 7.0 Hz.

(3) Among several stations, such as Nos. 202, 196, 199, 126, 127,

172, 184 and 187 (Figs. 3.14, C.l, C.2 and C.3), the horizontal

direction of either the major or the intermediate principal

Page 72: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

56

axis coincides with the general direction to the reported

epicenter. The relationship between general direction of the

major principal axis and direction to the epicenter is, how­

ever, not highly correlated.

(4) Usually, the principal variances along the minor principal axis

are more uniform than the principal variances along the major

or intermediate principal axis. Therefore, it may be con­

cluded that the spectral density distribution for the minor

principal axis is approximately uniform, i.e. the spectral

density distribution is similar to white noise.

(5) Based on the results in Figs. 3.13, the motions for sites on

hard geology generally have peak variances in the higher

frequency range and are quite narrow band. However, motions

for sites on soft geology generally have peak variances in the

lower frequency range and are quite wide band. This observa­

tion is in general agreement with site dependency effects as

previously reported in the literature [40]. To check further

for evidence of site effects on the dominant frequency, i.e.

the frequency corresponding to maximum intensity, the results

shown in Fig. 3.15 were plotted. This figure shows number of

stations versus dominant frequency for three site conditions

(hard, intermediate and soft) within area groups A through F.

The correlation in this case is quite weak; however, it should

be recognized that the site classifications are not too

reliable.

Page 73: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

57

C. MAXIMUM VARIANCES AND COVARIANCES

1. General

Cross correlation coefficients, obtained through the relation

p .. 1J

< [a. (t) - a.l [a.(t) - a.l > 1 1 J J

i,j = x,y,z

cr. cr. 1 J

(3.5)

take values in the range of -1 and +1. If the ground motion processes

are completely dependent, i.e. they are identically the same, the cross

correlation coefficients are either +1 or -1 depending upon the

directions of the processes. On the other hand, if the processes are

completely independent of each other, the cross correlation coefficients

equal zero. As previously shown ground motions along principal axes are

independent in a statistical sense; therefore, the corresponding cross

correlation coefficients equal zero. Axes along which the ground

motions provide maximum cross correlation coefficients can be identified

by the procedure previously described. In the following section of this

report, principal variances and principal cross correlation coefficients

obtained by the moving-window technique are presented.

2. Results of Maximum Variances and Covariances

Principal variances, maximum covariances and principal cross

correlation coefficients are evaluated for motions recorded at stations

in area groups A through F. The results for stations in area groups

A and B are shown in Figs. 3.16 and 3.17, respectively, and those for

other stations are included in Appendicies A and D. Each figure con-

sists of four diagrams showing the following.

Page 74: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

58

(1) Principal variances along the major, minor and intermediate

principal axes which are represented by the solid, short-dashed

and intermediate-dashed curves, respectively.

(2) Ratios of the intermediate and minor principal variances to

(3)

the major principal variance which are represented by the

intermediate-dashed and short-dashed curves, respectively.

Mean variances equal to

and 1 2

1 2 []122 (t) + ]133 (t) ] ,

1 2

along axes

1 giving the corresponding maximum covariances 2 []122(t) - ]133(t)],

1 and 2 []111 (t) - ]133(t)] which are shown by the solid,

intermediate-dashed and short-dashed curves, respectively.

(4) Principal cross correlation coefficients P23' P13 and P12

obtained as ratios of the maximum covariance to the cor-

responding mean variance, e.g. P23 (t) = []122(t) - ]133(t)l/

[]122(t) + ]133(t)], which are represented by the solid,

intermediate-dashed and short-dashed curves, respectively.

3. Observation of Results

Based on the time dependent properties of principal variances,

the variances along principal axes vary with time in different manners.

Observed, however, that the ratios of the intermediate and minor

principal variances to the major principal variance are stable during

periods of high intensity motion. Since high energy is represented

during these periods, their statistical properties will be considered of

major importance in characterizing the ground motion process. Therefore,

the most significant statistical properties were evaluated at that time

when the motion was of maximum intensity. Such results obtained for

Page 75: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

59

each geological classification are summarized in Table 3.6. It is

apparent that the ratios of the intermediate and minor principal

variances to the major principal variance, though they differ with

geological conditions, are approximately 0.5-0.7 and 0.15-0.25 with the

standard deviations of 0.2 and 0.1, respectively.

Cross correlation coefficients for motions along instrument

for many earthquakes including the San Fernando earthquake were reported

in the. literature [11]. Statistical properties of these cross cor­

relation coefficients are shown in Table 3.7. Of the 104 instrument

stations included in this table, several are located at the top of

buildings.

Similar to those of principal variances, statistical pro­

perties of cross correlation coefficients evaluated during periods of

high intensity motion are shown in Table 3.8. Using these results,

average ratios of principal variances ~33/~22' ~33/~11 and ~22/~11

were found to be 0.50, 0.22 and 0.43 on hard geology, 0.21, 0.15 and

0.73 on intermediate geology and 0.31, 0.17 and 0.56 on soft geology,

respectively. These ratios correspond with the ratios of principal

variances at the time of highest intensity as shown in Table 3.6.

Although the number of samples is quite limited, it can be concluded

that there is a general correlation between geological classification

and ratios of principal variances. Based on the results in Table 3.8,

the principal cross correlation coefficient between the major and

intermediate principal axes (P12) is smaller for soft geology than

for hard geology. In all cases studied, the minor principal axis at

time of maximum intensity is nearly vertical. When this occurs and the

principal cross correlation coefficient P12

equals zero, the motions

Page 76: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

60

in the horizontal plane are statistically independent regardless of the

directions of components.

Page 77: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

3.1

A

CC

EL

ER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

S -

AR

EA

A

[29

]

STA

TIO

N

STA

TIO

N

PO

SIT

IVE

PE

AK

A

PPR

OX

. D

IRE

CT

ION

TO

B

UIL

DIN

G

AB

BR

EV

IAT

ED

ID

L

OC

AT

ION

D

IRE

CT

ION

S

OF

AC

C.

DIS

TA

NC

E

TO

EP

ICE

NT

ER

**

STR

UC

TU

RA

L

SIT

E

NU

MB

ER*

AC

CEL

ERO

GR

APH

(G

AL

) E

PIC

EN

TE

R

(DE

GR

EE

) T

YPE

G

EOLO

GY

(K

M)

( )

**

*

26

7

Pasa

den

a

S8

2E

2

07

.8

30

.1

-42

9

-sto

ry

San

dy

Jet

Pro

pu

lsio

n

S08W

1

39

.0

St.

b

uil

din

g

Gra

vel

Lab

ora

tory

DO

WN

-12

6.3

(I

) B

ase

men

t

26

6

Pasa

den

a

SOO

W

-8

7.5

3

4.7

-3

6

2-s

tory

W

eath

ere

d

Seis

mo

log

ical

S90W

-1

88

.6

bu

ild

ing

G

ran

itic

s

Lab

ora

tory

DO

WN

83

.5

(H)

26

4

Pasa

den

a

NO

OE

-19

8.0

3

8.4

-4

0

9-s

tory

A

pp

rox

. M

illi

kan

N

90E

-1

81

.6

RC

b

uil

din

g

10

00

' o

f L

ibra

ry

DO

WN

-

91

.2

All

uv

ium

u

po

n

Base

men

t G

ran

ite

( S)

47

5

Pasa

den

a

NO

OE

93

.5

38

.4

-41

2

1/2

-sto

ry

Ap

pro

x.

Ath

enae

um

N

90E

-1

07

.3

RC b

uil

din

g

10

00

' o

f DO

WN

-9

2.9

A

llu

viu

m

up

on

G

ran

ite

(S)

* P

erm

an

en

t id

en

tifi

cati

on

nu

mb

er i

n an

nu

al

list o

f sta

tio

ns is

su

ed

by

th

e

Seis

mo

log

ical

Fie

ld

Serv

ey

, N

OS-

NO

AA

**

D

irecti

on

an

gle

s are

m

easu

red

fr

om

th

e n

ort

h in

clo

ck

wis

e.

**

*

Sit

e cla

ssif

icati

on

. (S

),

(I)

an

d

(H)

co

rresp

on

d to

so

ft,

in

term

ed

iate

an

d h

ard

sit

e cla

ssif

ica­

tio

ns,

resp

ecti

vely

[5

1].

0'\

I-

'

Page 78: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

ST

AT

ION

ID

L

OC

AT

ION

N

UM

BER

*

21

7

37

10

W

ilsh

ire

Blv

d.

Base

men

t

21

1

35

50

W

ilsh

ire

Blv

d.

Base

men

t

20

8

34

70

W

ilsh

ire

Blv

d.

Su

bb

ase

men

t

43

1

61

6

So

uth

N

orm

and

ie

Av

e.

Base

men

t

20

2

34

11

W

ilsh

ire

Blv

d.

5th

B

ase

men

t

19

6

33

45

W

ilsh

ire

Blv

d.

Base

men

t

19

9

34

07

6

th S

treet

Base

men

t

TA

BL

E

3.2

A

CC

ELER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

S -

AR

EA

B

[29

]

PO

SIT

IVE

PE

AK

A

PPR

OX

. D

IRE

CT

ION

TO

B

UIL

DIN

G

DIR

EC

TIO

N

OF

AC

C.

DIS

TA

NC

E

TO

EP

ICE

NT

ER

**

STR

UC

TU

RA

L

AC

CE

LE

RO

GR

APH

(G

AL

) E

PIC

EN

TE

R

(DE

GR

EE

) T

YPE

(K

M)

SOO

W

-14

6.7

3

8.5

-1

2

II-sto

ry

S9

0W

-15

5.7

R

C

Bu

ild

ing

DO

WN

-7

3.1

NO

RTH

1

53

.6

38

.6

-13

2

1-s

tory

W

EST

-12

9.7

S

t.

Bu

ild

ing

U

P 5

4.3

NO

OE

-13

3.8

3

B.7

-1

3

II-s

tory

S9

0W

l11

.B

RC

B

uil

din

g

DOW

N -

47

.3

NO

OE

-10

7.6

3

8.6

-1

3

17

-sto

ry

S90W

1

12

.0

RC

B

uil

din

g

DOW

N -

51

.6

SOU

TH

-10

4.2

3

8.5

-1

3

31

-sto

ry

WES

T 1

25

.2

St.

B

uil

din

g

UP

53

.B

SOO

W

-10

B.3

3

B.6

-1

4

12

-sto

ry

N90

E

-8

B.2

R

C

Bu

ild

ing

DO

WN

60

.2

SOO

W

-15

B.2

3

B.6

-1

4

7-s

tory

N

90E

-1

61

. 9

2 S

t.

an

d

DOW

N -

55

.5

5 RC

B

uil

din

g

~~---

--

----

----

-

AB

BR

EV

IAT

ED

S

ITE

G

EOLO

GY

(

) *

**

All

uv

ium

( I

)

All

uv

ium

W

ate

r ta

ble

at

35

' (S

)

All

uv

ium

(S

)

All

uv

ium

S

ilts

ton

e

at

25

' (I

)

Sil

tsto

ne

Wate

r ta

ble

at

Base

men

t le

vel

(I)

All

uv

ium

(S

)

All

uv

ium

(S

)

0)

N

Page 79: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

3.3

A

CC

ELER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

S -

AR

EA

C

[29

]

ST

AT

ION

ST

AT

ION

P

OS

ITIV

E

PEA

K

APP

RO

X.

DIR

EC

TIO

N

TO

BU

ILD

ING

ID

L

OC

AT

ION

D

IRE

CT

ION

O

F A

CC

. D

IST

AN

CE

TO

E

PIC

EN

TE

R**

ST

RU

CT

UR

AL

N

UM

BER

* A

CC

EL

ER

OG

RA

PH

(GA

L)

EP

ICE

NT

ER

(D

EG

RE

E)

TY

PE

(KM

)

12

5

Lak

e H

ug

hes

N

2lE

-1

45

.5

-8

Sm

all

A

rray

N

o.

1 S

69

E

10

8.9

3

0.9

B

uil

din

g

DOW

N -

93

.0

12

6

Lak

e H

ug

hes

S

69

E

16

8.2

-1

6

Sm

all

A

rray

N

o.

4 S

2lW

-1

43

.5

28

.0

Bu

ild

ing

DO

WN

15

0.8

12

7

Lak

e H

ug

hes

N

2lE

1

19

.3

-33

S

mall

A

rray

N

o.

9 N

69W

-1

09

.4

27

.7

Bu

ild

ing

D

OW

N

71

.·5

12

8

Lak

e H

ug

hes

N

21E

-3

46

.2

-38

S

mall

A

rray

N

o.

12

N

69W

2

77

.9

24

.4

Bu

ild

ing

DO

WN

-10

5.3

-----

-------

--

--------

L-

__

__

__

_ ~ _

__

__

AB

BR

EV

IAT

ED

S

ITE

G

EOLO

GY

(

)**

*

Gra

nit

ic

(H)

Weath

ere

d

Gra

nit

ic

(H)

Gn

eis

s (H

)

Eo

cen

e S

an

dst

on

e

belo

w

a sh

all

ow

(l

O'±

) la

yer

of

All

uv

ium

(I

)

(j) w

Page 80: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

3.4

A

CC

ELER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

S -

AR

EA

D

[29

]

STA

TIO

N

STA

TIO

N

PO

SIT

IVE

PE

AK

A

PPR

OX

. D

IRE

CT

ION

TO

B

UIL

DIN

G

ID

LO

CA

TIO

N

DIR

EC

TIO

N

OF

AC

C.

DIS

TA

NC

E

TO

EP

ICE

NT

ER

**

STR

UC

TU

RA

L

NU

MB

ER*

AC

CEL

ERO

GR

APH

(G

AL

) E

PIC

EN

TE

R

(DE

GR

EE

) T

YPE

(K

M)

13

7

Wate

r an

d

Po

wer

N

50W

1

26

.5

41

.1

-19

l5

-sto

ry

Bu

ild

ing

S4

0W

-16

9.2

S

t.

Bu

ild

ing

B

ase

men

t DO

WN

-6

7.2

14

8

23

4

S3

7E

1

95

.6

40

.4

-18

l7

-sto

ry

Fig

uero

a S

t.

S5

3E

-1

88

.3

RC

Bu

ild

ing

B

ase

men

t U

P -

67

.5

17

2

80

0

Wes

t N

37E

8

6.8

4

0.4

-1

9

3l-

sto

ry

Fir

st

St.

N

53W

1

38

.0

St.

B

uil

din

g

1st

Flo

or

UP

60

.9

14

5

22

2

N53

W

14

9.4

4

0.4

-1

9

l7-s

tory

F

igu

ero

a S

t S3

7W

-12

6.8

R

C

Bu

ild

ing

1

st

Flo

or

UP

43

.2

---_

.. -

---

---_

...

_--

_.-

-----_

._

--

---_

.--

--

AB

BR

EV

IAT

ED

S

ITE

G

EOLO

GY

(

)**

*

Mio

cen

e

Sil

tsto

ne

(I)

25

' o

f A

llu

viu

m

ov

er

Sh

ale

W

ate

r at

20

' (I

)

Pli

ocen

e

Sil

tsto

ne

(I)

25

' o

f A

llu

viu

m

ov

er

Sh

ale

W

ate

r at

20

' (I

)

m ~

Page 81: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

3.5

A

CC

ELER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

S -

AR

EA

E

[29

]

STA

TIO

N

STA

TIO

N

PO

SIT

IVE

PE

AK

A

PPR

OX

. I D

IRE

CT

ION

TO

B

UIL

DIN

G

ID

LO

CA

TIO

N

DIR

EC

TIO

N

OF

AC

C.

DIS

TA

NC

E

TO

EP

ICE

NT

ER

**

STR

UC

TU

RA

L

NU

MB

ER*

AC

CE

LE

RO

GR

APH

(G

AL

) E

PIC

EN

TE

R

(DE

GR

EE

) T

YPE

(K

M)

42

5

18

00

C

en

tury

N

54E

-

97

.9

15

-sto

ry

Park

E

ast

S3

6E

-

82

.3

37

.5

3 RC

B

uil

din

g

Base

men

t DO

WN

-6

2.5

44

0

18

80

C

en

tury

N

54E

-1

14

.4

Park

E

ast

N36

W

12

6.5

3

7.6

3

16

-sto

ry

1st

Lev

el

DOW

N -

62

.5

St.

B

uil

din

g

18

4

19

00

A

ven

ue

N44

E

-7

9.9

2

7-s

tory

o

f S

tars

S

46

E

-8

4.2

3

7.9

3

St.

B

uil

din

g

Base

men

t U

P -

57

.4

18

7

19

01

A

ven

ue

N46

W

13

3.8

1

9-s

tory

o

f S

tars

S4

4W

14

7.1

3

8.5

3

St.

B

uil

din

g

Su

bb

ase

men

t DO

WN

-6

6.7

------

----_

.. -------

-----

L__

_ __

__

AB

BR

EV

IAT

ED

S

ITE

G

EOLO

GY

(

)**

*

Sil

t an

d

San

d

Lay

ers

. W

ate

r ta

ble

at

70

-80

' (S

)

Sil

t an

d

San

d

Lay

ers

. W

ate

r ta

ble

at

70

-80

' (S

)

Sil

t an

d

San

d

Lay

ers

. W

ate

r le

vel

at

70

' (S

)

Sil

t an

d

San

d

Lay

er

Wate

r ta

ble

at

70

-80

' (S

)

, I I

m

U1

Page 82: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

3.6

S

TA

TIS

TIC

AL

P

RO

PE

RT

IES

O

F P

RIN

CIP

AL

VA

RIA

NC

ES

AT

THE

PE

RIO

D

OF

HIG

HE

ST

IN

TE

NS

ITY

GE

OL

OG

ICA

L

CL

AS

SIF

ICA

TIO

N

HA

RD

IN

TE

RM

ED

IAT

E

SOFT

NU

MB

ER

OF

SAM

PLE

S 3

8 1

4

25

Majo

r 0

.61

0

.53

0

.58

0

.57

Mea

n In

ter.

0

.26

0

.39

0

.33

0

.34

Min

or

0.1

3

0.0

8

0.1

0

0.1

0

Rati

os o

f p

rin

cip

al

Sta

nd

ard

M

ajo

r 0

.12

0

.05

0

.06

0

.07

v

ari

an

ces to

th

e

dev

iati

on

In

ter.

0

.07

0

.05

0

.07

0

.07

in

ten

sit

y t

en

so

r M

ino

r 0

.05

0

.04

0

.04

0

.04

Co

eff

icie

nt

Majo

r 0

.19

0

.08

0

.10

0

.12

of

Inte

r.

0.2

7

0.1

2

0.2

1

0.2

2

Vari

ati

on

M

ino

r 0

.39

0

.44

0

.36

0

.40

Mea

n In

ter.

0

.44

0

.74

0

.58

0

.61

Min

or

0.2

3

0.1

6

0.1

7

0.1

7

Rati

os o

f th

e in

term

ed

iate

S

tan

dard

In

ter.

0

.18

0

.13

0

.16

0

.18

an

d

min

or

pri

ncip

al

dev

iati

on

M

ino

r 0

.12

0

.07

0

.06

0

.07

v

ari

an

ces

to

the m

ajo

r

pri

ncip

al

vari

an

ce

Co

eff

icie

nt

Inte

r.

0.4

1

0.1

8

0.2

8

0.2

9

of

Min

or

0.5

2

0.4

6

0.3

8

0.4

3

Vari

ati

on

m

m

Page 83: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

67

TABLE 3.7 STATISTICAL PROPERTIES OF CORRELATION COEFFICIENTS FOR STRONG MOTION ACCELEROGRAMS RECORDED AT 104 SITES [11]

TRUE STANDARD ABSOLUTE ABSOLUTE ABSOLUTE COMPONENTS MEAN DEVIATION MEAN MAXIMUM MINIMUM

HI' H 2

0.0029 0.2116 0.1632 0.6801 0.0014

HI' V 0.0187 0.1774 0.1387 0.4957 0.0004

H2

, V 0.0055 0.1841 0.1321 0.7430 0.0005

Page 84: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

3.8

S

TA

TIS

TIC

AL

P

RO

PE

RT

IES

O

F P

RIN

CIP

AL

C

RO

SS

CO

RR

EL

AT

ION

C

OE

FF

ICIE

NT

S

AT

TH

E

PE

RIO

D

OF

HIG

HE

ST

IN

TE

NS

ITY

GE

OL

OG

ICA

L

CL

AS

SIF

ICA

TIO

N

HA

RD

IN

TE

RM

ED

IAT

E

SO

FT

NU

MB

ER

OF

SAM

PLE

S 3

8 1

4

P2

3

0.3

3

0.6

5

0.5

3

Mea

n P

13

0

.63

0

.73

0

.72

P1

2

0.4

0

0.1

6

0.2

8

Pri

ncip

al

P2

3

0.0

7

0.1

5

0.1

9

cro

ss co

rrela

tio

n

Sta

nd

ard

dev

iati

on

P

13

0

.16

0

.11

0

.09

co

eff

icie

nts

P1

2

0.1

9

0.0

9

0.1

4

Co

eff

icie

nt

P2

3

0.2

0

0.2

3

0.3

6

of

P1

3

0.2

6

0.1

5

0.1

3

Vari

ati

on

P

12

0

.47

0

.58

0

.50

25

0.5

4

0.7

1

0.2

6

0.1

9

0.1

1

0.1

5

0.3

5

0.1

5

0.5

8

(j'\

(X

l

Page 85: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

69

UP

0- 2 >0 A o ~ cp ~90o

-90°< 8 ~+900 -90 o <8E ~+90°

------------------~~~~~--,_--_r-------/~ .. NORTH

OA-DIRECTION OF PRINCIPAL AXIS

OE-DIRECTION TO EPICENTER

EAST

I // /

/ /

/ /

Fig. 3.1 Directions of principal axes in three-dimensional space.

Page 86: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

z o -i

::0

rT

1 -0

::

0

o o c:::

C?

OJ

I rT1

a S

TA

TIO

N

NO

. 2

64

3

40

8

12

N,1

18

0

7

30

W

b S

TA

TIO

N

NO

, 2

64

3

40

8

12

N,1

18

0

7

30

W

CA

LT

EC

H

MIL

LIK

AN

L

IBR

AR

Y.

BA

SE

ME

NT

. P

AS

AD

EN

A,

CA

L.

CA

LT

EC

H

MIL

LIK

AN

L

IBR

AR

Y,

BA

SE

ME

NT

, P

AS

AD

EN

A,

CA

L.

5,0

1

0.0

1

5.

0 2

0.

0 2

5.0

3

0.

0 5

,0

10

.0

15

.0

20

. 0

25

.0

:3 0

. 0

-:~f~r~~i0'-r= I

~"---" ..

,."""---'.

",,.""'"

''''

90

-6

0 [\

-01

---

==

1

~

3D

~ 3

0 r

:"" ~

""

90

« 4

5

t-- w

co

t---

'5

\/ -

9 0

« t--, 5

7

:\ ,~,,:

: ;' ,-

, ',,;...

/~_~,_.;~

,',' 9

0 t

=k

j /:

j j'

: j"

! :

v '-

, .:

f ,'

"

,\./

~.

'."

co

t '1

t-

-_

4 5

_ ,-B

r I

.: v:'.,., (-

,

r'~~ _

~~~.

m#K

;~.Q

:":±

9i}E

J

-9

0

I ,j

'.:

'zrs'~

" '-

-".

,,"

':/

~ :~~ 1 d~

ghJ2

£JtJ

8

0,0

60

.0

« l:

40

. 0

20

. 0

1 21

f1;JJ

:1I

Fig

. 3

.2 5

,0

10

.0

15

. 0

20

.0

25

. 0

:3 o

. 0

5.0

1

0.0

1

5.0

2

0.0

T

IME

(S

EC

.)

TIM

E

(S

EC

.)

c S

TA

TIO

N

NO

. 2

64

3

40

8

12

N,l

18

0

7

3aW

CA

LT

EC

H

MIL

LIK

AN

L

IBR

AR

Y.

BA

SE

ME

NT

, P

AS

AD

EN

A.

CA

L.

5.0

1

0.0

1

5.

0 2

0.0

2

5.

0 :3

0 .

0

~ :~ !.

. [n

'---L,

,~ J:

1-"--,

.,, I

"._

--.-

-'.

--

~:~ I

k:fdr#

t8 j

-9

0

« 4

0.0

L

00"1

Et

i:lJ

! 2

0.0

5.0

1

0.

0 1

5.

0 2

0.

0 2

5.0

3

0.

0

TIM

E

(S

EC

.)

25

.0

30

. 0

Tim

e d

ep

en

den

t d

irecti

on

s

of

pri

ncip

al

ax

es

an

d sq

uare

ro

ot

of

pri

ncip

al

vari

an

ces at

sta

tio

n

No

. 2

64

.

-.J o

Page 87: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a

90

60 I

CL 30

0

90

« 4 5

r-w 0 I

r- -45

-90

80. 0

60. 0 « L C) 40. 0

(J)

Z 0 • 0

o

b

90

<C 45

r-w 0 I

r- - 4 5

-90

80 . 0

60. 0 « L C) 40. 0

(J)

20. 0

0

71

STATION NO. 267 3412 01N.l18 10 25W

JET PROPULSION LAB .• BASEMENT. PASADENA. CAL.

o

o

5. 0 10. 0 15. 0 20. 0 25. 0

r tvV " /1

" ; , ,

r--. ' : /1 " /\

'\1----- , ---- ...... ' , /-) y~ I-r. \ .. /' ... -- .... - , --_ ...... -y'\ _,_1 ' , - /' \ , ,

- , , -, I, / ....... , 1\ . ; '; ~, r ,I I , -.

'...L'; I , , ' , '.

\ / -~

p-tF~-' ... -- \ - ~

r:----~ / '." '0 ---,~,:~

\ I ... _.... I' - ...

5. 0 10.0 15.0 20.0 25. 0

TIME (SEC.)

STATION NO. 266 3408 55N.118 10 15W

\

CALTECH SEISMOLOGICAL LAB .. PASADENA. CAL.

5. 0

" , , '--,

1 o. 0 1 5 . 0 20. 0 25. 0

, "

30. 0

30. 0

30. 0

- r "­, - - --: - - - - - f-- ~---'='-.- f- ~_- =- -4.0--~-" ~~j, - -

(

0 5. 0 10.0 15.0 20.0 25. 0 30. 0

TIME (SEC.)

Fig. 3.3 Time dependent directions of principal axes and square root of principal variances in area A.

Page 88: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

c

90

60 :r: Q. 30

0

90

« 45

r--w 0 ::r: f- - 4 5

- 90

80. 0

60. 0 <C L t.:l 40 . 0

UJ 20.0

o

d

9 a

<C 45

r--w 0 :r: r-- - 4 5

-90

60,0

<C 4 a , a L t.:l

UJ 2 a . a

0

72

STATION NO. 264 3408 12N,118 07 30W

CALTECH MILLIKAN LIBRARY. BASEMENT. PASADENA. CAL.

o

o

5. 0 10. 0

.' . : " ,

15. 0

r I

I

20. 0

, , , " ~' ,~,'i1

~/ ------------, '~, / . ,

--- , "" '-'----

5. 0 10.0 15.0 20.0

TIME (SEC. 1

25. 0

25. 0

STATION NO. 475 3408 20N,118 07 17W

CALTECH ATHENAEUM. PASADENA, CAL.

o

0

5, 0 10. 0 15. 0 20. 0 25. a

~ l~\

I y \~ , , , , " "

I \

' , , J l:..

-',-------~~- ~~=i==="_,:::-__ =_=-__ = __ """_=:__-_:_-\-.,_-

5. 0 10.0 15.0 20.0 25. a TIME (SEC.

Fig. 3.3 (continued)

30. 0

30. 0

3 a . a

30. a

Page 89: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

73

a STATION NO. 217 3403 42N,118 18 24W

3710 WILSHIRE BLVD. BASEMENT. LOS ANGELES. CAL.

o 5. 0 10. 0 15. 0 20. 0 25. 0

90

60 I--~··· ' .. ~~.~ ~! ~ 30 ~---",r / :----< I

0- ~~-'.

90 Y . -- (~\

45 · ' < · ,

l- · , '. .(- " :' ---w 0

r--

- _ -,.L - --'- ' ., • 1\\: \ :1 V _ I \ I

---,' 'i I \ J--.-l. -i, :

I -+ . -;: "'--- - - + -'--\ --i=:Jlv'~:\-~i+ ~ '--_/-~ ~ . ~ : \ I ~~ : I- - 4 5

- 9 0

60. 0

< 40. 0 L <.:l

U) 20. 0

0

b

0

, , . , . ~~ '-: I 'i

\ I

--------': -- --"'------------ ------ -____ 2~ :::::::-:':;?::;~;t::;-=o~

5. 0 10. 0

TIME 15. 0

(SEC.) 20. 0 25. 0

STATION NO. 211 3 4 0 3 4 2 N. 118 1 8 0 6 W

3550 WILSHIRE BOULEVARD, BASEMENT, LOS ANGELES, CAL.

0 5. 0 10. 0 15. 0 20. 0 25. 0 30. 0

90

i 60 I 0. 30

0

90

< 45

I-w 0 I I- - 4 5

- 9 0

v' '- -, I ',I \: .. ~I \ I \ f \1 , I \~ i

60. 0

< 40. 0 L '-"

U) 20. 0

0 0 5. 0 10.0 15.0 20.0 25. 0 30. 0

TIME (SEC.)

Fig. 3.4 Time dependent directions of principal axes and square root of principal variances in area B.

Page 90: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

c

90

60 Ie

CL 30

0

90

« 4 5

I-w 0 Ie

I- - 4 5

-90

60. 0

« 4 0 . 0 L '-"

CJ) 20. 0

0

d

90

« 4 5

I-w 0 Ie

I- - 4 5

-90

60. 0

« 4 0.0 L '-"

(/) 20. 0

o

74

STATION NO. 208 3403 40N,l18 17 58W

3470 WILSHIRE BLVD., SUBBASEMENT, LOS ANGELES, CAL.

0 5. 0 10, 0 15. 0 20, 0 25. 0 30, 0

~ :--\~ ! " I '. _",,/ \ .. ,,, ...

- -:~,- -,,- -f'~ -.: - - ~- \- ---r ~ ~Y:.~ --j~: ::,1//\1 \1

\ ,,,'/ _ .. \.,' -, '\ ' \ .. , I

" .. ---./ \ I I

\ I " ,

0 5. 0 10.0 15.0 20.0 25. 0 30. 0

TIME (SEC.)

STATION NO. 431 3403 45N,l18 17 56W

616 S. NORMANOIE AVENUE, BASEMENT, LOS ANGELES, CAL.

o 5. 0 10. 0

" / I,

.J-­,r--'

,,'-, J/ ,.---'

'. " .

15. 0

" " , . , .

20. 0

---tj. t;:~--'-.\ -

r--~-7 ----I, :

o

. , ,,\:

"

?/- ------------- ------------- --' 5.0 10.0 15.0

TIME (SEC.]

20. 0

Fig. 3.4 (continued)

Page 91: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

90

« ~ 5

I-w 0 :J:

I- - ~ 5

- 9 0

~ 0 . 0

30. 0 « L CJ 20. 0

(J)

10. 0

0

f

90

60 :J: 0.. 30

0

90

« 4 5

I-w 0 :J:

I- - 4 5

- 90

60.0

« ~ 0 . 0 L lJ

(J) 20. 0

o

75

STATION NO. 202 3 4 0 3 4 5 N. 118 1 7 5 7 W 3~11 WILSHIRE BOULEVARD. 5TH BASEMENT. LOS ANGE~ES. CAL.

o 5. 0 1 0 . 0 1 5 . 0 20 . 0 25. 0

"'r , t'~"' /

/~ \r--, -" I'-----t '\ , v \ ,: / \V , -, ' , I

f--~'-4 :-,::-:.::.':..',,!..... -frn t-+ p-y:~ -- ----"-, \7'- , ....... -_.

-.

0

" j

\ IV " \

~,

~ I

1/ ::-----... /' / '--~I'------

5. 0 10. 0

TIME 15. 0

(SEC.)

20. 0 25. 0

S TAT ION NO. 196 3403 45N.118 17 43W

33~5 WILSHIRE BOULEVARD. BASEMENT. LOS ANGELES. CAL.

o 5. 0

o 5. 0

10. 0 1 5. 0 20. 0

A ,-' \ I ~ \ J \~ \ : " Jt ':" I \ \ ,;; ,I l\.- :

10. 0

T I·ME

Fig. 3.4

15. 0

( SEC. )

(continued)

20. 0

25. 0

25.0

Page 92: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

9

90

60 ::r: 0- 30

0

90

« 45

f-LJ.J 0 :r: f- -45

- 9 0

B 0 • 0

60. 0 « L <.:) 40. 0

(f)

20. 0

o

76

STATION NO. 199 3403 45N,118 17 43W

3407 6TH STREET, BASEMENT, LOS ANGELES. CAL.

o 5. 0 10. Q 15. 0 20. 0 25. 0 30. 0

I f~--J:-~ I~ ~ -~----- - ... ----------- ~-,,"'- ... -- .. -- .. - ....... " - ........ _--- -------

o 5. 0

, "

r--t---. .

-- -- .. -- --~ --::-:-:::-:.:: :--~ ....

'. , .

- - - _:-'_}- - -I

10.0 15,0 20.0 25, 0 30, 0

TIME [SEC.)

Fig. 3.4 (continued)

Page 93: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

77

a STATION NO. 125 3440 30N,118 26 24W

LAKE HUGHES, ARRAY STATION 1, CAL.

5. 0 1 O. 0 15. 0 20. 0 25. 0 3 a . 0 a

9 a

~ : ~I f----'-~-f~~~~~~-~ ~:-Ef-------,,-,_,_--+-L-, _-- __ ---l---j'------1. I

« t--

90

45

w a I

t-- _ 4 5

-90

6 a . a

« 4 a . a L Cl

Ul 20. a

« t--

b

I

a

90

60

Q. 30

o

90

45

w 0 I

t-- _ 4 5

-90

6 a . a

« 4 0 . 0 L Cl

Ul 20. 0

0

. 1\/11 i / /' rv Y' ~ ,-- ....... .,.,../ ',,_ ..... _

/----

~5:::-:::::, ,-:::-:::, ,_:::_ ,-==-, _=--, ---l-,-, ,_, ,-"

o 5. a 10.0 15.0 20.0 25. 0 30. a TIME (SEC.)

STATION NO. 126 3438 30N,118 28 48W

LAKE HUGHES, ARRAY STATION 4, CAL.

o 5. 0 10. 0 15.0 20. 0

f----

0 5.0 10.0 15.0 2 a . a TIME (SEC.)

Fig. 3.5 Time dependent directions of principal axes and square root of principal variances in area C.

Page 94: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

78

C STATION NO. 127 3 4 36 30 N • 1 1 8 33 42W

LAKE HUGHES, ARRAY STATION 9. CAL.

0 5.0 10. 0 15. 0 20. 0

90

60 I :::r:;r~~~~f= I

I

D- 30

0

90

4 5 I 1\ « "'--~) r- '-" "'----------w 0 . /1

, :r:: - ... ~ ~ ~1 ' . r- 1=---::::-----;. t- +- ~--''--! ---- \----

- 4 5 ..... , .... , I

~ -,

'< -" I -90 ,,~ " /

40.0

30. 0 ~ « -,<\ L t::J 20.0

'-

~ (f)

10. 0 ---'-::::::-= -<:::-:-:::::--:=:: ~ 0

0 5.0 10. 0 15. 0 20. 0

TIME ( SEC. )

d STATION NO. 128 34 34 1 8 N , 1 1 8 33 36W

LAKE HUGHES, ARRAY STATION 12. CAL.

0 5. 0 10. 0 15. 0 20. 0

90

60 I ~--L-=L •

I

D- 30

0

90

« 45

r-w 0 I

r- -45

-90

----J\ ~ /

\ ~ \ /' ,

~

-y f--~.A I- ----"f-:...=....:; ... ,....- ", L-~- ~~.-A- - -,- " ~

" --, I V

\ ,,/ \ /\1 -/ \

100.0

80. 0

« L 60. 0 t::J

4 a . 0 \j~

(f)

2 a . a

a 0 5.0 10.0 15.0 2 a . 0

TIME (SEC.)

Fig. 3.5 ( continued)

Page 95: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

79

STATION NO. 137 3403 OON,llB 15 DOW

WATER AND POWER BUILDING. BASEMENT. LOS ANGELES. CAL.

o 5. 0 10. 0 15. 0 20. 0 25. 0 30. 0

90

60 :r: (L 30

0

90

« 4 5

\-w 0 :r: \- - 4 5

-90

./ I '-/ I I I ,....--/ /-./ I ,.-

\ / : I I V '\ I

~ Y'\r ,V-I

h I I ~

I I I

~~ ~_I- J. b~-!-- Nt I " --------, I- ,-...... .,'"- - ~ .... _----; \ , \ I : .. 1 j I 1 ,/ "- 1 - . I ! ,"'<} / /

- \ \ . , . , ~I" __ 1_ r, I ........ \ "

\ ,

'_I '''-'''.,' 'oJ \ I '~ ... - --- '-'

60. 0

« 4 0 . 0 L co

(/) 20. 0

o o 5.0 10.0 15.0 20.0 25. 0 30. 0

TIME (SEC.)

b STATION NO. 148 3403 ZON, lIB 15 Z5W

234 FIGUEROA STREET. BASEMENT, LOS ANGELES, CAL.

o 5. 0 10. 0 1 5 . 0 20. 0 25. 0 30. 0

90

« 45

\-w 0 :r: \- - 4 5

-90

80. 0

60. 0 « L co 40. 0

Ul 20. 0

. -', -" .~ -. -:. ::-. ~ ::-.:::-::: ::-::-l:t::--:= .. :=."" .. ~.~ .. ~.=-=*----~ 0 ~-'--'

..... ;.-~--'-

0 5. 0 10.0 15.0 20.0 25.0 30.0

TIME (SEC.)

Fig. 3.6 Time dependent directions of principal axes and square root of principal variances in area D.

Page 96: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

c

90

« 45

f-w 0 I

f- - 4 5

-90

60. 0

«40.0 L C)

",20.0

o

d

90

60 I CL 30

0

90

« 4 5

f-w ·0 I

f- - 4 5

-90

60. 0

«40.0 L D

",20.0

o

80

STATION NO. 172 3403 26N,118 15 02W 800 W. FIRST STREET, 1ST FLOOR, LOS ANGELES, CAL.

o 5. 0 1 o. 0 1 5 . 0 20. 0 25. 0 30. 0

o

~ L / V

\

I ,,-'

-'

--I- \;, / -/ \' ' '- \ / "-".,,- - - \- I- T -:- - r - -: -:- - - - -" r ~ /. , ,,~' -_.... ...,,_ ............................ '

~'-"'---------

--... '

5. 0 10.0 15.0 20.0 25. 0 30. 0

TIM E [S E C . J

S TAT ION NO. 145 3 4 0 3 2 5 N, 118 1 5 0 3 W 222 FIGUEROA STREET, 1ST FLOOR, LOS ANGELES, CAL.

o 5. 0 10. 0 I 5 . 0 20. 0 25. 0 30. 0

- _I-!- ~~ v,~ _ f- - r- - 1-. - - - 'r-:- - - ~~ - -\ I \ ..... ;:.i. r I : ~~ \

o 5. 0 10.0 15.0 20.0 25. 0 30. 0

TIME [SEC. J

Fig. 3.6 (cant inued)

Page 97: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

81

a STATION NO. 425 3403 46N,l18 24 S2W

1800 CENTURY PARK EAST, BASEMENT P-3 LOS ANGELES, CAL.

o 5. 0 10. 0 15. 0 20. 0 Z 5. 0 30.0 i I j

90

60 I

0.- 30

0

90

« 4 5

f--w 0 I

f-- - 4 5

1 ..... -'-/

- 9 0

40. 0

30. 0 « L Cl 20. 0

U)

1 O. 0

--------~

It ,::---- ~_, ~/, I~~-

0 0 5. 0 10.0 15.0 20.0 25. 0 30. 0

TIME (SEC.)

b STATION NO. 440 34 03 44N,l18 24 SOW

1880 CENTURY PARK EAST. PARKING, 1ST LEVEL, LOS ANGELES, CAL

o 5. 0 1 0 . 0 1 5 . 0 20. 0 25 . 0 30. 0

90

« 4 5 , " //----------.... ~~----- ..... -

f--w 0 :r: f-- - 4 5

\

- 9 0 \ --,

.... , J

60. 0

« 4 0 . 0 L c:J

U) 20. 0 1"---

0 0 5. 0 10.0 15.0 20.0 25 . 0 30. 0

-T I M E (S E C . )

Fig. 3.7 Time dependent directions of principal axes and square root of principal variances in area E.

Page 98: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

c

90

60 I [l 30

0

90

« 4 5

I-w 0 I

I- - 4 5

- 9 0

40.0

30. 0 « L Cl 20. 0

Ul 10. 0

0

d

90

60 I [l 30

0

90

« 15 I-w 0 J: I- -15

-90

60. 0

« 1 0 • 0 1: Cl

(J) 20.0

o

82

STATION NO. 184 3 4 0 3 3 5 N, 118 2 4 5 6 W

1900 AVENUE OF THE STARS, BASEMENT, LOS ANGELES, CAL.

o 5. 0 10 . 0 1 5 • 0 20. 0 25. 0 30 . 0

I E] J-----~I~~'2 I 1- _______________ ,--- ---- ------ ___ ------'

,r l.J

"

i f ,,-------, ... ..._-1/-'

-----------------=---~~

0 5. 0 10.0 15.0 20.0 25. 0 30. 0

TIME [SEC. 1

STATION NO. IS7 3403 14N.l1S 24 5SW

1901 AVE. OF THE STARS SUBBSMT.. LOS ANGELES, CAL.

o 5. 0 10. 0

· · · " .

, :

15. 0 20. 0 25. 0

-- .......... - ,- .. _# ....... ' • ~-/ --_/-

.",_ _J ........ _~- .... _,). .. ----

_/--- -------......

-- ~ -- - ..... '-------.- '-~ ----,---- -- - -----------~

30.0 35. 0

~I

-- ..... --":::~--:.::.::---= --:"'-"':'::---::-=-- =--.7 __ =-____ ="--:- _______ -s:-::=-_ ---~------ ... -----o 5.0 10.0 15.0 20.0 25.0 J 0 • 0 J 5. 0

TIME (SEC.)

Fig. 3.7 (continued)

10. 0

40. 0

Page 99: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

A

36

° 0

0'

35

°00

'

34

°0

0'

33

°0

0'

B

~ 0..

.<"

/0

c D

~INTERMEDIATE

PR

I N

CIP

AL

AX

iS

MA

JO

R

PR

I N

CIP

AL

A

XIS

.BA

KE

RS

FIE

LD

E

F G

""

SP

RIN

GS

°0 <;.~

B

LYT

H

SE

E

EN

LA

RG

EM

EN

T

o 2

0

40

i-

L..

..

SC

ALE

IN

MIL

ES

_ .. _ .. _

.. _ .. _--

12

0°0

0'

119

00

0'

IISO

00

' 1

16

°00

'

Fig

. 3

.8

Dir

ecti

on

s

of

majo

r an

d in

term

ed

iate

p

rin

cip

al

ax

es

of

sta

tio

ns

in cen

tral

an

d so

uth

ern

C

ali

forn

ia.

2 3 4 5

(J)

w

Page 100: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

34°45'

34°30'

84

A B C D E F

f $: INTERMEDIATE

~) PR I NCIPAL AXIS

LANCASTER MAJOR PR I NCIPAL AXIS

::: ~

POMONA

MALIBU

o 2 4 6 8 10 b...f.=.---k I wi SCALE IN MILES

118°30'

Fig. 3.9 Directions of major and intermediate principal axes of stations in extended Los Angeles area.

2

3

4

5

(3

7

Page 101: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

34

" 0

7'

34

° 0

5'

34

° 0

3'

34

°0

11

A

B

~INTERMEDIATE

PR

I N

CIP

AL

AX

IS

MA

JO

R P

RIN

CIP

AL

A

XIS

C

o

w

/ J-.

;; I

I S

AN

TA

M

ON

ICA

B

LV

D

I w~

>

<!

<!

W

0:

OJ

<!

....J

I B

EV

ER

LY

B

LV

w

>

<

!

Z 0: w

/"

'''"~'''''

"IU"'u f

fi _

_ ~I

,j"."

",

'f')

O

J

<0""<

:>

CIT

Y

o 0

.5

-SCA

LE

IN

M

ILE

S

IIS

O 2

5'0

0"

IIS

0 2

2'

30

" 11

802

0'0

0"

IIS

0 1

7'3

0"

IIS

O 1

5 '0

0"

Fig

. 3

.10

D

irecti

on

s

of

majo

r an

d

inte

rmed

iate

p

rin

cip

al

ax

es

of

sta

tio

ns

in cen

tral

Lo

s A

ng

ele

s.

2 3 4

OJ

lJl

Page 102: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a> > « C L­a>

AREA B

3rd . S t.

8 th . St.

AREA F

a> > <{

+­c o E L­a> > Blvd.

86

AREA E

Wilshire

Fig. 3.11 Directions of major and intermediate principal axes of stations along Wilshire Boulevard, Santa Monica Boulevard and Figueroa Street.

Page 103: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

'" r w

I

a S

TA

TIO

N

NO

. 2

64

3

4

OS

1

2N

.l1

S

07

3

0W

CA

LT

EC

H

MIL

LIK

AN

L

IBR

AR

Y,

BA

SE

ME

NT

, P

AS

AD

EN

A,

CA

L.

2.5

5

. 0

7.

5 1

0.

0

:~ ! /~

="~-=SS

SF d

3 ~"'''~''

~ 30

....

.. =>

<;:;';

-\ -\ 0

07

> I

90

45

h~'_

b S

TA

TIO

N

NO

. 2

64

3

4

OS

1

2N

,11

S

07

3

0W

CA

LT

EC

H

MIL

LIK

AN

L

IBR

AR

Y,

BA

SE

ME

NT

, P

AS

AD

EN

A,

CA

L.

2.5

5

. 0

7.

5 1

0.0

;:~f ::

S?3

5F?j

( e~~l

a..

30

_~ •

•• __

.--

____

___ :'

... \"

'<

.-,'

----".:

'">:\

9 0

i 7

"5

I

\/\ :

:... ,'(

""':\

\ -,,"

, I

I-_

4 5

~ ~--~~--~--7~--~-7~

r'''I_

;"""

p

·90

-9

0

I V

15

.0 ~----------------~------------------

20

.0

10?~

\~b~

1 1

5.

0

'" l: ~

10

.0 !

.\

/ \\

1

0.

0

5.

0 5

.0

_7=:

.:--

_---

:_~:

:~ _ _::

:_::_

_:;:=

....

2.

5 5

,0

7.5

1

0.0

2

. 5

5.0

7

. 5

10

. 0

Fig

. 3

.12

HZ

(l./S

EC

.l

HZ

[l.

/S

EC

.

c S

TA

TIO

N

NO

. 2

64

3

4

08

1

2N

,11

8

07

3

0W

CA

L T

EC

H

MIL

LIK

AN

L

IBR

AR

Y,

BA

SE

ME

NT

, P

AS

AD

EN

A.

CA

L.

2.5

5

.0

7.5

1

0.0

-:~ ! --

'------~

~ 30

" .........

-!?

?cC

":::Z

; I o

.. '

....

... .

--..

X

'" r I

~7

~ '"

i' ,';

'/ ~o

" f,-~1G

4>~~,,

~i l-

_ '\

5

·90

1::;1 ?c

:0k,

~1

2.5

5

.0

7.5

1

0.0

HZ

[l./S

EC

.l

Fre

qu

en

cy

d

ep

en

den

t d

irecti

on

s

of

pri

ncip

al

ax

es

an

d

sq

uare

ro

ot

of

pri

ncip

al

vari

an

ces at

sta

tio

n

No

. 2

64

.

CD

-.J

Page 104: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

«

« I-

a

90

45

w 0 :r: I- _ 4 5

-90

20. 0

15. 0

L Cl 1 O. 0

Ul 5. 0

0

b

90

60 :r: 0... 30

0

90

« 4 5

I-w 0 :r: I- -45

-90

20.0

15. 0 « L Cl 10. 0

Ul 5. 0

0

88

STATION NO. 267 3 4 1 2 0 1 N , 118 1 0 2 5 W

JET PROPULSION LAB. BASEMENT, PASADENA, CAL.

o 2 . 5 5. 0 7. 5 10. 0

-------::--~--::--::==---::.:::--~::---:::c:

0 2. 5 5. 0 7. 5 10. 0

HZ (1 ISEC.

STATION NO. 266 3408 55N,118 10 15W

CALTECH SEISMOLOGICAL LAB. PASADENA, CAL.

o 2. 5 5. 0 7. 5 10. 0

0 2. 5 5. 0 7. 5 10. 0

HZ (l./SEC.)

Fig. 3.13 Frequency dependent directions of principal axes and square root of principal variances in area A.

Page 105: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

c

90

« 45

I-w a :r: I- - 45

-90

2 a . a

15. 0 « L C) 10. 0

(f)

5. 0

0

89

STATION NO. 264 3408 12N.118 07 30W

CALTECH MILLIKAN LIBRARY. BASEMENT. PASADENA. CAL.

a

-~

0

, ,

/ /

2. 5

, , ',-

2. 5

HZ

5. a 7. 5 10. a

---~-~-

i~

5. 0 7 • 5 10. 0

1./SEC.

d STATION NO. 4 75 34 o 8 20 N • 1 1 8 07 17W

CALTECH ATHENAEUM. PASAOENA. CAL.

o 2. 5 5. 0 7. 5 10. 0

90

« 45

I-w 0 :r: I- -45 ----

-90

15. 0

« 1 0 . 0 L (.:)

U) 5. 0 ~ --_ ...

::---~:.=----- -=---------0

0 2. 5 S. 0 7. 5 10. 0

HZ (1./SEC.

Fig. 3.13 (continued)

Page 106: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a

90

« 4 5

f-w 0 I

f- - 4 5

-90

20. 0

1 5 . 0 « L L:l 10. 0

(/)

5.0

0

b

90

« 45

f-w 0 I

f- -45

- 90

15. 0

« 1 0 • 0 L L:l

(/) 5. 0

0

90

STATION NO. 217 3 4 0 3 4 2 N . 118 1 8 2 4 W

3710 WILSHIRE BLVD. BASEMENT. LOS ANGELES. CAL.

o 2. 5 5. 0 7. 5 10. 0

-~~:-~ -- ___ ----- ___ ~:_:-_-_:::_-::: __ c=_--

0 2. 5 5 . 0 7. 5 10. 0 H Z 1 . / SEC.

STATION NO. 211 3 4 0 3 4 2 N. 118 1 8 0 6 W

3550 WILSHIRE BOULEVARD. BASEMENT. LOS ANGELES. CAL.

o

0

2 . 5 5. 0

-/-\ - - -/-+,-~ - -­'\ / , \ ", --

---- ~ ...

2. 5 5. 0

HZ (l./SEC.

7. 5 10. 0

,'\ /I '

7 . 5 10. 0

Fig. 3.14 Frequency dependent directions of principal axes and square root of principal variances in area B.

Page 107: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

c

90

60 I

Cl- 30

0

90

« 4 5

I-w 0 I

I- - 4 5

-90

20. 0

1 5. 0 « L LJ 1 0 . 0

if)

5. 0

o

d

90

60 I

Cl- 30

0

90

« 4 5

I-w 0 :r: I- - 4 5

- 9 0

20. 0

1 5 . 0 « L LJ 10. 0

(f)

5. 0

o

91

STATION NO. 208 3403 40N,118 17 58W

3470 WILSHIRE BLVD. SUBBASEMENT, LOS ANGELES, CAL.

o 2. 5

o 2. 5

5. 0

/-- \

\,./ " , " ' "

5. 0

, \

" f \ "':/ \

HZ 1 . / SEC.

7.5

f /

7 . 5

1 O. 0

10, 0

STATION NO, 431 3403 45N,118 17 56W

616 S, NORMANDIE AVENUE, BASEMENT, LOS ANGELES, CAL.

o 2. 5 5. 0 7. 5 10. 0

'------- '---------------- ----,---------------~:-:.-::-.::::-~

o 2. 5 5. 0 7 . 5 10. 0

HZ CI./SEC.)

Fig. 3.14 (continued)

Page 108: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

e

90

60 :r: 0.- 30

0

90

« 4 5

I-w 0 :r: I- -45

-90

15. 0

« 10. 0 L

'" VI 5. 0

a

f

9.0

60 :r: 0.- 30

a

90

« 4 5

I-w 0 :r: I- - 4 5

- 9 0

15 . 0

« 1 0 . 0 L

'" VI 5. 0

a

92

STATION NO. 202 3403 4SN, I I 8 I 7 5 7 W

3411 WILSHIRE BOULEVARD, 5TH BASEMENT, LOS ANGELES, CAL.

o 2. 5 5. 0 7 • 5 I 0 . 0

--, \

\

" " '----

o 2. 5

STATION NO.

.-.- "--

- -.l.r - - -/'- ~~-=-:-_ \ '-., ,7:/_.\---- I

\

------...... --

\ , I I

5. 0 7. 5 10. a HZ (I./SEC.)

196 3403 4SN,I18 17 43W

3345 WILSHIRE BOULEVARD, BASEMENT, LOS AN~ELES, CAL.

D

\

o

2. 5

.---- ......

\ "-" '-

2 • 5

5. a 7. 5 10. 0

5. 0 7. 5 10. 0

HZ I . / SEC. )

Fig. 3.14 (continued)

Page 109: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

9

90

60 ::c Q 30

0

9fJ

..: 45

f-w 0 ::c f- - 45

- 9 0

20. 0

15. 0 ..: L .:> 10. 0

C/ 5. 0

f)

93

STATION NO. 199 3403 45N.118 17 43W

3407 6TH STREET, BASEMENT. LOS ANGELES, CAL.

o 2.5 5.0 7.5 10.0

~ _ --'

0 2. 5

~-'-\ , ' \ , ' , ' ':

\ " /' --- ---- -~ =-----

5. 0 7. 5

1-1 Z 1 • I S [ C . 1

Fig. 3.14 (continued)

10. 0

Page 110: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

8

en

6 z o ~

<1

~

en

4

lL. o a::

w

m

~

2 :::>

z

®I

AR

EA

I

GRO

UP

LO

CA

TIO

N

®

I A

C

AL

TE

CH

©I

I

B

WIL

SH

IRE

C

LA

KE

H

UG

HE

S

D

BE

VE

RL

Y

E

SA

NT

A

MO

NIC

A

'D

I F

I

FIG

UE

RO

A

\1:-

...

I 0

I S

OF

T

GE

OLO

GY

fZQ!I1

IN

TE

RM

ED

IAT

E G

EO

LOG

Y

~

HA

RD

G

EO

LOG

Y

--1~

I(W

r7

j

®

0.4

88

1

.95

3

3.4

18

4

.88

3

DO

MIN

AN

T

FR

EQ

UE

NC

Y

(Hz)

Fig

. 3

.15

C

orr

ela

tio

n

of

do

min

an

t fr

eq

uen

cy

w

ith

so

il cla

ssif

icati

on

.

Page 111: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

95

a STATION NO. 267 3 4 1 2 0 1 N • 118 1 0 2 5 W

JET PROPULSION LAB .• BASEMENT. PASADENA. CAL.

o 5. 0 1 0 . 0 15. 0 20. 0 25. 0 30. 0

o 5. 0 10.0 15.0 20.0 25. 0 30. 0

TIM E (S E C . )

b STATION NO. 266 3408 5SN.118 10 15W

CALTECH SEISMOLOGICAL LAB .• PASADENA. CAL.

5. 0 1 0 . 0 1 5 . 0 20. 0 25. 0 30. 0

1 . 0 0

l- . 5 « 0::

0 4 0 0 0

0:: 3 0 0 0 « > 2000

u 1000

0 1 . 0

0

l- . 5 « 0::

0 4000

0:: 3 0 0 0 « > 2 0 0 0

[l.. 1 000

o 5. 0 10.0 15.0 20.0 25. 0 30. 0

TIME (SEC.)

Fig. 3.16 Time dependent principal variances and principal cross correlation coefficients in area A.

Page 112: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

96

c STATION NO. 264 3 4 0 8 1 2 N • 118 0 7 3 0 W

CALTECH MILLIKAN LIBRARY. BASEMENT. PASADENA, CAL.

o 5. 0 10. 0 1 5 . 0 20. 0 25. 0 30. 0

0 5. 0 1 0 . 0 15. 0 20. 0 25. 0 30. 0

TIME ( SEC. )

d STATION NO. 475 3 4 08 20 N , 1 1 8 07 1 7 W

CALTECH ATHENAEUM, PASADENA. CAL.

0 5. 0 10. 0 15. 0 20. 0 25. 0 30. 0

~ .: /----->-~-------->------->;~:-->~--~:-1-------------~--2000 ,-______ ,-____ -, ______ -, ______ -, ______ -. ______ -,

: :::~ I ,£~Et~?ild. I I o 5. 0 10.0 15.0 20.0 25.0 30. 0

TIM E (S E C . )

Fig. 3.16 (continued)

Page 113: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a

b

1 . 0 0

f- . 5 < 0::

0 3000

0::

< 2000 >

10 a 0 u

0 1 . 0

0

f- . 5 < 0::

o

97

STATION NO. 217 3403 42N,118 18 24W

3710 WILSHIRE BLVD. BASEMENT, LOS ANGELES, CAL.

o 5. 0 1 0 . 0 1 5 . 0 20. 0 25. 0 30. 0

o 5. 0 10.0 15.0 20.0 25. 0 30.0 TIME (SEC.)

STATION NO. 211 3403 42N, 118 18 06W

3550 WILSHIRE BOULEVARD, BASEMENT, LOS ANGELES, CAL.

o 5. 0

I: '" I' ' -:::"_'

10. a

--- --_ ..

15. a 2 a . a 25 . 0 30. 0 , i I

.. - ;:_---_ .... _--- -:,,~"' ..... _/

3000

~:::t3f£C:§~.1 I o 5. 0 10.0 15.0 20.0 25 . 0 30. 0

TIME (SEC.)

Fig. 3.17 Time dependent principal variances and principal cross correlation coefficients in area B.

Page 114: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

98

c STATION NO. 20B 3403 40N,11B 17 5BW

3470 WILSHIRE BLVO •• SUBBASEMENT. LOS ANGELES. CAL.

o 5. 0 10. 0 15. 0 20. 0 25. 0 30 0

o 5. 0 10.0 15.0 20.0 25. 0 30. 0

TIME (SEC.)

d STATION NO. 431 3403 45N, IB 17 56W

616 S. NORMANDIE AVENUE, BASEMENT. LOS ANGELES. CAL.

o 5. 0 10. 0 15. 0 20. 0

o 5.0 10.0 15.0 20. 0

TIME (SEC.)

Fig. 3.17 (continued)

Page 115: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

99

e STATION NO. 202 3403 45N, 118 17 57W

3411 WILSHIRE BOULEVARD, 5TH BASEMENT, LOS ANGELES. CAL.

o 5. 0 10. 0 15. 0 20. 0 25.0

o 5. a 10. 0 15. a 20. a 25. a TIME [SEC.)

f STATION NO. 196 3403 4SN.118 17 43W

3345 WILSHIRE BOULEVARD, BASEMENT, LOS ANGELES, CAL.

o 5. 0 10. a 1 5 . a 20. 0 25. 0 30.0

o 5. 0 10.0 15.0 20.0 25. a 3 a . a TIME [SEC.)

Fig. 3.17 (continued)

Page 116: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

100

9 STATION NO. 199 3 4 0 3 4 ~ N . 118 1 7 4 3 W

3407 6TH STR~ET. BASEM~NT. LOS ANGELES. CAL.

o 5. 0 10 . 0 1 5 • 0 20 . a 25 . 0 30 . 0

~ :::: i > 200 0

u 1000

o

~ :::: I > 2000

Q 1000

o o 5. 0 10.0 15.0 20.0 25. 0 30 . 0

TIME (SEC.)

Fig. 3.17 (continued)

Page 117: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

101

IV. FREQUENCY CONTENT OF GROUND MOTIONS ALONG PRINCIPAL AXES

A. GENERAL

The variation of frequency content with time has been examined

previously using the concept of an evolutionary spectrum [33,34,28] and

the concept of a response envelope spectrum [45]. While the use of these

concepts is desirable, they cannot be applied to the moving-window

technique adopted in this study. Applying the moving-window technique,

Fourier amplitude spectra are obtained for the principal components of

motion of duration ~T centered on time t o

The concept of power and power spectrum will be reviewed

briefly [9]. Let a, (t) 1

and A, (W) 1

represent a real time function and

its corresponding Fourier frequency function, respectively. In this

discussion, a, (t) 1

represents acceleration of motion and power will be

regarded as the square of the magnitude of process a, (t) , 1

even though

it does not have units of energy per unit of time. Thus, the square of

a, (t) a t time t, i. e . 1 0

1 a, (t ) 12 1 0

is termed the instantaneous power at time t . o

Correspondingly, the

integral of instantaneous power over the range - 00 < t < + 00, i.e.

co

I la,(t)12

dt 1

-00

is called total energy of process a, (t) 1

(4.2)

when the infinite integral has

a finite value. In practical applications, this integral always has a

finite value since the record length of a, (t) 1

is limited. Theoretically,

this integral converges when the time function is defined only in a

Page 118: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

102

finite length or the time function satisfies the Dirichlet's conditions

in a mathematical sense. The average power of time function

obtained through the relation

lim 14«'

1 T J

T 2

T 2

la.(t)12

dt 1.

a.(t) is 1.

(4.3)

Process a. (t) will have a zero value of average power, if it has a 1.

finite value of total energy as given by Eq. (4.2).

Correlation functions are defined through the relation

R .. (T) 1.J

::;

for processes of finite total

R .. (T) l.J

lim T-.+<x>

foo

a. (t) 1.

energy and T 2

a. (t + T) dt J

through the relation

~ f a. (t) a. (t + T) dt

T 2

1. J

(4.4)

(4.5)

for processes of finite average power. For processes of the first type,

the total energy of a. (t) 1.

and its corresponding spectrum can be

related as follows:

00 (X)

f I a. (t) 12 dt ::; J a. (t) a. (t) dt 1. 1. J..

_(X) -(X)

00

[ 2"

00

eiwt

dw ] ::;

J a. (t) J A. (w) dt

J.. J.. _00 _00

00 00

1

J A. (w) dw J a. (t) iwt

dt ::; e 211 1. J..

_(X) _00

(X)

1

f A. (w) A. (-w) dw 211 J.. 1.

_00

When function a. (t) is a real process, 1.

(4.6)

Page 119: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

where *

A. (-w) ~

103

'* A. (w) 1

denotes the conjugate property 0

(407)

substituting Eq. (4.7) into

Eq. (4.6), Eq. (406) becomes

00 00

I la.(t)12

dt 1

J * A. (w) A. (w) dw 1 27f 1 1

-00 ~OO

00

1

J IA. (w) 12 dw (4.8) 27f 1

-00

The left hand side of Eq. (4.8) represents the total energy of process

a. (t) 1

and the quantity IA. (w) 12 on the right hand side represents 1

energy density associated with a frequency w which will be called

energy spectral density. This relationship is usually referred to as

Parceval's theorem. For processes of finite average power, the relation

in Eq. (4.8) is slightly changed. Manipulating Eq. (4.5), one finally

obtains the relation T 2

R .. (0) 11

lim 1

I a. (t) T 1

T-W> T 2

[ 2rr lim 2!T LT T-W>

a. (t) dt 1

IA. (w) 12 dw 1

+ J 00

27f T

The quantity IA.(w)12/T in Eq. (4.9) represents average power of t:he

1

process per unit frequency and will be called power spectral density.

B. NORMALIZED FOURIER AMPLITUDE SPECTRUM WITH MOVING-WINDOW TECHNIQUE

Suppose a (t), a (t) x y

and a (t) z

represent respectively the

ground accelerations along the x, y and z axes. The moving-window

Page 120: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

104

Fourier amplitude spectrum using a window length ~T centered at time

t is defined by o

If. (w, t , 1. 0

t ~T

+ 2

~T) I

f.(w,t,~T) (4.11) 1. 0

I 0 -iwt

a. (t) e dt ~T

1.

t 0 2

i = x,y,z

Using a similar procedure, a set of moving-window Fourier amplitude

spectra along principal axes, 1, 2 and 3, is given by

A . (w, t , ~T) 1. 0

i

~(w, t , ~T) 0

where

yew, t , liT) = 0

a (t)

If. (w, t , ~T) I 1. 0

1,2,3

6T t +-

2 I 0

~T t

2 0

fl (w,

f2

(w,

f3

(w,

a (t) x

a (t) y

a (t) z

pet ) 0

t , liT) 0

t , liT) 0

t , liT) 0

aCt) -iwt

e dt

and P(t) o

denotes the principal transformation matrix at time

(4.12)

(4.13)

(4.14)

(4.15)

t . o

In

this investigation, a constant window length of five seconds was used.

Page 121: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

105

Therefore, ~T can be dropped out of the subsequent equations for

simplicity.

Since the Fourier amplitude spectrum usually oscillates

rapidly, some technique is required to make it smooth. Here, it is made

smooth through convolution weights 1/4, 1/2 and 1/4, i.e. the smoothed

Fourier amplitude spectrum is obtained through the relation

A (w, t ) o

The purpose of the moving-window Fourier amplitude analysis is to

(4.16)

examine the general characteristics of the frequency content with time.

Therefore, the Fourier amplitude spectrum has been made much smoother

by using the filter of convolution weights more than once.

Since intensity of ground motion can be expressed in terms of

variances as previously shown, the moving-window Fourier amplitude

spectrum can be normalized with respect to its maximum value generated

for time t. In this report, the normalized moving-window Fourier o

amplitude spectrum is assigned levels of 0 through 5 by the relation

A. (w, t ) 1 0

5X A. (w, t ) 1 0

A ~ (t ) (4.17)

1 0

i 1,2,3

where A. (w, t ) (i = 1,2,3) represents a so-called normalized moving-1 0

window Fourier amplitude spectrum and

generated at time

A~ (t ) 1 0

t , Le. o

is the maximum amplitude

(4.18)

Page 122: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

106

C. RESULTS AT STATION NO. 264

Moving-window Fourier amplitude analysis has been carried out

for the 29 stations previously selected in area groups A through F. The

Fourier transformations have employed the Fast Fourier Transform

technique using 256 samples of each function. Since the time intervals

of digitized data were taken as 0.02 seconds, a time window length of

5 seconds was selected which is identically the same as that used in the

time domain formulation of principal axes.

Spectral amplitudes were evaluated for discrete values of

frequency up to 8 Hz, were smoothed by weighed convolutions and were

normalized using the maximum value obtained over the entire frequency

range. In Figs. 4.1, the time dependencies of frequency content are

shown using three dimensional spectral diagrams in which the x and y

axes denote time and frequency, respectively, and the contour lines

represent levels of the normalized Fourier amplitude spectra. Each line

denotes a level of 1, 2, 3 and 4, which describes the magnitude of

spectral amplitude with respect to the maximum magnitude which is

assigned a value of 5. These figures show the time dependent frequency

content along the principal axes of the accelerogram recorded at station

No. 264. Figures 4.1a, b, c and d present the results obtained by

repeating the smoothing procedure zero, ten, twenty and forty times,

respectively.

The shaded zones in these diagrams are areas where the

normalized Fourier amplitude takes on values greater than four, i.e.

they represent zones in which the Fourier amplitudes are near peak

values. In this investigation, the main purpose is to characterize the

general features of the time dependency of frequency content. For this

Page 123: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

107

purpose, the procedure using twenty times filtering was adopted for other

stations.

D. RESULTS OF MOVING-WINDOW FOURIER AMPLITUDE SPECTRUM ANALYSIS

For those stations included in area groups A through F, the

Fourier amplitude spectrum analysis using the moving-window concept has

been carried out. The three dimensional diagrams in Figs. 4.2 and 4.3

and similar diagrams in Appendices A and E represent the time depend-

encies of frequency content for ground motions along principal axes.

The results for stations in area groups A and B are shown in Figs. 4.2

and 4.3, respectively, and the results for stations in area groups C-E

and F are shown in Appendices E and A, respectively. As described

previously, the shaded zones in those figures represent the highest

range of spectral magnitude; thus, indicating the corresponding range

of dominant frequencies at time t . o

E. OBSERVATION OF RESULTS

It is commonly recognized that power spectral density is a

most significant characteristic used in simulating a ground motion

process. Whereas for a nonstationary process most basic statistical

properties cannot be evaluated theoretically, it is often practical to

apply procedures to this process which are similar to those used for a

stationary process and to treat its properties in a statistical manner"

Using Parceval's theorem, one can estimate the power spectral

density of the process at time t and the variation of the spectral o

density with time by taking the square values of amplitude of the time

dependent Fourier spectrum. As these Fourier spectrum diagrams have

been normalized and made smooth by passing a filter weighing 1/4, 1/2

Page 124: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

108

and 1/4 convolutions, one can obtain the general time dependency of

dominant frequencies and the general shape of the spectral density

function of the ground motion process. The characteristic features of

these diagrams can be summarized as follows:

(1) In several cases, though the results have been smoothed, the

diagrams show unexplainable complexities which may be caused

by the complex nature of the ground motions as influenced by

energy release mechanism, wave propagation path, local geology

and consequent wave dispersion including possible soil-structure

interaction effect.

(2) The dominant frequency is found to have discreasing values

with time. This property coincides with the results reported

by Saragoni and Hart [38] which were obtained by separating

the accelerogram into several segments and determining the

power spectral density function for each segment.

(3) In some cases, the dominant frequency changes its value

(4)

suddenly at a fixed time which may indicate the arrival of

different types of seismic waves.

Spectral density at time t , o

which can be evaluated by a

cross sectional view of the three dimensional diagram, becomes

higher and more sharply peaked as the frequency parameter

increases towards the dominant frequency. It then gradually

decreases with increasing values of the frequency parameter

beyond the dominant frequency. This tendency can be observed

most clearly for the accelerograms which were recorded on

soft ground.

Page 125: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

109

(5) Generally, it is observed that the spectral density functions

derived from the three dimensional diagrams are less sharply

peaked for motions along the minor axis than for motions along

the major and intermediate axes. This tendency agrees with

the results of the moving-window analysis in the frequency

domain which show that principal variances along the minor

axis are more uniform than those along the major and inter­

mediate axes.

(6) The frequency content for motions along the major and inter­

mediate axes, both of which are nearly horizontal, is similar

to each other. In some cases, however, the frequency content

for motion along the intermediate principal axis is more

uniform than for motion along the major principal axis.

Page 126: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a

B.O

N 6.0 :I:

1.0

w 0:: 2.0

B.O

N 6.0 :I:

1.0

W

a: 2.0

B.O

6.0 :I:

1.0

W

'" 2.0

b

N 6.0 :J:

2,0

N 6.0 :J:

LO

w a:: 2.0

N 6.0

LO

'" w Q; '2. 0

llO

STAT ION NO. 26 4 34 08 1 2 N • 1 1 8 07 30W C STATION NO. 26 4 34 08 1 2 N. 1 18 07

c)' L TECH NJ L II KA N L J BRARY. BASEMENT, P"S .... OEN ..... "'-.- CALTECH MILLIKAN lIe RARY. BA S ENE NT. PASADENA. C .... l.

5.0 ~ 0,, 0 15.0 Z o. ~ TS,' ~ ?O"O 5.0 15.0 20.0 25,0 30.0

MAJOR - ----~ - '.0 - - 'is - • .C= '0

~~~ ~ D4l!2Q =""'" ~ XiV"'iJ2'::s N 6.0

~Q=- ~ --W

a: 2.0

INTERMEDIATE B.O

INTERMEDIATE

N 6,0 :I:

1.0

W cr. 2.0

MIN 0 R B.O

N 6,0 :I:

1.0

W cr. 2.0

5,0 10.0 Ist,o 20.0 30.0 5,0 10.0 15.0 20. 25'.0 30'.0

TIME ( SEC. TIME ( SEC. )

STATION NO. 264 34 08 12 N • 1 18 07 30W d STATION NO. 264 34 08 1 2 N • 1 1 8 07

CA L TECH MI L L J)("" tl L I 51< .... RY. BAS EMENT. PASACEN/I. CAL. CAL TECH M III I KAN LIBRARy. SA S EMENT. PASADENA. CAL.

5.0 10.0 15.0 20.0 25,,0 ?o.o 5.0 10.0 ~ 5 . ~ 20. ~ 25.0 30,,0

MAJOR B.O

~~~~ N 6.0

~~ :J:

1.0

'" W

~~-a:: 2.0

~

INTERMEDIATE B.O

\\~,y~~ N 6.0 :J:

~t~~Ljl~~ 1.0

w a::: 2.0

=-'-MIN 0 R MIN 0 R

B.O

}~~~~tJl ~~ N 6.0

1.0

~~ w a::: z. 0

/ ~ = 5:0 10.0 15,0 20'.0 25.0 30.0 5:0 10'.0 ~ 5'. 0 20'.0 25'.0 30'.0

TIME ( SEC, ) TIME ( SEC. )

Fig. 4.1 Time dependent frequency distribution at station No. 264.

30W

30W

Page 127: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a S

TA

TIO

N

NO

. 2

67

3

41

2

OH

J,1

18

1

0

25

W

b S

TA

TIO

N

NO

. 2

66

3

40

8

55

N,1

18

1

0

15

W

JET

P

RO

PU

LS

ION

L

AB

.•

BA

SE

ME

NT

. P

AS

AD

EN

A.

CA

L.

CA

lTE

CH

S

EIS

MO

LO

GIC

AL

L

AB

..

PA

SA

DE

NA

. C

Al.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

5

.0

10

.0

15

.0

20

.0

25

.0

30

.0

I I

i I

I i

I "

I I

I ,j

i

'i

,i'

iii

,I]

ii'

iii

r--

r--

I

MA

JOR

M

AJO

R

8.0

N

6,0

:t

:

1.0

8.

0 [

~

6.0

• •

0

a C

J

w

w

cr

2.

0 a:

: 2

.0

"-"-

8.

0 8

.0

N

6.0

:t

: j

§ ,0

f

I-'

I-'

I-'

•• 0

• 0

a a

w

w

cr

2.

0 cr

2

.0

"-"-

o I ~

MIN

0 R

8

. 0

8.0

N

6.0

N

6

.0

:t:

:r:

1.0

• 0

a a

w

W

cr

2.

0 a:

: 2

.0

"-"-

'5:

0'

; 0

'. 0

' ,

; s'.

0 '

, 2

0'.

0

25'. 0

; 0

'.0

5

.0

10

.0

15

.0

20

.0

25

.0

30

.0

TIM

E

(S

EC

.)

TIM

E

(S

EC

.)

Fig

o

40

2

Tim

e d

ep

en

den

t fr

eq

uen

cy

d

istr

ibu

tio

n in

are

a

Ao

Page 128: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

C

ST

AT

ION

N

O.

26

4

34

0

8

12

N,

11

8

07

3

0W

8.0

N

6,0

I C

l w

~ •

0

a::

2.

0

"-

8.

0

N

6.0

I

CA

lT[C

H MILLI~AN

LIB

RA

RY

, B

AS

EM

EN

T,

PA

SA

DE

NA

. C

AL

.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

i 'i

".

i' I

Iii

,i

, ,I

M

AJO

R

INT

ER

M

~VV

EP

IAT

E

d

8.0

N

6.0

I

LO

a w

'" 2

.0

"-

8.

0

N

6.0

I

~.O f-"'?

"

\ ~ II

'"/,

,i"

"","

""01

\

!' ~

\11

11

",/\

~.O

Cl

~ '"

W

w

a

2.0

0

:2

.0

"-"-

8a

O

I 8

.0

~6.01 ~VII/\(

11\

} \V!I~

i ~6

.0

<.

0 f-

........

... )

'" ~

A

I H

J"

I •

/'~1I1

\ \

" L

0

~2'0~

~ ~2'

0 ST

AT

ION

N

O.

47

5

34

08

2

0N

,11

8

07

1

7W

CA

LT

EC

H

AT

HE

NA

EU

M.

PA

SA

DE

NA

, C

AL

.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

iii

I I.

iii

i.

I ,i

I

'I

'5:0

' :0

'.0

"

;5'.

0

' '2

0.0

2

5'.

0

10

'.0

'5

:0'

;0'.

0"

;5'.

0

' ,

20

.0

25

'.0

)0

'.0

TIM

E

(S

EC

.)

TIM

E

(S

EC

.)

Fig

. 4

.2

(co

nti

nu

ed

)

I-'

I-'

N

Page 129: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a S

TA

TIO

N

NO

. 2

17

3

40

3

42

N.1

18

1

8

24

W

b S

TA

TIO

N

NO

. 2

11

3

40

3

42

N.

11

81

8

06

W

37

10

~ILSHIRE

BL

VO

. B

AS

EM

EN

T.

lOS

A

NG

EL

ES

, C~L.

35

50

W

ILS

HIR

E

BO

UL

EV

AR

D,

BA

SE

ME

NT

. L

OS

AN

GE

LE

S.

CA

L.

S.O

1

0.0

1

5.0

2

0.0

2

5.0

'3

0.0

S

.O

10

.0

15

.0

20

.0

25

.0

30

.0

i ,I

'i,

iii

'"

i, iii

Iii

j i,

i' Iii,

,I'

,I

MA

JO

R

MA

JO

R

S.O

8

. 0

v~

lJ U

lJ

~

N

6.0

::r

: N

tl

.-O

:r

1

0 D

CC~

::H

LO

,

• 0

a 0

w

W

a:

2.0

0:

: :2

. 0

lJ...

"-

o I ~ ....

..... IN

TE

RM

ED

IAT

E

INT

ER

ME

DIA

TE

8

.0

8.

0

V

N

6.0

N

5

.0

::r:

:r

.. 0

,

. 0

C>

C

J

W

w

'"

2.

0 a:

: 2

. 0

lJ...

"-

S.O

S

. 0

N

6.0

N

-e

.0

::r:

::c

LO

,

. 0

0 0

W

w

cr.

2.0

'"

2

.0

lJ...

lJ.

..

5.

0 1

0.0

1

5,0

2

0.0

2

5.0

3

a . a

5

.0

10

.0

15

.0

20

.0

25

.0

30

.0

TIM

E

(S

EC

.)

TIM

E

(S

EC

.]

Fig

o

403

Tim

e d

ep

en

den

t fr

eq

uen

cy

d

istr

ibu

tio

n in

are

a B

.

I-'

I-'

W

Page 130: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

c S

TA

TIO

N

NO

. 2

08

3

40

3

40

N.1

18

1

7

58

W

31

70

~ILSHIRE

BL

VD

.•

SU

BB

AS

EM

EN

T,

lOS

A

NG

EL

ES

. C

AL

.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

i ,i

i'

, ,',

I,

'i'

i I

8.

0

N

6.0

::c

1.0

0 W

'"

2.

0 ....

8.

0

N

6.0

::c

1.0

0 W

a:

2.0

....

8.

0

N

6.0

::c

1.

0

0 W

a:

2.

0

....

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

TIM

E

(S

EC

.)

Fig

. 4

.3

d S

TA

TIO

N

NO

. 4

31

3

40

3

45

N.1

18

1

7

56

W

61

6

S.

NO

RM

AN

OIE

A

VE

NU

E,

BA

SE

ME

NT

. L

OS

AN

GE

LE

S.

CA

L.

5.0

1

0.0

1

5.0

2

0.0

I ii,

" 'i

i "

MA

JO

R

8.0

N

6.0

::c

1.0

0 w

c::t::

2.

0 ....

8.0

N

6.0

::c

LO

a w

'"

2.0

LL

8.0

M

IN 0

R

N

6.0

::c

1.

0

a w

ex

2.0

L

L

!,'

5.0

1

0'.

0!'

~s'

.O

20

.0

TIM

E

(S

EC

.)

(co

nti

nu

ed

)

I-'

I-' ~

Page 131: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

e

6.

0

6.

0 :r:

:

•• 0

0 lJJ n:

2.

0 LL

B.

0

N

6.

a I

4.

0

0 lJJ

0::

2.

0

LL

a. 0

N

6.0

I

,"0

0 lJJ n:

2.

0 LL

ST

AT

ION

N

O.

20

2

34

03

4

5N

. 1

18

17

5

7W

31

11

~ILSHIRE

BO

UL

EV

AR

D.

5TH

B

AS

EM

EN

T.

LO

S

AN

GE

LE

S.

CA

L.

5.

0 1

0.0

1

5.

0 2

0.

0

MA

JOR

~I'UQ'"

. i.· .•. · .. · .. · .. · ...•..•. ·.·.· ..•••. ·.

~ ¥\~~ V~~

\ ""

~ ,

J i

~~

~_ ~

i·ii

i·./

C ..•....

... ·.c •.•.. •

,

~~0T C~

ME 0 bA

TE

Thl;k'

,',!';"."

V D I

I

MIN

0 R

25

. 0

r-

5.

0 !

I i 0

'. a

' ,

1 Sl.

0

20

. 0

~ 5'

. 0

TIM

E

[S

EC

.]

Fig

. 4

.3

f S

TA

TIO

N

NO

. 1

96

3

40

3

45

N.1

18

1

7

43

W

33~5 ~ILSHIRE

BO

UL

EV

AR

D,

BA

SE

ME

NT

. L

ns

AN

GE

LE

S,

CA

L.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

\

" iii

,L

i t i'

,i'

i ,

6.0

N

6.0

I

.. 0

0 lJJ n:

2.0

L

L

o I ~~I

INT

ER

ME

DIA

TE

6

. 0

(iXy\

1\ Qr,

o v

v v

f\_

N

6

.0

I

~ •

0

0 lJJ

n:::

2.

a L

L

MIN

OR

a.

o

N

6.0

I

.. 0

0 lJJ n:

2.

a L

L

\:0

' ;0

'.0

"

\5'.

0

' ,

h'.O

h'

.o

30

'.0

TIM

E

[S

EC

.]

( co

nt i

n u

ed

)

I--'

I--' V1

Page 132: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

9

&.0

N

6.0

J: o w

1.0

a:

2.

0 u..

.

8.0

N

6.0

J:

i.0

o

ST

AT

ION

N

O.

19

9

34

03

4

5N

.11

8

17

4

3W

31

0'

6T

H ST~EET.

BA

SE

ME

NT

, L

OS

A

NC

EL

ES

, C

AL

.

o 5

.0

10

.-0

1

5.0

2

0.0

2

5.0

3

0.0

,

iii

i' ii' iii

i ,i Ii'

MA

JOR

v

TE

RM

ED

lA

TE

~z.ot UIIJ~!IJ

8.0

N

6.0

J: o w

1.0

a:

2.0

u..

.

5.0

1

0."

0

15

.0

20

.0

25

.0

30

.. 0

TIM

E

(SE

C.

J

Fig

. 4

.3

( co

nti

nu

ed

)

ro

ro

(J'I

Page 133: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

117

v. GENERATION OF THREE COMPONENTS OF GROUND MOTION

A. GENERAL

It is concluded in the previous sections that the three

translational components of ground motion are independent of one another

in a statistical sense, provided they are directed along a set of

principal axes. Therefore, one can simulate three components of ground

motion by generating them, of which intensity and frequency content are

given appropriately, independently along their corresponding principal

axes. One can, if necessary, obtain the three components of ground

motion along a set of principal axes of the structural system for use in

dynamic analysis by transforming them in accordance with horizontal and

vertical rotational angles which may have been determined from the

relationship between the location of the structural system and the

possible location of an earthquake.

In the first part of this chapter, the methodology to generate

a one-dimensional non stationary random process in both intensity and

frequency content is introduced. Four sample processes are produced by

employing this method. In the second part, this methodology is applied

to the simulation of three components of motion along principal axes,

each of which is provided with appropriate intensity and frequency

content. Based upon an assumption of relationship between the location

of the structural system and that of the epicenter, these three com­

ponents along a set of principal axes are transformed and three com­

ponents along a set of structural principal axes are produced. Finally,

assuming as if these three components were recorded by an accelerograph

of which axes coincide with structural principal axes, directions of

principal axes of ground motion, principal variances of ground motion

Page 134: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

118

and frequency content of principal motion are evaluated through the

routine procedures which have been employed in the previous chapters to

analyze the ground motions produced by the San Fernando earthquake.

B. SIMULATION OF A NONSTATIONARY PROCESS

1. Generation of a Random Process Having an Arbitrary Power Spectral Density.

The common procedures to simulate a nonstationary random

process which has an appropriate spectral density are roughly classified

as shown in Table 5.1 [30]. The method employed in this investigation

belongs to the (III)rd group, which has been proposed by Toki [44,16].

The method is to generate a random process having an arbitrary spectral

density by superposing a sufficient number of sinusoidal waves. The

technique is explained briefly in the following. Let a ground motion

process aCt) be represented through the relation

aCt) j[ N - L N

n=l cos (n t + ¢ )

n n (5.1)

in which and ¢n are probabilistic variables which denote the

circular frequency and the phase angle of the sinusoidal wave, respec-

tively. Suppose that the probabilistic distribution of nn is

expressed by probability density function pen) and that the variable

¢n is distributed uniformly over the range 0 < ¢ < 2TI. The auto­

correlation function of process aCt) is given by

R (T) = E [aCt) aCt + T)] a

1 2

E [cos n T + cos {n(2t + T) + 2¢}] (5.2)

Since the phase angle ¢ is assumed to be distributed uniformly, the

second part of the expected value in the right hand side of Eq. (5.2)

Page 135: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

119

equals zero and Eq. (5.2) becomes

R (T) 1

E[cos n T] a 2

00

1

f • pen) dn 2

cos n T (5.3)

_00

The probability density function pen) is symmetrical with respect to

n 0, therefore, Eq. (5.3) is written in the range n > 0 through

R (T) a

00 I cos n T • pen) dn

o

(5.4)

Let the power spectral density of process aCt) be designated by Sew).

As the power spectral density function is expressed as a Fourier pair

of the corresponding auto-correlation function, the power spectral

density function is given through the relation

00

sew) J R (T) -iwT

dT e a

-00

r 00

pen) dn I -iwT dT cos n T e

0 _00

'IT r p (n) {o(w-n) + o(w+n)} dn

0

'IT p (w) (5.5)

in which 0 denotes a Dirac's 6 function. Equation (5.5) indicates

that the power spectral density of the process is similar to the pro-

bability distribution function of the circular frequency of sinusoidal

waves by 'IT. An average power of one sinusoidal wave is expressed

through

Page 136: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

1 T f

o

T 2

cos (l1t+~) dt

120

+ _s_i_n_2_4...:.~....!11-,,-t_+-,-~.:-) ]: (5.6)

Since phase angle ~ is assumed to be uniformly distributed, an average

power is expected to be 1/2. Therefore, if N sinusoidal waves are

superposed, the expected average power will be equal to N/2.

Using Toki's method, one can simulate a ground motion process

which has an arbitrary power spectral density giving an appropriate

probability distribution to the variable circular frequency 11.

2. Generation of a Random Process Having Nonstationary Frequency Content

To simulate a strong ground motion process as a nonstationary

random function in frequency content has been studied by a few, such as

by Bogdonaff et al. [7] or Hart et al. [38,18]. The former method is to

superpose sinusoidal waves having their own deterministic intensity

functions individually. The later one is to devide the process into

several separate segments and to generate a stationary process within

each segment having an appropriate power spectral density independently.

The method employed in this investigation to generate a non-

stationary random process is to divide a process into segments in a

continuous manner and superpose sinusoidal waves of which spectral

density function will coincide with the prescribed time dependent

spectral density function. The procedures are as follows:

(i) Let G denote the time dependent spectral density of motion

which is defined in the range 0 < t < T, where T designates

the duration of motion.

Page 137: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

121

(ii) Generate a random number t which is uniformly distributed a

between a and T. Then one can obtain the spectral density

G = G (w,t) at time t. a a

(iii) Applying Toki's method, within a small segment of ~T being

centered at t, generate a sinusoidal wave of which o

circular frequency is n whose probability distribution is

similar to that of spectral density function G (w,t ), a

and

of which phase angle is distributed uniformly over the range

o ~ ¢ < 2n. One cannot always find an appropriate sinusoidal

wave at this step. If not, one should return to step (ii)

and then continue on.

(iv) To satisfy the continuous boundary at the ends of the

segment, the sinusoidal wave is passed through a filter

which has the property

H (t) 0

lim H(t)

~T t -+ t + a 2

In this report, a cosine bell

H(t) 0

t < t a

t > t a

0

function

t < 0

t > ~T

+

H (t) 1 2 (

2nt) 1 - cos l!.T

is adopted for the filtering procedure.

~T

2

~T -2

o < t < 6T

(5.7)

(5.8)

Page 138: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

122

(v) Repeat the procedures from (ii) through (iv) and simulate a

nonstationary random function of duration T by superposing

a certain number of sinusoidal waves of short duration ~T.

(vi) Finally mUltiply the process by a deterministic intensity

function which gives an appropriate nonstationarity to the

intensity of motion.

It should be noticed that the variance of the process, which

is given by

E [a(t ) a(t )J o 0 r

-00

G (w,t ) dw o

(5.9)

will be dependent upon time t , o

depending upon the shape of the time

dependent power spectral density function. If the variances of the

process vary with time t , o

one cannot produce random process a(t)

with an appropriate deterministic intensity by multiplying it with

intensity function ~(t).

Identical to the case of recorded strong ground motion, the

integrated velocity and double integrated displacement of the simulated

motion often have unreasonable diverging values with time. The baseline

correction of the simulated accelerograms are performed by fitting a

parabolic curve to the velocity history by a least square method [6].

As previously reported [23J, due to the parabolic curve correction, an

offset of the accelerogram is introduced at the ends of motion. There-

fore, a small linear correction is carried out at the beginning of the

accelerogram which will make it possible for the acceleration to start

from zero. This correction might cause the integrated velocity or

double integrated displacement curves to be altered but it makes

negligible changes in the acceleration curve.

Page 139: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

123

C. EXAMPLES IN ONE-DIMENSIONAL FORM

1. Review of Past Simulated Motions

Spectral density function G(w) and deterministic intensity

function ~(t) are commonly recognized to be the most significant

characteristics for simulating a ground motion process. One can find

many types of spectral density and deterministic intensity functions

proposed previously. Most of them have been derived by analyzing actual

records and introducing empirical relations such as

h2

2 1 + 4

w g 2

v G(w)

g B

C 2 2

w + 4 h2 w

2 g 2 v v

g g

(5.10) [43]

G(w) 1 a K 1 a K

= - + 2 2 2 2 2 2

(w-8 ) + a (w+8 ) + a (5.11) [8]

2 (a

2 +8

2)

G(w) 2 w +

B il 4 222 (a. 2 +8 2 ) 2 0

w + 2(a. -8 ) w + (5.12) [4]

_b2w2 2

2 2 -4b w

G(w) Al e + A2 w e (5.13) [22]

2w

2 w

2 p

G(w) w e

3 'IT w

(5.14) [44]

P

to serve as the spectral density function for simulated motions [30].

Similarly, many investigators have established the shapes of intensity

functions which give deterministic nonstationarity to the process. The

functions

Page 140: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

S (t)

Set) =

\ :ct ae

I 0 -ct ate

o

e

124

t

t

t

t

I-t/t p

< 0

> 0

< 0

> 0

I (ttlY 0

(5.15) [8]

(5.16) [7]

t < 0

(5.17) [41] t > 0

t < 0

(5.18) [44] t > 0

o < t < t - 1

Set) (5.19) [1] I tl < t < t 0

-c(t-t ) 2

I 2

t2 < t e 0

I (a1 t)

-ct + a2

e 2

leal + a2

t) -ct

e

and those by Jennings, et al. [23] have been employed for this purpose.

2. Characteristics of Simulated Motions

Four samples are produced which have nonstationary properties

in both frequency content and intensity. For a spectral density function,

the type which has been proposed by Kanai and Tajimi [43] is employed,

G G(w,t) 2

1 + 4 h2 w g 2

v = B (5.21)

2 4 h

2 w +

2 g v

g

Page 141: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

125

in which w denotes circular frequency and \! g

and h g

represent the

dominant circular frequency and a parameter which indicates sharpness of

the peak, respectively. The dominant circular frequency

to be dependent upon time, having the form

\! \! (t) g g

a c

bt + 1

\! g

is assumed

(5.22)

Coefficients a, band c in Eq. (5.22) are fixed as 5.027 x 101 ,

-2 1.550 x 10 and 2.041, respectively, in which case the dominant circular

frequencies at time t 0, 6 and 20 second become

\! (0 ) 2'Tf • 8 g

\! (6) 2'Tf . 5 g

\! (20) = 2'Tf . 1 g

showing a rapid change in the dominant frequency with time. The parameter

h is fixed at 0.3 over the entire duration of motion. g

For a deterministic intensity function, the shape

-ct e (5.23)

proposed by Iyengar [22] is applied. Coefficients al

, a2

and care

-1 determined as 0, 4.53 x 10 and 1/6, in which case the resulting maximum

intensity of s(6) becomes unity and ratios s(12)/s(6) and s(20)/s(6)

become 0.74 and 0.32, respectively.

As derived from Eq. (5.9), the variances of the process are

given through

Page 142: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

E[a(t) aCt )] o 0

=

where V is equal to

(X)

J

(X)

J _(X)

126

G(W,t ) dw o

2 1 + 4 h 2 W

g7 g

+ 4 h2 g

2 B dw

W

2 v

g

V (t ) g 0 2 2 2 2

(l-V) + 4 h v g

v (t ) • C • B g 0

B dV

w/v and C given by the integral can be g

(5.24)

expressed as C = C (h ). g

To give an appropriate deterministic intensity

by the shape function, the variances of the process should be distributed

uniformly, i.e. the integral of power spectral density function should

have identical values at every time t . o

The parameter h g

in this

investigation is assumed to be constant over the entire duration of

motion. Therefore, to yield uniform variances to the process, the

quantity B should be given by

B B (t )

-

o -B

V (t ) g 0

(5.25)

in which quantity B is constant either with circular frequency w or

with time t. Having obtained the process of uniform variances and of o

nonstationarity in frequency content using the spectral density function

Page 143: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

G(W,t)

\! g

127

1 + 4

2) 1 <~

\! (t) g

h2 g

+ 4

2 W -

2 \)

h2

2 W

g 2 \)

g

, the process is multiplied by the deterministic

-B--\)

g

(5.26)

intensity function given by Eq. (5.23) and the zero baseline is deter-

mined by a parabolic curve to give reasonable velocity and displacement

time histories. Figures 5.1a and S.lb show the prescribed properties

of the deterministic intensity function and the spectral density func-

tion, respectively. It might be noticed that the deterministic function

is plotted in term of

l;;" (t) 1

l;;(t) (5.27) 12

and the spectral density is expressed in terms of the Fourier amplitude.

3. Presentation of Examples

Based upon the prescribed power spectral density and deter-

ministic intensity, four samples are produced. The time histories and

their spectral diagrams obtained by a Fourier amplitude spectral analysis

with a moving-window technique are presented in Figs. 5.2 through 5.5.

These spectral diagrams are evaluated by passing the filter of con-

volution weights and smoothed. The shaded zones represent the dominant

frequency with time t , o

which were obtained in identically the same

manner described in the previous chapter.

4. Observation of Results

For illustration, the time dependent characteristics of the

dominant frequency is assumed to vary with time in a rapid manner in

Page 144: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

128

these examples. The sample random processes seem to be obtained with

much success. The general tendency of the time dependency of frequency

content coincides well with that of the prescribed spectral density and

the intensity agrees well with the prescribed deterministic shape

function.

The method introduced in this investigation cannot always be

applied to the simulation of a random process having an arbitrary non-

stationarity in both frequency content and deterministic intensity. The

difficulty lies in determining a form of time dependent spectral density

function which has an arbitrary form at any time but retains identical

variances, i.e. the same quantity of power over the entire duration of

motion. For example, if in Eq. (5.21) both parameters h and V were g g

assumed to change with time, the evaluation of quantity B to give

uniform variances over the entire duration of motion might become

difficult. It is concluded, however, that if a spectral density function

having a shape which varies with time but having power independent of

time can be found, the random process having nonstationarity in both

frequency content and deterministic intensity can be simulated.

D. EXM1PLES IN THREE-DIMENSIONAL FORM

1. Characteristics of Simulated Motions

Previously general characteristics of motion along a set of

principal axes are evaluated by analyzing recorded motions produced by

the San Fernando earthquake and a method to generate a nonstationary

process both in frequency content and intensity is introduced. As the

principal axes of motion are defined along which the components of

motion are statistically independent of one another, the methodology

used to simulate a one-dimensional nonstationary process can be extended

Page 145: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

129

to the simulation of three components of motion. If desired, one can

easily obtain components of motion along structural principal axes for

use in dynamic analysis by multiplying the principal components by a

transformation matrix which defines coordinate rotation between the

principal axes of motion and the principal axes of the structural system.

The shapes of spectral density function along principal axes

are specified to take similar forms given by

4 .h2

2 1 + W

:1. g -.G(w,t) B

(5.28) :1. (1 - 2 2 .\)

W + 4 h W :1. g 2 i g 2

.\) .\) :1. g :1. g

i 1. 2,3

which is identical to that used in the one-dimensional simulation. In

the three-dimensional simulation, the dominant circular frequency which

is assumed to be time dependent will take a form changing moderately

with time, i. e.

. \) . \) (t) :1. g :1. g

2TI (at + b) (5.29)

i 1,2,3

where coefficients a and b are equal to -2/25 and 17/5, respectively,

and the resulting dominant circular frequencies v (5) i g

and \) (30) i g

(i=1,2,3) equal 6TI and 2TI, respectively. The parameter h i g

in the

power spectral density function is assigned values 0.2, 0.3 and 0.6 for

the major, intermediate and minor principal axes, respectively. These

values reflect the finding that the minor component of motion consists

of a wider frequency range than the intermediate component and that the

intermediate component consists of a wider frequency range than the major

Page 146: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

130

component. As the number of sinusoidal waves being superposed is

identically the same among the three components, the quantities of

average power of these simulated components are specified to be identical.

Thus, one can obtain the processes of which variances are distributed

uniformly not only over the entire duration of motion but also among the

three components. Therefore, appropriate intensities can be given by

mUltiplying principal motions by their corresponding deterministic

intensity functions. The deterministic intensities of motion along the

major, intermediate and minor principal axes are specified as shown at

the bottom of Fig. 5.6 by the solid, intermediate-dashed and short-dashed

curves, respectively.

After the components'of motion along a set of principal axes

have been generated, assuming the principal axes of the structural system

to be directed to the North-South, East-West and vertical, the components

along a set of structural axes are obtained for use in dynamic analyses

by multiplying the principal motions by the transformation matrix as

follows:

aNS(t) al

(t)

aEW(t) = T(t) a2

(t) (5.30)

aUD(t) a3

(t)

where

sin¢l cosel sin¢2 cose

2 sin¢3 cose3

T sin¢l sinel sin¢2 sin8

2 sin¢3 sin83

(5.31)

cos¢l cos¢2 cos¢3

Page 147: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

131

in which ¢. and 8. (i = 1,2,3) represent vertical and horizontal 1 1

directional angles of the corresponding principal axes. The trans-

formation matrix T(t) is mathematically a transpose matrix of the

principal transformation matrix P(t). Though the matrix T contains

six variables, ¢l' 81

, ¢2' 82

, ¢3 and 83

, they are interdependent

through the orthogonal conditions.

(5.32)

If ¢3 equals zero, the minor principal axis is directed vertical in

which case cos¢l and cos¢2 equal zero; therefore, the quantity

cos(81

- 82

) also equals zero, i.e. the major and intermediate principal

axes are directed horizontal and the angle between them is set at 90°.

In the upper diagrams of Fig. 5.6, the time dependent directions of

principal axes are prescribed along with the direction to the possible

epicenter which is indicated by a long-dashed straight line. As

observed in these diagrams, the major principal axis which is shown by

a solid line is prescribed to be directed to the epicenter, N30oE,

during the high intensity motion and the major and intermediate

principal axes are assumed to change their positions with each other

after the period of high intensity motion. It should be pointed out the

horizontal direction angle 8. when the corresponding angle ¢. equals 1 1

zero does not play a significant role in the transformation matrix.

2. Presentation of Examples

Using a digital computer, four sample accelerograms are pro-

duced along a set of principal axes having properties of spectral density

Page 148: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

132

and deterministic intensity as shown in Fig. 5.6. A set of structural

principal axes is assumed to be directed to the North-South, East-West

and vertical directions. Assuming the horizontal and vertical direction

angles of principal axes to be time dependent as represented in Fig. 5.6,

the simulated components along the principal axes are transformed to

three components of motion along the assumed axes of the structural

system. The resulting components of motion are shown in Figs. 5.7a

through 5.7d, respectively.

Assuming that these accelerograms were recorded by an

accelerograph installed in the structural system and applying the

identical computer routines which have been used to analyze the ground

motions of the San Fernando earthquake, principal variances, directions

of principal axes and frequency content of motion along the principal

axes are evaluated. The resulting properties of principal variances and

directions of principal axes are presented in Figs. 5.8a through 5.8d

and the corresponding time dependency of frequency content are represented

in Figs. 5.9a through 5.9d, respectively. These diagrams are plotted

in identically the same manner as those previously shown for the

accelerograms recorded during the San Fernando earthquake.

3. Observation of Results

In this investigation, only four samples of the simulated

ground motion process are presented. Their characteristics in terms of

principal variances and directions of principal axes, and frequency

content coincide well with the prescribed properties. Several features

can be noted for these samples as follows:

(1) The direction of the major principal axis oscillates and some­

times can deviate up to 30° from the prescribed direction which is

towards the expected epicenter.

Page 149: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

133

(2) At the end of sample records when the intensities of motion

are small, the directions of principal axes approach N600W and

N300E which coincides well with the prescribed directions.

(3) The sUdden interchange of directions of the major and inter­

mediate principal axes can be explained by the cross-over in

their intensities as measured by principal variances.

(4) The direction of the minor principal axis which is prescribed

to be vertical happens to be nearly horizontal during the later

period of motion when the minor and intermediate principal

variances approach each other in value; thus, allowing the

interchange of position to take place. This same behavior can

be observed for recorded motions, especially, for those obtained

within high-rise buildings near the epicenter.

(5) Since the actual direction of the minor principal axis shifts

slightly from its prescribed vertical position, its horizontal

direction can easily take any position; thus, the horizontal

direction of the minor principal axis is observed to oscillate

significantly. Generally, however, the horizontal direction

of the minor principal axis unexplainably coincides with that

of the intermediate principal axis over large periods of

duration; see sample No.3.

(6) Even though the filtering procedure using convolution weights

was applied twenty times, the evaluated spectral density

shapes oscillate irregularly. The general characteristics of

frequency content as prescribed, however, are suitably

reproduced.

Page 150: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

134

As indicated by the above observations, the properties of the

simulated motions reveal complexities similar to the characteristics of

the real motions recorded during the San Fernando earthquake. Therefore,

the simple ground motion model prescribed appears to be adequate.

Page 151: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

(I)

(II)

(III)

TA

BL

E

5.1

SC

HE

MA

TIC

D

IAG

RA

M

OF

SIM

UL

AT

ION

O

F N

ON

STA

TIO

NA

RY

RA

ND

OM

PR

OC

ESS

[3

0]

To

mu

ltip

ly b

y

To

pass

th

rou

gh

a

an in

ten

sit

y

fil

ter to

yie

ld a

n

-fu

ncti

on

to

g

ive

ap

pro

pri

ate

p

ow

er -

a d

ete

rmin

isti

c

sp

ectr

al

den

sity

in

ten

sit

y

to th

e p

rocess

To

gen

era

te

a st

ati

on

ary

-

-w

hit

e

no

ise

To

pass

th

rou

gh

a

To

mu

ltip

ly b

y

fil

ter to

yie

ld

an

an in

ten

sit

y

"--

ap

pro

pri

ate

po

wer

fu

ncti

on

to

g

ive -

spectr

al

den

sity

a

dete

rmin

isti

c

to th

e p

rocess

in

ten

sit

y

r---

To

gen

era

te

a T

o m

ult

iply

by

ra

nd

om

pro

cess

an

in

ten

sit

y

hav

ing

an

fu

ncti

on

to

g

ive

ap

pro

pri

ate

po

wer

a

dete

rmin

isti

c

sp

ectr

al

den

sity

in

ten

sit

y

-~--

Sim

ula

ted

M

oti

on

s

I-'

w

U1

Page 152: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

,.....,

--l

« t.:> \.oJ

U U

«

,....., N

I I..J

a w a:: lL..

1 • 2

• 6

0

-.6

- 1 • 2

6.0

6.0

1.0

2.0

0

136

DETERMINISTIC INTENSITY FUNCTION IYENGAR S INTENSITY fUNCTION

0

TIME TAJIMI

0 I i

I I 0

5 • 0 10. 0

TIME

DEPENDENT

15.0 20.0

( SEC . )

SPECTRAL S SPECTRAL DENSITY fUNCTION

5. 0 10. 0 15. 0 20. 0 i i i i i i i i i i i i i i i i

SPECTRAL DENSITY

I I I I I I I I I I I I i I I s. 0 1 O. 0 15. 0 20. 0

TIME ( SEC. )

25. 0 :3 O. 0

DENSITY

25. 0 30. 0 i i i i i i

I I I I I 25. 0 30. 0

Fig. 5.1 Prescribed intensity and spectral density function.

Page 153: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

1 • '2

,.., ---l . 6 « ~

'-' 0

U

U -.6

<:

137

NON-STATIONARY * SAMPLE 1 * TAJIMI S SPECTRAL DENSITY AND IYENGAR S INTENSITY

fILTERED

-1.2

,.., N

:c ~

a w ~

IJ....

8.0

6.0

1.0

'2.0

0

0 5. 0 1 O. 0

TIME 15.0 20.0

( SEC . )

NON-STATIONARY * SAMPLE TAJIMI S SPECTRAL DENSITY AND IYENGAR

0 5. 0 1 O. 0 15. 0 20.0 I I I I I I I I I I I I I I I I I I I

SPECTRAL DENSITY

I I I I I I I I I I I I I I I I I

0 5. 0 1 O. 0 15. 0 '20. 0

TIME ( SEC. )

'25.0 :3 O. 0

1 * S INTENSITY

25.0 30. 0 I I I I I

I I I I I '25.0 30. 0

Fig. 5.2 Time history and time dependent spectral density for sample 1.

Page 154: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

1 • 2

.......

.J • 6 < t.:)

'-J

0

U

U -.6

<

138

NON-STATIONARY * SAMPLE 2 * T~JIMI S SPECTR~L DENSITY ~ND IYENG~R S INTENSITY FILTERED

- 1 • 2

,....., N

:c '-'

a w a:: lL.

8. 0

6. 0

LO

2.0

0

0 5. 0 10. 0

TIME 15.0 20.0

( SEC • J

NON-STATI ONARY * SAMPLE T~JIMI S SPECTRAL DENSITY ~ND IYENGAR

0 5 • 0 10. 0 15. 0 20. 0 I I i I I i I I I i I i i I i i i i I

SPECTRAL DENSITY

I I I I I I I I I I I I I I I I I I I

0 5.0 10. 0 15. 0 20. 0

TIME ( SEC . )

25.0 30.0

2 * S INTENSITY

25. 0 30. 0 i i I i I

I I I I i I I

25. 0 30.0

Fig. 5.3 Time history and time dependent spectral density for sample 2.

Page 155: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

1 • 2

r-'I

..J . 6 « t.:)

\..oJ

0

U

U -.6

«

139

NON-STATIONARY * SAMPLE 3 * TAJIMI S SPECTRAL DENSITY AND IYENCAR S INTENSITY fILTERED

- 1 • 2

,-,

N

:c \..J

a w 0::

lL..

0 5.0

NON-STATI

10.0

TIME

ONARY

15.0 20.0 25.0 '30.0

( SEC . )

* SAMPLE 3 * TAJIMI S SPECTRAL DENSITY AND IYENGAR S INTENSITY

0 5 • 0 10. 0 15. 0 '20. 0 '25. 0 i i i , i i i , i i i i i I i i i i i , i i

SPECTRAL DENSITY 8. 0

6. 0

1.0

2. 0

0

I I I I I L , I I I I I I I I I I I I I 0 5.0 10. 0 15. 0 20. 0 25.0

TIME ( SEC . )

Fig. 5.4 Time history and time dependent spectral density for sample 3.

30. 0 i i

I I 30.0

Page 156: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

1 • 2

,......

..J • 6 <: t:)

~

0

u U - . 6

<:

140

NON-STATIONARY * SAMPLE 4 * TAJIMI S SPECTRAL DENSITY AND IYENGAR S INTENSITY

fILTERED

- 1 • 2

,...... N

:r: ~

a w Cl::

li.-

B. 0

6 • 0

LO

2 • 0

D

0 5. 0 10. 0

TIME 15.0 20.0

( SEC . )

NON-STATIONARY *" SAMPLE TAJIMI s SPECTRAL DENSITY AND IYENGAR

0 5 • 0 10. 0 1 S • 0 20. 0 I I I I I I I I I I I i i I I I I I

SPECTRAL DENSITY

i I I I I I I I I I I I I I I 0 5.0 1 O. 0 1 S • 0 20. 0

TIME ( SEC . )

25. 0 :3 O. 0

4 *" S INTENSITY

2 S • 0 :3 0 . 0 I I I I I

I I I I I

2 S. 0 :3 o. 0

Fig. 5.5 Time history and time dependent spectral density for sample 4.

Page 157: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

Fig. 5.6

141

TIME DEPENDENT CHARACTERISTICS DIRECTION ANO INTENSITY Of PRINCIPAL COMPONENTS

5. 0 10.0 15.0 20.0 25. 0 30. 0

TIME (SEC.)

TIME DEPENDENT CHARACTERISTICS SPECTR~L DENSITY fUNCTIONS ALONG PRINCIPAL AXES

B.O

N 6.0 :c

a w

1.0

Ct:: 2.0

8. 0

N 6.0 :c

a w

1. 0

Ct:: 2.0

5. 0 I I I

10. 0 I I ,

15. 0

MAJOR

20. a I , i

INTERMEDIATE

MIN a R

TIME (SEC.)

25.0 , I ,

30. a t I

Prescribed properties of three-dimensional stochastic model.

Page 158: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ON

-ST

AT

ION

AR

Y

* S

AM

PL

E

3-

0 *

NO

N-S

TA

TIO

NA

RY

*

SA

MP

LE

3-~

2 *

TH

RE

E

TR

AN

SL

AT

ION

AL

C

OM

PO

NE

NT

S O

f G

RO

UN

D

MO

TIO

N

TH

RE

E

TR

AN

SL

AT

ION

AL

C

OM

PO

NE

NT

S

Of

GR

OU

ND

M

OT

ION

1.2

C

OM

P N

S 1

. '2

r C

OM

P N

S

-'

.6

-'

.6

<

<

t.:>

t.:>

U

U

U

-.6

U

-

. 6

<

<

-1

.2

-1

.2

5.0

1

0.0

1

5.

0 2

0.0

2

5.0

3

0.

0 5

. 0

10

.0

15

. 0

20

. 0

25

. 0

30

.0

1.

'2 r

CO

MP

EW

" f

CO

MP

EW

I I II

II!

Iii, III ! I

f--'

-'

.6

-'

.6

"'" <

<

[\

J

t.:>

t.:l

U

U

U

-.6

U

-.6

<

<

-1

• 2

-1

• 2

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

5

. 0

10

.0

15

. 0

20

. 0

25

. 0

30

.0

1.

'2 r

CO

MP

UD

1

.2

r C

OM

P U

O

-'

.6

-'

.6

<

<

t.:>

t.:l

U

U

U

-.6

U

-.6

<

<

-1

. '2

-1

.2

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

5

.0

10

.0

15

.0

20

.0

25

. a

30

.0

TIM

E

( S

EC

. )

TIM

E

( S

EC

. )

Fig

. 5

.7

Tim

e h

isto

ries

of

sim

ula

ted

accele

rog

ram

.

Page 159: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

NO

N-S

TA

TIO

NA

RY

*

SA

MP

L E

3

-0

3 *

NO

N-S

TA

TIO

NA

RY

*

SA

MP

LE

3

-0

4 *

TH

RE

E

TR

AN

SL

.... T

ION

AL

C

OM

PO

NE

NT

S O

f C

RO

UN

O

MO

TIO

N

TH

RE

E

TR

AN

SL

AT

ION

AL

C

OM

PO

NE

NT

S O

f C

RO

UN

O

MO

TIO

N

1.2

C

aMP

N

S 1

. 2 r

CaM

P

NS

-1

.6

-1

.6

« «

t.:>

t.:>

U

U

u -.6

u

-•

6

« «

-1

.2

-1

• 2

5.0

1

0.

0 1

5.

0 2

0.

0 2

5.

0 :1

0.0

S

. 0

10

. 0

15

. 0

20

.0

25

. 0

30

.0

1.

'2 r

CaM

P

EW

1.2

C

aMP

EW

-1

....J

L,

f--'

.6

.6

!II

..,. «

« w

t.:

> t.:

>

U

U

U

-•

6 u

-.6

« «

-1

. '2

-1

. '2

5 •

0 1

0 •

0 1

5 •

0 2

0.0

2

5.

0 3

0.0

S

. 0

10

. 0

15

.0

20

. 0

25

. 0

30

. 0

1.2

C

aMP

uo

1

. 2

CaM

P

uo

-1

• 6

....J

. 6

« «

t.:>

t.:>

U

U

U

-•

6 u

-.

6

« «

-1

• '2

-1

• '2

5 •

0 1

a . 0

1

5.

0 2

0.

0 2

5.

30

.0

S.

0 1

0.

0 1

5.

0 2

0.

0 2

5.0

3

0.0

TIM

E

( S

EC

. )

TIM

E

( S

EC

. )

Fig

. 5

.7

( co

nti

nu

ed

)

Page 160: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

90

60 I Q. 30

0

90

<C 45

f-w 0 I f- - '\ 5

-90

• 4

· 3 <C L D · 2

(j)

« f­w

.1

0

90

45

o

-90

« L

• 4

· 3

D .2

.1

o

144

NON-STATIONARY * SAMPLE 3-~ * DIRECTION AND INTENSITY OF PRINCIPAL COMPONENTS

o 5. 0 1 O. 0

\ . , J \/~;

15. 0 20. 0

/

25. 0

'-, . ,

30. 0

--:---:.-. , . , --+- --

• r--~/ I

0 5. 0 10.0 15.0 20.0 25. 0 30. 0

TIME (SEC.)

NON-STATIONARY * SAMPLE 3-D 2 * DIRECTION AND INTENSITY OF PRINCIPAL COMPONENTS

__ ~ __ +- -\ _ I- --\- - - - ~. ",<- c--\ ".- __ = '. " -- " .', / , I \ "'1. / '\ /, \

1 ... / \1, I '/ 'I. V

'1\\ / ~~ ..- .......... ~ ... -~-- ........... _,.- v ,

o 5. 0 10.0 15.0 20.0 25. 0 30. 0

TIME (SEC.)

Fig. 5.8 Time dependent directions of principal axes and square root of principal variances for simulated motions.

Page 161: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

9 a 60

:c (L 30

a

9 a

« 4 5

I-w a :c I- - 45

-90

. 3

« .2 L C>

(J) .1

o

90

60 :c Cl. 30

0

90

« 45

I-w 0 :c I- - 45

- 9 a

. 4

.3 « L C> .2

(J)

.1

o

145

NON-STATIONARY * SAMPLE 3-D 3 * DIRECTION AND INTENSITY OF PRINCIPAL COMPONENTS

o

o

, , '" ,

/ ~:

5. a

5. 0

10. a 15. a 20. 0

i·~\/ I~

10.0 15.0 20.0

TIME (SEC.)

NON-STATIONARY * SAMPLE 3-D 4 *

25. a

25. 0

DIRECTION AND INTENSITY OF PRINCIPAL COMPONENTS

o 5. a

o 5. 0

10. 0 15. a 20. a

I"~ I'

~,~

,----------::-:,-

,. , I" I

1 I '" I: '

10.0 15.0 20.0

TIME (SEC.)

Fig. 5.8 (continued)

25. a

25. a

3 a . a

30. 0

3 a . a

30. a

Page 162: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

8.

0

N

6.0

:I

:

LO

a w

a: 2

.0

lL.

8.0

N

6.0

:I

:

LO

a w

a: 2

.0

lL.

8.0

N

6.0

:I

:

LO

a w

a: 2

.0

lL.

NO

N-S

TA

TIO

NA

RY

*

SA

MP

LE

3

-D

* N

ON

-ST

AT

ION

AR

Y

* S

AM

PL

E 3-~

2 *

SP

EC

TR

AL

D

EN

SIT

Y

Of

MO

TIO

N

AL

ON

G

PR

INC

IPA

L

AX

ES

S

PE

CT

RA

L

OE

NS

ITY

O

f M

OT

ION

A

LO

NG

P

RIN

CIP

AL

A

XE

S

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

i

" iii

i I

• • Iii ii,

i s.

0

1 5

.0

20

.0

25

.0

~.o

10

.0

MA

JOR

8

.0

) 0

N

6.0

:I

:

LO

a w

a:

2.0

lL

.

8.

0 v

v

N

6.0

:I

:

1.0

a w

a: 2

.0

lL.

MIN

OR

\J'f~~

8.

0

N

6.0

:I

:

"0

a w

a:

2.0

lL

.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

5

.0

10

.0

15

.0

20

.0

25

.0

30

.0

TIM

E

(SE

C.)

T

IME

(S

EC

.)

Fig

. 5

.9

Tim

e d

ep

en

den

t fr

eq

uen

cy

d

istr

ibu

tio

n fo

r sim

ula

ted

mo

tio

ns.

f-'

01::>

(j\

Page 163: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

B.

0

N

6.0

::r

:

LO

a w

IX

2.0

u.

.

a. 0

N

6.0

::r

:

'-0

CJ

W

IX

2.0

u.

.

B.

0

N

6.0

::r

:

00

w

1.0

'" 2

.0

u..

NO

N-S

TA

TIO

NA

RY

;I<

S

AM

PL

E

3-D

3

;I<

SP

EC

TR

AL

D

EN

SIT

Y

OF

MO

TIO

N

AL

ON

G

PR

INC

IPA

L

AX

ES

5.

0 1

0.

0 1

5.

0 2

0.

0

INT

ER

ME

DIA

TE

v

V Q~cjD

5.

0 1

0.0

1

5.0

2

0.0

TIM

E

(SE

C.)

25

. 0

25

. 0

\

30

.0

-r-

30

.0

Fig

. 5

.9

8.0

N

6.0

::r

: a w

1.0

'" 2

.0

lL..

8.

0

N

6.0

::r

:

a w

,-0

IX

2.

0 lL

..

B.

0

N

6.0

::r

: '" W

1.0

IX

2.0

lL

..

NO

N-S

TA

TIO

NA

RY

;I>

S

AM

PL

E

3-D

'4

* S

PE

CT

RA

L

DE

NS

ITY

O

f M

OT

ION

A

LO

NG

P

RIN

CIP

AL

A

XE

S

5.

D

10

. 0

15

. a

v ,

20

.0

25

.0

30

.0

,..,

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

TIM

E

(S

EC

.)

(co

nti

nu

ed

)

I--' ~

-...J

Page 164: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

148

VI. CONCLUDING STATEMENT

This report presents the results of an analysis of the three­

dimensional ground motions recorded during the San Fernando earthquake

of February 9, 1971. The methods adopted make use of the concept of

principal axes of ground motion and the moving-window technique in both

the time and frequency domains.

The objective of the analysis is to establish a stochastic

model for three-dimensional ground motions which reflects the significant

statistical properties of the motions recorded during the San Fernando

earthquake. Because of the existance of principal axes, the three

components of motion are statistically independent, provided they are

directed along a set of principal axes. The resulting model is

represented by the product of a deterministic intensity function and a

constant intensity process having a variable frequency content with

time.

It is believed that the general form of the model developed

herein represents an improvement over that most commonly used, i.e.

the product of a deterministic intensity function and a stationary

process. One must be careful, however, in assuming that the quantitative

form of this model would apply to the motions produced by other earth­

quakes even when their magnitudes and epicentral distances are similar

to those of the San Fernando earthquake. Only by conducting studies

similar to those reported herein for future earthquake motions can the

quantitative differences and their causes be determined.

Page 165: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

149

VI I . REFERENCES

1. Amin, M and A. H.-S. Ang "A Nonstationary Stochastic Model for Strong-Motion Earthquakes," Civil Engineering Studies, Structural Research Series No. 306, University of Illinois, Urbana, Illinois, April 1966.

2. Arias, A. "A Measure of Earthquake Intensity," in "Seismic Design for Nuclear Power Plants," edited by R. J. Hansen, MIT Press, 1970.

3. Barrows, A. G., J. E. Kahle, F. H. Weber, Jr. and R. B. Saul "Map of Surface Breaks Resulting from the San Fernando, California, Earthquake of February 9, 1971," in "San Fernando, California, Earthquake of February 9, 1971," U.S. Department of Commerce, National Oceanic and Atmospheric Administration.

4. Barstein, M. F. "Application of Probability Methods for Design the Effect of Seismic Forces on Engineering Structures," Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo and Kyoto, July 1960.

5. Bendat, J. S. and A. G. Piersol "Random Data: Analysis and Measurement Procedures," Wiley­Interscience, 1971.

6. Berg, G. V. and G. W. Housner "Integrated Velocity and Displacement of Strong Earthquake Ground Motion," Bulletin of the Seismological Society of America, Vol. 51, No.2, April 1961.

7. Bogdanoff, J. L., J. E. Goldberg and M. C. Bernard "Response of a Simple Structure to a Random Earthquake-Type Disturbance," Bulletin of the Seismological Society of America, Vol. 51, No.2, April 1961.

8. Bolotin, v. v. "Statistical Theory of the Aseismic Design of Structures," Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo and Kyoto, July 1960.

9. Bath M. "Spectral Analysis in Geophysics," Elsevier, 1974.

10. Bycroft, G. N. "White Noise Representation of Earthquakes," Journal of the Engineering Mechanics Division, ASCE, EM2, April 1960.

11. Chen, C. "Definition of Statistically Independent Time Histories," Technical Notes, Journal of the Structural Division, ASCE, ST2, February 1972.

Page 166: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

150

12. Crouse, C. B. "Engineering Studies of the San Fernando Earthquake," Report of Earthquake Engineering Research Laboratory, EERL 73-04, California Institute of Technology, Pasadena, California, March 1973.

13. Duke, C. M., J. A. Johnson, Y. Kharraz, K. W. Campbell and N. A. Malpiede "Subsurface Site Conditions and Geology in the San Fernando Earthquake Area," School of Engineering and Applied Science, UCLA-ENG-7206, University of California, Los Angeles, California, December 1971.

14. Duke, C. M., K. E. Johnsen, L. E. Larson and D. C. Engman "Effects of Site Classification and Distance on Instrumental Indices in the San Fernando Earthquake," School of Engineering and Applied Science, UCLA-ENG-7247, University of California, Los Angeles, California, June 1972.

15. Foutch, D. A., J. E. Luco, M. D. Trifunac and F. E. Udwadia "Full Scale, Three-Dimensional Tests of Structural Deformations during Forced Excitation of a Nine-Story Reinforced Concrete Building," Proceedings of the U.S. National Conference on Earthquake Engineering, Ann Arbor, Michigan, June 1975.

16. Goto, H. and K. Toki "Structural Response to Nonstationary Random Excitation," Proceedings of the 4th World Conference on Earthquake Engineering, Chile, January 1969.

17. Hanks, T. C. "Strong Ground Motion of the San Fernando, California, Earthquake: Ground Displacements," Bulletin of the Seismological Society of America, Vol. 65, No.1, February 1975.

18. Holman, R. E. and G. C. Hart "Structural Response to Segmented Nonstationary Random Excitation," Journal of American Institute of Aeronautics and Astronautics, Vol. 10, No. 11, November 1972.

19. Housner, G. W. "Characteristics of Strong-Motion Earthquakes," Bulletin of the Seismological Society of America, Vol. 37, No.1, January 1947.

20. Housner, G. W. "General Features of the San Fernando Earthquake," in "Engineering Features of the San Fernando Earthquake, February 9, 1971, edited by P. C. Jennings, Report of Earthquake Engineering Research Laboratory, EERL 71-02, California Institute of Technology, Pasadena, California, June 1971.

21. Iemura, H. and P. C. Jennings "Hysteretic Response of a Nine-Story Reinforced Concrete Building during the San Fernando Earthquake," Report of Earthquake Engineering Research Laboratory, EERL 73-07, California Institute of Technology, Pasadena, California, October 1973.

Page 167: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

151

22. Iyengar, R. N. and K. T. S. R. Iyengar "A Nonstationary Random Process Model for Earthquake Accelerograms," Bulletin of the Seismological Society of America, Vol. 59, No.3, June 1969.

23. Jennings, P. C., G. W. Housner and N. C. Tsai "Simulated Earthquake Motions," Report of Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, California, April 1968.

24. Keightley, W. O. "A Strong-Hotion Accelerograph Array with Telephone Line Inter­connections," Report of Earthquake Engineering Research Laboratory, EERL 70-05, California Institute of Technology, Pasadena, California, September 1970.

25. Kubo, T. and J. Penzien "Characteristics of Three-Dimensional Ground Motions, San Fernando Earthquake," Proceedings of the Review Meeting U.S.-Japan Cooperative Research Program in Earthquake Engineering with Emphasis on the Safety of School Buildings, Honolulu, Hawaii, August 1975.

26. Kubo, T. and J. Penzien "Characteristics of Three-Dimensional Ground Motions along Principal Axes, San Fernando Earthquake," submitted to the 6th World Conference on Earthquake Engineering, New Delhi, January 1977.

27. Kuroiwa, J. H. "Vibration Test of a Multistory Building," Report of Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, California, June 1967.

28 . Li u , S . C . "Evolutionary Power Spectral Density of Strong-Motion Earthquakes," Bulletin of the Seismological Society of America, Vol. 60, No.3, June 1970.

29. Maley, R. P. and W. K. Cloud "Strong-Motion Accelerograph Records," in "Strong-Motion Instrumental Data on the San Fernando Earthquake of February 9, 1971," edited by D. E. Hudson, Report of Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, California, September 1971.

30. Matsushima, Y. "Simulated Ground Motions," Report of Building Research Institute, Ministry of Construction, Tokyo, Japan. (in Japanese)

31. Nason, R. "Increased Seismic Shaking above a Thrust Fault," in "San Fernando, California, Earthquake of February 9, 1971," U.S. Department of Commerce, National Oceanic and Atmospheric Administration.

Page 168: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

152

32. Penzien, J. and M. Watabe "Characteristics of 3-Dimensional Earthquake Ground Motions," Earthquake Engineering and Structural Dynamics, Vol. 3, No.4, April-June 1975.

33. Priestley, M. B. "Evolutionary Spectra and Non-stationary Processes," Journal of Royal Statistical Society, B 27, 1965.

34. Priestley, M. B. "Power Spectral Analysis of Non-stationary Random Processes," Journal of Sound and Vibration, Vol. 6, 1967.

35. Rosenblueth, E. and J. I. Bustamante "Distrubution of Structural Response to Earthquakes," Journal of the Engineering Mechanics Division, ASCE, EM3, June 1962.

36. Rosenblueth, E. "The Six Components of Earthquakes," Proceedings of the Australian and New Zealand Conference on the Planning and Design of Tall Buildings, Sydney, Australia, August 14-17, 1973.

37. Ruiz, P. and J. Penzien "Probabilistic Study of the Behavior of Structures during Earthquakes," Report of Earthquake Engineering Research Center, EERC 69-3, University of California, Berkeley, California, March 1969.

38. Saragoni, G. R. and G. C. Hart "Nonstationary Analysis and Simulation of Earthquake Ground Motions," School of Engineering and Applied Science, UCLA-ENG-7238, University of California, Los Angeles, California, June 1972.

39. Scott, N. H. "Felt Area and Intensity of San Fernando Earthquake," in "San Fernando, California, Earthquake of February 9, 1971," U.S. Department of Commerce, National Oceanic and Atmospheric Administration.

40. Seed, H. B., C. Ugas and J. Lysmer "Site-Dependent Spectra for Earthquake-Resistant Design," Report of Earthquake Engineering Research Center, EERC 74-12, University of California, Berkeley, California, November 1974.

41. Shinozuka, M. and Y. Sato "Simulation of Nonstationary Random Process," Journal of the Engineering Mechanics Division, ASCE, EMl, February 1967.

42. Shinozuka, M. and C.-M. Jan "Simulation of Multivariate and Multidimensional Processes II," Technical Report No. 12, Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, April 1971.

Page 169: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

153

43. Tajimi, H. "A Statistical Method of Determining the Maximum Response of a Building Structure during an Earthquake," Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo and Kyoto, July 1960.

44. Toki, K. "Simulation of Earthquake Motion and its Application," Bulletin of the Disaster Prevention Research Institute, Kyoto University, Vol. II-A, March 1968. (in Japanese)

45. Trifunac, M. D. "Response Envelope Spectrum and Interpretation of Strong Earthquake Ground Motion," Report of Earthquake Engineering Research Laboratory, EERL 70-06, California Institute of Technology, Pasadena, California, August 1970.

46. Trifunac, M. D. "Low Frequency Digitization Errors and a New Method for Zero Base­line Correction of Strong-Motion Accelerograms," Report of Earthquake Engineering Research Laboratory, EERL 70-07, California Institute of Technology, Pasadena, California, September 1970.

47 Trifunac, M. D., F. E. Udwadia and A. G. Brady "High Frequency Errors and Instrument Corrections of Strong-Motion Accelerograms," Report of Earthquake Engineering Research Laboratory, EERL 71-05, California Institute of Technology, Pasadena, California, July 1971.

48. Trifunac, M. D., A. G. Brady and D. E. Hudson "Strong Motion Earthquake Accelerograms, Digitized and Plotted Data," Volume II-Corrected Accelerograms and Integr·ated Ground Velocity and Displacement Curves, Part C - S, Report of Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, California.

49. Trifunac, M. D. "Introduction to Volume II," in "Strong Motion Earthquake Accelerograms, Digitized and Plotted Data," Volume II, Part A, Report of Earthquake Engineering Research Laboratory, EERL 71-50, California Institute of Technology, Pasadena, California, September 1971.

50. Trifunac, M. D. and V. Lee "Routine Computer Processing of Strong-Motion Accelerograms," Report of Earthquake Engineering Research Laboratory, EERL 73-03, California Institute of Technology, Pasadena, California, October 1973.

51. Trifunac, M. D. and A. G. Brady "Correlations of Peak Acceleration with Intensity," Bulletin of the Seismological Society of America, Vol. 65, No.1, February 1975.

Page 170: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

154

APPENDIX A

Results of (i) time dependent directions of principal axes and square root of principal variances, (ii) frequency dependent directions of principal axes and square root of principal variances, (iii) time dependent principal variances and principal cross correlation coefficients, and (iv) time dependent frequency distribution for motions in area F.

Page 171: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TA

BL

E

A.l

A

CC

EL

ER

OG

RA

PH

SIT

E

INFO

RM

AT

ION

S -

AR

EA

F [2

9]

ST

AT

ION

ST

AT

ION

P

OS

ITIV

E

PEA

K

APP

RO

X.

DIR

EC

TIO

N

TO

BU

ILD

ING

A

BB

RE

VIA

TE

D

ID

LO

CA

TIO

N

DIR

EC

TIO

N

OF

AC

C.

DIS

TA

NC

E

TO

EP

ICE

NT

ER

**

STR

UC

TU

RA

L

SIT

E

NU

MB

ER*

AC

CE

LE

RO

GR

APH

(G

AL

) E

PIC

EN

TE

R

(DE

GR

EE

) T

YPE

G

EOLO

GY

(K

M)

( )*

**

15

7

44

5

N52

W

14

7.1

4

0.6

-1

8

39

-sto

ry

Sh

ale

F

igu

ero

a S

t S3

8W

-11

7.0

S

t.

Bu

ild

ing

(S

) S

ub

base

men

t DO

WN

51

. 7

15

4

42

0

So

uth

S

53

E

-16

8.3

4

1.1

-1

9

16

-sto

ry

Sh

ale

an

d

Gra

nd

A

ve.

S3

7W

11

6.1

S

t.

Bu

ild

ing

S

ilts

ton

e

2n

d

Flo

or *

**

*

DO

WN

-

56

.5

sev

era

l 1

00

0'

(S)

16

0

53

5

So

uth

N

30W

2

42

.0

40

.6

-18

1

0-s

tory

A

llu

viu

m

Fre

mo

nt

Av

e.

S60W

-2

20

.7

RC

B

uil

din

g

(S)

Base

men

t U

P 8

1.

7

16

3

61

1

Wes

t N

38E

1

01

.9

41

.1

-18

4

3-s

tory

A

llu

viu

m

Six

th S

t.

N52

W

78

.5

St.

B

uil

din

g

( S)

Base

men

t DO

WN

53

.2

16

6

64

6

So

uth

S

53

E

-23

6.4

4

1.

3 -1

8

8-l

ev

el

All

uv

ium

O

liv

e

Av

e.

S37W

-1

92

.0

RC

P

ark

ing

(S

) B

ase

men

t D

OW

N

69

.2

Ram

p

17

5

80

8

So

uth

S

53

E

-13

1..

9

42

.7

-18

8

-lev

el

All

uv

ium

O

liV

e

St.

S3

7W

-13

9.0

R

C

Park

ing

(S

) S

treet

Lev

el

DO

WN

7

5.3

R

amp

---~-~ ---

---------

-~.-.--

* P

erm

an

en

t id

en

tifi

cati

on

n

um

ber

in

an

nu

al

list o

f sta

tio

ns

issu

ed

b

y th

e S

eis

mo

log

ical

Fie

ld

Serv

ey

, N

OS-

NO

AA

**

Dir

ecti

on

an

gle

s are

m

easu

red

fr

om

th

e n

ort

h in

clo

ck

wis

e.

**

*

Sit

e cla

ssif

icati

on

. (S

),

(I)

an

d

(H)

co

rresp

on

d to

so

ft,

in

term

ed

iate

an

d h

ard

sit

e cla

ssif

icati

on

s,

resp

ecti

vely

[5

1].

**

**

S

eco

nd

fl

oo

r is

g

rou

nd

le

vel.

F

loo

r n

um

bers

fr

om

ad

join

ing

b

uil

din

g.

f-'

Ul

Ul

Page 172: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a S

TA

TIO

N

NO

. 1

57

3

40

3

12

N,1

18

1

5

24

W

4i5

F

IGu

ER

OA

S

TR

EE

T.

SU

B-B

AS

EM

EN

T,

LO

S

AN

GE

LE

S,

CA

L.

5.0

1

0.0

1

5.

a 2

0.0

2

5.0

:~ ~ ~r --

't_=:/~\ ~5~

r-I

30

;; .. ' ..

''' ...

", .;;

,.rjJ

t ... ,

<:

r 9

0

: .~

t"'~

I ,S r

",.

J... ...

.;'/<V

=v=;=

~/

'.--

'_J~"""I

!' 1

I J-__

i 5

-9

0

60

.0

« 't

0.0

L

(.f)

2

0.0

c

---

-.::

f---

yt-

---i

~

.. :~-~:\~

~~ 1

--*-7

I:; J

I~,

__ ~,~"''ji -;

>--

I ?t:tl

J:-1

5.0

1

0.0

\5

.0

20

.0

25

.0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

16

0

34

03

0

9N

, 1

18

15

2

8W

53

5

S.

FR

EM

ON

T

AV

EN

UE

, B

AS

EM

EN

T,

LO

S A

NG

EL

ES

, C

AL

.

s. 0

1

0.

a 1

5.0

2

0.0

2

5.

0 3

0.0

a.

30 -:~ I --;

J!l-

-=--T

1--

g ~'-

A ....

........ L

..... / ... / .

.... )j ;

;"..

I

<:

r ::

t . ·

... ;:'1j\

--.Jf /,7

-Yh=4t

('.'trf

,><

I ,.,

.,_ "

".

;'

'. ::

,,

! :.\

1"

i:

~ ~:: F~31tr~·~-±ul/~lr,,~,

1 6

0.0

<:

'"" tJ~+t;$l2L I

L L:l

4

0.0

20

.0

S.O

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.

0

TIM

E

(S

EC

.)

b S

TA

TIO

N

NO

. 1

54

3

40

3

00

N,1

18

1

5

06

W

42

0

S.

GR

AN

O

AV

EN

UE

, 2N

D

FL

OO

R,

lOS

A

NG

EL

ES

. C

AL

.

s. 0

J

0 .

0 1

5.

0 2

0.

0 2

5.

0 3

0.0

~ :~ t

~,j

;r-~/J;:;r::r=

......

,' '...

......

. ....

........

........

.. I

90

:

\

"5

-"

.-.:

:."

\----,-

« ,

~ r

"

~ -!----~-

I-__ "5

'

\.

-9

0 ~:::I d=

5llitl-

J !

s. 0

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.0

TIM

E

(S

EC

.)

d S

TA

TIO

N

NO

. 1

63

3

40

2

57

N,I

18

1

5 I

6 W

61

1

WE

ST

S

IXT

H

ST

RE

ET

, B

AS

EM

EN

T,

lOS

A

NG

EL

ES

, C

AL

.

90

~

60

a.

30

5.

0 1

0.0

1

5.0

2

0.0

2

5.0

90

r'------_,----~_C~------_,------_,------__,

<:

r w

I

d ,':

r: t

45

t

9:~J

:~/~

;>'

l:\ 1\

1\ ",

/

j':, :~-

-' '/

_ 'f.

\1

1,\

"

I-_

4 5

-9

0 r--1~,St\-:~,-tJ:=¥-&Jt--1

-< L

:::1 cIT$

;tJ11

1

0.0

5.0

1

0.0

1

5.0

2

0.0

2

5.

0

TIM

E

(S

EC

,)

Fig

. A

.I

Tim

e d

ep

en

den

t d

irecti

on

s

of

pri

ncip

al

ax

es

an

d

sq

uare

ro

ot

of

pri

ncip

al

vari

an

ces in

are

a F

.

......

lJ1

0'1

Page 173: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

e S

TA

TIO

N

NO

. 1

66

3

40

2

SO

N.1

18

1

51

4\.

1

BiB

SO

UT

H

OL

IVE

A

VE

NU

E.

BA

SE

ME

NT

. L

OS

AN

GE

LE

S.

CA

L.

S.D

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

~ :~ ! J

y r-.-..

.. L ..... -E0

Et::I

7 <

f­ w

:I

:

::f H8

FiR¥l]

t j I-

_" 5

-9

0

ao

.o

60

.0

<

l:

of o

. a

20

. 0 I ;~

kq;J

::t ,I

] 5

.0

10

.0

15

.0

20

.0

25

. 0

30

.0

TIM

E

(SE

C.

J

Fig

. A

.l

f S

TA

TIO

N

NO

. 1

75

3

40

2

07

N,1

18

1

5

03

W

aD

a

SOU

TH

O

LIV

E

ST

RE

ET

. S

TR

EE

T

LE

VE

L,

lOS

A

NG

EL

ES

. C

AL

.

5.0

1

0.0

1

5.0

2

0.0

2

5.

a 3

0.0

~ :~ !

5<V.~~

~.~~~r

.:;r::

s:p~~;

;+.:

<

f-::

t 71/.

~~~~j:·;

·-~vv . h

I' /l~Yl t-

\ ]

I ~T-~

t --r

~~t~

4 ~,~

~'1F

F -~

f--<

5 ~ ~~i >_

! V:--

'I \'

0

-9

0 ~:::I ~f

0FijJ:L I

5.0

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.0

TIM

E

(SE

C,

J

(co

nti

nu

ed

)

f-'

V1 -.J

Page 174: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a S

TA

TIO

N

NO

. 1

57

3

40

3

12

N,1

18

IS

2

4W

44

5

FJG

UE

RO

A

ST

RE

ET

, S

UB

-BA

SE

ME

NT

. L

OS

A

NG

EL

ES

, C

AL

.

2.5

5

.0

7.5

1

0.0

~::

=?-/ .~:X~~/~I

90

'" 4

5

l- I--

4 5

-\,-

----

;,=

--/-

"\,//

"/

-9

0

15

.0

c(

10

.0

L

5.

0

I§}¥ib~

-...

. ---

--..

_--_

.---

----

--..

.. _-

-

2.5

5

. 0

7.5

1

0.0

HZ

[I./

SE

C.I

c S

TA

TIO

N

NO

. 1

60

3

4

03

0

9N

, 1

18

1

5

28

W

53

5

S.

FR

EM

ON

T

AV

EN

UE

. B

AS

EM

EN

T,

LO

S

AN

GE

LE

S--

J,A

j...

.

2.5

5

.0

7.5

1

0.0

:~[ ===~~I

0..

3

0

•.•

_'.

__

' .'

_

.,.

__

,'-

----

--__

__ ._

•••

___

_

90

'" 4

5

I- w

I t--_

'1 5

-9

0

,/

" /{

-..... ~_

-'Y.

.,

/' II 0·····~

/ 1

/:'/

", V

-

-st\:

7J=11~

~,~_:'

,'~i;?

:'-

'" L :::I

~~~~

:I

C)

10

.0

5.

0

2.5

5

.0

7.5

1

0.0

H Z

[I. /

SE

C.

b S

TA

TIO

N

NO

. 1

54

3

40

3

00

N,1

18

IS

Q

6W

42

0

S.

GR

AN

O

AV

EN

UE

, 2N

D

FL

OO

R,

LO

S

AN

GE

LE

S.

CA

L.

2.5

5

.0

7.5

1

0.0

:~ -=

/ 7]

S\:

><

:s?3

1 0.

.. 3

0

.•••

• -.

---

_.'

""

\1

'/

90

!

I \

7\

45

'" 'I

::

.,,~ ~/

:r:

Ie

. I-

_ 4

5 I

. _

9 0

I .

'1

<:I§¥i~'

2.5

5

. 0

7.5

1

0.0

HZ

[I. /

SE

C.

d S

TA

TIO

N

NO

. 1

63

3

4

02

5

7 N

,

I I

8 1

5

16

W

61

1

WE

ST

S

IXT

H

ST

RE

ET

. B

AS

EM

EN

T.

LO

S

AN

GE

LE

S,

CA

L.

2.5

5

.0

7.5

1

0.0

90

I

-=------~. '_=

1 6

0

n ••• m

n •• ;:

:XY

?(2

0)<

:;)

~

30

'" I-

90

45

I"""

. r-

-.......... /

' ~>\

,\.

c ~

, \'

::r

: ~s. ',t:

:d

\\

II', ,;

,

,\ 1

-_

4 5

_ 9

0 \A

"'1

;?t

1 <

10

.0

L

, C

) "

.... _

_ ,

u§~;

;;,~

2

. 5

5.0

7

.5

10

. 0

HZ

[I. /

SE

C.

Fig

. A

.2

Fre

qu

en

cy

d

ep

en

den

t d

irecti

on

s

of

pri

ncip

al

ax

es

an

d

sq

uare

ro

ot

of

pri

ncip

al

vari

an

ces

in are

a

F.

......

(J1

(X

l

Page 175: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

e S

TA

TIO

N

NO

. 1

66

3

40

2

SO

N.I

I8

1

5

14\-

,1

61

6

SO

UT

H

OL

IVE

A

VE

NU

E,

BA

SE

ME

NT

. L

OS

A

NG

EL

ES

. C

AL

.

2.5

5

.0

7.5

1

0.0

~:~ "'/--~ r~1

---_

.-.-

' ..

-.-.'

.---

_.-

.'

"

< ::1:

~,~!z

~/,,

~ f-

",

.:

'. :

\,:'

\ .-

--',

__

"-

-',

~\K:4/~~~

co

f-_

4 5

~ 9

0

<:

L LJ

10

.0 '"" 10

:2;~t~,1

15

.0

5.0

2.

5 5

.0

7.5

1

0.0

H Z

(1

.

/ S

EC

. )

Fig

. A

.2

<:

f-

f "S

TA

TIO

N

NO

. 1

75

3

40

2

07

N.I

1B

1

5

03

W

80

8

SO

UT

H

OL

IVE

S

TR

EE

T.

ST

RE

ET

L

EV

EL

. lO

S

AN

GE

LE

S.

CA

L.

:: I "/~

"" /~" " ,

'" ~30/ .•. //V~7~1

O-----~------------

2 ,

7.5

5

.0

90

45

I

r t'

....

I

'I X

"r;

, :r:

'"

i,

f-_

4 5

-so

j ---

'~!"

\."

l:::1 ~

~~j3??:,=1

5.0

2.

5 5

.0

7.5

1

0.0

HZ

(1

. IS

E C

.

(co

nti

nu

ed

)

r-'

Ul

<..0

Page 176: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a S

TA

TIO

N

NO

. 1

57

3

4

03

1

2N

, 1

18

1

5

24

W

DC

f­ ""

44

5

FIG

UE

RO

A

ST

RE

ET

, S

UB

-BA

SE

ME

NT

, L

OS

A

NG

EL

ES

, C

AL

.

5.

a 1

0.

a 1

5.0

2

0.0

Z

5.0

3

a a

1 •

a

l ~J~~~l

.5 '=

==

=.

.' ~.

--,

-'

--

--',

•• "

--,

/',

' ,

>,-;

---

'--

,--

---

30

00

-<

2 a

00

1 &

t;t-J

1 1

1 1

00

0

f­ "" a

",--J

_-,

DC

a 3

00

0

« 2

0 0

0

10

00

c

1 ft~tJ~

5 .

a 1

0.0

1

5.0

2

0.0

2

5.0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

16

0

34

03

O

SN

. I

18

1

5

28

W 3

0.0

SJ5

S

. fR

EM

ON

T

AV

EN

UE

, B

AS

EM

EN

T,

LO

S

AN

GE

LE

S.

CA

L.

f­ ""

S.O

1

0.0

IS

.0

20

.0

25

.0

30

.0

1.°t ~~~

I /-

----

--,~--~

---

.5 Y~~'====

o .

.,..

' .

. ',.

' ".

' '---~-.----~

"

::::

:1 1G

tJ 1

1 1

~

'-~"""= .....

.•

1.0

j,-------,--------,-------.------~r_----~_r------_,

~

• 5

I Y;

' I

_v

I .

. o

.nn

n·T

-

60

00

r-------,-

-------,-

-------,-

------,-

-------,-

------,

DC ""

'00

01

r ======t

=i:::~~~

--1-----

--~=====

r=====

~ 7dl~

;.

20

0 0

I

/' /-

I "=

::: ""'

5.

a 1

0,0

1

5.0

2

0.0

2

5.

a 3

0.0

TIM

E

(S

EC

.)

b S

TA

TIO

N

NO

. 1

54

3

40

3

DO

N,l

la

15

0

6W

42

05

.

GR

AN

O

AV

EN

UE

, 2

ND

F

LO

OR

. L

OS

A

NG

EL

ES

, C

AL

.

5.

a 1

0.

a 1

5.0

2

0.0

2

5.

0 3

0.

0

>­ ""

1.0

.5f j~t=~1>~~~T~r~~

I

I ;§

t"J

1 1

1

30

00

DC «

2 a

0 a

1 0

0 a

f­ ""

1.0

. 5 F

=-1"

-F-"

~--' ,'

-f----/

y---

I =-~

-... --.. ~;;;-

.----;.---

... '..--.;.-----

.. ~.-.+-.....

::::~I A

Sil.

1 1

1 5

.0

IO

.a

15

.0

20

.0

25

.0

30

.0

TIM

E

(S

EC

.)

d S

TA

TIO

N

NO

. 1

63

3

40

2

S7

N.I

IB

1

5

16

W

61

1

WE

ST

S

IXT

H

ST

RE

ET

, B

AS

EM

EN

T.

LO

S

AN

GE

LE

S,

CA

L.

5.

0 1

0.

0 1

5.

0 2

0.0

2

5.

0 3

a . 0

1 .

0

f-.5

"" 0

1 5

a 0

DC '«

10

00

50

0

r~t-'~I

~ .-

----

".

",

........

........

........

-/

--

.--

Ik£rrl~

1 .

a

f-.5

"" r

~:··~l·-~~

~~·~~l~~·~

.~.····'J<

·~~·~:'t~/

~~~~'·l-~

J 1

5 0

0

10

00

5 a

0

1 erW

dZl

I 1

5.

a 1

0.0

1

5.0

2

0.0

2

5.

0 3

O.

0 T

IME

(S

EC

.)

Fig

. A

.3

Tim

e d

ep

en

den

t p

rin

cip

al

vari

an

ces

an

d p

rin

cip

al

cro

ss co

rrela

tio

n

co

eff

icie

nts

in

are

a F

.

I-'

(J) o

Page 177: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

e S

TA

TIO

N

NO

. 1

66

3

"\

02

5

0N

.11

8

15

1

4W

61

6

SO

UT

H

OL

IVE

A

VE

NU

E,

BA

SE

ME

NT

, lO

S

AN

GE

LE

S,

CA

L.

5.

0 1

0.

0 1

5.0

2

0.

0 2

5,0

J

0 .

0

1°~~~~1

~:

&;;

:;=

::>

e;

, 6

00

0

no «

1 0

0 0

2 0

0 0

IJ:0

kLI

1 1

I .0

I-.5

« &

00

0

no «

1 0

0 0

2 0

0 0

f :-<

+ .... ~-

.-~~--

"'/t",

/\-J~.

<o:<r'

--I/~I:m/

....... I

J£hJ

. I I

I

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

TIM

E

[SE

C.)

Fig

. A

.3

f I­ «

ST

AT

JO

N

NO

. )7

5

34

02

0

7N

,11

8

15

0

3W

80

8

SO

UT

H

OL

IVE

S

TR

EE

T.

ST

RE

ET

L

EV

EL

. lO

S

AN

GE

LE

S.

CA

L.

5.0

1

o. 0

1

5.0

2

0.0

2

5.

0 3

0.

a

1.0

~~_'_~

\ .

5 t

.~?/

....

..

.. ..

....

. ....

......

.....

. .

0::::1 lk

kL I

I I

« >

20

00

I­ « I

0 .

~ f

-J'-l-

/\ t'/

I .5

f:\

~t,.--

.~~~.~

.> .... ~~.\>

.~~-.. : ....

. ,~~, ,'. -...

. ' '. ; :::: 1

.Jet

JL I

I I

10

00

5.0

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.0

TIM

E

[SE

C.)

( co

nti

nu

ed

)

I--'

0\

I--'

Page 178: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a

N 6.0 :c

o W

.. 0

0:: 2.0

8.0

N 6.0 :c

.. 0

W 0:: 2.0

8.0

N 6 a :c

o W 0: 2.0

c

8.0

N 6.0 :c

o W

'.0

0::: 2.0

o W

8.0

0:: 2.0

o w

8.0

.. 0

a:: 2. 0

162

STATION NO. 157 3103 12N.118 15

~1S fICIJERO~ STRE.ET. SUB-BASEMENT, LOS ANGELES. CAL.

5.0 15.0 20.0 25.0 30,0

>.0 , lS'.O 20'.0' , 25',0

TIME [SEC.)

21W b

8.0

N 6.0 :c

a w

•• 0

a:: 2. 0

8.0

N 6.0 :c

.. 0

W 0:: 2,0

8.0

N 6.0 :c

'.0

W 0:: 2.0

"-

STATION NO. 151 3103 00N.118 15 06W

no S. GRAND AVENUE., 2ND fLOOR, LOS ANGELE.S. CAL.

, O! '\:0' , ~ 5 . 0' k 0'. 0 '2 5 '. 0 '3 0 '. a

TIME [SEC.)

STATION NO. 160 31 03 09N. 118 15 28W d STATION NO. 163 3102 57N.118 15 l6W

5)5 S. FREMONT, AlitNUE. BASEMENT, LOS ANGELES. CAL. 611 WEST S!)ITH STREET. a .... SE.MENT. lOS ..... NGELES. C .... L.

5.0 10.0 15.0 2: 0.0 2S. 0 ;0,.0 5.0 10.0

MAJOR 8.0

N 6.0 :c

.. 0 o Jf~ a w <X 2.0

INTERMEDIATE 8.0

~ N 6.0 :c

o . vv/v v~I~'l

o J ~ D ~ a W <X 2.0

8.0

N 6.0 :c

a w <X 2.0

b ' , , '5.0" ; 0.0 15.0 20'. d 2S', 0 ' 30.0 ;0.0 15.0" 20',0 zs'.o' 30.0

TIME [SEC.) TIME (SEC.)

Fig. A.4 Time dependent frequency distribution in area F.

Page 179: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

163

e STATION NO. 166 3402 SON.IIB IS 14W f STATION NO. 175 3102 07N.IIB 15 03W

" w 0: 2.0 ...

'.0

~

N 6.0 I:

o w

<.0

a: Z. 0 ...

~

N 6.0 I:

'.0

6'16 SOUTH OLIVE AVENUE, eASEMEHT. LOS ANCE.LES, CAL. 608 SOUTH OLIVE. STREET, STRE.ET LEVEL, LOS ANGELES. CAL.

'5.0 ' , 10',o! , 15'.0 ' , 20'.0 ' '25'.0 30.0

TIME [SEC.)

~

N 6.0 I:

o w

<'0

Cl': 2. 0 ...

0' "s: 0' 1 , 1 0', 0 ' , 1 S', a ' ! 20', 0 ' TIME [SEC.)

Fig. A.4 (continued)

25.0 30.0

Page 180: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

164

APPENDIX B

Results of time dependent directions of principal axes and square root of principal variances at stations not included in area groups A through F.

Page 181: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

27

3

45

6

30

N.1

1S

4

9

36

W

TE

HA

CH

AP

I P

UM

PIN

G

PL

AN

T.

C,W

.R.

SIT

E.

GR

AP

Ev

INE

, C

AL

.

2.5

5

.0

7 •

5 1

0.0

1

2.5

~ :~ E~p

S1~~

--r:5<1:=

I <:

r-

90

.5

I~ ~

'---"

15

.0

t Ij

· .. t

"r-Jm_~

~ --

~\~~

-~--

d-~-

=-~--

,--/

w

I t---

-4

5

f I ~

I"

I _

9 0

~\ (_~I

\,

/"''''

'1.,/

'' ~

i--..

_

./

'\

r ...

. -,I

\ I

1::t4J

ctccb

1 1

2.

5 5

.0

7.5

1

0.

0 1

2.5

1

5.

0

TIM

E

ISE

C.

ST

AT

ION

N

O.

96

3

45

2

03

N.1

18

5

. 0

9W

FT

. T

EJO

N.

TE

JON

, C

AL

.

2.5

5

.0

7.5

1

0.0

-6

0

90

f

;;r~~.

~~k

J ~

~

30

90

:.

..,

A

~

I r--

--"'

\ ;"

JV

is

I

\ ,

<

\ 1,"

-., I

~ V

'I\

' I-

\ ....

.. _

(~'

~ :~

\ :

,':

~ '-.-

:;~ \ l

ti

;:\ t-

I--

4 5

'

.J.....-~

I:.

V\'

',: ~

I

\ ",,

_-

-1-__

"

........

.......

",

I I

-9

0

10

.0

8,0

<

L 6

.0

4.0

2.0

--

[J~ti

2.5

5

. 0

7.5

1

0.0

TIM

E

[SE

C.

ST

AT

ION

N

O.

S 2

34

46

0

5N

.II6

.3

0

3W

05

0

PU

MP

ING

P

LA

NT

. G

OR

MA

N,

CA

L.

2.5

5

.0

7.5

1

0.0

:~!

<~~

==

;

~ 30

....

...

} ..

... ,~~

.l._ .. ",,~

.I /~

-... .'

/"

' . 9

0

• 5

<:

r-~ '\/

11 (-'

r I-_

-) 5

-9

0

r=--7'

V-liY

~/

/T -

-'-,

t . .

1 1

<:

L

Cl

20

.0

:::1 §h

l4J 1

10

.0

2.5

5

.0

7.5

1

0.0

TIM

E

(S

EC

.

ST

AT

ION

N

O.

10

2

35

0

I 0

5N

.11

6

59

0

5W

WH

EE

LE

R

RID

GE

. C

AL

,

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

~ :~ f

=L ___ u.

~~f5

3?lx

~1J~

)(:1

-i

90

~--~-r~----'------'-----'~~~~------

15

(\

.:' l-

---

-!~ i.,

1"-

: l

<:

:"v

~". ~

•. '

~ :

'-. '"

\ ~J

'~"

! ~

_ ..

5 ..

c--~

'-,

-.L"

"./~

-1'[

J\

'1:

'....

....

-,

I "

.... ,

I I

_ 9

0 -,

{\

-,/"j

\,,'

-.!

\ r

1 -0

.0

8.0

<:

L 6

.0

1.0

2.0

1~#JJ4[_11

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

o.

a T

IME

(S

EC

. J

Fig

. B

.l

Tim

e d

ep

en

den

t d

irecti

on

s o

f p

rin

cip

al

ax

es

an

d

sq

uare

ro

ot

of

pri

ncip

al

vari

an

ces.

I-'

0'

lJ1

Page 182: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

10

3

33

33

2

0N

.11

6

40

2

5W

AN

lA

PO

ST

O

FF

ICE

, S

TO

RA

GE

R

OO

M,

AN

ZA

. C

AL

.

5.0

1

0.

a 1

5.

0 2

a . a

Z

5 •

0

3 O

. a

~ 3

0;;

-+--~ --

---

--: ~

! ;t

1 ---

..........

..... t ...

.. =1 .... u •

•••• I ..

.......... 1

......

1

90

-< 4

5

f-- w

I 1--

-45

-9

0

15

. a

« 1

O.

0 L

5.0

r '~~

**~/

' ~

JiC

G-k

JL

1-j?fjj~Lll

5.0

1

0.0

1

5.0

2

0.0

2

5.

a 3

O.

0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

10

8

33

54

5

2N

.11

7

50

2

6W

CA

RB

ON

C

AN

YO

N

DA

M,

CA

L.

5.0

1

0.

a 1

5.

a 2

0.

a 2

5.

a 3

O.

0

~ :~ ! :

:r=r"~

,,Ju-.

u.1 .. 3

u" 1

-< f--

:: f ~~

f\/\

if=r

tt'9

Y~~

I .' "

: ""

-.

./'-

}J

v

I ,,1

111'

-.-

/~ __

__

# /..

./""7

\_/ ..

.. v-

-..... 7

-.._,

1 _

/1

I-_

" 5

-9

0 t

t \j

"1

\f 3

o. a

~

2 0

.0

L

10

. a

[±?FS

kJ:Lj

5.0

1

0.0

1

5.0

2

0.0

2

5.

a 3

o.

a T

IME

[S

EC

.)

Fig

. B

.l

ST

AT

ION

N

O.

10

4

34

11

0

6N

.11

8

01

0

6W

SA

NT

A

AN

ITA

R

ES

ER

VO

IR,

AR

CA

DIA

. C

AL

.

5 ..

0 1

0.

a 1

5.0

2

O.

a

Q

: ~ !

-.-" r

--l

muu.-

m.-uu

.uu.l m

.1

-< f-­ w

I

::~ jet

i§W J

I--

_ '"

5

-9

0

j:::\ df

tll

-< L

5.0

1

0.0

1

5.0

2

0.

a T

IME

[S

EC

.)

ST

AT

ION

N

O,

11

0

34

33

1

8N

.11

8

39

2

4W

CA

ST

AIC

O

LD

R

IDG

E

RO

UT

E,

CA

L.

5.0

1

0.

a 1

5.

a 2

0.

a 2

5.

a

90~~__~

I ~ : ~

U~'~

.-m.

. .J

. ___

_ ..1.u----

90

-< 1

5

f--

w

I I-_

.;.

5

-9

0

10

0.

a

8 a

. a

60

.0

.. o.

a

20

.0

~JJi

'f ~<t>c3tt;

j

f:1~;rJ

5 ..

0 1

0.0

1

5.

a 2 0

.0

25

.0

TIM

E

[SE

C.)

(co

nti

nu

ed

)

I-'

(j\

(j\

Page 183: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

IO

N

NO

. 1

13

3

40

3

34

N.1

17

1

8

45

w

fOIS

ON

C

OM

PA

NY

. C

OL

TO

N.

CA

L.

:: r"~f*~~'f~-jO

'.

,-...

' \

'.'

'-'\

: '"

..

1.,

5.0

7

.5

<:

'" f- w

r

90

45

I-_

4 5

~ 9

0

20

.0

15

. 0

" r..::> 1

0.0

5.

0

t3~·····

T····rl

2.5

5

. 0

7.

5 1

0.0

TIM

E

[S

EC

.

ST

AT

IO

N

NO

. 1

21

3

44

2

IB

N,

lIS

2

5

37

W

RE

SE

RV

OIR

, F

AIR

MO

NT

R

ES

ER

VO

IR,

CA

L.

5.0

1

0.0

1

5.0

2

0.

0

~ : ~!

~--.~1

5 --f~.

~n·~~-l-

~> I

r "-3

0

<:

f-

9 a

I I

I

45

I

" I

r-~

..c-:.

.. r

t f-

. ~

t --

~:: _

-.=

.--

.. ~/~~---

~-Ir.:.:.:..:.:.

_:.--~ ... ---L

:I\:,,

=/ I

~:::I j

;tJ:

I 5

.0

10

.0

15

.0

20

.0

TIM

E

[S

EC

. I

Fig

. B

.1

ST

AT

ION

N

O.

11

4

33

3

8

38

N,I

17

S

5

3S

W

66

6

WE

ST

1

9T

H

ST

RE

ET

. G

RO

UN

D

FL

OO

R.

CO

ST

A

ME

SA

, C

AL

.

5.

0 1

0.0

1

5.

0 2

0.0

2

5.0

3

0.

0

"-: q 'n

I.

L 1--

l --

-----n

n n .. n .. .1

./ -.--t.

« f-

90

'-'r' ,

I ~---J\ /~

J\

,., p\

Ir-?

~h / ;J

f

¥ r/-

-:,

'.

"""

, '\

5 "!

;,

',/ ~

" \ .

\"\

;',

/.

f Tr

:~·;

7C~ t l

' ~' 1

f-~::

-r:~

'"T'

7= -?y~ '\

':::

1>1~ I

5,

0 1

0.0

1

5.0

2

0.0

2

5.0

3

0.

0

TIM

E

[S

EC

,)

ST

AT

ION

N

O.

12

2

34

D

B

OO

N.l

IB

I~

sow

6

33

E

AS

T

BR

OA

DW

AY

, M

UN

ICIP

AL

S

ER

VIC

E

BL

DG

.•

GL

EN

DA

LE

, C

AL

.

S,O

1

0.0

1

5.0

2

a . a

2

5.0

3

0.0

:~!

-I =q='~

"-3

0

____

__ __n

/;::; __ --

-~L71Z~--;]; I

'" f-::

t ~<J

~', fi

f1~>i:

~:,:·,

~/L\

'\ j F I

('-'

'.\J

-~t:

,j:\

~I

If I

\/1 ~

I ~

-:;---

r I--1

5

'I 'J,-:

J fb'

+' +

--:

it .~

--

--:

--,

''''

' i-

/ -

--

" ,/

--

-+.::

I ,

....

r

-....

. _-

_ ~

,/-

-9

0 ;:::~I ::4

§bJ.J

h..l_ I

o

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

TIM

E

(S

EC

, J

(co

nti

nu

ed

)

I-'

(j)

-..J

Page 184: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

12

3

33

43

4

7N

,I1

6

58

4

5W

HO

SE

ST

OR

AG

E

RO

OM

, H

EM

ET

F

IRE

S

TA

TIO

N,

HE

ME

T,

CA

L.

5.0

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.0

::! \~=?-:€

1 --~

--~ 30

';

;;iii

;;;_

J __ --1

_ _ I

9

0

.:

45

f--

-4

5

-9

0 I :iJ

S·i;t0

3-:t ~

15

.0

« 1

0 •

0 L

5.0

113~1~ i

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.

0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

13

1

33

46

1

0N

.11

B

11

3

7W

21

5

WE

ST

B

RO

AD

WA

Y,

UT

ILIT

IES

B

UIL

DIN

G,

LO

NG

B

EA

CH

, C

AL

.

5.0

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.0

~ ~~ ~

=r=. J

____ m ••• L._

=~.-r:

;t~E

I .:

f­ w

cc

:: I H~$

fJt¥

ktl~

J I-

_ "5

-9

0

1 5

• 0

« 1

0 .

0 L co

5.0

\

-~I

I~····

5

.0

10

.0

15

.0

20

.0

25

.0

30

.0

TIM

E

(S

EC

.)

Fig

. B

.1

ST

AT

ION

N

O.

13

0

33

45

5

3N

,11

8

13

JO

W

TE

RM

INA

L

ISL

AN

D,

LO

NG

B

EA

CH

, C

AL

.

5.0

1

0.0

1

5.0

2

0.0

Z

5.0

3

0.0

3

5.0

4

0.0

~ :~ t

~T----.-

-~.t._.

ml .. __

__ .I_:JZ.~~t:::

90

.:

4S

f- w

cc

--'

f--~

'(=--

=--

--=

.. \

' '.-

---.

-:-:

:: -

-,!-

-4

5 "";

>,

.-.-

--..... -,--~--

/ -9

0

""I

f * t~ 1

~':: ~==;s;;;;;;

5.

0 1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

3

5.0

"0

. 0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

13

2

33

46

3

5N

,11

B

06

4

5W

LO

NG

B

EA

CH

S

TA

TE

C

OL

LE

GE

. G

RO

UN

D

LE

VE

L.

LO

NG

B

EA

CH

. C

AL

.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

90

~

60

30

90

.:

45

f-

1 ~

\ l

I/'i,'

-'/

_~__

I ___ -

--...

.......... ~

..... J,

:.' :,

:'-\l-T7I>r-·~,,\ !

\\ )

I.' ~

: \

I '/

¥~""

'_ '

Ij

\i

I '.' .

'..'---_

cc

f-

-4

5

-9

0

--~~f~r+1=~Ff

-~~ -~\fl'~ --

~ V

\/

~

I,)

20

. 0

15

.0

.:

L

10

.0

5.0

1 ?18+0T~1

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

TIM

E

(SE

C.

( co

nti

nu

ed

)

I-'

Q)

OJ

Page 185: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

13

3

34

05

0

0N

.11

8

20

~OW

HO

LL

YW

OO

D

ST

OR

AG

E

BS

MT

. L

OS

A

NG

EL

ES

. C

AL

5 n

10

.0

15

.0

25

.0

30

.0

35

.0

"r0

.0

i::CJ~~r~f++:d ... J

-< t--

90

45

r-_

'\ 5

-9

0

1 1 '"

y I

1

l: --1

-1

f-+

.-r---

; "~

~_/:

X ,.

:

I /"

-'--

T--

"(

! ./

" -t

7~<-

---~

-~ __

I\ I

Ii:

1 ~

J f

~/"

~I

,/Ir~_

,.... ...

.. ,'

j[

-' ..

... -

:,/

,. "

-~~

~/'--.

.\~

-"'-·+

-\v

· ... _

___ .

7::-

.'1 ~

60

.0

« 1

0.0

L (j)

2

0.0

I jjA;lJLI

J~i·

I 5

.0

10

.0

15

.0

20

.0

25

.0

30

.0

TIM

E

( S

EC

. )

ST

AT

tON

N

O.

1 4

0

34

0

4 ~ON,

1 1

8 2

7 ~OW

UC

LA

R

EA

CT

OR

L

AB

OR

AT

OR

Y,

LO

S

AN

GE

LE

S,

CA

L.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

~ ::! )1:?£9?X-~~·§F¥:+L;J·= I

-< t--

90

t

1/1

Er·-3

rt \ h

f j

45

_

_ ".C

J~t:'+

~L~·~

J/~\

~;

I I-_

t 5

-9

0

40

.0

30

.0

-< L <..:>

20

. 0

10

.0

-·--

1

\ {

\ I ~

1 :

I", :/

\/

~

I ~t~~blZ[ ,J

I 5

.0

10

.0

15

.0

20

.0

25

.0

30

. a

TIM

E

(S

EC

.)

35

.0

'\0

.0

ST

AT

ION

N

O.

13

5

3'\

0

5

DO

N.l

tB

20

D

OW

HO

LL

YW

OO

D

ST

OR

AG

E

P.E

. L

OT

, lO

S

AN

GE

LE

S.

CA

L.

5 .

0 1

0.0

1

5 .

0 2

0 .

0 2

5 .

0 3

0.0

~ :: 1

---

-~ t

t -~ ~

-----------

__ _ -.

;;;---

:r: I

-<

::r 188~m~

I-_

" 5

-9

0

-< L

80

.0

60

.0

l:l

40

.0

20

.0 I W

;EJ:L

.. lc i

5.0

1

0.

0 1

5.

0 2

0.0

2

5.0

3

0.

0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

14

1

34

0

7

06

N.1

18

1

7

S8

W

GR

IFF

ITH

P

AR

K

OB

SE

RV

AT

OR

Y,

MO

ON

R

OO

M,

LO

S

AN

GE

LE

S.

CA

L.

-< L

5.0

1

0.0

1

5.

0 2

0.

0 Z

5.0

~ : q /J-

------

_L_ =

: J --

r= .,-

-.--

----

I

-< t-­ w

I

:l~··~~

0f5~

fRj-

I-_

4 5

-9

0 :::1 ;4

sh;l2

t •

D

40

.0

20

. 0

5.0

1

0.0

1

5.0

2

0.

0 2

5.0

TIM

E

[SE

C.)

Fig

. B

.l

( co

nti

nu

ed

)

I-'

m

~

Page 186: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

11

3

31

01

3

2N

.11

8

22

S

8W

12

0

NO

RT

H

RO

BE

RT

SO

N

BL

VD

..

SU

B-B

AS

EM

EN

T,

lOS

A

NG

EL

ES

, C

AL

.

5.0

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.

0

~:~ ~

l -,~r-'-11S6

I "

30

..

....

....

. •

. ...l=

:=0;

J .... S

··"j

;<

90

<

<S

I--~

r r-_"

5

-9

0

"0

.0

3 0

. 0

<

L

20

.0

10

.0

_/

/

/ /

"',,

"\1

/ /"

"'1

' ....

. /

I --,

_

,j·t.·

, 1

i",

': r

"-..

'

)-'

\. "--- '.

l""

.", :

-', .. !~:

'_I

/: '~

" :

: \\

' .. -/

,:\ I

r' .

[ :f;b

d;J;t

5

.0

10

.0

15

.0

20

.0

25

.0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

18

1

31

03

3

6N

.11

8

12

4

8W

16

'\0

S

. M

AR

EN

GO

S

T.

1S

T

FL .

. lO

S

AN

GE

LE

S.

CA

L.

S.O

1

0.0

1

5.0

2

0.0

2

5.

0

30

.0

30

.0

9 0

,------,-

~ :~ FCl

~,~~,~

~~~-,:

E===I.

L .. ~~~.

~~r .. ~: I

0(

I--

w

r

90

15

I-_

"5

-9

0

60

.0

« ., 0

. 0

L U

) 2

0.

0

--....

J.-

--..

I /\

'!1

':

" -1~/.'11'\:

!\ u

" I

yl

: "

• \"/'-" 1

X

,',,

' I

I,

\ /1

\. 1_

, .. .:

'\,

-~.-

::.

-..... -..

. .. J

, .... '

""'''

1'

.'

-\

' ;

-f' '

-

_/-=

=-'-

-1;:

':-~

,~,;

=-'r

7.;

lL \"

1--t

. if

\f

----

i 1-

V!Cf

5! \

.. ----

-

f-?Ft

;;rl

I I

C:·:' ..

,t,·' .... '

.... l .. ,

.... ,,:~n I

5.0

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.

0

TIM

E

(S

EC

.

Fig

. B

.1

ST

AT

ION

N

O.

lSI

34

03

D

IN

.11

8

14

2

6W

25

0

E

FIR

ST

S

TR

EE

T

BA

SE

ME

NT

. L

OS

AN

GE

LE

S,

CA

L.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

~:~t

--r

---, l'~

......

L .

....

.. L=

====

: I

0(

I-­~

r

90

I

.{.?

1\

4 5

I i 0

, r

i -, ~

j, I

! \

, ~

LL

I--

_,

5 r

' v Yi

"

:.1 :-

.;~.

! "

I \,

' ,

-..

.

-9

0 !

""}:

, !

60

. 0

« 4

0 .

0 L

Vl

20

. 0 I Jj

4;J;

[.[

5.0

1

0.

0 1

5.0

2

0.0

2

5,0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

19

0

34

03

3

6N

,11

8

12

1

6W

20

11

Z

ON

AL

A

VE

NU

E.

BA

SE

ME

NT

, L

OS

A

NG

EL

ES

, C

AL

,

5.0

1

0.

0 1

5.0

2

0.0

2:

5,0

3

0.0

:~b~--£V-

Q

3D

-~= .. ::I:

7J~,

~ I

90

0(

<S

I--~

r I--

<S

-9

0

30

. 0

« 2

0 .

0 L V

l 1

0.

0

(co

nti

nu

ed

)

I_a

lj --

;jfi

?0?,

~-·

'_ ...

.. '.:.

.._~

_I

-,

'n

--\

I

I J?4>

tj:,i"

i 5

.0

10

. 0

15

.0

20

. 0

25

.0

30

.0

TIM

E

(S

EC

.

f-'

-...J o

Page 187: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

« r- w

I

ST

AT

ION

N

O.

20

5

34

01

2

2N

, 1

18

1

6

S9

W

34

10

U

NIV

ER

SIT

Y

AV

EN

UE

, B

AS

EM

EN

T,

LO

S

AN

GE

LE

S,

CA

L.

5 n

10

. 0

15

.0

20

.0

25

. 0

::! ~,

g=l·

+~'l

..... '"

.0

~ 30 ~ZJ ..

. ;;;

;. J:c

(f>:

I

90

45

I--4

5

·90

l:::1 krT

i:tJ<

i 1

0.0

5.0

1

0.

0 1

5.0

2

0.0

2

5.0

3

0.0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

22

3

34

03

4

1N

,11

8

19

S

lW

16

80

\.

.IIl

SH

IRE

B

LV

D.,

B

AS

EM

EN

T,

LO

S

AN

GE

LE

S.

CA

L.

5.0

1

0.0

1

5.

0 2

0.0

2

5.0

3

0.0

3

5.0

4

0.0

: ~ ~ ~ ~-+

~~~~

=r-

:···.: .. t5@'~ /~

<,_vt:-:··~~

~ 30

== ..... ;;;

?Z l/"·

.<j>..,

;;/--.<

----..

' I

-,

. /-

, I

\"!

J\

.\ :J,'.

. •

J 9

0 ~\ f

'/'.

I ~I'

'"

,b'; _~

y ,

". '.

. '\

I.',

I

I ..

..

,' ":,

I:;:

I ~_

.. «

4 5

r--

:./

: .. /-

-1'

',';

1

1,",

+-

I •.

;

r-~--

"'1

, •

,:

1,,

1

,';

I _~

7·:

/\ :.

----JJ

• 1

I",

.::l

\ I

--'

~ .'

. 1 -:~

~-v

'c

\1 L

'.: ,r

-r--

--!-

-'1

5

_::-/j

";

-9

0 I---

~::lih

t_4=1:

1.JcdL

. i 5

. 0

10

. a

15

.0

20

.0

25

.0

30

.0

35

.0

"0

.0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

22

0

34

08

1

5N

.11

8

21

3

9W

38

38

lA

NK

ER

SH

IM

BL

VD

..

BA

SE

ME

NT

. L

OS

A

NG

EL

ES

, C

AL

.

5.0

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.

0

~ :q

f =:-

--

/ ..

.. 1

. ..

' ...

r:rz:

:r;;:r

z I

~ '.

-~

-,.-

--'-

---

---

', -'.

--"

-. -

-,'

« r- I

::1 Eh

*!;k

t,~]

t ~

r _

4 5

·90

~:::I flJ

cL[,

I

« L

5.0

1

0.

0 1

5.

0 2

0.0

2

5.0

3

0.

0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

22

6

34

05

S

4N

.11

8

17

3

7W

48

67

S

UN

SE

T

BO

UL

EV

AR

D.

BA

SE

ME

NT

, lO

S

AN

GE

LE

S,

CA

LIF

OR

NIA

5.0

1

0.0

1

5.0

2

0.0

-:~~

~=='

~ 30

;;?7IZ

1::;:1

.----

« r-

9 0

1/_

45

~

~:::=:

F' '. r"~

;:::::

:t/"'~

I\ ~:

\"

~

J '-

----

'\

!',

'/\'

1

.1'.

25

.0

~ ·'5

t~ -= ~Th~J0~~~'q:f9

l ____ ~-_

__ -lI[

L:_~

~=~~

\ __

~~,

,: __ ,~-

'~-~~L-~

'~I~' __

____

____

__

~IL_

___

_ ~

·90

80

. 0

60

. a

4 a

. 0

20

. a [J~t

J2L!

5

. 0

1 0

. a

15

.0

2 O

. a

25

.0

TIM

E

(S

EC

.)

Fig

. B

.l

( co

nti

nu

ed

)

I-'

-.J

I-'

Page 188: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

22

9

33

S

6

42

N.

11

82

2

19

W

52

60

C

EN

TU

AR

Y

BO

UL

Ev

AR

D,

1S

T

FL

OO

R,

lOS

A

NG

EL

ES

, C

AL

,

5.0

1

0.

0 IS

. 0

20

.0

25

.0

30

.0

: ~ I ~J

I -t

---t

--

c

3> .....

..........

..........

1. .... __

_ . J ____ ~

J;

cc

30

<

f-9

0

t N~f '\

'l'/" I

4

5 t·'

·'.-j<

---

-i.

· .. :F

L.{;

\'\

,. ,'. ~

f 9'

. dL/I'~'-

... ~:: =

..... ~ L'

~',>+,,:

\Sctv

\\ I

~:::fJii~

I --

'-,::-

~-::-~'

,,"

""

,,',

""

""

<

f-

5 .

0 1

0 •

0 1

5 •

0 2

0 •

0 2

5.0

3

0.

0

TIM

E

[S

EC

.l

ST

AT

ION

N

O.

23

5

34

O

S

SO

N.

11

8

19

5

2w

64

64

S

UN

SE

T

BO

UL

EV

AR

D,

BA

SE

ME

NT

. L

OS

A

NG

EL

ES

, C

AL

,

5.0

1

0.

0 1

5.

0 2

0.

0 2

5.0

3

0.0

~ ::! Jf-

-...... l.

.. :r:=r::.J~~~

1

:: t

... I· ".

. " "'J-"

,/ ' -l-

" 0\11

=;A;-

":' 1

-'\

,/

','

,/'

\ "

, ,

,

~ -4

5 r

:, r-

~-~ J0f3f21~~'F] -'

t J

\ J

' "

", "f~--~

I _

9 0

_r"

.: '-

-\'

''--

',!

~::l ?¥

:i?hJ:

L !

5.0

1

0.

0 1

5.0

2

0.

a 2

5.0

3

0.

0

TIM

E

[S

EC

.l

Fig

. B

.l

ST

AT

ION

N

O.

23

2

34

O

S

SO

N.

11

8

19

4

6W

64

30

S

UN

SE

T

BO

UL

EV

AR

D,

1S

T

FL

OO

R,

lOS

A

NG

EL

ES

. C

AL

.

5 c

10

.0

20

.0

25

.0

15

. 0

:~ ! "

~l --

. cc

30

'II

I ~

---

--.

..

30

.0

~

r: r--

I

<

f-

90

,

45

'-

-'\

~:'\/,

,,~

(

f r~ j'

'l/".,}J

;\ I'

1 f-

-4

5 t

-~tv

.i~~

~~~F

-ff ~

.. il~ I 0 :

-"M -r

l \f

\

~ I"

''c

it ..... -'

I:,'L

,

I _

9 0

\.J \

I

" \

"-l,

.-

1;;~1 Af

;f\btuJ

7 I

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

T

IME

[S

EC

.l

ST

AT

ION

N

O.

23

8

34

06

0

5N

.11

8

20

3

7W

70

80

H

OL

LY

WO

OD

B

LV

D.

BA

SE

ME

NT

. lO

S

AN

GE

LE

S,

CA

L.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.

a

~::! ·:

r:±~

;r~~

C~. __ .[

:=;b:

1

~:~ lnni

J~~+a~

;ktinj

-

9 0 ~:~~I ~4it-,tJJ I

5.0

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.

0

TIM

E

(S

EC

.)

(co

nti

nu

ed

)

f--'

-....]

N

Page 189: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

« L

ST

AT

ION

N

O.

24

1

34

13

1

6N

.11

8

28

1

6W

82

44

O

RIO

N

BL

VD

. 1

ST

F

LO

OR

. L

OS

A

NG

EL

ES

, C

AL

.

S.O

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.

0

:~ f >c

r<[-

......... 1.3

;7>r:·:

:t>s

I

90

« 'S

f- w

I I-

_ 4

5

-9

0

10

0.0

80

.0

60

.0

40

.0

20

.0

I I ,--

-+

I _

~ •

I

• "r

.....

:./\ ~_-=/--\ , ....

.. \ :'

,~

-->~-~\~/.~I./ ... \f

~ \

~~-.

~-..

-,--:

.-~ ...

--,

1'­

\ 1

I :jEF+J~Ll

5.0

1

0.

0 1

5.0

2

0.

0 2

5.0

3

0.

0

TIM

E

(SE

C.

ST

AT

ION

N

O.

24

7

33

56

4

6N

.1

18

2

3

09

W

98

41

A

IRP

OR

T

BO

UL

EV

AR

D,

BA

SE

ME

NT

, L

OS

A

NG

EL

ES

, C

AL

.

5.0

1

0.

0 1

5.0

2

0.0

2

5.

0 3

0.0

90

-

r T'--~~ I

60f

.... J

.. '" L

..... _

...... ;;

i!0C

a.

3

0

« L « f-

<S

~ ~~

_~:I

--~!

\.-~

---J

~~

r-

-9

0 "II

1_

__

.' .

.....

20

.0

15

.0

(.;l

1

0.0

~l

trl±13

?#§;

5.0

5.0

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.0

TIM

E

(S

EC

.)

Fig

. B

.1

ST

AT

ION

N

O.

24

4

33

57

3

6N

.1

18

2

5

07

W

86

39

L

INC

OL

N

AV

E.,

B

AS

EM

EN

T,

LO

S

AN

GE

LE

S,

CA

L.

5.0

1

0.0

1

5.0

2

0.

0 2

5.0

3

0,0

3

5.0

4

0.

0

~ :~ f

¢d/q

;..

L. -.)

]??j

)~:~

-J>(

I

« f­ w

I

::r~~t l

;t;~

-((2:5==<:?f~~~

I-_

4 5

-9

0

« L

20

.0

15

.0

(.J

1

0.

0

5.0

11=h

18tf;b

sfJ; I

« L

5.0

1

0.

0 1

5.

0 2

0.

0 2

5.

0 3

0.0

TIM

E

(SE

C.

ST

AT

ION

N

O.

25

3

34

09

O

BN

.liB

2

7

19

W

14

72

4

VE

NT

UR

A

BO

UL

EV

AR

D.

1S

T

FL

OO

R.

LO

S

AN

GE

LE

S,

CA

L.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

~ :: r

[..1

.. =r:

.~1...

.. .l~~

.~~ :+:

I

a.

30

« f- I :: I

itj3!

V§1

I"~ ~ I-

_ 4

5

/-~'"

...... /

-9

0

10

0.0

80

.0

6 a

. 0

"\ a

. 0

20

.0

dst?+

J21> I

5

. 0

10

.0

15

.0

20

.0

25

.0

30

.0

TIM

E

(S

EC

.)

( co

nti

nu

ed

)

35

.0

40

. 0

I-'

-.J

W

Page 190: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

26

2

34

34

4

0N

.11

8

06

4

SW

PA

LM

DA

LE

F

IRE

S

TA

TIO

N,

ST

OR

AG

E

RO

OM

, PAlMDAl~.

CA

L.

5.0

1

0.0

1

5.0

2

1),

0

25

.0

30

.0

90

f= ~

/1

:: .... j

?:~r-~?

.. r~ > ~~

l< 7-

1 "

. ..

... '

..

.. ..

../

~J10f::t;;'

J

~::~I 10

f4>k£

I 5

. 0

10

.0

15

.0

20

. 0

25

.0

:3 0

. 0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

27

2

34

09

0

0N

.11

9

1 2

00

W

PO

RT

H

UE

NE

ME

. N

AV

Y

LA

BO

RA

TO

RY

, C

AL

.

5.0

1

0.

0 1

5.0

2

0.

0 2

5.0

:3 0

.0

~:~ t

r t

=dT

' ~ 30

. m

'

•• n

.m

• _

_ •

m

........ _

.... .f

.. ]7

I

.:

f- I

:: 1-a:*

~jlf

H&-J

f-

_.,

5

-9

0

15

. 0

-< 1

0.0

>:

5,

0

I-~f~l

5.0

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.

0

-:-I

ME

(S

EC

.)

Fig

. B

.1

ST

AT

ION

N

O.

26

9

34

30

3

0N

.11

7

55

1

8w

PU

MP

ING

P

LA

NT

, P

EA

RB

LO

SS

OM

. C

AL

.

":~ I ..

f--j=m

l--~f~

-""

5 .

0 1

0.0

1 5

.0

20

n

.:

f- w

I f-

90

is

-"

-90

v~,-

2?iii

iT1

~::~lf

jJJ:

t •

5.0

1

0.0

L

'5.

0 .2:

O.

0 2

5.

0

TIM

f

r 5

E (

,

)

ST

AT

ION

N

O.

27

4

34

06

20

N.1

17

1

7 0

4 W

HA

LL

O

F R

EC

OR

DS

, S

AN

B

ER

NA

RD

INO

, C

AL

.

5.0

1

0.0

1

5.0

2

0.

0 2

5.

0 3

0.

0

:~ ~

I\+=

-~

I <

-

30

:J

i; .. __

.n

•• =r

:::t::

±: I

90

.:

is

f- f--

4 5

-9

0

/\ ; r

" . /~

\ .

\

IA.A

-h

~l

I 1

\;

. .' ~-f;

}1I-l '

~~l:\~

-~~~-=-=~,; -+'-

-~ --

<~[~

d;t,

i 5

. 0

10

. 0

15

.0

20

. 0

25

. 0

30

.0

TIM

E

(SE

C.

( co

nti

nu

ed

)

I--'

...,J

~

Page 191: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

27

8

34

a

s 1

8N

.tI7

4

8

48

W

PU

DD

ING

ST

ON

E

RE

SE

RV

OIR

. S

AN

D

IMA

S.

CA

L.

5,

0 1

0.0

1

5.0

2

0.0

2

5.0

-:~ t

--~----L--

= [-<

:J~~-~

,-*:

I ~30

« I- I

::I--~

~tHt2~

tE J

I-_

i 5

-9

0

30

.0

« 2

0 •

0 l:

if)

10

.0 I?

J~=F

T I

I I-",··--~~t~

I 5

, 0

10

.0

15

. 0

20

.0

25

.0

TIM

E

(S

EC

,)

ST

AT

ION

N

O,

27

9

34

20

o

6N

,11

8

23

4

8W

PA

CO

IMA

D

AM

. C

AL

. A

FT

ER

S

HO

CK

A

T

52

.6

SE

C

2,5

5

,0

7,5

1

0.

0 1

2.5

--':'--~

I -:~

i ~1S;;

~ ~ 6

.'

... ' ..

' _ ..

.. __ ..

h ... '

v-

o

« I­ w

I I--

30

-6

0

-9

0

15

.0

10

.0

a,O

« l:

6,0

.. 0

2,0

I E!@

k,kA:

I]

2,

5 5

. a

7.5

1

0.

0 1

2.5

1

5.0

TIM

E

(S

EC

,)

Fig

. B

.l

« l:

ST

AT

ION

N

O,

27

9

34

20

0

6N

,11

8

23

4

8W

PA

CO

IMA

D

AM

. C

AL

.

5,

0 1

0.

0 1

5.0

2

0.0

2

5.0

a 0 ! ;~ ?E±3J-~~.~~~];

I

« I- I

::l~a;u' i

I--

3 0

-6

0

-9

0

'10

0.0

3 a

o. a

2 a

O.

a

10

0.0

14~~

,J:I

: 5

, 0

10

.0

15

.0

20

. 0

25

. 0

TIM

E

(S

EC

.)

ST

AT

ION

N

O,

27

9

34

20

0

6N

,11

8

23

4

8W

PA

CO

IMA

D

AM

. C

AL

. A

FT

ER

S

HO

CK

A

T

69

.6

SE

C

5,

0 1

0.

0 1

5.0

2

0.0

~ :~ f -

-c:~r:

~~ }?

\/}

.=tz

,>:j

~-I

« I- w

I

90

45

}-

-" 5

-9

0

.-rr

\ J/

--, \

/1

J/"

" ~I

L

__ ~

... J1 \

-'\,--M

' \/i

j \

1----

.-'

I

,.~I f\

\!

r L

15

,OC(

LL I

I

« 1 0

.0

l:

ulJ~

I S

.O

10

.0

15

.0

20

.0

T1

ME

(S

EC

.)

( co

nti

nu

ed

)

I--'

....:J

U1

Page 192: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

27

9

34

20

0

6N

,11

8

23

4

8W

PA

CO

IMA

D

AM

, C

AL

. A

FT

ER

S

HO

CK

A

T

10

4.6

S

EC

5.0

1 a

~ 0

15

. 0

20

. 0

25

.0

30

. 0

fr-~

I .' /~

• 9

0

-,

I i-

-ia

"

: ~ t

.... /1

1 ... ____ . 1

.J " ..

1------

-.. ,...:

.. --:

o

90

<

45

~ -45 t==

==:~:;

::::::

~~~~j-

~\t~1(

~~~~:J

~::===

= -9

0

30

.0 r-------,-------~--------,_------,_------_,------­

~

20

.0 ~------~------_+--------~----+_+_----~_+------~

L

10

.0 ~-----++_------~--------~--~~+_----_+_+------~

5.0

1

0.

0 1

5.0

2

0,

0 2

5.0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

27

9

34

20

0

6N

.11

8

23

4

8W

PA

CO

IMA

D

AM

, C

AL

. A

FT

ER

S

HO

CK

A

T

23

0.1

S

EC

5.0

1

0.

0 1

5.

0 2

0.

0

~

-----~\1~b

:~ ! \JI

......... ;.\

...... = ..

30

~

~ __

90

r---~~~Y\,---------.

<

is

t- w or:

I--" 5

r7i

!....;

.",f,~

----'8

i=---'

4=:[L-

-"L

-9

0 _

_ ~ __

-L~ __

~~~~~ __

~

10

.0

8.0

<

6,0

L

4.0

2.0

r1\

jr-H

~

1/,:\

I ~ I

(/

t,~

If,(

j ... "

/' .. -.,

'\l

V/l

.. 'h

d/"j:S

'"

'.. '"

5

. 0

10

. 0

15

. 0

TIM

E

(S

EC

,)

20

. 0

30

.0

Fig

. B

.1

ST

AT

)ON

N

O.

27

9

34

20

0

6N

,11

8

23

4

8W

PAC~IMA

DA

M,

CA

L.

AF

TE

R

SH

OC

K

AT

1

62

.0

SE

C

2 '

5.0

7

.5

10

.0

12

.5

15

.0

-6

0

or:

Q :: f

)?--J.--

-.------

.E-~-.-~

~jv?:---

J-.-:-j

-J <

t- or:

90

<S

I-_

'15

-9

0

-,

-,1---

,_ .....

, --

--/.

,,\_

~

"\

"':1

15

.0

« 1

O.

0 L

5.0

r41t

ti I j

2,

5 5

.0

7.5

1

0.0

1

2.5

TIM

E

(S

EC

,)

ST

AT

ION

N

O,

27

9

34

20

0

6N

,11

8

23

4

8W

PA

CO

IMA

D

AM

. C

AL

. A

FT

ER

S

HO

CK

A

T

30

9.1

S

EC

5,0

1

0.0

1

5.0

2

0.0

~ : ~ t :'8

-.)z«f

-<

-

----.. 7]

<

45

t- w or:

t--1

5

-9

0

8,

0

6,0

<

L

< •

0

2,0

IS

~£J--I

s. 0

1

0.0

1

5.0

2

0.0

TIM

E

(SE

C,

(co

nti

n u

ed)

15

.0

r-'

...,J

(j

I

Page 193: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

28

0

33

22

0

3N

.11

7

33

1

7W

SO

UT

HE

RN

C

AL

IF.

ED

ISO

N,

NU

CL

EA

R

POW

ER

P

LA

NT

, S

AN

O

NO

FR

E.

CA

L

5.0

1

0.0

1

5.

0 2

0.0

2

5.

a 3

0.0

:~! */V

r­Q

30

=··~/=r--·

........

. "...

. ....

.., ...

....

I

90

r--

------

r~fT--

~--7\-

---r--

------

,-----

--.===

=====

<:

45

/:

(\

,'-J

~ ~

~',"'; J

"k.

J···0

l'---

---t-

.. ' -

,...

_ 4

5 ,L

.L

I-L\

i. "

.'. ""

,, .. )~

....

.. l

. 9

0

/0

, ~ J

'-

/ '

, .. cf

, :

1 l

"lfj~1

« ".

0 L (/)

2

.0

<: ,... W

I

5.0

1

0.0

1

5.0

2

0.0

2

5.

a 3

0.0

TIM

E

(S

EC

.

ST

AT

ION

N

O.

28

2

34

24

4

5N

.I1

9

51

D

OW

UN

IVE

RS

ITY

O

F C

AL

IFO

RN

IA,

SA

NT

A

BA

RB

AR

A,

CA

L.

5.0

1

0.

0 1

'5.

a 2

0.0

2

5.

a 3

0.0

:~ ! ~ ... l

.. ~~;r:m

'.L.m ...

.. l ...... J

......

I

:: rRitis

Qit

I t-

_" 5

-9

0 ~H~10$'

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

TIM

E

(S

EC

.)

Fig

. B

.l

ST

AT

ION

N

O.

28

1

33

45

O

ON

. 1

17

52

O

OW

EN

GIN

EE

RIN

G

BU

ILD

ING

. S

AN

TA

A

NA

. O

RA

NG

E

CO

UN

TY

, C

AL

.

5.0

1

0.0

1

5.0

2

0.

a 2

5.0

3

0.0

3

5.0

:q ;;r

:~ ... J ..

..... t=

L..

l::r

: I

<:

90

::

.\:.

'h _

--"

.~'-.. ~

......

:

4 51

· .. ·

.. lL/~{

~L/\ I

V' d

r r WT

'\

't' ,,

~ •

~ /-

,1 l'

f :

I­ w

I t-_

... 5

-90

----

~ ~'--'4 'FU~ .. i

1

~--:~s ~;.p:c

"'I j:~~Jj

« 1 0

.0

L

5.0

5.0

1

0.

a 1

5.0

2

0.0

2

'5.0

3

0.0

3

5.0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

28

4

34

27

4

IN

.IIB

4

5

02

W

SA

NT

A

FE

LIC

IA

DA

M,

CA

L .

. O

UT

LE

T ~ORKS

5.0

1

0.0

1

5.0

2

0.0

2

5.0

:q ~.. 1

. .. ::r:.~ .. r::

-+= I

90

"

, ~ "r

I~

r/

. \.

45

:~

. ,

;;

.! "

'. ,.\,

h:

~ ::~

',I

.",;

'.

y.

~ /.

\ \

.. '-

., .. -

.\{'"

: !",

\ :-.

,. t-

-15

r---

'\ ,,;

I ~

\ -+

.....

r/

=

-9

'0 ~ ::: 1

~gLJ~

JoL[

.1 2

0.0

5.0

1

0.0

1

5.0

2

0.0

2

5.0

TIM

E

(S

EC

.)

(co

nti

nu

ed

)

......

-...]

-.

..]

Page 194: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

0( l:

ST

AT

ION

N

O.

28

5

34

27

3

5N

.I1

8

45

O

IW

SA

NT

A

fEL

ICIA

D

AM

, C

AL

..

CR

fST

5 .

0 1

0.0

1

5.0

2

0.

0 2

5.0

3

0.0

3

S,D

i

0.0

~ :~ I

.. ~~t~~: .. ~

.J~ ..... ~ ..

.. J;;:J

..... ~ .. ~~L.

~ .. ~ ..... L:

~±:

I 0

(

l-'" I nt_~¥X~tWlh I

4

5

\ " f-

-1"

5

/-

-9J--~

d I

L.~_

k~

,i-

~ ' ....

1

U T

d

':~~ 1 ;i\i.kt

l",L"

,t, :

s. a

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

3

5.0

-r

O.D

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

28

8

34

00

0

0N

.I1

8

12

O

OW

VE

RN

ON

, eM

D

BL

DG

..

CA

L.

5.0

1

0.0

1

5.0

2

0 ~

0 2

5.0

3

0.0

:~ I ..... 1

. . =r~~

...... J?;=fet.~...--j

90

r'~~\

~\r\

II

"

0(

45

I!i-. V

:

: "

I-X~

If "-.

J~ "

:.-.

-:,

'

w

0 '-

--" 1:J

t: 1

.l..17' -

'-I

/ :..

;. '-

~ -4

5 --/~.~;;:,\,~,:c ... -

i~J' .. /

'7. ':,

;

-9

0

"

§:::I

j£:f?

k§I,I

I 1

0.0

5.0

1

0.0

1

5.0

2

0.

0 2

5.0

3

0.

0

TIM

E

(S

EC

.)

Fig

. B

.1

(co

nti

nu

ed

)

ST

AT

ION

N

O.

28

7

34

09

2

6N

,11

7

40

4

7W

SA

N

AN

TO

N1

0

DA

M.

UP

LA

ND

, C

AL

.

5.0

1

0.0

1

5.

D

20

. a

25

.0

30

.0

Q :~

f ~.-~

t t

-~--

---t -

---~

..............

............. /

......... : ...

...... J.

I

',::\ :t1

f3±i

j E

_,:

~-.

......

. .... :"

,' ...

~j--

-'.

,/

-

-9

a -

--

--

~"'.

-.'

\.'

-

--

--

-

~:::I JE€~tlI

I 5

.0

10

.0

15

.0

20

.-0

2

5.

a 3

0.0

TIM

E

(SE

C.

ST

AT

ION

N

O.

28

9

34

01

1

2N

.11

8

03

1

0W

WH

ITT

IER

N

AR

RO

WS

DA

M.

CA

L.

5~O

10

.0

15

.0

20

.0

25

.0

30

.0

~ :~ !

ouJ ~-~

.... lou .

.. _,]

____ .. I

.. ~--> ... .J

.. -~.-I

« r-­ w " T-

$tiKS

H$ ~

f--_

"5

-9

0 ;:::11

;+;££

1 I

1 a

. 0

S.O

1

0.0

1

5.0

2

0.0

2

5.0

3

0.

a T

IME

[S

EC

.)

I-'

-..J

Q)

Page 195: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

29

0

34

21

'O

N.1

17

3

7

S8

W

60

7i

PA

RK

D

RIV

E,

GR

OU

ND

L

EV

EL

, W

RIG

HT

WO

OD

. C

AL

.

5.0

1

0.0

1

5.0

2 0

.0

~ ~q

):(

~ .n

___

t ________ J

__ n_ I

9 art

,"~ 4

5 P1

It:

,..-.V·

-=-v

'---j-

' sf

<

g~!

1 ~ -4:

E _{.

~.:= _

~ _ ~ ~~

_ =

-9

0 ::~~I

Jk2ti4=

I 5

.0

10

.0

15

.0

2 0

.0

TIM

E

(SE

C.

)

ST

AT

ION

N

O.

29

2

36

01

O

ON

.I1

4

44

~OW

12

15

G

AL

LE

RY

. H

OO

VE

R

DA

M,

CA

L.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

~ :~ !

Xlj{~t~?§f-=

:([:;4

3

0.0

90

« <

S

I-

----

I J-_

., 5

-9

0

/ ,

~:I:~ I

.2

.. -'

" .

. "

"'0

_

o .,

'---'-

-. __ .

• __ ....

_ ...

i .

.•.• _

._

..... .,..

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

TIM

E

(S

EC

.)

Fig

. B

.l

ST

AT

ION

N

O.

29

0

34

21

4

0N

.11

7

37

S

8W

60

71

P

AR

K

DR

IVE

, G

RO

UN

D

LE

VE

L,

WR

IGH

TW

OO

D.

CA

L.

5.0

1

0.0

1

S _

0 2

0.

a 2

5.0

J 0

.0

~:~ fj(

fLn ___ =

f -<

1 ~]

--__ o

n nn __

_______

nn __ n

_n __ -

--------

--n1..-

-I

90

« 4

5

I- !--.,

5

-9

0

~l',,:,

, ~.: ,

... -.1

_0

.- r ...-

.... ~/

'\

t-£:'-

--l\-t

--·,--

-···--

-,l.-.

--

\ jim

,'

--r--

, ~1I\1--/ ~

"

'''-,

I A

--,.'1,1

. __

.L{

-L

\j' Vl~

~:~~I fftf

tJ,,,L

I 5

.0

10

.0

15

.0

20

.0

25

.0

30

_ 0

TIM

E

(S

EC

.)

ST

AT

ION

N

O.

41

1

33

48

0

2N

.11

8

23

1

3W

25

16

V

1A

TE

JO

N,

GR

OU

ND

L

EV

EL

. P

AL

OS

V

ER

DE

S

ES

TA

TE

S.

CA

L.

5.0

1

0.

a 1

5.0

2

a .

0 2

5.

a 3

0.

a

:~ ! ~---

T------~

[--~-~~,

~:ln~--:

r:l-~=

I

~:~f if4t

f~1:

~H11

-9

0 ~ ::~ I :F

$d"J

;l? !

5.0

1

0.0

1

5.0

2

-0.0

2

5.0

3

0.0

TIM

E

(SE

C.

)

(co

nti

nu

ed

)

I-' ~

\0

Page 196: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

41

3

34

03

2

1N

, 1

18

23

4

3W

11

77

B

EV

ER

LY

D

RJV

E, ~ASEMENT.

lOS

A

NG

EL

ES

, tA

L.

D

S.O

1

0.0

1

5.0

2

-0.-

0

25

. a

3 0

.0

-:~f

~<--~

~ 30

:== ..

... ;;;:;L

./r;;;

]§:

1 9

0

r--

~ \

I 'I

;S

«

~ ~

1 1

/ '-

-',

' '.\

::: 01

, f-

~'

",

".--'

I 11

' '--

\r~:,-~,

'j.

f--

4 5

1 ,". ,I

:l.-.

V

\ '-

-'"

...... _

-..... .

/ 1'-.

....

. •

'-/,

1

'.'

,I

-9

0

40

.0

30

.0

« L

20

.0

10

.0

[*~£;t

2LtJ

5

.0

10

.0

15

.0

20

.0

25

.0

30

.0

TIM

E

[SE

C.)

ST

AT

ION

N

O.

42

8

34

03

4

5N

, 1

18

21

3

0W

59

00

W

ILS

HIR

E

BO

UL

EV

AR

D,

PA

RK

ING

L

OT

. L

OS

A

NG

EL

ES

, C

AL

.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

:~! ~ .. l

~-± ..

. ~ 1

« f- I

:: I ' J-~~

fI~4~'

~;¥~-j

f-

-_

1 5

-9

0

10

.0

30

.0

« L

20

. 0

10

. 0

I flSt==~11

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.

0

TIM

E

[SE

C.)

Fig

. B

.1

ST

AT

ION

N

O.

41

6

34

04

O

ON

.II8

2

3

22

w

91

0D

W

ILS

HIR

E

BO

UL

EV

AR

D.

BA

SE

ME

NT

, B

EV

ER

LY

H

ILL

S.

CA

L.

5.0

1

0.0

1

5.0

2

0.0

2

5 ~

0 3

D.O

~ :~ i

( ... 1... ..

....... J

.... ---~

-.--

.;;;;;

;: ... 1.-

-.. I

90

-...... ,,"~ ...

... ;S

..

-.J,

'. «

, '-i_

/'

f- w

I f--

4 5

~~',:

-9

0

« 4

0 •

0 L

'" I 41:S

hk[, I

(/)

2

0.

0

5.0

1

0.0

1

5.0

2

0.0

2

5.0

:3

0 •

0

TIM

E

[SE

C.)

ST

AT

ION

N

O.

43

7

34

02

4

0N

,I1

8

15

3

HJ

11

50

S

OU

TH

H

ILL

S

TR

EE

T,

SU

B-B

AS

EM

EN

T.

LO

S

AN

GE

LE

S.

CA

L.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

:~ !. 9

I .. '

.· __ j ..

~ .. · .. ' .. -f:

?E:r:

'1 9

0

::'

\,.

_

--(-

"'/

\f

\ {' _

__ ./'

\ /I

/-

1 4

5

,"".

y ,

« f-:,},;'\ '~:

I /

__ .;

, i-

'i;"

";';

:'

-'lA

,:':

:' _

I ..

' r

, I

--,,-

-;-f=

'Y :

--;-

f--r

-T-1

iL::

j-+

-.-

-{-'

-;-

--

I--

_ 1

5 "

, _'

I:

J,'

I '-

-, ,

I

,._'

" 1

;-'.

V" '

.--.j

..• ,

:...

I

--,

-[

\..

-90

-

60

. 0

.:( 1

0.0

L

20

.0

l~1;H:

5.0

1

0.0

1

5.'

0

20

.0

25

.0

30

.0

TIM

E

(SE

C.

(co

nti

nu

ed

)

f-'

CO

a

Page 197: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

44

3

34

03

4

7N

. 1

18

21

4

3W

62

00

W

ILS

HIR

E

BO

UL

Ev

AR

D,

GR

OU

ND

fL

OO

R,

LO

S

AN

GE

LE

S,

CA

L.

-::1

11

1';;

;r::

r 'j'

, n

10

.0

15

.0

20

.0

25

.0

« r-

90

;S

t---

'I 5 r---=~t~~_"f~~+2~----=~~~J.fi-I-U=~=J

-9

0 ~:::I 0t'

id~;J;

lm I

5.0

1

0.0

1

5.0

2

0.

0 2

5.0

TIM

E

[S

EC

.)

ST

AT

ION

N

O.

44

9

34

03

3

SN

.11

8

16

4

7W

25

00

W

ILS

HIR

E

BL

VD

.•

BA

SE

ME

NT

, L

OS

A

NG

EL

ES

, C

AL

.

5.0

1

0.0

1

5.0

2

0.0

2

5.0

-:~ ! ;/j~ =:~

~ 30

•..

. .: ..

uuu .. .1

.\>! ~SJ:

I « r­ w

I

T 3!H

Jt$M

J I-

-_

" 5

-9

0 ~:::I ~i

Ed;t I

5.0

1

0.0

1

5.0

2

0.

0 2

5.0

TIM

E

(S

EC

.)

30

.0

Fig

. B

.l

ST

AT

ION

N

O.

44

6

34

06

1

0N

,IIS

2

0

20

W

17

60

N

. O

RC

HID

A

VE

NU

E,

GN

O

fLO

OR

, H

OL

LY

WO

OD

, C

AL

.

5.

0 1

0.0

1

5.0

2

0.0

2

5.

0 3

0.0

90

18

']-----

-p.f./-

z::r;:

SF I

6

0

1" . .1\

...... u

....

...

....

....

' .

. u

~

30

90

r'

--,~~----,--~--rr----o-c--~.--oe--~

~ ~t

;~.~

« r-

45

I

I:

II il

rhi;;j2~~

I I-_

" 5

-9

0

6 0

. 0

« "0

.0

L

20

.0 I d§

t~tti\

m.,L

I

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

TIM

E

(S

EC

.

ST

AT

ION

N

O.

45

2

34

04

4

0N

,l1

8

23

2

6\.

-1

'13

5

NO

RT

H

OA

KH

UR

ST

A

VE

NU

E,

BA

SE

ME

NT

, B

EV

ER

LY

H

ILL

S.

CA

L.

5.0

1

0.

0 1

5.0

2

0.0

2

5.

0 3

0.0

:~! XT

.u ... u.J

u .. ~.ZF--~=1

I ~

30

90

I 1f

t \ (t·

·\01

~ ~

/:\ ... ·1

2 4:

=FJL

j ~ V

'J --

)/\

~ f

f"1'-r

r 'r' I"

" -

4 5

1J' .r

.·'"<:

,-<

""-j

.\ v~-

/\

'.. ....

....

. ....

CI\ 1

-

9 0

" .'

~:::I A±

E==I

I 5

.0

10

.0

15

.0

20

.0

25

.0

30

.0

TIM

E

(S

EC

.)

(co

nti

nu

ed

)

I--'

00

I--'

Page 198: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

4S

S

34

04

0

7N

.IIB

2

4

22

W

45

0

NO

RT

H

RO

XB

UR

Y

DR

1V

E.

fIR

ST

F

LO

OR

, B

EV

ER

LY

H

ILL

S,

CA

L.

5.0

1

0.0

1

5.0

2

0.0

2

5.

a J

O.

a

~ :~ I ..

:i;L __ u. '

j' ..

~ t'==

r:tr

~' .

..... ···· ... ·

······ ..... u

.······u .....

· ... ··.u

I 9

0

, ...... / " 1

" «

45

f--

w

I '-

----

---

-r

1--"

~,

I,'

, .

I.:J

-9

0

1:::1 Jf

tiJ:t

1 5

.0

10

.0

15

.0

20

.0

25

. a

:3 0

.0

TIM

E

[S

EC

.)

ST

AT

ION

N

O.

46

1

34

09

3

6N

,11

8

28

4

8W

15

91

0

vE

NT

UR

A

BL

VD

.•

BA

SE

ME

NT

. L

OS

A

NG

EL

ES

. C

AL

.

5.0

1

0.

0 1

5.0

2

a . a

2

5.0

3

0.0

9

0 ~

. .

...... ;>

,. .

. .

. .

. .

. .

. .

. .

. .

.

~ :~ !

)f-::r

=?cYf:

~~.u.'

J.~ .. ~~.

t~~:·

'1

« f-­

w

I

::t lG/~~/E

" . \

L --

-7

----

---J

----"

/

I--

_ 4

5 "

~(

.' ,

,I ,1

_

..... _

_ L

...... -

..... ,

• I

/ r

_, .....

/,-·-1

----._

. --

_ .....

. ~ ...

... _J

__

__

' " . .

11---

-----.

. /'

-9

0 L

-_

__

__

_ ~ _

__

__

_ _

L _

__

__

_ _

J __

__

__

__

~ _

__

__

_ -L

__

__

__

_J

;:::1 ?r

EFi

t 1

o 5

.0

10

.0

15

.0

20

.0

25

.0

30

.0

TIM

E

[S

EC

.)

Fig

. B

.l

ST

AT

ION

N

O.

45

8

34

11

4

2N

.I1

8

07

4

2W

15

10

7

VA

NO

WE

N

ST

RfE

T.

BA

SE

ME

NT

. 1

.0S

A

NC

EL

ES

, C

AL

.

5.0

1

0.

a 1

5.0

2

0.-

0

25

. a

30

. a

~:~ !

31§?~[

~5~ r~f!?f""

I ..

....

....

.. /.~,)

I +-

-4-

5

-9

0

60

.0

« 4 0

.0 Lol:~1

5.

0 1

0.

0 1

5.0

2

0.0

2

5.

0 3

0.0

TIM

E

[S

EC

.)

ST

AT

ION

N

O.

46

5

33

29

2

2N

.11

7

40

1

4W

SAN

JU

AN

C

AP

IST

RA

NO

, C

AL

.

5.0

1

0.0

1

5.

a 2

0.0

2

5.

a 3

0.

a 3

5.0

4

0.0

90

-6

0

r ~

30

~ ~n'~-r--±--~~~-~ ~-

-~=b

'-I

~ 'I "

..... .:

......

. =: ....

.. = ....... =

: = ........ ;.

. I 9

0

« 4

5

f-

/\I(\.~

./

/ :I

IJ\\

j ~1\~f\!Y,

I f--4

5

-9

0

~ , ~

;1~>···· , ,'

, ,: 111

: .", f

;:~ f

Tt ~

b~

,10k

'-'"

' .. ,

'. ~

, , .: "

,/

<"' .... '

., --

-S:"

---~--~-'

,--;--

....... ,'-,-.

'c-

h' '--~--

/ 1;

, ~r .....

,-

-~

1,-

' ,1

/if"

, '

I '--

',_

! !

~--"

'-',

I

~" --

/'

20

.0

15

.0

« L

10

.0

5.0

IJ;f

~t:t

iht§

L I

5.0

1

0.0

1

5.

il

20

. il

25

.0

J 0

. 0

35

. 0

'10

.0

T

I tv!

F

(S

F C

. •

)

( co

nti

nu

ed

)

I-'

CO

N

Page 199: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

46

6

34

09

1

4N

.l1

B

27

S

OW

15

25

0

VE

NT

UR

A

BL

VD

.,

BA

SE

ME

NT

, L

OS

A

NG

EL

ES

. C

AL

.

5.0

1

0.

0 1

5,0

2

a . 0

2

5.0

3

0.0

90

60

rI-1

/ 1

~r---= -I

f=

" 1

a. 30

<

f-­

w

I

:: i--:±t

td:9Ir

-; t-

_ '1

5

-9

0

<

>:

80

.0

B a

. a

LJ 4

0.0

20

. 0

1 A2t4

dtk

5.0

1

0.

0 1

5.0

2

O.

a 2

5.0

3

0.0

TIM

E

(S

EC

.)

ST

AT

ION

N

O,

47

2

33

45

5

lN

,1

ll

53

3

3W

40

00

W

ES

T

CH

AP

MA

N

AV

EN

UE

, B

AS

EM

EN

T,

OR

AN

GE

, C

AL

.

5.0

1

0.

a 1

5.0

2

0.0

2

5.0

3

a .

a

-:~ t

:::r::

J v~~ ~

,

. .......... :

:=.2

:1;

I

<

f--

I

90

<S

I-_

"5

-9

0

iM,l

i I

h 1':

"..

r

, .. ' I:

\/\;)

j"; ""-~w\l7R' -

\ ~-',_

I; :

)','

\,'

\,~/

''I

'\

,':

I

I "

, ,I. ,

~ ,\

"L

II'

If~-

,":j

;l:

--,-

-1'--

+ -

--

f-+

~ 7

''-

,.

:1 ·1

,··· ..

··'

1 :

0--~=-

-+f

+\....

.---_

_ -t-

~'-r --

.. :1'T

A::1

I'

vv ~.

"

~ ::~ I '-p

t;t;bl:

I

5.0

1

0.0

1

5.0

2

0.0

2

5.

0 3

0.

a T

IME

(S

EC

.)

Fig

o

Bo

l

<

>:

ST

AT

ION

N

O.

46

9

34

02

S

8N

.IIS

1

6

26

w

16

25

O

LY

MP

IC

BL

VD

.,

GR

OU

ND

F

LO

OR

, lO

S

AN

GE

LE

S,

CA

L.

5,0

1

0.0

1

5.

0 2

0.

0 2

5.0

3

0.0

_ 6

0

--c

:!',

~o=-"~:r~

~ 3

a V L

J-:

--:_~_

~

--

7 \

"

90~""

J,

0; k!

SiE

·1 .... .-

.p$

I

~:; l~wt;8$;f5+\ ~

~~

:::1 J4

13ttt

D

'1

0.

a

20

. 0

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.

0

TIM

E

[S

EC

.)

ST

AT

ION

N

O.

47

6

33

52

3

9N

.11

7

52

5

3w

26

00

N

UT

WO

OD

A

VE

NU

E,

BA

SE

ME

NT

. F

UL

LE

RT

ON

, C

AL

.

5.0

1

0.0

1

5.

0 2

0.0

2

5.0

3

0.0

a.:~ ~

:Of~~l

,~ .

. . n .. J.

n.nn .n

c::r.

. I

90

45

<

~ -45 t==

=::::J

:~~;;~

~~~~~~

~~:t~~

~~~~~~

~:::I le

fut ·

5

,0

10

.0

15

. 0

20

. 0

25

. 0

30

. 0

TIM

E

[S

EC

,)

(co

nti

nu

ed

)

I-'

<Xl

w

Page 200: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

ST

AT

ION

N

O.

48

2

34

0

5

06

N.

11

8

08

S6~

90

0

SO

UT

H

FR

-EM

ON

T

AV

EN

UE

, B

AS

EM

EN

T,

AL

HA

MB

RA

. C

AL

.

5.0

1

0.

0 1

5,0

2

0.0

2

5.0

3

0.0

-:~ t

)f(~~.J.~::±~.5zr:if»

I Q

3

0

90

r-~c:-r~----,-~---n~~-'~~~--'-----~

« 4

5

r w ~

_ -1

5 ~\,

/-"'-f

\~~~\~

~~,,'

' ...

. 1

-9

0

':

':::1 J:

§;k1

1 5

.0

10

.0

15

.0

20

.0

25

.0

30

.0

TIM

E

(S

EC

.)

Fig

. B

.l

( co

nti

nu

ed

)

I-'

OJ ~

Page 201: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

185

APPENDIX C

Results of frequency dependent directions of principal axes and square root of principal variances for motions in area groups C, D and E.

Page 202: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a S

TA

TIO

N

NO

. 1

25

3

44

0

30

N,1

18

2

6

24

W

LA

KE

H

UG

HE

S,

AR

RA

Y

ST

AT

ION

1

. C

AL

.

2.

5 5

. 0

7.5

!

0 .

0

:~ f ~_-

~K+ :z~s

90

0(

45

r- w

I r-_

<\ 5

,\

-9

0 ::::\ @S?ijQ~1

5.

0

2.

5 5

.0

7.5

1

0.0

HZ

(1

,/S

EC

,

c S

TA

TIO

N

NO

, 1

27

3

43

6

30

N ,

1

1 8

33

4

2 W

LA

KE

H

UG

HE

S,

AR

RA

Y

ST

AT

ION

9

, C

AL

.

2.5

5

.0

7.

'5 1

0.0

::fc-~~-31

~

30

9 0

rl ---,:-:-----------------,--------------------,

0( r- w

I

<\ 5

1 ':

/\ /

\ ./

./'

\ V

\

JC

')

-\

t-_

45

-9

0 ~H ~6~

-i=-

;1

2.

5 5

.0

7.

5 1

0,0

HZ

1

, /5

E C

b S

TA

TIO

N

NO

, 1

26

3

43

8

30

N,1

18

2

8

48

W

LA

KE

H

UG

HE

S,

AR

RA

Y

ST

AT

I

ON

4

, C

AL

.

-::!f~~ '

"" ~ 30

7;

0?!=

==

-x-1

o

~---

_. -'

\1

-. '-

"

7 '

5 0

90

,,--------------------,-----,-,------------,

0(

45

j

~. J-

/ b

i- w

I r--4

51

;,

',j

''-t=

='

Is::-

' 'j

-9

O!

"(

-I

~:::I?~~1

2.5

5

, 0

7.5

1

0.

0

HZ

(

I •

/5 E

C ,

d S

TA

TIO

N

NO

. 1

28

3

4

34

1

8 N

, li

B

33

3

B W

LA

KE

H

UG

HE

S,

AR

RA

Y

ST

AT

lON

'2

,

CA

L.

2.5

5

,0

7.5

1

0.0

~ ::

~ r

~'V-

:?,

I ~

3: _____

____ L

____ ------_

j -"

'\l '.

/ 9

0

0(

45

i- w

n I r-

-4

5

-9

0

<\ Q

. 0

30

.0

0( L

20

.0

10

.0 1~4t§~!

2.

5 5

, 0

7.5

1

0.

0

HZ

(1

./S

EC

_

Fig

. C

.l

Fre

qu

en

cy

d

ep

en

den

t d

irecti

on

s

of

pri

ncip

al

ax

es

an

d

squ

are

ro

ot

of

pri

ncip

al

vari

an

ces

in

are

a

C.

I-'

00

(j

\

Page 203: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a S

TA

TIO

N

NO

, 1

37

3

4

OJ

DO

N.l

IS

1

5

DO

W

WA

TE

R

AN

O

PO

WE

R

BU

ILD

ING

, B

AS

EM

EN

T,

LO

S

AN

GE

LE

S,

CA

L.

2.5

5

.0

7.5

1

0.

0

~:: l ~>5;:r~'~~~ I

90

-< 4

5

c-

-4

5

-9

0

15

.0

.,. , .

<C

10

.0 I §\

;~~-

2~cl

L

5.0

2.5

5

.0

7.5

1

0.0

HZ

(l./S

EC

.

c S

TA

TIO

N

NO

. 1

72

3

4

03

2

6 N

1 1

8 1

S

02

W

80

0

W,

FIR

ST

S

TR

EE

T.

1S

T

FL

OO

R.

LO

S

AN

GE

LE

S.

CA

L.

2.5

5

.0

7.5

1

0.0

-:~

f =

----

p ". /'

, ./"" /

~ 30

n

'H

H'H

'H

••• ;;

;:?'

~<f:

~Yc I

90

« 4

5

~

~ -4 5

~;/ •• ~.

~~'c,,~'-

~.~\~~~

-9

a 1:;t

5§i4

~1

2.

5 5

. 0

7.5

1

0.0

HZ

(l./S

EC

.)

b S

TA

TIO

N

NO

. 1

48

3

4

03

2

0N

, [[8

[S

2

SW

23

4

FIG

UE

RO

A

ST

RE

ET

. B

AS

EM

EN

T,

LO

S

AN

GE

LE

S,

CA

L.

2.5

5

.0

7.

5 1

0.0

~:q

-~

[~~l

-< r-

90

rr~-'--~------------'---------~~--------'

45

I

//

, "

r-f

---'-

--:..,

.~ -4

5

II

I'"'

I"l

,,,

""'--

... ---

V

'0......

.. ,"

/' \'

.....

-9

0

tr _

__

__

__

__

__

__

__

__

__

_ JL

__

~~ __

____

____

__ ~

3 a

. 0

« 2

0.0

L

co

(/'}

10

.0

d

I~?)

~I

2.

5 5

.0

7.

5 1

0.

a H

2

(l./S

EC

.)

ST

AT

ION

N

O.

14

5

34

03

2

5 N

11

8

15

0

3W

22

2

FIG

UE

RO

A

ST

RE

ET

. 1

ST

F

LO

OR

, lO

S

AN

GE

LE

S.

CA

L.

2.5

5

.0

7.5

1

0.

0

: ~ =

=

<-f3?

/"~~'~

~un= I

-< r- w

I

90

45

I-_

4 5

-9

0

15

. a

« 1 0

.0

L co

5.

0

,/\ \,

~', ..

.. -./-

:

-~1

f?IT

:st2

~1

2.5

5

.0

7.5

1

0.0

HZ

(l./S

EC

.

Fig

. C

.2

Fre

qu

en

cy

d

ep

en

den

t d

irecti

on

s

of

pri

ncip

al

ax

es

an

d

sq

uare

ro

ot

of

pri

ncip

al

vari

an

ces

in are

a

D.

I-'

ill ~

Page 204: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a S

TA

TIO

N

NO

. 4

2S

3

40

3

46

N.1

18

2

4

S2

W

b S

TA

TIO

N

NO

. 4

40

3

40

3

44

N.1

18

2

4

SO

W

18

00

C

EN

TU

RY

P

AR

K

EA

ST

. B

AS

EM

EN

T

P-3

L

OS

A

NG

EL

ES

, C

AL

. 1

68

0

CE

NT

UR

Y

PA

RK

E

AS

T,

PA

RK

iNG

. 1

ST

L

EV

EL

, L

OS

A

NG

EL

ES

. C

AL

2.5

5

.0

7.5

1

0.

0

~ :~ f

::/

'/ ~Y(;:gS,j "~.~~

I --;;

; --

---,

,---

',

« r-

so

) i

I?

451

<).

/ ?

}:;:

i/ ),

-'~,

,/

;:

;'

--. _

_ ~,-/

.\

'I

-'5

,,

___

.\//' .!~ ~I

-9

0 ~:::I g?

~~~J

2.5

5

. 0

7.5

1

0.

0

HZ

(I.

/SE

C.

c S

TA

TIO

N

NO

. 1

84

3

4

D3

3

5 N

I I

8 2

4

56

>1

19

00

A

VE

NU

Of

T~f

ST

AR

S.

BA

SE

ME

NT

, L

OS

A

NG

EL

ES

, C

AL

.

2.5

5

.0

7.5

1

0.0

-:~i~ ~

~30 ;;:;>s~><~<l

M

".,"

\. ..

...

« '5

,-

-:,\

;,

/\

,.----

--r-

_~

:,.

J "

10

.' /.h

t.--\

,-·--

---.

,'"

I r-\,

1 "

'....

...,

{\

---...1

'i·,

-45

,

... /.,...

....

\.:,

\..

.( -'

--,

-9

D

" ".'

" " \

"'I ~

1 «

1 0

~ 0

L

>,g::;;~

o 2

.5

5.0

7

.5

10

.0

HZ

(1

./S

EC

.)

"I =

=--

,=

'" ,

:~ " ~,

,~1,,~ __ ~

5<K====

I

2 5

5 0

7.5

90

« 4

S

r- I r-_

4 5

-9

0

30

. 0

« 2

o. a

L

if)

10

.0

d

~v§l

~-J

1~6;

I==

2.5

5

.0

7.5

1

0.0

HZ

(

1 .

IS E

C .

ST

AT

ION

N

O.

1 8

7

34

D

3

1 4

N •

1

1 8

24

S

8W

19

01

A

VE

. O

F T

HE

S

TA

R S

S

UB

BS

MT

.•

lOS

A

N G

EL

E S

2.

5 5

. 0

7.5

1

0.

D

~:~ \ =--

-~--~-~~----

________ J ,

0

« 4

5

r-:

w

0 -'-

---

: I

\:

r--

4 5

. -'

/

-9

0 ,,

----

//<

-::.

.._

--./

/ ,

, /

, ,

<:ISf?~81

2.5

5

.0

7.

5 1

0.

0

HZ

(1

. IS

E c

. )

Fig

. C

.3

Fre

qu

en

cy

d

ep

en

den

t d

irecti

on

s

of

pri

ncip

al

ax

es

an

d

sq

uare

ro

ot

of

pri

ncip

al

vari

an

ces in

are

a

E.

CA

l

.

1-'

ro

ro

Page 205: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

189

APPENDIX D

Results of time dependent principal variances and principal cross correlation coefficients for motions in area groups C, D and E.

Page 206: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a S

TA

TIO

N

NO

. 1

25

3

44

0

30

N,1

18

2

6

24

W

LA

KE

H

UG

HE

S,

AR

RA

Y

ST

AT

ION

1

, C

AL

.

5.

0 1

0.0

1

5.0

2

0.

a 2

5.0

3

0.0

1 .0

c-.5

<:

0

l ~tr' ~

r-j-~--r

I =:

,.,,

~==~

,::;

":;=

!""'

~ 3

00

0

'" « 2

00

0

1 0

0 0

b"l~

lmml

I

I. i

c­ <:

1 .0

I

, _::

:1 ---

f '

/ r-' --1

i' I

.5

l

:''----k

~~<><~:,

,~-~~,--

--",',,"

<>.~<--/

~

~ :::~ I 4~t

iL"J"

I I

·

c

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.

a T

IME

(S

EC

,)

ST

AT

ION

N

O.

12

7

34

36

3

0N

,11

8

33

4

2 W

LA

KE

H

UG

HE

S,

AR

RA

Y

ST

AT

ION

9

, C

AL

.

5 n

I~'f

I ~t I

I I

I I

10

.0

15

. a

20

.0

25

. a

t -,~~

,~l'~~<~

'~'l-,~~

~~~,r,'-

--~~-t~:

-:~->t~-

<~ I

I ?t; I

I I

I I

5.0

1

0.

0 1

5.

0 2

a .

0 2

5.0

3

0.0

TIM

E

(S

EC

,)

b S

TA

TIO

N

NO

. 1

26

3

43

8

30

N.1

18

2

8

'la

W

LA

KE

H

UG

HE

S,

AR

RA

Y

ST

AT

ION

1

, C

AL

.

5 n

10

. 0

15

. a

20

. 0

25

. 0

_ 3

0.0

1.0

c-.5

«

t I

30

00

~ 2

00

0

10

00

0

l¥fd

I I

I I

1 •

0

c-.5

« '" 3

00

0

'" « 2

a a 0

10

a 0

j I

i I

I

l -

t-' t---

----r--'

/ t -

, --i

I I §l

~j I

~rcl::

I 5

.0

10

.0

15

.0

20

.0

25

.0

30

. a

T I

ME

(S

E C

)

d S

TA

TIO

N

NO

. 1

28

3

43

4

18

N,1

18

3

3

36

W

LA

KE

H

UG

HE

S,

AR

RA

Y

ST

AT

ION

1

2,

CA

L.

1 •

0

f-.5

«

0

5 n

25

.0

I j[d

"J::

±4

:;; 'f

1

0.

0 1

5.0

2

0.

0

10

00

0

'" 8

00

0

« 6

00

0

4 a a

0 2

00

0

0 1:{

",Jm"

I I

I I

1 .

0

c-.5

«

0

I •

i i

._~ iii

~ --' \

1 -' '-

l-'---

~ t-'

-'-l~'

r"

I ----

,:;~~~~-

-,',' --~,

----" ---

-" --,~

~" -----

f-':': <~

~, -' .-~,~

1

00

DO

'" 8

00

0

« 6

00

0

iaD

a 2

00

0 I S

kJ I

I I

I 5

.0

10

.0

15

.0

20

.0

25

.0

30

. 0

TIM

E

(S

EC

.)

Fig

. D

.l

Tim

e d

ep

en

den

t p

rin

cip

al

vari

an

ces

an

d p

rin

cip

al

cro

ss

co

rrela

tio

n

co

eff

icie

nts

in

are

a

C.

t-'

U> o

Page 207: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a S

TA

T1

0N

N

O.

13

7

34

03

D

ON

,IIB

1

5

DO

W

WA

TE

R

AN

D

POW

ER

B

UIL

DIN

G,

BA

SE

ME

NT

. lO

S

AN

GE

LE

S.

CA

L.

5.

0 1

0.

0 1

5.

0 2

0.

0 2

5.

0 3

0.0

1.0

r­ « l-~~~~'~ I

.5

--== .. f

0---

-,

r­ «

5 0

0

0::

1

5 a

0

00

" I X

~,JiI

I I

I S

OD

<:

:>

10

00

5.

0 1

0.

a 1

5 .

0

20

.0

25

.0

30

.0

T1

ME

[S

EC

.)

c 5

TA

T1

0N

N

O.

17

2

34

03

2

6N

.11

8

15

0

2W

80

0

W.

FIR

ST

S

TR

EE

T,

1S

T

FL

OO

R,

lOS

A

NG

EL

ES

. C

AL

.

r­ « ': I

~t~~,~~~ "I'

.

.-;; .. :==.~;~

S n

IO

.n

15

. a

2 a

. 0

25

. 0

20

00

0::

1

50

0

« :>

10

0 0

SO

D

iii

I =t4

:?t:J_

-I

I >- 0

( I :: t

~.~ff~~'~·

~.~~.~l~~~

>.t~.~\ .. ~.~

.'.t~.~~~ .... ··

·f(·~ I

: :::: I

J4~K1L I

I 5

00

5.0

1

0.0

1

5.0

2

0.0

2

5.0

J

0 .

0

TIM

E

[SE

C.)

b S

TA

T1

0N

N

O.

14

8

34

03

2

0N

. 1

18

1

S

25

W

23

i F

IGU

ER

OA

S

TR

EE

T.

BA

SE

ME

NT

. lO

S

AN

GE

LE

f.

CA

L.

<:::~I k

:iJ

I I

I 5

.0

10

.0

15

.0

20

. a

25

.0

3 a

. 0

T1

ME

[S

EC

.)

d S

TA

T1

0N

N

O.

14

5

34

03

2

SN

, 1

18

1

5

03

W

22

2

FIG

UE

RO

A

ST

RE

ET

, 1

ST

F

LO

OR

. lO

S

AN

GE

LE

S,

CA

L.

u 5

.0

10

.0

15

.0

20

.0

25

.0

30

.0

r- 0( "Ol~t' ~

I .:

Z+;=

=:z?

-~·~

ii55

i <

:::

: I J

E!~<

~ fl

. 1

0 a

0

I .

0

r­ «

. 5

1, ...

.. .-

...... -

" \

/ ....

. ,

/ ,/1

\

t ~

,-----

i-'-

--I

f 1

r' I

~:: · .. r

'" .....

.... .J.·

.... ···~

·n ..

~~ .. :

....

~~~.~~

.. :/.: ,.

'"

I i::ff

iLl

I ;

30

00

co

-<

20

0 0

10

00

5.0

1

0.0

1

5.0

2

0.

0 2

5.0

J 0

.0

T1

ME

[S

EC

.)

Fig

. D

.2

Tim

e d

ep

en

den

t p

rin

cip

al

vari

an

ces

an

d p

rin

cip

al

cro

ss

co

rrela

tio

n

co

eff

icie

nts

in

are

a

D.

I-'

\0

I-'

Page 208: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

a S

TA

TIO

N

NO

. 4

25

3

40

3

4fj

N.1

18

2

4

S2

W

b S

TA

TIO

N

NO

. 4

40

3

40

3

44

N.1

18

2

4

sow

1

80

0

CE

NT

UR

Y

PA

RK

E

AS

T,

SA

SE

ME

NT

P

-3

LO

S

AN

GE

LE

S.

CA

L.

18

80

C

EN

TU

RY

P

AR

K

EA

ST

, P

AR

KIN

G.

1S

T

LE

VE

L.

LO

S

AN

GE

LE

S,

CA

t

5.0

1

0.0

1

5.0

2

0.0

2

5.0

3

0.0

lOf

~ .: ~~

~~~~

~k~~

~--~

l~~~

k \

~==;

==:=

===;

::==

==~=

===:

====

==~=

3 a . 0

~ '

.: f 2~---J;;;L J:

I ~

at

.. ~ ..

.. ~--~lS

.

5 n

10

. 0

15

. 0

2 a

. 0

25

. a

< :

::: I ;

}~*,4L

J..

I I

~ :::; I ji

bl~J

I

' I

~ '.: E{·

1'~~.<

·~--1-

""-'+'

·~~--'

-'l'-

-,,' l/~·~

I

a --

.. '

--..

... f

......

. --.

----.

. --...

.. .

~ 1 ': t

_/.\r.~~.7

c,,<l ... ~.

m.>l.~::~:

~~.l~~·'~·

~~·~t~>

I «

1 a

a a "" L~jf:g}

:t=l

L I

50

0

~ :::: I lZ

±;;L

] I

~ 5

. a

10

.0

15

.0

20

.0

25

. 0

30

.0

5.

a 1

0.

0 1

5.

a 2

a .

0 2

5.

a 3

a .

0

TIM

E

(S

EC

.]

TIM

E

( S

EC

. ]

c S

TA

TIO

N

NO

. 1

84

3

40

3

3S

N.

1 1

8 2

4

S6

W

d S

TA

TIO

N

NO

. 1

87

3

4

03

1

4 N

,

1 1

8 2

4 S

8W

19

00

A

VE

NU

E

OF

TH

E

ST

AR

S.

BA

SE

ME

NT

, L

OS

AN

GE

LE

S,

CA

L.

19

0 1

A

VE

. O

F T

HE

S

TA

RS

S

UB

8S

MT

.•

lDS

A

NG

EL

ES

. C

AL

.

~ 5

.0

10

.0

15

.0

20

.0

25

.0

30

.0

_ 5

.0

10

.0

15

.0

20

.0

25

.0

30

.0

1.0

c-.5

<:

a t ~~-0li?~

I '!

-.,

-"

'..

""-'

.. :'

'._

--,-

---

----

---,

'-'-

----

-,

1 .

a

c-.5

<:

a ~ ~-r-~

I .-,----~.,:

15

00

« 1

00

0

50

0 I L

kif;:L

eJ I

I

30

00

« 2

0 0

0

1 0

0 0 0 I ~

kJ-l I

I I

1.0

c-.5

<:

a

~ ~--t

1 -~,

_/~'-

/' f

' I

"< .~~.>:

:.-~ .. ~.m~

'~l~"·:"·"

'·;·"~··"~

~'·~~·~·

: 1

.0

c-.5

<:

t

~ ..... f ..

. ~ .. ,~.L

~~··>f~~

,,·~~~~J

<~~·~·~~

k.~.\ I

15

00

<c

10

a a

5 a

a

I 7fE

l;sLLL

I I

30

00

« 2

0 0

0

1 0

0 0

bi#?iJ

_ I

I I

5 .

a 1

0 .

0 1

5 .

0 2

0 .

0 2

5.0

3

0 .

0 5

. 0

10

.0

15

.0

20

.0

25

. 0

30

. 0

TIM

E

(S

EC

.]

TIM

E

(S

EC

.]

Fig

. D

.3

Tim

e d

ep

en

den

t p

rin

cip

al

vari

an

ces

an

d p

rin

cip

al

cro

ss co

rrela

tio

n

co

eff

icie

nts

in

are

a

E.

I-'

l.O

N

Page 209: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

193

APPENDIX E

Results of time dependent frequency distribution for motions in area groups C, D and E.

Page 210: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

194

a STATION NO. I2S 34 40 30N.118 26 24W b STATION NO. 126 34 38 30N. I 18 28 48W

LAiCE HUGHES, ARR .... Y STATION I, CAL.

INTERMEDIATE

~:: ~I ~~Cffi~~J4 ~::~~~ ..

o W

,"0

0: 2. 0 .. 5 . 0' , ! ~ 0 . 0 ' , t S'. 0 '2: 0'. 0' 2 5'. 0 :) 0 . a

TIME [SEC. I

~

N 6.0 :c

o w

<.0

cr: 2.0 ..

~

N 6.0 :c

o W 0:: 2.0 ..

~

N 6.0 :c

o W

,"0

0: 2. a ..

lAltE HUGHES, ARRAY STATtON i, C .... l.

5.0 10.0 15.0 20.0 :: 5.0 30. a , i, 'i'! iii iii'

0' " 5 . 0' , , I 0 . 0' ~ 5 • 0 2: 0 . 0 ' , 2: 5 • 0 ' , :3 0'. a

TIME [SEC.)

C STATION NO. 127 3436 30N.118 33 42W d STATION NO. 128 3434 18N.I18 33 36W

~

N 6.0 :c

,"0

o W 0:: 2.0

~

N :c ~

0

u.J

'" ..

o w

6.0

,"0

2.0

cr: 2.0

U.

LAteE HUGtlES. ARRAY STATIQIi 9, CAL.

'5:0' , , ;0.0' ;5.0 20',0' 25.0 ' 30',0

TIME [SEC.I

~

N 6.0 :c

o W

,"0

0:: 2.0 ..

~

N 6.0 :c ~

LO

a u.J

'" 2.0 ..

~

N 6.0 I

o W 0:: 2.0

U.

L .... KE HUGHES, APR"" STATION 12. C .... l.

i ,sic, i ~o.Q j IS.~ i i ?O"O fS.~ ~.o

a! , , 5.0' 10',0 15.0 ' 20.0 '25.0 30.0

TIME [SEC. I

Fig. E.l Time dependent frequency distribution in area C.

Page 211: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

195

a STATION NO. 137 3403 00N,118 15 OOW b STATION NO. 118 3403 ZON, 11815 25W

\.I"'"TER AND POl.'ER BUILDING, BASEMENT. LOS .... NGELES. C .... t.

'--I........I..~.~'--'-_--'-------L.... ! ", '.....l.-J...... :J S.O 10.0 15.0 20.0 2S.::I 30.0

TIME (SEC.]

a w

1.0

0:: 2,0

"-

~

N 6.0 :c

a w

1.0

Q:; 2.0

"-

231 flGlJERO .... STREET. eASEMENT. lOS ANGELES. CAt.

~ ii' ,siD 10.0 15.~ i I ~Oi'O 25.0 30.0

s. a ~ 0 . 0 '1 S', 0 ' , 20', 0 ! , 25', 0 ':3 0'. a TIME (SEC.]

C STATION NO, 172 3403 26N,118 15 02W d STATION NO. 115 3403 Z5N, 11815 03W

aoo w. fIRST STREET, lSI fLOOR, LOS ANGELES, CAt.

5.0 I , lOi'~ , ; 15,'~ ~Oi'~" 25.~ 1,7°,,0

5.0 10.0 J S. 0' 20. 0 ! , h',o 30.0 TIME (SEC.1

~

N 6.0 :c

a w

1.0

cr:: 2.0

"-

~

N 6.0 :c

o W 0: "2. 0

"-

222 FICUEROA STREET, lS1 fLOOR, LOS .... NGlLE.S. Ci\l.

S. Q 10.0 15. a 20. a 25.0 30.0 i • , , i • ii' ( ii' iii iii, Iii. i, i • ( i

, , '5: 0' '10. 0 1 S', 0' 20.0 2S. 0 ':3 0' 0

TIME (SEC.]

Fig. E.2 Time dependent frequency distribution in area D.

Page 212: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

196

a STATION NO. 42S 34 03 46N. I 18 24 S2W b STATION NO. 440 34 03 44N. 118 24 SOW

8.0

~

N 6.0 :c

0> W

<.0

a: 2.0

"-

'.0

~

N 6,0 :c

<.0

)800 CE,NltJRY PARK E ... ST. e .... SE.ME.NT P-'). LOS .... NGE.LE.S. C .... l. L8.aa. CENTURY PARI(' E.AST. P.A.RtnNG. 1ST LEVEL, lOS ..... NGE.LES, C .... l

o ,,5 i 0, i • ,10,' 9 i i : 51' 9 ; j 20. 9 ; ; 25,' 9 j lO,'o

o ! , , 's: 0' , , ; 0'. dr, ~ 5 (. 0 ' ( 2 a (. a ' ! 2 s'. 0 I I ') o!. 0 's.o' 'io'.o 15.0' , 20'.0 25',0 30',0

TIME (SEC.) TIME (SEC.)

C STATION NO. 184 34 03 3SN. 11824 S6W d STATION NO. 187 3403 14N.118 24 S8W

o W

8.0

<.0

a: :2.0

"-

8.0

~

N 6.0 :c

o W

<.0

0:: 2. 0 ...

o W

8.0

<.0

a:: 2.0 ...

1900 AVENl!E. Of TNt: ST .... RS. BASEtH.NT. lOS ANGE.LES. CAL.

5.0 10.0 15.0 20.0 25,0 )0.0 iii Ii, I , i • , i •• , , , i , i • I I , • i , i • I ,

0' "5:0!' io.o is',a" 20'.0 ' . h',o ' , 30'.0

TIME (SEC.)

8.0

~

N 6.0 :c

o W

<.0

cr. 2. 0

"-

1901 AVE. Of THE. ST"RS SlJBBSMT •• lOS ANGELES, CAL.

5 • 0, I , : 0t' 9, I 5. 0 i ~ at' 9 , I ? 5 • 0 .? 0,' 0

0' , "s:o 10.0 15,0 20'.0 '25.0 )0.0

TIME (SEC.I

Fig. E.3 Time dependent frequency distribution in area E.

Page 213: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

197

APPENDIX F

computer program listings.

Page 214: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

PP

OC

,RA

M

PG

MO

l (INPVT.DUTPUT,PUNC~,

T

AO

E5

-= !

NP

UT

,T

AO

E6

=n

UT

OU

T,

TA

0<;

C 7

=0

IjN

CH

t

TA

PE

1,T

AD

EQ

9)

C-O

MM

EN

T

SU

BR

OV

,!N

ES

, P

EO

UII

:!E

D

C

SU~qOUTINE DRCTO~

C

SU

9R

OU

TIN

E

SH

e1

c S

UR

RO

VT

I~E

PL

TT

NG

1

)1!J

.EN

SIO

N

CO

Rn

L (

20

0) ,

IC(1

t:'(

10

01

,I'

=cn

p (

10

0 ,

D1

M=

NS

ION

O

AT

A(

3,

15

00

)

DIM

EN

SIO

N

AC

C(3

, 2

50

1

DI!

J.E

NS

IO"l

G

{.3

.,::

) ,E

t3.)

..,v

C3

,'?)

,H(3

,21

,0

(3

,51

OIM

"EN

'SIO

N CO~D(3) ,T

HT

(6

1

DIM

EN

SIO

N

PS

HA

,PE

(3,

811,OTt~ETA("

f!1

1,P

PH

I {3

, all,

PT

T

( 8

1',

oy

y

( ,0

.1)

,LA

9E

L1

{ 5

) ,L

Aa

EL

2f7

1

INT

EG

ER

C

OR

TIL

fOU

!VA

LE

"lC

E

{AC

C{

1',

CO

J:<

TIL

(1

),(

AC

C(

20

1',

ICO

::?

(1

)I,

(A

.ce

( 3

01

),:F

eD

R(1

'lJ

C-A

LL

S

ET

Fx

e

(1

,25

0'0

,10

0)

CC

C

C

Tl

CC

T

2

r tM

E

LE

NG

TH

O

F

\If I

N("

lCW

Tl"

'=.,

5

K l

OP

ED

CC

T~

TE

RM

INA

TE

L

::::

NG

TH

O

F

TIM

E

CC

1

00

0

QE

AD

(5,

10

1) N5KIP,Tl,T2,T3,IPP~,tPL'3

IF

(N

SK

IP

.EO

.99

9}

G

O

TO

9

90

0

10

1

FO

RN

lAT

(lS

,3F

9.0

,6Ie)

10

2 ~ORMAT{

'" A

I0)

11

1 -FOQ~AT(10I10)

11

3 FOR~AT(10FI0.1)

1F

'(N

Sl<

tp

.EfJ.O

)

GO

T

O

12

00

N

SK

t p

= 3

lt<N

SK

10

CA

LL

S

KtP

F (5LTAPEl,N5K[P,3HE~F)

12

00

W

R1

TE

(6,2

00

) C

(:

.QE

AD

ING

M

AG

NE

TIC

F

[L

fS

ET

S

00

2

00

0

J =

1,

'3

RE

AO

{ 1

, 1

02

) eD~TIL

WQtTE(6~210)

J,(

CQ

PT

IL

(I}

,r-=

I,8

1,C

CQ

PT

IL

(I),I

=4

1,5

.6}

,

1 (CORTIL(1}tI=1~9,17f.)

PC

:;A

D(1

t 1

1])

ICO

R

COMP-(J)=FLOA~( lC

OR

(27

)1

KA

ZU

=lC

OR

(53

)

QE

AI)

{I,

11

3)

FC

OR

IF{K

AZ

U.G

T.1

50

0)

KA

ZU

=1

50

0

RE

AD

{1,1

1:3

1

(D

AT

A(J,l

l,l=

I,K

AZ

U)

-CA

LL

S

KIP

F

(5L

TA

DE

1,

l,'3

HE

ClF

)

20

00

C

ON

TIN

UE

1

)0

21

00

1

=1

,4

21

00

L

AB

EL

1(I

)=C

OR

TIL

(I+

40

)

DO

2

11

0

1=

1,1

3

21

10

L

AB

F.L

2(1

1=

CO

R"'I

L{

J+

4S

)

CC

CC

P~tNT

OU

T It.JFOP~A"'IONS

CF

E

'PIC

E"H

ER

A

ND

<

;TA

TIO

N

WR

ITE

{-6

,22

0

) (IC

OP

(ll

,I=

16

,21

l

WR

ITE

{6

,23

0

) {JCrJ~(t ),1

=1

0,1

::')

;:

::P

LA

T=

FL

OA

T(

IC

rp

(1

6)

)+

FL

OA

T(IC

0?

(1

7j)

/60

.

1 +

F'L

()A

i( ICO~(l"") )/3

60

0.

EP

L:J

"l=

A.I

3S

«"L

')A

T{

ICO

R(

l<;i

l) )

+F

LrA

T(

ICQ

R{2

0)

1/6

0.

1 +FLOAT(ICf)~(21)}/3600.

OB

LA

T=

FL

OA

T(

1

IC(,0

(1

0)

)+

FL

C'A

T(IC

ClR

(1

1))/6

0.

+F

LO

AT

( IC

rJR

{12

J )

/::'

l60

0.

:JB

LrN

=A

8S

(FL

OA

T( IC~k{ 1

3)

II+

FL

CA

T(

ICfJ

R(1

4)

}/6

0.

1 +

I=L

C'A

T(

ICO

Re

1S

) )/3

60

0.

20

0

Ff'

JR"'

A T

( IH

1)

21

0

<=

"OR

'-1A

,T(

tHO

,t 3HR~C(lQ(')

N0

. =

,1

2,

/lH

,5

X,8

AI0

, 1

/1H

,

5X

,8A

l0,/

1H

,

5X

,RA

.I0

,/lH

,

SX

,".A

IO)

22

0

FO

PO

AA

T(/

IHO

,10

X,!

2H

EP

ICE

NT

ER

,3

14

,SH

N

(L

AT

),

1 /1

1-'

,2

2X

, 'l.I

4,e

H

W

(LO

r-.)

I)

23

0

.:-a

C""

AT

( /I

H

,10

X,1

2H

ST

AT

IC,,

"

~::lt4,RH

N

(L

AT

),

1 /lH

,2

2X

, '3

I4,e

H

W

(LO

"J"

Cc

CA

LL

[)

QC

Tr)

N

(OALAT,O~LON,EPLAT,EC:LON,TH~TA)

'IfQITE'(5.~0'501

Tl,

T2

,T3

30

50

FI)~~AT(/lHO,25H~!"IE

LE

NG

TH

C

'F

WIN

no

w

, F

l 'S

. 7

, 7

H

,tl 5

• ..

., t"

"H

,F

I5

. 7

, 7

H

1 /I

H

,~<)t-lTI'JI::

INT

EQ

VA

L,

SI(IPP~D

/1 H

,-

::>

5H

T<

="?

f.'I

NA

TF

L

EN

GT

H

(SE

C.

" (

SE

C.

) ~

(S

=C

.))

PIo

IIO 1

::>

""I(

}1

1 {}

:>M

OI

20

OM

OI

30

::>

M"J

1

40

PM

O 1

S

o

PM

OI

60

::

>M

01

7

0

P"M

Ol

60

,p

MO

l g

O

0"'

10

1

10

0

PM

-Ol

1!

C

oM

OI

12

0

OM

Ol

13

0

PM

OI

14

0

DM

Ol

15

0

::>

MO

I 1

60

::>

M 0

1

17

0

oM

01

1

80

::>

MO

l 1

90

0"'

01

2

00

P

MO

I 2

1"0

::>

\10

1

22

0

0"'

10

1

23

0

::>"'1

01

24

0

OM

O 1

2

50

0

"'1

01

2

60

PM

OI

2""

0

PM

OI

2'3

0

::>

MO

I 2

90

0'-

\01

3

00

::>"'1

01

31

0

PM

OI

32

0

PM

O 1

3

30

::

>M

OI

34

0

::>

M0

1

35

0

PM

OI

36

0

PM

OI

37

0

0"4

01

3

80

O

::>M

OI

3<;1

0

::>

MO

l 4

00

PM

OI

41

0

PM

Ol 4~0

DM

Jl

4~0

PM

OI

44

0

PM

O 1

4

50

0:

:>1-

101

4fo

0

::>I0

Il01

47

C

oM

OI

48

0

P"'

IOl

49

0

::>10

101

50

0

PM

OI

51

0

OM

OI

52

C

::>

"10

1

53

0

o~Ol

54

0

PM

O 1

5

50

P

MO

I 5

60

::

>"'

101

57

0

PI>

IOl

5S

0

::>

MO

I 5

90

P

MO

I 6

00

PM

OI

61

0

PM

OI

62

0

P"1

Ol

63

0

::>

MO

l 6

40

::>

MO

I 6

50

o

MO

l 6

60

PM

OI

67

C

PM

Ol

68

0

01

,10

1

69

C

01

,10

1

70

0

~1,101

71

0

P""

O 1

7

20

D~Ol

7,0

::>t.\

o 1

74

0

cr

CO""'::>~I-':

AVC:-~AC"' VALUt~

'" 1

=

1.

J0

1

"J2

=""

" /.

OZ

t-.O

Ot

c;u .

.. ·l-=

-O.

SU

'" ?

=fI

.

SI.

fo':

: =

0.

,0

""

lOa

I=

"Jl,

"J2

suvl-=~U""'1

... 1

')""-A

(1.1

)

Su

'-'2

=S

UY

.2t-

i)A

TA

(2,I

l

31

00

5UM"'=c:.u"'1~+uA-A(~. I

J 'l(

X=

1 ...

/::

: L

O ..

.. T (\

J2

-"l1

+1

)

AV

"'l=

.c:U

"Il*

:(X

A,V

=,"

2=

SJ'-

l2*X

X

AV"'''='SI),J\~*>(x

Jlo

[T':

.{f.

.31

'50

1

AV

':.!

,AV

::'2

.A.v

:::?

'31~O 1=~C'MAT(1~0,20X,~OHAV::hAC.E

VA

LU

E

1 /I

H

,2JX

,3f-l:

::.7

,/1

'1

0

3?O

O

I,:N

1,"

J2

') A

T A

-U •

I

1 =

1)

A T

A (

1 ,

I

) -

A V~ 1

') A

T A

( 2

,

1 I =

l) A T

A (

2

, I

) --

A V

F ?

32

00

!)

AT

A(3

.Tl-

=[)

A"'!

'A{

3.t

l-A

Vf:

3

! 1\

101

=1

c:::

ACCEL>:Q;J~'<A""St

!F({r:.(i",p(1111";i.C("JI~(?I).AI\·').{CClJ'o-(I)-CCMO(2'.LT.

CO

.l)l

I ~(

(CG

M P

( :<

') • ",r

. rr

)'A

o (

1

) )

• A

t-iC

i. (

C0~0 (

'2)

-(:

0..

.,0

(1

J •

G T

. 2

6q

. q

I )

33

00

I"Jr

'I "

='

TF

(C'1

.... ~( .

. I.

;:;'

).c:;

OO

.1

IN!)

2=

2

TF

(CC

''''::

>{3

, __

'=')

.. f-

')0

.J

!N\"

2=

3

IF(INf)2.~Q.l) v.QIT'c(~,,?3001

1=

r:'!

0""

A""

(

lH

,40

1-'

** ...

. 1.*

V

:':O

T !

CA

L (J~O""'~~T

t.JC

AS

E=

( r3

-T

ll/T

2+

'!..

OO

l

.,)c

co

oe

1

=1

,"':

:A5

E

t.J!

=

FL

DA

T(I-I)*

T:

;:>

/.0

2+

1.0

01

t>.J2=(FLOA.T{I-l)~

T2

+

71

)/.

02

+

.OJ!

Mf'

t.:l

=-N

l+1

I(A7.U="2+~Nl

GC

":

'0

(4

10

0,4

20

0·)

.1"l"

1

41

00

1

1=

2

12

=t

sc

70

4

-:;0

0

-42

00

tl

=1

12

=2

4

30

0

nn

4

40

0 J=~l,N?

K=

J+

"1N

l II.

CC

( 1

, I

( )

= -

D A

T A

( 1

1 ,J 1

4

49

0

AC

C("

;?,K

)=-,

")A

.TA

(12

,J)

::;0

~rJ

(4

'70

0.4

50

0,4

70

01

,IN

"c

4t-

0{)

')

0

4(-

,,0

J=

Nl,

t.J2

K=

J +

'v1N

1

4E

50

A

Ce(

?,K)=-:)A.~t.(::.J-)

-:;0

T

n

4"3

00

4:0

0

:)r

47<

='()

J=

Nl,

\J2

I( =J+~t..;l

47

50

A

.CC

( 3

,Kl=

n~TA{",Jl

4R

OO

cn

NT

!Nll

f"

~L:M 1

=0

. <

;UM

2=

O.

<;U\~"'l=O.

O:;

U'-

I4=

0.

SU

"'1

'5=

O.

SU

'" 6

= O

.

1)0

'5

10

0

J=

1,K

A.7

U

XX

!=

A(r{l,

Jl

XX

2=

AC

C{2

.J)

xX

3=

AC

CC

3,J

)

SU'-lI=~U"11"'XX1"'){Xl

SU

M2

=5

'JM

2 +

XX

1 *'

XX

?

SU

M ."

= S

U '~.

3+ X

Xl '* X

X"

3U

'" 4=~U..,4 +

X X

.~* X

X:;

:

SU"I7'=:::U"l5+XX2""'xX~

51

00

SUI,\6=~U"'F;+XX-'*xx"

XX

=l.

/r::

:L'J

AT

{K

AZ

lj)

:-; (i. 1

1::

SU

"Il:

:!<

Xx

(,(?l )=

SU

M2

*X

X

";{'

3,l

J=

SU

M3

*X

)(

r,(

l,2

)=

<;U

M2

*X

x

(Y:::~T.)

"'**"'~'J !"

J')

1=

2

INn

1:::

2

~~01

75

C

DM

.) 1

""

60

~M-al

77

0

::>..,

01

7

30

01

0,10

1 7

QO

.;> \'

01

~o C

::>

"10

1

81

0

0"'0

1

'32

J

:::>"

'101

8

30

o

MJl

'34

0

::>

M()

1

S5

e

D"-

I01

9

60

DIv

IOl

87

0

;;I"1

C!

1 8

'30

:;IM

Ol

89

0

::> 'I!

01

CO

lO 0

PM

01

91

0

~"'101

92

0

::,,~O 1

9

30

01>

101

94

0

?MO

I 9

50

PM

OI

96

0

D"'

OI

97

0

::>

M0

1

9S

0

PIJ

IQl

99

0

::>

MO

I10

0C

::>

"'1

01

10

10

PM

01

10

20

P~0110:C

PM

() 1

10

4-0

OM

Oll

05

0

::1

1.1

01

10

60

PM

OI1

07

0

;:)!

JIO

l10

".C

::>

MO

II0

90

oM

Ol1

1 a

o

::>

MO

I11

10

DM

01

11

20

DM

01

11

3C

::>

MO

I11

40

P

1JI

01

1_

15

0

PM

01

11

1S

0

Pt.

10

11

1 ?

0

::> "

"10

11

1'3

C

01

.11

31

11

90

::

:lM

01

12

00

::>

Y,0

11

21

0

0"1

01

12

20

?"'

10

11

23

0

.;:)

"'1

01

12

40

PM

01

12

50

::>

"10

11

26

0

"""0

11

2""

0

~M011290

=>

M0

11

29

0

::>

M0

11

30

0

PM

01

13

10

o

M0

11

32

0

;:>

""0

11

33

0

01

Jl'.

) 1

13

40

~M011350

:lM

01

13

60

ClM

01

13

70

::1...,

Q'.

13

90

o

MO

lt3

90

PM

Ol1

40

0

~MOl1410

P"'

01

14

2D

::

>M

Ol1

43

C

:::l'J

I,) 1

14

40

::>

1.1

01

14

50

>=

'M0

11

46

0

0"'

10

! 1

47

()

-::: M

Jl1

49

C

PII

II0

11

40

0

f-'

1.0 m

Page 215: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

cc

cc

G(2

,2}=

SU

M4

*X

X

G(3

,2l=

SU

MS

*X

X

G(1

,3)=

SU

M3

*X

X

G(2

,3)=

SU

MS

*X

X

G(3

,3)=

SU

I.II

6*X

X

TT

l=F

LO

AT

(N

l-l )*.0

2

TT

2=

FL

OA

T (

N2

'*

.0

2

TT

3=

. 5

. (T

T1

+T

T 2

)

CA

LL

S

HB

I (G

,3

,E

,V

,3

,3

,t,l,

H,P

,3

1

OA

T A

P

AIS

/5

7.2

95

79

/

TH

T( l' =

AT

AN

2(V

( 2

, l' ,v

(1

,1 )

}.P

AIB

TH

T (

2)=

AT

AN

2(V

(2

,2) ,V

( 1

,2) '.P

A(B

.TH

T (

3) =

,A,T

AN

2 (

V(2

,"3

) ,V

(1

,3) )

.PA

IB

TH

T(4

)=A

.CO

S

( V

(3

,1 )

)*P

AIB

TH

T(S

'=A

CO

S

( V

(3

,2»

.PA

IB

TH

T(6

)=A

.ca

s

{ V

(3

,31

l*P

A(8

GO

T

O

(7

30

0,7

40

01

,IN

Dl

73

00

!

1=

2

GO

T

O

75

00

74

00

!1

=1

7

50

0

TH

T(l)

=C

QM

P(ll)-T

HT

(l)

T

HT

(2

)=C

OM

P(

11

)-T

HT

( 2

) T

HT

(3

l=C

OM

P (It )

-TH

T (

3)

00

7

'52

0

J=

I, 6

S

UM

l=T

HT

(J'

75

10

IF

( S

UM

l.L

E.-

90

.'

SU

Ml=

SU

Ml+

18

0.

IF( S

UM

I .G

T.

90

.)

SU

M 1

=S

UM

1-1

13

0.

IF({S

UM

1.L

E.-

90

.).O

R.(

SU

M1

.GT

. 9

0.»

G

O

TO

7

51

0

75

20

T

HT

(J)=

SU

"11

0

0

75

40

J=

4,6

7

54

0

IF(T

HT

fJ).L

T.

0.)

TH

T(J

}=-T

t-iT

(J)

1)0

75

60

J=

1,3

7

56

0 ~(J)=SQRT(E(J')

IF{IP

R3

)

77

00

,77

00

,75

99

7

59

9

WR

ITE

( 6

, 7

60

0)

TT

3.,

E(

1 ).

, T

HT

( 1

) ,T

HT

( 4

) ,

( V

( 1

,.J1

,J-=

I, 3

),

1 T

Tl

,E(2

),T

HT

(2

) ,

TH

T(5

), (V

(2

,J),J

=1

, 3

),

TT

2,E

(3

) ,

TH

T(3

} ,T

HT

(6}

,(V

(3

,J) ,

J=

l ,3

)

75

00

F

OR

MA

T(l

HO

,5X

,F7

.],6

H

(SE

C),

5X

,15

HM

AJD

R

FI3

.4,

1 5

X,O

P2

FI0

.3t9

H

(DE

GR

EE

) ,5

X,O

P3

F1

0.5

,

/lH

,5

X,F

7.3

,6X

,5

X,1

5H

INT

ER

ME

DIA

TE

=

F

13

.4,

5X

,OP

21

=1

0.3

,9X

,5

X,O

P3

FI0

.5,

/lH

,5

X,F

7.3

,6X

,5

X,1

5H

MIN

OR

F

13

.4,

5X

,OP

2F

10

.3,9

X

,5X

,OP

3F

I0.5

'

77

00

D

O

80

00

J=

1,3

D

SH

AP

F(

Jt

I )=

E(

J I

PT

HE

TA

( J,

I 1

=T

HT

( J)

PP

Ht

(J,I

l=T

HT

(J+

3)

80

00

C

ON

TIN

UE

D

TT

(

J)=

TT

3

90

00

C

ON

T I

NU

E

IF{ t

PL

3)

g1

00

,91

00

,90

01

90

01

D

O

90

80

J=

1,3

D

AT

A

CH

K /7

5./

SU

M1

=P

TH

ET

A(J

,1)

DO

9

08

0

I =

2,N

CA

SE

S

UM

2=

PT

HE

TA

{ J, I)

IF( A

RS

f S

U"1

21

-CH

K)

90

70

,90

10

,90

10

90

·10

IF

(SU

"'1

1*S

UM

21

9

02

0,9

07

0,9

0"'0

9

02

0

DT

HE

TA

( J

, I)

=-5

IG

N{

1 8

0.,

SU

M2

)+ S

UM

2

90

70

SUM1=PTH~TA(J,Il

90

80

C

ON

TIN

UE

C

AL

L

DL

TT

NG

(P

SH

AD

E,P

TH

ET

A,D

PH

I ,N

CA

SE

,LA

8E

Ll,

LA

8E

L2

,

91

00

G

O

TO

1

00

0

99

00

1

CA

LL

P

L T

TN

G

WR

ITE

'"{6

,QQ

90

)

PT

T

,PY

Y

,T3

,TH

ET

A,N

SK

IP)

(PS

HA

PE

, P

TH

ET

A ,

PP

HI

~NCA S

f: ,L

AS

FL

1,

LA

.BE

L2

, D

TT

,P

YY

,T

3,T

HE

TA

,NS

KIP

)

99

QO

l"

"o::

mA

T{

IHO

,20

X,2

4H

JO

f'

NO

RM

AL

LY

T

ER

MIN

OT

ED

.)

ST

<JD

EN

n

PM

Ol1

50

0

PM

OllS

10

PM

Ol1

52

0

PM

Ol1

53

0

PM

Ol1

54

0

PM

01

15

50

PM

01

15

60

PM

Ol1

57

C

PM

Ol1

5B

O

PM

Ol1

59

0

PM

01

16

00

PM

Ol1

61

0

PM

Ol1

62

0

PM

Ol1

63

0

DM

01

16

4.0

PM

Ol1

65

0

PM

01

16

60

P

M0

11

67

C

PM

01

16

80

PM

Ol1

69

0

PM

Ol1

70

0

°M

01

17

10

PM

Ol1

72

0

PM

01

17

30

PM

01

17

4.0

D

MO

l17

50

PM

Ol1

76

0

PM

Ol1

77

0

PM

01

17

80

PM

01

17

90

PM

Ol1

80

0

PM

01

18

10

P

M0

11

82

0

PM

Ol1

83

0

PM

01

18

40

P

M0

11

85

0

PM

Ol1

86

0

PM

01

18

70

PM

Ol1

88

0

PM

01

18

90

P

MO

l19

00

PM

01

19

1 °

PM

Ol1

92

0

P"'

I01

19

30

P

M0

11

94

0

PM

O 1

19

50

P

MO

l19

60

::

:lM

Ol1

97

C

PM

Ol1

98

0

PM

01

19

QO

PM

01

20

00

PM

01

20

10

D"'

01

20

20

D

M0

12

03

0

P"1

01

20

40

P

M0

12

05

0

P,"

,,0

12

06

0

PM

Ol.

20

7C

P

M0

12

08

0

DM

01

20

90

P

Mo

12

10

0

PM

01

21

10

D"'

I01

21

20

PM

01

21

30

o

Mo

12

14

C

PM

01

21

50

PM

01

21

60

D"'

I01

21

70

PM

O 1

21

80

D

M0

12

19

0

:::l

M0

12

20

0

:::l

M0

12

21

0

SU

BR

OU

TIN

E

CP

CT

QN

(O

BL

AT

,QI'

l,L

ON

,EP

LA

T,E

PL

ON

,TH

ET

A.)

D

Re

T

cc

QA

DIU

S

OF

E

AR

TH

(E

QU

IVA

LE

NT

S

PH

ER

E)

OR

CT

1

0

c C

DA

TA

R

R/6

37

1.2

21

3/

DA

TA

P

AIA

,PA

I8/1

.74

53

29

25

2E

"-2

,57

.29

57

79

61

/

OBLAT=O~LAT*DA I

A

08

LO

N=

O B

LO

N.P

" I

A

EP

LA

T=

E P

LA

T*P

A I

A

EP

LO

N=

E P

LO

N*P

A I

A

AA

=

EP

LA

T-n

8L

AT

88

=

. '5

* (

CO

S{

EP

LA

T)

+C

OS

( O

BL

A T

l l.

(E

PL

ON

-08

LO

N)

TH

ET

A=

-A

T A

N2

(F!~, A

") *

PA

IA

IF

( T

HE

TA

) 1

10

0,1

20

0,1

20

0

11

00

fH

ET

A=

TH

ET

A+

36

0.

12

00

D

IST

=R

R*S

QR

T(

.6.4

o*A

A+

88

*88

}

WR

ITE

(6,2

00

0)

TH

ET

A,D

IST

2

00

0

FO

PM

AT

(/lH

O,1

0X

,3:?

HS

EIS

MO

GR

AP

H

ST

AT

ION

T

O

EP

ICE

NT

ER

,

1 /l

HO

,20

X,1

2H

DIR

EC

TIO

N

,F1

5.7

, 9

H

(DE

GR

EE

),

/lH

,2

0X

,!2

HD

IST

AN

CE

,F

IS.7

,13

H

(KIL

O-M

ET

ER

ll

RE

TU

RN

EN

D

SU

9R

OU

T I

NE

S

H9

1(G

,N,E

,V,N

EV

,NV

EC

,IN

D,I

TR

I ,H

,D,N

L)

OR

CT

2

0

DR

C T

3

0

OR

CT

4

0

OR

C T

5

0

DR

CT

6

0

OR

CT

7

0

OR

CT

8

0

OR

CT

9

0

DR

CT

1

00

OR

CT

1

10

OR

CT

1

20

DR

CT

1

30

O

RC

T

14

-0

OR

CT

1

50

DR

CT

1

60

OR

CT

1

70

OR

CT

1

80

OR

CT

1

90

SH

BI

sH

el

10

5 H

91

2

0

C

19

6

F2

/TC

/SH

81

S

H1

31

3

0

cc

SH

B 1

4

0

c S

H!3

1

50

C

P

UR

PO

SE

S

HB

1

60

CA

LC

UL

AT

ION

O

F

EIG

EN

VA

LU

ES

A

ND

E

IGE

NV

EC

TO

RS

O

F

A

Q:E

AL

A

ND

SY

MM

ET

RIC

M

AT

RIX

.

C

US

AG

E

CA

LL

S

HB

I (G

,N,E

,V,N

EV

,NV

EC

, IN

D,

(T

RI,

H,P

,NL

)

DE

SC

R IP

T I

ON

O

F

TH

E

PA

RA

ME

TE

RS

G

TH

E"

IMP

UT

R

EA

L

SY

MM

ET

RIC

".

AT

PIX

,Af:

lRA

Y(N

L,N

L)

NL

D

IME

NS

ION

S

IZE

O

F

MA

IN

PR

OG

AM

M

AT

RIX

N

TH

E

D[M

EN

SIO

N

OF

D

AT

A

MA

TR

IX

E

TH

E

EIG

EN

VA

LU

ES

A

RE

C

CN

TA

INE

D

ON

~ETURN.

AR

RA

Y(N

VE

C),

R

EA

L

V

TH

E

EIG

EN

VE

CT

OR

S

AR

E

ST

OR

ED

O

N

RE

TU

RN

. I-

TH

C

ClL

U""

N

OF

V

C

OR

RE

SP

ON

S

TO

I-

TI-

-I

EIG

EN

VA

LU

E.

AR

RA

Y{N

L,N

VE

C).

R

EA

L

5 H

BI

70

SH~ 1

8

0

SH

B 1

9

0

SH

BI

10

0

SH

BI

11

0

SH

BI

12

0

SH

B1

1

30

SH

91

1

40

S

HB

I 1

50

SH

BI

16

0

SH

BI

17

0

SH

81

1

80

SH

AI

19

0

C

NV

EC

IF

N

VE

C=

O,O

NL

Y

EIG

EN

VA

LU

ES

A

RE

C

OM

PU

TE

D.

OT

HE

RW

ISE

N

VE

C

SH

81

2

00

C

E

IGE

NV

EC

TO

RS

A

PE

C

OM

PU

TE

D.

SH

81

2

10

INn

IF

IN

O=

1,

NE

V ALGEB~AICALLY

LA

RG

ES

T

EIG

EN

VA

LU

ES

A

RE

C

OM

PU

TE

D.

SH

BI

22

0

IF

IN 0

=2

, N

EV

A

LG

EB

RA

IC

AL

LY

S

MA

LL

ES

T

EI

GE

NV

AL

U=

S

AR

E

CO

MP

UT

ED

.SH

Bt

23

0

INT

EG

ER

S

HB

1

24

0

IT!;

!:I

IF

INP

UT

M

AT

RIX

IS

N

OT

T

RI-

DJA

GO

NA

L

ITQ

I=1

IF

INP

UT

M

AT

RIX

IS

T

RI-

DIA

GO

NA

L

ITP

I=2

SH

BI

25

0

SH

a1

2

60

H

H

(t,1

),I=

I, ••• ,

N

DIA

GO

NA

L

EL

E'-

4E

NT

S

OF

T

R!-

DIA

GO

NA

LIZ

ED

S

H8

12

70

~.AT>::!IX O~

RE

TU

RN

. S

H!3

1

28

0

H(I,2

),I=

I, ••• ,N

-!

CO

-DIA

GO

NA

L

":L

EM

EN

TS

O

F

TR

I-O

IAG

ON

AL

IZE

D

SH

B1

29

0

MA

TR

IX

ON

R

ET

UR

N.

SH

81

3

00

A

RR

AY

H

{N

L,2

),R

EA

L

SH~l

31

0

WA

RK

ING

S

TO

RA

GE

A~RAY

D{N

,5),

RE

AL

S

HB

I 3

20

SH

81

3

30

C

R

EM

AR

KS

S

HB

I 3

40

T

HE

O

RJG

INA

L

MA

TR

IX

IS

DE

ST

RO

YE

D.

SH~l

35

0

~VEC

MU

ST

N

OT

E

XC

EE

D

NE

V

SH

A!

36

0

IF

INP

UT

O

RIG

!NA

L

MA

TP

IX

IS

TR

I-D

IAG

ON

AL

,ST

OR

E

TH

E

DIA

GO

NA

L

5H

A!

37

0 E

L":

ME

NT

S

IN I-l(

I,I),I-=

l, •

•• ,N

, A

ND

T

HE

C

O-D

IAG

ON

AL

E

LE

ME

NT

S

IN

SH

B1

38

0

H(2

,2},r

=1

, •••• N-l~

AN

D

SE

T

ITR

I=2

W

HE

N

CA

LL

ING

T

HIs

S

U8

PQ

UT

INE

, S

HI'

31

39

0

TN

T

HIS

C

AS

f A

RR

AY

G

IS

1

~Y

1 IN

C

AL

LIN

G

PR

OG

RA

M.

SH

!31

4

00

C

S

UI3

RO

UT

INf.

A

ND

F

UN

CT

ION

S

U8

PR

OG

RA

t-IS

P

EQ

UIR

ED

!\lO

NE

C

"'lE

T H

'JD

DE

DU

CE

A

~.ATRIX

TO

T

PIC

IAG

ON

AL

F

OR

M

BY

H

OU

SE

I-lO

LD

ER

S

SH

91

4

10

SH

91

4

20

S

H'3

1

q.3

0

SH

8t

44

0

SH

el

45

0

SH

'31

4

60

C

OM

DV

T':

: E

IG::

:NV

AL

UE

S

"'IY

BISECTIO~ ~ETH(JD.

SH

BI

47

0

COMDUT~

EIG

EN

VE

CT

OR

S

BY

IN

VE

PS

F

ITE

QA

TIO

N.

SH

91

4

80

PA

LS

T'J

N

A"J

D

WIL

F,"

'IA

TH

EM

AT

ICA

L

"1E

TI-

lOD

S

FO

R

DIG

ITA

L

CO

MP

UT

ER

<;,

VO

L2

, S

HB

1

49

0

I-' ~ ~

Page 216: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

. 1

96

9

pD

9

4-1

5<

;.

DIM

EN

SIO

N

G(N

L,N

L),E

{N

L',

V(N

L,N

Ll,

H(N

L,2

l ... P

(N

L,5

l

RE

AL

L

LO

GIC

AL

F

IRS

T

IF

«N

L-N

l.L

T.O

>

Qe

TU

RN

IF

(N

.L

E.l'

h"=

TU

QN

T~I-DIAGONAL!ZATIQN

OF

G

IVE

N

MA

TR

IX

8Y ~CUSEHOLD~R~S ~ErH8D

=P

SS

=I.

01

::-2

4

NM

I =

N-l

GO

T

O

{1

0o

",2

00

),I

TR

I

10

0

!F(N

.Ea

.21

G

O

TO

9

NM

2=

N-2

DO

8

1=

1,N

M2

IPI

=1

+1

S5

=G

.

GK

=G

(Y

PI

t I>

DO

1

J=

IPl,

N

1 S

5=

SS

+G

(J,I

J*

G{

J,1

)

1F

t S

S.L

T.E

PS

S)

GO

T

O

89

S=

S

QR

T(S

S)

IF

(G

K.L

T.O

.O)

5=

-5

H

(I,I

}=

G(I,I

)

H(I,2

'=-5

T

T=

O.

TT

=1

.0E

+0

/( 5

'5+

GK

*5

) T

:GK

+S

G(lP

1,1

)=

T

P(J°1

,3)=

T

IP

2=

1+

2

DO

2

J=

IP

2,N

2

P'(

J,3

l=

G(J,I

)

DO

4

J=

lPI,N

T

=O

.0

DO

3

K=

Io

l,N

3 T

=T

+G

{-K

,JJ*

P(K

.'3

) 4

P(J,l

)=

T*

TT

'3S

=O

. D

O

5 K

.:IP

1,N

5 S

S=

5S

+P

{K

.,3

'*P

(K

,I)

SS

=O

.S€

+0

*5

S*

TT

0

06

K

=IP

l,N

6

P(K

,2,=

P{

1<

,1,-

SS

*P

(K

,3}

DO

""

J=

TP

l,N

0-0

7

K.:

J,N

G

(K

, J)=

G(

K, J) -

(O

f J

,2)*

P( K

,,) t

-P(

K,2

l-b

:0(

J,3

»

7 G

(J,K

)=

G(K

,J-l

GO

T

O

8

89

T

T=

O.O

<::

O

H (

1,1

) =

G(

I,

I)

1-i

(1,2

)=0

.0::

:0

8 G

n,I

)=

TT

9 H

{N"1

1,1

)=

G(N

"11

,N

Ml)

H(N

Ml,

2l=

G(N

'-'I

1,N

l H

(N

,l }

=G

( N

,N'

H(N

,21

=0

. 2

00

C

ON

TIN

UE

CA.LCUL~TION

OF

l=

IGE

NII

AL

UE

5

OF

T~ANSFOO"ED

"1A

TR

IX

av

BIN

Ao

y

CH

OP

PIN

G

TT

=A

BS

{H

C1

,1}

}+

AE

l5(f

-I(1

,2)

no

1

0

1=

2,"

'1

5=

A1

35

( H

( I

,1) }

+A

gS

t H

( I

,2

) )

+A

RS

{H (

1-1

,2)

10

T

T=

I.II

AX

I {T

T,S

)

10

T

T=

AM

AX

l{T

T,S

)

Df)

1

1

1 =

1 ,

N

11

P

(!,3

)=

H(!,2

)-b

:J-(I,2

)

ZERQ=1.0~-38

K=

1

IF

( IN

[).f

.fl.

2)

TT

=-T

"r

U=

TT

DC

1

2

l'=

l,N

'::V

1

2 E

{Il

=-T

T

13

L

=E

(Kl

EP

S=

1.0

E-7

*A

RS

(U)

14

T

=O

.5F

+0

*(L

+U

)

5H

'31

5

00

S

I-t'3

1

51

0

SH

'31

5

2C

SH~l

53

0

SH

91

5

4C

SH

'31

5

50

SH

'31

5

60

S

H9

1

57

0

SH

Rt

58

0

SH

91

5

90

5

Hf3

1

60

0

SH

13

1

61

0

SH

91

6

2C

SH

'31

6

30

SH

BI

64

0

SH

R 1

6

50

SH

al

66

0

SH

B 1

6

7 C

S

HB

1

63

0

SH

91

6

90

SH

91

7

00

SH

al

71

0

SH

91

7

20

S

H'3

1

7,0

SH

BI

74

0

SH

B 1

7

50

S

H'3

1

76

0

SH

'31

7

70

S

HB

1

78

0

SH

At

79

0

SH

'31

8

00

SH

8t

81

0

SH

'31

8

20

5

HB

I 8

30

SH

91

8

40

S

I-i'

31

8

50

SH

el

86

0

SH

'31

8

70

SH

B1

8

80

SH

91

8

90

SH

'31

9

00

SH

91

9

10

5H

91

9

20

SH

R1

9

30

SH

"31

9

40

5H

91

9

S{)

S

HB

1

Q6

0

SH

RI

97

0

SH

a!

98

0

5H

91

9

90

SH

91

10

0C

S}

-I9

11

01

0

SH

91

10

20

SH

'31

10

30

SH

81

10

40

SH

31

10

50

S

H9

11

06

0

5H

91

10

7C

5

1-1

91

10

80

S

H8

11

09

0

SH

'31

11

00

5H

91

11

10

SH

91

11

20

SH

RI1

13

0

SH

91

11

40

SH

i'3

11

1S

0

SH

91

11

60

SH

'31

11

7C

SH

91

11

90

SH

81

11

90

SH

91

12

00

SH

9t1

21

0

SH

91

12

2C

SH

91

12

30

SH

91

12

40

II=

AP

S{

U-T

).L

E.:

'":>

<:'

1

.C'R

.(A

,P5

{T

-L

l.L

':::

.r:P

5'}

G

'J

TJ

30

J=

f)

1=

1

16

S=

H(I,ll-T

19

P::(S.C:~.-Z~:::>""'l

J=

J+

l

II=

"(A

8S

1S

).L

::::

.L':

:QO

) G

S

TC

;0

1=

1 +

1

I<=

"C

I.G

T.N

l ;,

'!

T:J

2

1

S=

H"{

1,1

)_

T_

O( !-l, 3

11

'5

GO

T

n

lC!

20

t

=1

+2

II=

" (I

.L::

::.N

) .:;

r:.

TC

1

6

21

G

n

T,)

(2

3,2

2),

I"!'

)

22

J=

"J-J

23

IF

(J ...

r,<

:.K

) G

l T

'1

24

U=

;

Sf"

T

(1

14

24

L

=T

M

=M

INO

( J,N

Ev

)

Df]

2

f-[=

K.M

26

E

([)

=T

G

C

T!]

14

30

-=

:{l(

) =

T

K=

K+

l

Y!=

(K.L

I'C

.NE

Vl

GC

~'J

13

IF

(NV

:'"C

.<

:'1

.0)

~::::T'JON

C CALCUL6,~!C'J

01="

<

::1

GE

NV

::::

CT

'lC

S

o.y

WI?

LA

N[l

T1

:S

!NV

:::P

S:=

: IT

EP

AT

!O"J

~ co

IO

=1

23

45

f7

-'C

6

00

I=

l,N

V::

:C

9C

' 4

4

J=

l ,"

J

P fJ,

1 J

= O

. P

(J,2

1=

H{

J,Z

)

O(J,3

)=

H(J,1

)-E

'"{

Il

44

V

(J,

I )=

1 __

0E

+J

l=IG

:ST

=.

TR

U5

.

1)0

5

0

J =

1,"

1"1

1

PJ3

=P

(J,3

)

HJl=

H{

J,2

)

IF{A~~(OJ~.).LT.~"3S(HJ1)'

Gr'

T

C

46

S<

:;=

HJ1

1'°

J"3

P

(J,

A)=

O.

GC

T

f)

4 9

46

S

S=

PJ3

/HJ 1

D(J,4

1=

1.0

E+

0

P(J,3

)=

H(J,2

1

r=

O(J+

l,3

1

P(J+l.~ )c

:::P

(J,

21

p

rj,

2) -=

T

P(J,I

)=

O{

J+

l,?

}

0(J+

1 ,

2 )

=0

.

48

P

{J,5

)-=

S'S

P(J+

1,2

)=

P(J+

l,2

l-S

S*

P(J,1

1

Of

J+

1 ,

3 l

=P

( J

+l

,'3

I)-S

S""

P{

J ,2

)

:IF

(P

{J,3

).:

:::0

.0.1

P

{.1

,31

=1

.OD

-3

0

11="

(?(J,3

).t:C

.0

.l

D(J

,3)=

1.0

<=

"-:

?0

5

0

CO

NT

INU

::::

tF

(P

(N

,"3

).E

C.O

.) ~(I'\!,~)=1.0'f-::O

I!=(I.~O.1.il~.A8<;(::::(tl-E(1-1l).G=--.TT""I.-oE-61

GO

T

.J

54

D

O

52

.1

=1

,1\1

IQ

=Jq

*4

88

28

12

5

52

V

(J,I

l=l=

LO

AT

{ IR

)*0

.46

5e-6

1:?

<=

"-G

5

2

V{

J,I

I=C

AI\

!I=

"(O

.O)

54

C

AL

L

C'V

::::

RF

L (I! )

54

(C

NT

INU

=

DC

' f6

J

=1

,N

K

:t\

J-

J+1

~ =

V(

+<

,!

)

62

';

=0

.

5S

=0

. rF(K.LT.~)

5=

V(K

+l,

I)

I"""

(K.L

T.N

>.1

1)

SS

=V

{K

+2

,1)

V (

K ,

r

) = (

T -

S#

o (

K,

2: 1 -5

3 *

,0 (K

,1

)

1 I'~ (

K,

3)

CA

LL

CVEP~L(

I I)

1 I=

LE

C,V

AQ

(V{

+<

, I

1)

IF{!!.~!:.1).-;:;

T"

(-6

3>

-i.,

11

2'3

0

~H'3112f:,0

SH

31

12

70

<;H

31

12

80

';1

-19

11

29

0

S--

91

1.3

00

SH~llJIO

SH

91

13

20

S

H"'

I11

33

0

5H

91

1.3

40

SH

31

1.3

50

SH811~60

SH

81

1::

!70

S

H9

11

38

C

SH'311~qC

SH~11400

SH

91

14

1C

51

-<'3

11

42

0

51

-18

11

43

0

5H

91

14

40

5H

81

14

50

SH

g1

14

6.Q

SH

A1

14

70

5H

91

14

80

5H

'31

14

90

3H

81

15

00

SH

91

15

1 C

$

H9

11

52

0

5H

91

1S

.30

5H

91

15

41

)

SH

91

15

50

5H

g-"

15

6(:

SH

91

1S

70

5H

91

15

80

5H~ 1

15

90

SH

91

16

00

SH

91

16

1 C

5

H'3

11

62

0

5H

91

16

30

$-H

91

16

4(:

SH

81

16

50

SH~1166C

SH

91

16

70

$

H9

1I6

80

SH

91

16

9C

5

.... '3

11

7.0

0

5H

91

17

1C

5H

81

17

20

3H

ct1

17

30

S

H3

11

74

C

SH

13

11

75

0

SH~11760

S1

-I9

11

77

C

5 ....

91

17

80

SH

9 1

17

9 C

5

H9

11

80

0

5H

91

18

1C

5H~11820

SH

91

18

30

SH

81

18

40

$

H"'

l11

8s0

SH

9 1

18

6 C

SH

R1

18

70

5H

91

18

80

5H

91

18

QO

.

SH

91

19

00

5H

91

19

1c

$H

91

19

20

SH9119~0

SH"'~11940

5H

91

19

50

5H

91

19

60

SH

I'3

11

97

0

5H

'31

19

90

SH

91

1Q

9C

N o o

Page 217: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

DO

6

4-

M=

1 ,

N

64

-V(M,ll=V(M,II*l.O'=-~

T=

T*1

.0E

-5

GO

T

f'

I) 2

66

C

ON

TIN

UE

IF

(.N

OT

.FIR

ST

)

GO

T~

'4

FIR

ST

=.F

AL

SE

.

DO

""

0

J=

I,N

"A

l

JD

1=

J+

t

tF(P

(J,4

}.W

:::.

O.0

)

GO

T

r

6A

V (

J P

I, [

)

= V

( J

D 1

,

I I

-D

( J

,'

5 I * V

( J

, II

GO

T

O

""0

6

8

T =

V (

J,

r )

V (

J ,

r

) = V

( JD

1 ,

I

)

v (J P

I, I

)=

T-P

(J, 5

) ~V (

J P

I, 1

1

70

C

ON

TIN

UE

G0

T

O

54

74

-r;

C

TO

(4-00,500),In~t

4-0

0

!F

(N

.EO

.2)

G8

T

'J

saO

DO

7

8

J=

I,"'I

M2

T=

O.

K=

N-J-l

,-,\

=1

(+1

00

76

K

K=

M,"

J

""6

T

=T

+G

(KK

,KI*

V(K

K,I

) "'

'''T

'!<

G(I

( ,K

)

DO

7

8

!(I(

="A

,N

78

V

(K

K,I

l=V

(K

K,I

l-

T*G

(K

K,K

)

50

0

T=

O.

DC"

B

O

J=

I,N

S5

=A

8S

( V

( J, [

I)

80

1

""(

.:;;

S.G

T.T

) T

=5

S

00

9

1

J=

l,N

81

V

(.)

,f)=

V(J,I

)/T

T=

O.

')0

8

2

.)=

l,N

82

T

=T

+V

( J,I I

*V

( J

,I)

T=

SQ

RT

(T)

DO

6

00

J=

I,N

60

0

V(J,I)=

V(J,I)/T

0F

:TU

RN

=:N

D

5U~PQUTINE

PL

TT

NG

(PS,DT,PP,NCAS=:,LINEl,LIN~2,

XX

,YY

,TE

ND

,TH

T,I

"-IO

EX

)

[)IM

EN

SIO

N

P<

:;("

3, ~),PT«,

11

,OP

(3

, II,xx(

l',Y

Y(

1),

LIN

!::1

(1

),L

IN

':2

( 1

)

DIM

EN

SIO

N

GIV

EN

(5)

,SP

E'C

S("

30

)

DIM

"::N

S[O

"-l

"T

T2

(2

},Y

Y2

{2

)

RE

:AL

~A.X

IF( I

ND

Ex.E

Q .

99

<;)

so

T

O

90

00

[=IF

IX{T

EN

I)/S

.+

.99

)

TT

3=

FL

OA

T(II

*S

.

LIN

=:1

(5 )

=0

LIN

=2

(7

)-=

0

"'A

X=

O.

1)0

1

20

0

l=l,

NC

AS

E

I"'"

("IA

X-P

S(l,

!»)

11

00

,12

00

,12

00

11

00

"I

AX

=P

S(

1. I)

12

00

C

ON

T!N

U':

'"

C

TO

Q

!::T

Eq

MIN

E

LA

VO

UT

~F

Y-A

XIS

SC~Lc

GIv

EN

(1 )=~AX

GIV

!::N

(2)=

0.

GIV

f:"N

(3)=

3.

GIV

EN

(4)=

2.

c:; I

V::

:"l (5

)=

1.

CA

LL

F

AG

LIY

(G

IVE

N,S

PfC

S)

OM

"i

=5

::>

:::C

5(

5)

I)M

5

=S

D(C

S(

f-)

,)M

A

=S

P::

::C

S{

9)

f)M

I0=

5P

EC

S(t

O)

SH

91

20

00

SH

'l1

20

10

5H

Q1

20

2C

SH

'l!2

03

0

SH

91

20

40

SH

'31

20

50

S

Hq

,12

06

0

SH

31

20

7C

'31

-1'<

!20

'30

51

-19

12

09

0

SH

'H2

10

0

SH

91

21

10

SH~1212C

SH

91

21

30

SH

91

21

40

<;H

A 1

21

'50

SH

91

21

60

SW

31

21

""C

<;H

91

21

PO

51

-19

12

19

0

SH

'31

22

00

SW

11

22

10

SH

91

22

2C

SH

91

22

30

SH

91

22

40

SH

31

22

50

5

H=

=1

.12

26

0

SH

'31

22

7G

SH

91

22

80

S

I-I9

12

29

0

SH

31

23

00

SH

F3

12

31

0

SH

'31

23

2 C

S

H9

1;:

;33

0

'3H

B1

23

40

SH

91

23

50

$H

81

23

60

S

H9

12

37

0

SH

.c:'

\12

38

0

5H

91

23

90

S

H'3

1 2

40

0

Sl-

iF3

12

41

0

DL

TG

PL

TG

1

0

PL

TG

2

0

PL

TG

3

C

PL

T G

4

0

::>

LT

G

50

PL

TG

6

C

PL

TG

7

0

PL

TG

8

0

PL

T G

g

O

PL

TG

la

C

PL

TG

1

10

DL

iG

12

0

PL

TG

1

30

PL

TG

1

40

DL

TG

1

5C

PL

TG

1

60

DL

TG

1

70

DL

TG

1

8C

PL

TG

1

90

DL

TG

2

0e

DL

TG

2

10

PL

TG

2

20

PL

TG

2

30

DL

TG

2

40

PL

TG

2

50

DL

TG

2

60

PL

TG

2

70

:; {

V"'

N «

) =

.!L.

-:

:AL

L

FA

GL

!Y (SIV""N,S~FC<::J

IF(S

P""

CC

;(

"')

.r,f

".r

-....

p

) G

O

..,-.....

I~J0

s",

!Crs

(

'5)

'" ~)

'"

:= S

D::

:C<

::(

~)::[)~

F

S'"

''''(

O''{

"J=~'J,

q

5':

:o=

rC

( 1

0)

::['

'.~1

0

10

:;0

0

Grv

:'"N

{"')

::S

.

')'"

5

=5

D"'(

S{

":

0)

,\~

6=

c-u

;::C

S{

":)

')M

9

=O

";->

::C

S(

PI

,)M

IO=

C::

:>':

CS

(!O

J

CA

LL

""

A";

LIY

('";rV~"l.SD,:rO")

t,,-

{sP

,,-S

( p;).~T_r~

9)

GO

T

"'\

1

"':0

0

~DI7(<::{

5)=,)\~

~

s::>~rS{

6)=~''''

f

~::>C'C':;;(

;))

;::"

)\'

"

S;::

:l'::C

<::(

1

0 J

"',

,'.\

1 0

16

00

C'JN~ I

"IU

:::

~::>~c

C:(

1

):;

1.

<;D

=::

CC

:(

21

=1

. T

L=

_ 2

""

Tr.{

TT

"'.

l.::

.15

.)

TL

=.5

S

'=':

::C

::(

..,. )=

T-'

3*-L

C-L

'<=

CS

( q

) =

--'-

'/5

. +

.OC

!

TF

{TL

_::

:'i •

• ~)

:":=

::rS

( 9

)=:.

*C:D

lC--

r:S

( 0

)

$':I

=C

<::

( 1

1 )

::1

_

C:':

IC'

C <

::{ 1

2)

= 9~.

PE

CT

AN

GU

LA

C: G~~l

PL

C"-

-r"C

; "'

:;::

-S

HA

:>::

F

UN

r-I'

JN

(l1

l.L

S

OL

I L

I

("P

Ee

.:;;

)

SO~C"'(

0)=

"'-

-'+

.C:)

1

IF(T

L.=

::r:

•• '»

) 5

::>

"'C

S(

Q)=

2.*

Sp

r,-S

{

0)

CA

LL

A

XL

ILI

(S::

>:;

CS

)

S::

>"'

CS

( 3)="'-'-~

~P':C S

'(

4) =

0.

5::

1:=

:C:;

( O'=TT~/5.+.00!

IF(T

L.=

::r:

•• S

.l

sn

l="C

S(

Q)=

2.=

"=S

PE

CS

{ 9

)

SP

F.C

S(

1"')

=

.15

S::>~CC-(l~)=

.1::

5

P"'

:(O

"( 1

9)

=0

.

Cfl

'CC

S(

21

1=

1_

SP~C<::~?l;.)::::

.1

<:=

PE

Cc:

( 2

R):

:::1

_

CA

LL

N

,)f)

LIR

(S

PE

CS

)

5::

>E

C5

{ 2

0)

=0

.

<::0~CS(261=

.1

CA

LL

N

O!1

LtL

(S

PE

CS

)

SP

EC

S( 13)="'L'lAT(NC~S!::)'"

.00

1

SD

!:'C

S(

14

)=

1.

S'::>

I'OC

C: (1

::-)

=1

.

PL

OT

S

'1A

P<

;:

FU

N(T

!CN

D~

22

00

J=

I,'"

f)'j

2

10

0 :=I.NCAS~

21

00

Y

Y(i)=

PS

(J,n

22

00

C

AL

L

PL

T?

(J,s

r€

r:s

,XX

,YY

)

SP

EC

S (

17

) =

.1

e

50

'OC

S(1

8)=

.1

8

CA

LL

TITL~q

(llH

-'-

IME

(S~C.),SPECS)

CA

.LL

T

ITL

FL

(

5H

SIG

MA

,SD~CSI

R<::CTANGULA~

G::

<r,

) P

LC

TT

lf\C

F

rq

TH~TA.

SP

!';C

S(

2)=<~~

5:l

<::

C<

;( 81=1.~

S::

l:::

CS

( 1

0)-

:04

.

CA

LL

G

I")L

ILI

(SP

E(S

)

5::l

!:'C

S(

10

):::

: 1

2.

rA

LL

A

XL

TL

! (S

PE

CS

)

5:::0

F. C

S (

5

)=

~O.

CD~CS(

61

;::-

CO

.

SD

EC

5(

10

)=

4.

O"O

FC

<O

:(1

7)=

.1

5

S::>ECS(l~)=

.1'5

S::

><

:;C

:"(2

6)=

.1

S.::l;;:"CS(2~)=

0 ..

CA

LL

N

<)f

)LIL

(S

PE

CS

)

PL

'JT

(T

Hf'

TA

)

::>

LT

G

2'3

0

LJL

TG

2

90

PL

TG

3

00

jLT

G

31

C

PL

TG

3

20

D

LT

G ,)0

DL

TG

3

40

PL

TG

'3

50

D

L T

G

36

C

PL

TG

3

""0

D

LT

G

38

0

PL

TG

::

no

PL

TG

4

00

::>L

TG

4

1 C

P

LT

G

42

0

DL

TG

4

10

::>

LT

G

44

C

PL

TG

4

50

::>

LT

G

46

0

PL

TG

4

70

PL

TG

4

80

PL

TG

4

9C

DL

TG

5

00

::>

LT

G

51

0

PL

TG

5~O

"'L

TG

5

30

PL

TG

5

40

::>

LT

G

55

0

OL

TS

5

60

DL

TG

5

7C

PL

TG

5

80

P

L T

G

5Q

C

::>

LT

G

6Q

O

oL

TG

6

10

PL

TG

te

O

;:JL

T(;

. 6

30

;:JL

TG

6

4C

°L

TG

6

50

PL

TG

6

60

::>

LT

G

67

C

PL

TG

6

80

oL

TG

6

9C

::>

LT

G

70

0

PL

TG

7

10

::

>L

TG

7

20

PL

TG

"7

30

PL

TG

7

40

PL

TG

7

50

PL

TG

7

60

P

L T

G

77

C

PL

TG

7

80

PL

TG

7

90

OL

TG

fl

OC

PL

TG

1

'31

0

::>L

TG

8

2C

::lL

TG

8

30

P

LT

G

84

C

DL

TG

8

50

PL

TG

8

60

°L

TG

8

70

;::l

LT

G

88

0

::>

LT

G

89

C

PL

TG

9

00

"'L

TG

9

1

C

PL

TG

9

20

PL

TG

9

30

PL

TG

9

40

PL

:-G

9

;;0

DL

TG

9

60

::>

LT

G

97

C

PL

TG

9

80

P

L T

G

99

C

DL

TG

I00

0

PL

TG

I01

0

DL

TG

I02

0

tv

o f-'

Page 218: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

,no

3

15

0

J=

1,3

1)0

3

10

0

I=I,

NC

AS

E'

31

00

yy{[)=

PT

(J,Il

::!l

S0

C

AL

L

PL

T?:

(J

,SP

EC

StX

X.Y

Y)

TH

FT

A=

TH

T

32

00

11

="(

TH

!=T

A.L

E .-9

0.)

T

HfT

A=

TI-

'ET

A+

1 9

0.

I~(THETA.GT.

90

.1 TH~TA=TH~TA-180.

IF({T

HE

TA

,lE

,-9

0.)

.OQ

.{T

HF

TA

.GT

, <

;l0

.)}

GO

T

O 3~OO

TT

2(

1 )=

TT

3

TT

2(2

)=O

. Y

Y2

(1):

::T

I-IE

TA

YV

2(2

)=T

HE

TA

I)A

SH

=

.:2

5

PA

C'E

=

.1

SP

EC

S(

13

)=

2.0

01

CA

LL

!)

LL

ILI

(TT

2,Y

Y2

,DA

SH

,SD

AC

E,S

PE

CS

)

SP

EC

S(1

7}

=

,Ie

SO

EC

S(1

8)=

..

18

CA

LL

T

! T

lEL

('

5H

TH

ET

A, SP~C51

RE

CT

AN

GU

LA

R G~ID

Ple

TT

ING

F

OP

P

HI

SP

EC

Sf

2) =

5.

7

SP~CS(

8)=

.9

S

P!:

:CS

(10

)=3

.

CA

LL

G

DL

IL I

(S

P':

:CS

)

SP

EC

S(

10

)=

9.

CA

LL

A

XL

ILI

(SP

EC

S)

SD

EC

s[

51

=9

0.

SP

EC

S (

6

) =

O

.

SP

FC

S(

10

)=

3.

,SP

EC

S(1

7J=

.1

::

SP

EC

S(1

8)=

.1

5

SP

EC

s(2

6'=

.1

C

AL

L

NO

DL

IL

(SP

EC

S)

PL

OT

(P

HI)

SP

EC

S{

13

)=F

LO

AT

(I\I

('.A

SE

)+

.00

1

I)r:

; 4

20

0

J=

1,3

')0

4

10

0

I=!,

N':

AS

E

41

00

Y

Y(I)=

PP

{J,l

l

42

00

C

AL

L

PL

T2

(J

,SP

EC

S,X

X,Y

Y)

SP

l';

CS

( 1

-,)

= .

1 e

S

PE

CS

(18

1=

.1

8

CA

LL

T

IT

lEL

(3

HP

HI,

SP

E'C

S)

SP

FC

S<

9

1=

T"I'

"3

+.0

01

IF

(T

L.€

Q •• 5

1

SP

EC

S(

9)=

2.*

SP

EC

S{

9)

SP

EC

S(

25

)=

.0

CA

LL

S

AX

LIT

(S

PE

CS

) S

PF

:CS

( g

) =TT~/5. +

. 0

01

I~{TL.Ea •• 5

)

SP

EC

S(

9)=

2.*

SP

EC

S(

9)

SP

:=:C

S(1

71

=

.15

S

PF

CS

(IS

)=

,1

5

SP

EC

S(2

5)=

.2

S

PE

CS

( 2~)=1,

CA

LL

"'

JDD

LIT

(S

PE

CS

)

SP

EC

S(

22

) =

1.

SP

EC

S(

23

)=

7.4

RU

L::

=1

. C~LL

TIT

lEG

(QULE,LINE2,Sc~CS'

SP

EC

S(!7

)=

.1

8

SP

EC

S(

!A

l=

.IE

S

PE

CS

( 2

3)=

7.7

CA

LL

T

ITL

=G

(q

UL

E,l

IN

El,

SP

EC

S)

CA

LL

NXTF~~

(SP

EC

S)

QE

TU

ON

90

00

W

!:(l

T::

:(6

,91

00

)

91

00

~ G

RM

AT

(

1 H

O, 2

0X

, 1

9 H

PL

OT

TE

'q

TE

RM

I NA.'~:). 1

~PEC5( 1

21

=9

Q.

CA

LL

G

OS

::N

O

(SP

:::C

S 1

P~TURN

EN

D

PL

TG

I03

0

PL

TG

I04

0

PL

TG

I05

C

PL

TG

I06

0

PL

TG

I07

C

PL

TG

I0E

'O

PL

'GI0

90

OL

TG

I10

C

PL

TG

I11

0

PL

TG

11

2C

PL

TG

11

30

P

LT

G1

14

0

DL

TG

11

5C

P

LT

G1

16

0

PL

-S

l17

0

PL

TG

llR

C

DL

TG

11

90

DL

TG

12

00

PL

Tr,

12

10

PL

TG

12

20

PL

TG

12

30

PL

TG

12

40

PL

TG

12

50

D

L T

(;1

26

0

DL

TG

12

70

DL

TG

12

80

oL

TG

12

90

PL

TG

13

00

;::!L

TG

l.3

1 0

PL

TG

13

20

:::>

LT

G1

33

0

PL

TG

13

40

PL

TG

13

50

P

LT

G1

36

0

DL

TG

13

7Q

PL

"!"G

13

8C

PL

,G1

39

0

PL

-:-G

14

00

PL

TG

14

10

PL

TG

14

20

PL

TG

14

3C

P

LT

G1

44

0

PL

TG

14

50

P

LT

G1

46

C

PL

TG

14

70

PL

TG

l41

3C

PL

TG

14

90

PL

TG

15

00

PL

TG

15

10

PL

TG

15

20

PL

TG

lS3

C

PL

TG

15

40

P

LT

G1

55

0

PL

TG

15

'='C

PL

TG

15

70

P

LT

GlS

e-O

P

LT

G1

59

0

PL

TG

16

0C

P

LT

G1

61

0

PL

TG

16

20

P

LT

Glc

30

P

LT

G1

64

0

OL

TG

16

SC

PL

TG

16

60

DL

TG

16

70

P

LT

Gle

f30

PL

TG

16

QO

;:

>L

TG

17

0C

PL

TG

17

10

c;U

o,C

C",

ITIr

..;;:

" P

L-?

(:t

S.x

x,V

V)

D!~:;NSI.:J·:

:(1

) ,

xx

(}

) ,

YY

(!

I

(",0

T

(1 (100C,?f)C(),~OOO),I

10

00

C

hL

L

SL

LIL

! (X

X,Y

Y,S

) r;

c

-r>

')

00

0

20

00

.'

).0

.5'-

1

:=

.1

sr:

Tr;

lo

CO

O

""'0

00

')

.0.<

::,.

. =

,0

4

40

00

3CAC~=

.0 '3

C

AL

L

r:'L

LIL

I {XX~YY,2AS'-',crAC~.S)

-=;0

00

~F.TUR":

':"-1

')

OL

T

PL

"

PC

T

PL

~

PL

T

PL

T

PL

~

PL

T

DL

-:-

OL

T

PL

T

PL

T

0 1

0

20

3

C

40

'0

'0

70

g

C

9C

1

00

I1

C

t-J o t-J

Page 219: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

PR

OG

RA

M

PG

"'l

1

(IN

PU

T ,

t]U

TP

UT

.PV

NC

,""

TAPF5=INPUT,TAP~6=OUTPUT,TAP~7=PUNCH,

TA

Pet

,TA

PE

qq

)

. C

OM

ME

NT

S

UB

RO

UT

INE

S,

RE

CU

IRE

D

C

SU~ROUT I

NE

D

RC

TQ

N

SU

BR

OU

TIN

E

FF

TR

SU

BR

OU

T I

t>.IE

S

HB

I

SU

BR

OU

TIN

E

FP

L T

NG

cc

DIM

EN

SIO

N

CO

RT

IL(2

00

) ,I

CO

S:;

( 1

00

' ,F

CO

Q(l

OO

) D

IME

NS

IOt>

.l

OA

TA

(3,1

50

0)

DI"

'EN

SIO

N

AC

QS

H3

,10

2S

) ,B

StN

E(3

,10

25

)

DIM

EN

StO

N G{3,3),E(3)t\l(:~,:n,H{ ~.2) ,P

(:3

,5)

DIM

EN

SIO

N

C0

"1

P(3

) ,T

HT

(6)

D!M

EN

SIO

N

PS

HA

.PE

(3,

60

},P

TH

ET

A{

3,

60

),P

PH

I

(3

,6

0),

P'F"

'"

( 6

0),

PV

Y

( 6

0),L

A9

EL

l(5

),L

Af'l

EL

2(7

,

DIM

EN

SIO

N

Al

(1

02

51

,81

(1

02

5) ,

WO

RK

{ 2

04

8),

S (5

11

)

INT

EG

ER

C

OR

TIL

E

QU

IVA

LE

NC

E

(AC

OS

l(l

),C

QR

TIL

(l

)1

, (A

C'J

SI(2

01

),

ICI]

R( I')

,

(o\C

OC

;Y(3

01

),F

CO

R(I

)

CC

"q

F

RE

QU

EN

CY

L

EN

GT

H

OF

W

IND

OW

F

RE

QU

EN

CY

, SK

IP

PE

D

TE

RM

INA

TE

FREQU~NCY

CC

"'2

CC

"'

3

CC

C

AL

L

SE

TF

XS

(1

,25

00

,10

0)

10

00

R

EA

O(S

,10

1)

NS

KJP

,Ml,

"'2

,"'3

,JP

L3

,IP

R3

IF

(N

SK

JP

.EQ

.99

9)

GO

T

O

99

00

1

01

F

OR

MA

T{

5IB

)

10

2 FOR~AT(

8A

I0)

11

1

FO

RM

AT

(10

II0

)

11

3 FO~MA"'(10FI0.l)

IF(N

SK

IP.E

O.O

) G

O

TO

I~OO

'-!S

KIP

=3

*N

SK

IP

CA

LL

S

KIP

F

(SL

TA

PE

1,N

SK

IP,3

H::

OF

)

12

00

W

RIT

E(6

,20

0}

C

C

RE

AO

ING

M

AG

NE

TIC

F

tLE

S'E

TS

00

2

00

0

J=

1,3

~Eo\D(1, 1

02

)

CO

RT

IL

14

00

W

RIT

E(6

,21

0)

J,(

CQ

RT

IL

(I),I

=1

,8),(

CO

RT

IL

tI),I

=4

1,5

6),

1 (C

OR

TIL

(I),I

=If:9

,17

6'

Q'=

M)(I,1

11

)

ICC

q

CO

MP

(J)=

FL

OA

T(

ICO

q(2

)

KA

ZU

=IC

OR

(5

3)

~EAO (

1 ,

11

3)

FC

OR

IF{

KA

ZU

.G

T.1

50

0}

K

AZ

U=

15

00

RE

AO

tl,!

13

)

(O

.4.T

o\(

J,I

),I

=I,K

AlU

)

CA

LL

S

K I

PF

(5

L T

AP

E 1

,

1 ,3

HE

OF

1

20

00

C

ON

TIN

UE

D

O

21

00

1

=1

,4

21

00

L

AB

EL

l (I )

=C

OC

<T

lL(

1+

40

)

DO

2

11

0

1=

1,6

21

10

L

AS

EL

2(

I) =

CO

RT

IL{

1+

48

)

CC

P

RIN

T

OU

T

INF

OR

Mo

\TIO

NS

C

F

EP

ICE

NT

ER

A

ND

S

TA

TIO

N

cc

cc

WR

IT

E(6

,22

0)

(IC

OR

(I),I

=1

6,2

Il

WP

ITE

(6,2

30

)

(IC

OR

{ I

},I

=1

0,1

5)

EP

LA

T=

FL

OA

T(

ICO

R{

16

) )+

FL

CA

T(tC

JC

«1

7)1

/50

. 1

+F

LO

.4.T

( IC

OR

(18

) '1

'36

00

. E

PL

ON

=A

E"S

(F

LO

AT

( I

CO

R(

19

) )

) +

FL

CA

T (

tC

ntH

20

) )

1'6

0.

1 +

FL

("IA

T(

ICO

P{

21

1 )

/36

00

.

Oet

...A

T=

FL

OA

T (

I

leO

R(

10

)

}+

FL

OA

T(I

CO

R{

11

1)/

60

. +

FL

('A

T (

ICD

R (

12

) )

/3

60

0.

08

LO

N=

A8

S (

FL

Oo

\T(

ICO

P(

13

) }

) +

FL

OA

T(

I("!

')R

(1

4) }

/50

.

1 +

FL

CA

T(IC

OQ

(1

5))/3

60

0.

20

0

FO

P"'A

T(l

Hl)

2

10

F

OR

MA

,T(I

HO

,1

3H

RE

CO

RD

N

O.

=

,12

, 1

'11

"I,5

X,8

AI0

, I

/IH

,

5X

,8A

I0

,/IH

5

X,8

AI0

,1'1

1-I,

5X

,9o

\I0

)

22

0

FC

lP"IA

T(/

IHO

,IO

X,1

2H

EP

ICE

NT

ER

,:

'I1

4,8

H

N

(LA

T),

1 /l

H

,22

X,

3I4

,8H

"

(LO

)

23

0

FO

R"'A

T(I

'IH

,1

0X

,12

HS

TA

TIO

N

,31

4,8

1-1

N

(L

AT

l,

1 /I

H

,22

X,

3I4

,SH

'III

' (L

ON

»

CA

LL

D

RC

T(l

1\

(CS

LA

T,O

E'L

ON

,EP

LA

T,r

::P

LO

N,T

HE

TA

)

NF

F T

=2

04

8

DF

Q.E

Q-:

:l./

( .0

2*

FL

CA

T(

NF

FT

»

PM

ll

PM

11

10

o

MIl

2

0

PM

11

3

0

PM

11

4

C

PM

U

50

P

Mll

5

0

PM

ll

7 C

P

"Il

l 8

0

PlJ

lll

qC

PM

ll

10

0

0"'1

1

11

0

PM

Il

12

0

PM

ll

13

0

PM

ll

14

0

PM

11

1

50

PM

ll

16

0

P~Hl

17

C

oM

ll

18

0

PM

ll

19

0

PM

11

2

00

PM

l1

21

0

PM

ll

22

0

PM

ll

23

0

OM

ll

24

0

PM

ll

25

0

PM

ll

26

0

0"1

11

2

7C

PM

II

28

C

PM

ll

29

0

PM

ll

30

0

PM

11

3

10

PM

II

32

C

PM

11

3

30

P

Mll

3

40

PM

Il

35

0

PM

I1

36

0

PM

ll

37

C

PM

ll

38

0

PM

l1

39

0

PM

ll

40

C

oM

ll

41

0

PM

ll

42

0

PM

II

4::

!0

PM

ll

44

0

PM

ll

45

0

PM

ll

46

0

PM

ll

47

0

PM

ll

48

0

PM

ll

49

0

;:lM

11

5

00

PM

II

51

0

PM

ll

52

0

PM

II

53

0

oM

ll

54

0

PM

ll

55

0

PM

ll

56

0

PM

II

57

C

PM

II

58

0

PM

I1

59

0

PM

11

eO

O

PM

11

5

10

PM

ll

62

0

oM

ll

63

0

PM

lt

64

0

PM

ll

65

0

PM

ll

66

0

PM

ll

67

C

OM

II

68

0

oM

ll

69

0

Plr

llli

7

00

P

Mll

7

10

oM

ll

72

0

PM

ll

73

0

PM

ll

74

0

KD

l =

KA

?U

+l

KP

2.,

-"J:

:=T

/?+

1

TN'~I =

1 IJ

:«C

("1

\4P

(1).

GT

.CG

'-Ir

'(Z

)l.A

NI)

.(C

OM

P{

ll-C

OM

P(2

).L

T.

qO

.1»

IN

:)1

=2

t 1"

"(

(CO

'" P

( 2

) •

GT

.CC~P( Il )

.A

"rD

. (C

OM

O{

21

-C

CM

P{

I) •

GT

.26~.9)

1"1

01

= 2

r "1

02

=1

IF

(.C

!]M

P(3

).E

().S

OO

.l

IND

2=

2

TF

(CO

MP

(3).

E0

.f-'

J0

.)

IND

2=

3

IF

(IN

D2

..E

Q.I

)

WR

ITF

(t,:

:'3

00

)

F 1=

IO"L

OA

T{

Mil

*DFQ~f1

F2

=J:L

OA

T(M

2l*

I)F

PE

Q

:= 3

=F

L 'J

AT

( M

1)

"'C

:FP

FO

WR

IT::

:(6

,30

50

1

:=1

,F2

,'::

-"

10

50

FCO"'AT(/11-i0,?5~

LE

NG

Tt-

-C

F

"'[

ND

O"

1 /1

1-1

,~:::H

[NT

EP

VA

L,

SK

IPP

ED

/lH

,?~t--TERMINATE

LE

NG

TH

GC

T

O

(3

11

0,3

13

01

,IN

f'1

"11

10

')

0

31

?O

l=

l.I(A

lU

xx

=

r.A

,TA

(l,

I)

GA

TA

(I.I

)=-I

')A

-;.A

(2,!

)

31

20

D

AT

A.(

?,

!)-:

:-X

X

GO

T

':'

31

50

31~0

1)0

3

14

0

Y=

l,'<

AZ

U

D A

T A

( 1

, 1

1 =

-D

AT

to. (

1 ,

I

)

31

40

I')

AT

A(?.I

)=

-D

AT

A(2

,!)

31

50

G

O

TO

(3

20

0,?

lfO

,"'I

20

0),I

Nf"2

:311

60

r)O

3

17

0

1=

I,K

AZ

U

31

70

DA

TA

(:,

I)=

-'J

AT

A(3

.I)

32

00

C

CN

TJ!

\Ju

E

33

00

,::

-Oq'

-lA

...... (

IH

,4

0H

**

**

*

VE

RT

ICA

L CO'-1~ONENT

r'lO

3

80

0

J=

1.3

f)

r]

3'3

00

I=

I,K

A.Z

U

3~OO

W'J

QK

(ll =

DA

TA

( J, I

)

DO

)6

00

!=

KD

I.N

FF

T

36

00

\I

IOQ

K(I

I =

0.

,FI5

.7

,IO

H

(l./

SE

C.)

,

,~15.7,10,",

(1

./S

EC

.',

.F1

<::

.7,1

0H

(1

./S

EC

.))

(VE

RT

.)

****

*)

CA

LL

F

FT

D

(WO

RK

, A

I.

91

,NF

FT

,I,S

, .0

2)

DO

3

70

0

1,:

,1,1

(02

AC

JS

I(J,I

)=

AI( I)

37

00

A

SIN

E(.

J.I

)=

f1I(

I)

31

30

0

CO

NT

I!\J

UE

NCASE={~~-~1/2tI'M2

+

I

"'0

q

OO

o

Yo

::1

,"'C

AS

f

~1=(J-1l*"'2+

I N

2=

(1-ll*M2+~1

1)0

4

'30

0

J=

I,3

1

)0

45

00

K

=I,

KD

2

Al

(K)

=0

.

45

00

8

1(K

)=

0.

DO

4

60

0

K-:

:Nl,

N2

A

I(K

)=A

("O

S[(

J,K

)

46

00

'3

1{

K)=

AS

I"lE

(J,K

) C

AL

L ~FTo

(WO

RK

,

r)n

4

70

0

K=

I,I(

A7

U

47

00

D

AT

A(J

, K

)=

WO

RK

{K

)

49

00

C

ON

TIN

U':

S

UN

Il =

0.

SU

M2

=O

.

SU"'I~=O.

SU

M4

=0

.

5U

M5

=0

. S

UM

6=

O.

1)0

5

10

0

J=

I,K

AlU

XX

l=D

AT

A{

I,Jl

XX

2=

DA

.... A

(2

,Jl

XX

3=

DA

TA

( ~,J)

SU

I>1

1=

SU

MI

+X

Xl ~XXI

SU

\12

= 5

U \1

2 +

XX

I *' X

X2

SU

M3

=S

Ut.

.13

+x

xt*

XX

:'!

5U

M4

=S

Ut.

.14

+x

X2

*X

X2

sUM5=SUM5+XX2*XX~

51

00

S

UM

6=

SU

"'If

,+X

X"'

*X

X:?

X

X=

I.I'

FL

O.A

T (

Kh

ZU

)

G (

1 ,

Il

= S

UM

1 >Ie

X

X

G[2

,ll=

SU

t.'2

*X

X

G(~.I)=SUM1*XX

A1

. I3

I,N

FF

T,2

,S,

.02

)

PM

ll

75

0

PM

11

7

60

P

MI!

7

'70

P"H

1

78

0

PM

l17

90

P

Mlt

8

00

Plo

Ill

81

0

PM

l1

82

0

PM

ll

83

0

PM

11

8

40

o

Mll

'3

50

PM

l1

86

C

PM

lt

87

0

PM

ll

88

0

PM

ll

89

0

"''''

'11

9

00

::

>p

,\ 1

1

91

0

D"'

111

92

0

PM

Il

93

0

oM

11

9

40

PM

11

9

50

P

Ml1

9

60

O

MII

9

70

oM

11

9

80

PM

ll

99

0

PM

l11

00

0

PM

11

10

1 C

P

MII1

02

0

PM

I1

I0

30

0

"1

11

10

40

0"1

11

10

50

OM

I11

06

0

oM

11

10

70

PM

I11

08

0

PM

11

10

90

PM

I11

10

0

01

>1

11

11

10

P

M 1

11

12

0

PM

II1

13

0

P"'l

11

11

40

P

Mll

11

50

PM

11

11

60

DM

11

11

70

PM

11

11

80

0"1

11

11

90

PM

II1

20

0

oM

11

12

IO

PM

11

12

20

PM

11

12

30

:>

"1

11

12

40

PM

11

12

50

PM

11

12

6C

o

M1

11

27

0

PM

ll1

28

0

PM

11

12

90

P

M1

11

30

0

PM

11

13

10

P

M1

11

32

0

PM

l11

33

C

PM

11

13

40

PM

11

13

50

O

M 1

11

3(:

0

oM

11

13

70

PM

11

13

80

o

M1

11

3Q

O

PM

11

14

.00

D

M1

11

41

0

PM

11

14

20

oM

11

14

30

PI>

11

11

44

0

PM

11

14

50

P

MI1

14

60

PM

11

14

70

0

"1

11

14

80

PM

11

14

90

N o w

Page 220: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

cc

G(1,2)=~UM2*XX

G(2

. 2)=SU~4*XX

G(3

,2)=

SU

MS

*X

X

G(1,~)='5UM3*XX

G{2

,31

=sU

M5

*xX

G(

3,

3) =

SUM

6*

xX

FF:'I=.~~"'"LOAT{N1+N~-1

I:¢

:OF

RE

t1

CA

L L

S

H8

1

(G,"

3, E

, V

, 3

.21

, 1

, 1

,H ,

P ,

3)

cc

DA

TA

P

AIA

/5

7.2

95

79

/

TH

T (

1 ,

= AT

AN

2(

V (

2, 1

', V

( 1

,1 1

,*

PA

r R

.

TH

T (

2) =

AT

AN

2(V

(2

,2) .

V(l ,2

) )

*P

AI8

T1-1

T (3

) =

AT

AN

2(

V (

2 t

'3

1 ,

V(

1 ,3

1) *

PA

! 8

TH

T(4

)=A

CO

S

TH

T(

5)

=A

C'J

S

V(

3,

1) l*PA!~

VC~,2')*D~I'3

TH

T(6

1=

AC

OS

(

V(3,~')"'PAIR.

GO

T

O

(7

30

0,7

40

0),I

N0

1

7~00

11

=2

GO

TC

" 7

50

0

74

00

1

1=

1

75

00

T

HT

( 11=CO~P( 1

1 )

-T

HT

( 1

)

THT(2)=CC~D(!1}-THT(2)

TH

T(

3)

=C

OM

P(

I 1

) -p

"n

{ 3

.)

D1']

7

52

0

J=

1,6

S

UM

1 =

TH

T(

J)

75

10

IF

( S

UM

l.L

E.-

90

.1

SU

Ml=

SU

M1

.... 1

80

.

IF{

SU

Ml.

GT

. 9

0.)

S

UM

1=

SU

Ml-

lBO

.

IF

«S

UM

1.L

E.-

qO

.l.(

1R

.(S

UM

1.G

T.

90

.))

GO

T

C

75

10

75

20

T

HT

(J)=

SU

MI

DO

7

54

0

J=

4,6

7

54

0

IF{T

HT

(J).L

T.

0.1

T

HT

{J)=

-T

t-tT

(J)

DO

7

56

0

J=

I, 3

7

50

0 E

(J)=

5I)

RT

{E

(J})

IF

( tP

P3

)

77

00

,77

00

,75

99

75

99

W

RIT

E(6

,76

00

1

FF

3,E

(1

',

T ...

. T(l

),T

HT

(4

) ,

(V

(1

9J),J

=1

, 3

),

1 "Jl,

F{2

},T

HT

(2

) ,

TH

T(S

) ,(V

{2

,JI ,

J=

1,3

),

"J 2

, !

: (

3 )

, T

.... T

( 3

1 ,

T H

T (

6 )

, (

V (

~ •

J

1 ,

J =

1 ,

31

76

00

F

OR

MA

T(l

HO

,5X

,F7

.3,6

H

(t-l

l.),

5X

,15

HM

AJG

P

1 5

X,O

P2

"'"1

0.:

"',9

H

(DE

GR

':':

E),

':'-

X,O

P3

FIO

.5,

/1H

,5

)(,1

7

,ex

,5

X,1

5H

lf\,

TE

O""

ED

IAT

>::

=

5

X,O

P2

Fl0

.3,9

X

,5X

,OP

34

="I

O.'

3,

/lH

,S

X,I

""

,6X

,5

X.1

5H

MI"

J'.

JP

5X,OP2Fl0.~,9X

"77

00

0

0

80

00

J

=1

,3

P$

HA

OE

( J, I

) =

E(

J)

PT

l-iE

TA

(J,I

,=T

HT

{J'

PP

HI

(J.I

)=

T ...

. T(J+

-3

)

80

00

C

ON

TIN

UE

( !) =<="~ 3

90

00

C

DN

TIN

UF

:

1F

t IP

L3

1

91

00

,G1

00

,Q0

01

q

aO

l 1

)0

9

06

0

J=

I,3

,)A

TA

C

HK

/7

5./

SU~ 1

=P

TH

ET

A( J,

1)

Dn

qO~O

[=2

,"JC

AS

E

SU

'-'I

2=

PT

HE

TA

(J, Il

14

="(

AB

S(S

UM

2'-

CrK

, 9

07

0,9

01

0,9

01

0

90

10

IF

( SU~1*SUM2'

G0

20

,90

70

,90

70

90

20

P

TH

ET

A(J

,II=

-SIG

N(1

90

.,S

UM

2}+

-SV

M2

90

70

S

UM

1=

PT

I-i,

=T

A{J

,I)

90

AO

C

ON

T I

NU

E

,SX

,OP

3F

I0.5

1

F1

3.

4,

F 1

3.4

,

F 1

3.4

,

CA

LL

FOL~"JG

{I=

SH

AP

E",

PT

HE

TA

,o

Pt-

'I

• !\

leA

S":

,L

AB

EL

I,L

AB

EL

?,

QI0

0

GO

T

O

10

00

99

00

1

CA

LL

F

PL

TN

G

WH

ITE

(6,9

99

0)

,PV

Y

,F?

,TH

ET

A,N

SK

!P)

(~SH A

PE

, P

T H

ET

A,

DP

H I

,NCAS~ ,

LA

BE

L 1

, L

A8

r:L

2,

PF

F

, p

yy

,""'7

,TH

ET

A,N

SK

IP'

99

90

F

OR

MA

T(

IHO

,20

X,2

4t-

tJQ

R Nr~"1ALLY

Tf"

QM

I N

AT

EC

.l

ST

OP

E!\

:O

DM

11

15

00

P

M1

11

51

0

;:>

'-'I

11

15

2C

PM

11

15

30

:n

1l1

15

4C

;:

:>"'

11

11

55

0

0"1

11

15

60

P

'-'l1

11

57

C

P""

'11

15

80

PM

11

15

90

;)M 1

11

60

C

P""

'11

16

10

D

"'I1

11

62

C

::>

M1

11

6::

'O

0"1

11

16

40

~"J.l11i:5C

P"1

11

16

60

P

"11

11

67

C

D"'I

11

16

8 0

;)"'1

11

16

90

o

M1

11

70

C

PM

11

1"7

10

"''''1

11

17

20

P

M1

11

73

0

PM

11

17

40

oM

11

17

50

0"'

11

11

76

0

OM

11

17

7C

oM

11

17

80

oM

11

17

90

0""

"11

18

00

PM

11

18

1 0

P

M1

11

82

0

::>

M1

11

83

0

P""

11

18

40

o

M1

11

85

C

oM

11

18

60

o

M1

11

87

C

P ...

. 1

11

1'3

BO

PM

11

18

,]0

P'-

11

11

90

0

oM

11

19

10

0'"1

1 1

19

20

;:I""1119~0

PM

11

19

40

P"'I

11

19

50

0

"'1

11

19

60

0"1

11

19

70

PM

11

19

80

PM

11

19

qO

DM

11

20

00

PM

11

20

10

0""1

12

02

0

PM

11

20

30

;:

:>"'

11

12

04

0

0"-

11

12

05

0

PM

l12

06

0

PM

11

20

7C

0"'

11

12

08

0

P""

11

20

90

0"'

11

12

10

0

0""

11

21

10

;:I

M1

12

12

c

PM

11

21

30

;)M

11

21

40

P'-

11

1.<

:15

0

PM

11

21

60

PM

11

21

7C

PMl121~O

oM

11

21

QO

DM

l12

20

C

SU"~R:lUT1".""

'l';

":T

n"

{("

"ll

A.1

. :"3LC1I\...~OLA.T,E"PL"""-.:,T"""':,,,TAl

:-c

DA

n!U

"';

r"1"

" E

AQ

.......

....

(=~UTVAL::r-..T

"':;;,

...... :

:=-~

<="J

.")A

TA

. "~/f-::71.

:;>

21--

=/

nA

TA

:::>AIA,PA,I"'/l."7~:=?2::<-::C::;:C'-2,

=:"

7. ?q=~7a6!

I

'l~LAT="""!LA""*""A

J\

J"lL

')ro

..:=

2 "'I

L ::-'J*~

t..

A

":"D

LA

T=

-:;;

:>L

AT

:;:"

">,o

. A

=DL...,N=:~LQ""*....,ll.

~

AA

=

: PLAT-~'-1

=. s:t

;: (c

r,:-

(=P

L A

T)

+-C

GS

(("

<L

A~

J I,q

=C

Lfl

N-C

'''l

LG

N)

TH

!':T

A=

-f..

,TA

N2

(""

;::.

AA

) f<~Ar

"1.

I"'(

T"H

FT

A.l

1100,1.200,~200

11

00

TH~~A.=THIC'"~At''')O.

12

00

""

IST

-;o

J:'(

;*S

')::

;T(

o":I

A"'

AA

,+P

Qt<

f:"r

:o.)

I'I'

QIT

':("

-.2

00

01

T

!-,c

-A,f

""!5

-T

~()OO F!")::>~AT(/IHO,1C::X~':"?HSF!:'."'DC:~A0l-<

ST

olT

F""

TO

~.::nC::"NTE=<,

1 /lHO,2JX.'2~~DTq;::CTr~'1

.;::

-15

....

. ,

QH

(r"):::r;~=r:),

/1I-

1,2

CX

,12

1-'

1""

'1S

":"A

."-!

C""

.F

l::'

."7

.13

t1 (KIL'J-"'~7E=<»)

ql=

TU

PN

-:N

f"J

SU'7Q"IJTI·~:::

F>~!=-

(A

.AC

rS

,""<

;I"J.N

, p

,r:,

c:.

,DT

I

CC

l="URr:::~ TOA~5FJ::;>~, ~SWARr

T~~";SF('r.M

AN

')

INV

:::I

:;S

:::

TR

AN

SF

CQ

M

(to.

..l

SA

'-'D

LF

"S

IN ~I\1E-f"",J""AIN

AC

C'S

A~4

(N

/2"'1

)

8S

tN

<\Q

4

("-.

1/2

+-1

)

FO

UP

!::-

q

,...

.C".

:~c

IC!!

:NT

S

FO

Ur:

IE

R

CO

f"I"

'C I

e I

!:N

.....

S

~

! 4

NU

"""P

cl:

' ("

'F

F.F

. T

., SH~ULD

"l=:

?o

w::

;Q

c:=-

2.

11\1

') 1

4

I "J

Df

X

.'.:

:').

1

FC-!.>IA~O

TR

A"J

SF

,]P

M

."'').2

IN

VE

=<

SE

T

C A

N S

1=

00

o,\

AP

4

(N

/4-1

1

wC

CI(

ING

A;:<=~

DT

::(4

T

He

. C

G".

lST

AN

T

SA

.... D

LI

.... G

T

l"":

:::

I1'.

JC

Q::

:"'I

FN

-

rn'-

'=::

NS

ICN

A

(1

1,A

(O

S(lI

,1"lS

IN(I)

.S(1

)

"'=

"'J/

2

Mf:

l =

1JI+

l ':

;0

rr'

(1

00

0, ~001), 1

Nf""

~C

cOW

AO

r) TCAN5cO~""AT!~N

10

-)0

C

AL

L

F"'-

2

(A

.,A

("O

S,8

SfN

.N.5

)

')""

1

10

0

! =

1,\

1

A.:

:'JS

(!) =

AC

OS

( r

}'*

D ....

.

11

00

Cl~PHJ)

=B

SI"

J( I

J*C

T

AC

JS

(""

';::

'1)

="l

S I

"J (

1

)

'3S

IN

(1

) =

0.

95

tN(M

P t

) -

:oJ.

RFT~JQI\:

::C

IN

VE

qS

"':

..... O

:AN

S"'

")P

'-'

20

0·'

) N

P2

-=N

+2

X

X =

1 •

/ ( cL

'1 A

"'"

( >..:

) "

" f'"

T

1

11.(

11

=

Aer"

'S(

11

:¢:X

X

A('~P1)=

AC

05

(\1

Pl)

:¢:x

x

l)fl

21

00

I

=2

,"

J =

N:>

?-

r A

( I

) =

=

21

00

A

(J) =

(A

C'J

<::

:{Il

+'3

5IN

(I)J

*X

X

(ACOs{II-~SlN(I))r.xx

CA

LL

",">-T~

(A.,

<\(

"O

S,O

ST

N,N

,S)

A(

1l=

AC

'lS

(1

1

A(~Pl '=

':'5

!1\j

(1)

""""

?

30

1

-=2

, '"l

J=

'\I:

:>/-

A.{

Jl=

.A

CS

{I )

+R

S!"'(

I

1

2"3

0:)

A

U)=

A

'lS

(!1

-'3

5t"

-J(II

O<:"~U R

N

':"-.:

""

op

C'

C):

::C

'"

1 0

D~CT

20

:)'=<

.CT

)0

f)O

( T

4

0

JP

e";

,,

::;0

l)P

C"T

6

0

')O

C T

7

C

DQ

CT

A

0

'Joe

";,,

9 C

')o

C T

1

00

I)Qr:~

11

Q

f)~r: T

1

20

JPe

";,,

1

::"0

Di:

<C

T

14

C

'JO

CT

1

5 C

Dl=

<C

T

15

0

DG

e"T

1

70

O::

(CT

1

80

O

PC

T

19

C

I=F

T::

>

F"'

"TP

. r:

-F ~?

FF

7R

>-F

TR

o 1

0

2C

3

0

40

'0

60

7

C

FF

Tf'

<

flO

FF

""'o

9

0

FF

..... '

" 1

00

F

FT

i=(

11

0

12

C

FF

TO

1

::'0

FF

TP

1

40

FF

Tt(

1

50

<="F

TP

. 1

60

FF

Tf;

1

7 C

FF

TG

1~0

cF

TR

1

90

I"'F

TR

2

0e

FF

TG

2

10

22

C

FF

TO

2

30

F

FT

P

24

0

I=F

TQ

2

5C

FF

TP

2

60

27

0

FF

TR

2

80

Zg

O

"'F

To

. 3

00

~FTp.

31

0

32

C

33

0

FF

TQ

3

40

FF

Tr:

; 3

50

FF

Tr:

; 3

60

37

C

3R

O

FF

TR

3

00

;::F

TO

4

0C

tv

o ..,.

Page 221: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

SU

BR

OU

TIN

E

FF

T2

(A

.Al,

8-1

,N,S

)

C

18

9

D6

I'T

C/F

TR

F

AS

T

FO

UR

IER

T

PA

NS

FO

RM

AT

ION

DIM

EN

SIO

N

14.(

11 ,

AI

(1

) ,

81

(1

) ,

Sf

1)

DA

TA

""

/0

I'

IF(N

-8

)

1000,5,~

5 IF

(M-N

) 1

0,3

0,1

0

10

M

=N

N

4=

N ....

. 4-1

FL

N=

FL

OA

T (

N)

DO

2

0

1=

1,"

14

S(

1 }=

51

N(

FL

OA

T(

I ) *6

. 28"318~3""'FLNl

20

C

ON

TIN

UE

30

N

l=N

/2

IF(N

.NE

.Nl*

2)

GO

'T

O

12

00

Nll =

"11

1'2

DO

1

00

1

=I,

Nl

11

= I+

Nl

A1

(I)

=A

(I)

+,6

,(Il

)

81

(1

)=

A(1

1-A

(1

1)

10

0

CO

NT

INU

E

DO

1

10

1

=1

,"1

1

10

1 =

I +

N 1

A

(1

1 =

Al (I )

A

(!O

ll=

Bl(

I)

11

0

CO

NT

INU

E

"12

="1

1

00

12

0

K=

I,3

0

N2

1=

N2

1'2

IF(N

2.N

E.N

21

*2

)

GO

T

O

12

00

DO

1

30

1

=1

,"1

21

1

1=

1 +

"'1

21

12

= 1

+N

l1

10

1 =

1+

"11

11

1=

11

+"1

1

Al(

t)=

A(I)+

A(ll)

8lf

J

)=11

. (I l-A

( II)

AU

12

'=A

( 1

01

) 8

1(1

2)=

11

.(1

11

)

IFfK.~a.l)

GO

T

O

13

0

13

=1

1

6=

"11

+1

JE

NI)

=N

II-N

21

DO

1

40

J=

N2

1,J

EN

D,N

21

13

=I3

+N

2

13

1 =

13

+"1

1

14

=1

3+

"12

1

14

1=

14

+N

l

15

=J+

t

I 6

=1

6-N

21

Jl=

NI1

-J

A.0~ I

ME

=A

( 1

4)*S

(JI

)-1

1.(

14

1)

*S

( J)

BP

R I

ME

'=A

( 1

41

'*S

( J

1)

+,6,

(1

4) *

S(

J 1

At(

I5

)=

A{ 13)+APRI~F.

9t(

I 5

}=A

( 1

31

) +

8P

P I

ME

A

I( T

6)=

A(

13

)-A

PP

IME

~ t

( I

6)=

-A

(1

31

) +

'3P

R I

ME

14

0

CO

NT

INU

E

13

0

CO

"lT

I N

UE

'" IF

(N

21

.EO

.I) PETU~N

00

1

50

1

=1

,"1

1

10

1 =

I +

"1 1

A

(Il

=A

l (I)

A (

10

1)

=8

1 (t)

15

0

CO

NT

INU

E

N2

=N

21

1

20

C

ON

TII

\jU

E

RE

TU

RN

10

00

w

QT

TE

(6,1

10

0)

11

00

FOq~AT(15H CSU8~.

FF

T

pE

T U

RN

12

00

W

Q!T

E(6

,13

00

)

13

00

~ORMA"'( 1

5H

(SUE'~.

F"F

T

RE

TU

QN

EN

D

) I'

2

4H

N

M

US

T

BE

L

AR

GE

R

TH

AN

7

,

)/3

3H

N

M

US

T

BE

A

P

OS

ITIV

E

PO

WE

R

OF

2

,

no

F

n

10

F

TR

2

0

F T

t;!

30

F T

R

40

FT~

50

FP:~

60

F

TR

7

C

FT

R

80

FT

R

90

F

TR

1

00

F T

R

11

0

FT

R

12

0

FT

R

13

0

F T

R

14

0

FT

R

15

0

FT~

15

0

FT

P

17

0

FT

R

18

0

F T

R

19

C

FTf~

20

0

FT

R

21

0

FT

R

22

0

FT

R

23

0

F T

o

24

0

FT

R

25

0

FT

R

26

0

FT

R

27

C

FT

R

28

0

F T

R

29

0

FT

R

:30

0

FT

Q

~10

FT

R

32

0

FT

Q

33

0

FT

R

34

0

FT

O

35

0

FT

R

36

0

F T

o

37

0

FT~

38

0

F T

R

3Q

O

FT

O

40

0

FT

R

41

0

FT

R

42

C

FT

R

43

0

"0

F

TQ

4

50

FT

R

46

0

F'T

Q

47

0

FT

R

48

0

F T

R

49

0

FT

R

~OO

FT

Q

51

0

F T

R

52

C

FT

R

53

0

F T

R

54

0

FT

R

55

0

F T

R

56

C

FT

R

57

0

FT

R

58

0

F T

R

59

0

FT

R

60

0

FT

R

61

0

F T

R

62

0

FT

R

63

0

FT

t;!

64

C

FT'~

65

0

F T

R

66

0

FT

Q

67

C

FT<~

68

0

F T

t;!

69

C

F T

o

70

0

FT

P

71

0

FT

R

72

0

F n

73

0

SIj

"lR

OU

'IN

E

SH

'" 1

(G

,N, f. v

, N

EV

, N

VE

C,

IN!)

, I

TP

I ,H

,;::

> ,N

L)

SH

"31

a

SH

81

1

0

SH

::31

2

0

C

19

6

F2

1'T

Cl'S

H8

1

cc

SH

R 1

3

0

SH

81

4

0

c

PIj

QO

I) ':

OE

CA

LC

UL

AT

Y'J

N

')F

::

:IG

EN

VA

LU

!:S

A

ND

EIG~'>IVE("TORS

'JF

A

r~AL

AN

n

SY~M~TPIC

MA

TR

!X.

US

AG

E

CA

LL

S

,,8

1 (

G ,

N,E

,V,N

EV

,NV

EC

, 1

J\J1

), ITJ:;I,~,P,NL)

I)E

SC

RY

PT

trlN

O

F

Ty<

:;

o,.o.~A""E'"TERS

G

TH

::

IMP

UT

P

EA

L

$Y

"''''

ET

C"T

C

,I,I

AT

RT

X,.

6,Q

PA

Y(N

L,N

L)

"IL

D

!'-I

!:'''

Jsro

''J

Sf?

=:

Dc:

" M

AIN

O

RC

1GA

.""

MA

.Tt:

.'YX

TH

!::

DIN

lFt>

.:S

IOr-

..;

OF

D

AT

A "'AT~IX

THJC

:: €

ISE

NV

AL

U':

:S

AR

CO

NT

AIN

€O

O

"J

RE

TU

RN

. A

I:(R

A.y

{NV

:::C

),

!:lE

AL

TH~

EIG

IC':

NV

EC

TO

RS

A

J:;E

S

T("

qE

D

ot,j

'=<

=:T

UR

N.

I-T

H

CO

LU

'oI"

I O

F

If

cO

>;o

q=

:sp

o"l

S

TO

I-T

....

EIG

::N

VA

LU

E.

AR

qA

Y(N

L,N

VE

C).

R

EA

L

NV~:

IF

NV

EC

=O

,ON

LY

,:

IGfN

VA

LU

C"S

A

RE

C

Ot.

llP

UT

ED

. ::

JT

HE

RW

I5E

N

VE

C

SH

e 1

5

0

SH

B!

60

S

H"3

1

70

SH

B 1

8

C

SH

81

9

0

SH~1

10

0

SH

e 1

1

10

SH

"31

1

20

SH

el

13

C

SH

f'H

1

40

$

HA

I 1

50

SH

el

16

0

SH

BI

17

0

SH

81

1

80

SH

>'!

1 1

90

SH

Al

20

0

f!G~NVECiOq5

6.R

E

CC

'MP

UT

E'1

. S

HB

I 2

10

IN

O

IF

YN

D=

I,

N:;:

:V

Au

:;n

'1t;

:.6

,IC

AL

lY

LA

RG

ES

T

EIG

€N

VA

LU

ES

A

RE

C

JM

PU

TE

D.

SH

BI

22

0

IF

INC

=2

. N

":V

A

LG

E8

QA

ICA

LL

Y

SM

AL

LE

ST

E

IG':

:NV

AL

U::

:S

AP

E

C0

"'1

PU

TE

D.S

H6

1

23

0

INT

EG

ER

S

I-lB

l 2

40

tT

qy

J~

IND

U""

MAT'~IX

1:5'

N

OT

T

PI-

DIA

GO

NA

L

ITR

I=l

SH

91

2

50

IF

INP

UT

>

,lA

TR

IX

IS

TP

I-D

r,llG

ON

AL

IT

RI=

2

H(I,I),I-=

I, ••• ,

N

DIA

GO

NA

L =LE~EI\:TS

IJF

T

RY

-OIA

GO

NA

LIl

E:l

"'t.

TR

IX

I'JI

\j

F=

="'

UP

N.

He

r ,2

) ,

1=

1 ,

••• ,N

-l

CO

-DIA

GO

NA

L

EL

1:M

EN

.... S

JF

rQ

I-D

IAG

IJN

AL

IZE

:O

MA

TR

IX

ON

R

ET

UR

N.

AP

qA

Y

HC

NL

,2)

,RE

AL

W

AR

KIN

G STORA~F

AO

PA

Y

P{N

,S),

Q<

:;A

L

SH

e 1

2

60

SH

BI

27

0

SH

'H

28

C

SH

61

2

90

SH

>'ll

3

00

SH

91

~1 0

SH

'31

3

20

S

HIH

3

3C

C R~""'AqKC;

SH

BI

34

0

TH

'::

QF

'Ir,

INA

L

"lA

TR

IX

15

D

ES

TR

OY

ED

. S

HF

ll 3~0

NV

EC

M

US

T

I\jO

'" EXC~=1)

NE

V

SH

BI

36

0

IF

INP

UT

O

RIG

INA

L

MA

TP

IX

IS

Tq

-I")

TA

GC

I\A

L,S

TO

>::

::

TH

E

DIA

GO

NA

L

SH

'31

3

70

EL<::~EN"'S

IN H

{I,l),I=

l, •

••• N

, A

ND

TH~ CO-DIASO~AL

EL

!::N

lEr.

.JT

S

IN

SH

a1

38

0

H(2,~),r=I, •

•• ,

N-l,

A

J\:D

S

ET

IT

PI=

2

WH

EN

C

AL

LIN

G

TH

IS

SU

9P

['1

UT

INf,

S

H8

13

90

IN

T

HIS

C

AS

E AP~AY

G

IS

1 >

'ly

1 IN

C

AL

LII

\jG

P

G:'

)GR

AN

I.

SH

131

40

0

SU

BR

OU

TIN

E'"

A

N!)

F

UN

CT

ION

SUBPi:;10C,PA~'3 R~()UIOED

SH

91

4

10

S

H13

1 4

20

NO

Ne

: S

H9

1

43

0

SH

91

4

40

ME

TH

0D

S

H"'

ll

45

0

OF

OU

CE

A

M

AT

RIX

T

O

TR

IDIA

GO

NA

L

FO

QN

I 8

Y

HO

US

j::H

OL

DE

PS

CO~PUTE

'::I

GE

1\,

IVA

LU

ES

R

Y flISt:CTtO~

""E

TH

OD

.

SH

131

46

C

SH

81

4

70

CC~OUTE

E I

GE

"JV

'=C

TO

RS

9

Y

INV

ER

S=

IT

ER

AT

ION

. S

HB

I 4

80

R

AL

ST

C'N

A

ND

w

tLF

.'II

AT

t-<

:;M

AT

ICA

L NlET~OI)S

F('

R

DIG

ITA

L

C0>

.1D

UT

ER

S,V

OL

2,

SH

91

4

90

19

68

p

o

94

-15

<;.

SH~1

50

0

SH

81

5

10

S

HB

I 5

20

)IM

EN

SIO

N

G(N

L,N

L),E

(N

L),V

(N

L,N

L) ,

H(N

L,2

1 ,P(NL,~l

I:(E

AL

L

LO

GIC

AL

F

IP

ST

IF

C

{"JL

-N).

LT

.O)

~ETUR"I

IF{N

.LE

.l)

RE

TU

RN

T

Rt-

DIA

GO

NA

LIl

AT

tOI\

j O

F

GIV

EN

~ATeIX

I3Y

HOUS'=HQLD,=Q~S

NlE

TH

OD

EP

SS

=1

.O"O

-24

N

tJl =

N-l

GO

T

O

(1

00

,20

0),I

TP

I

10

0

tF(N

.EI'

).?

)

GG

T

n

9

"111

2 =

"1-2

[It:

"3

! =

1.

"J'-1

2

I P

l =

t +1

S

5=

0.

GK

=G

( IP

l, 1

)

1)0

1

J=

IP

I ,"

l

1 S

S=

S5

+G

CJ,I

l*G

(J,I

l IF

(SS

.LT

.EO

SS

I G

O

TO

8

9

S=

S

Qe

T(S

S)

fF(G

K.L

T.O

.O)

S=

-S

H (

1,1

)=

G( I, I

)

H(t

,2)=

-S

SH

Bl

53

0

SH

91

5

40

S

H13

1 5

50

S

Hg

l 5

60

SH

91

5

70

SH

131

58

0

SH

91

5

90

S

HF

31

60

0

SH

61

6

10

S

H8

1

62

0

SH

BI

63

C

SH

91

6

4C

SH

91

6

50

SH

":ll

66

C

SH

91

6

70

SW

H

68

0

SH

91

6

90

SH

91

7

00

51-1

81

71

0

SH

'31

7

20

SH

61

7

30

SH

81

7

4C

N o lJl

Page 222: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

TT

=O

.

TT

= 1

. O

E+

O /( S

S"G

K*S

) T

=G

K+

S

"i(

11

31

.,1

)=

T

P{

IP

I ,3

)=

;"

IP2

=!+

2

1)0

2

J=

IP

2.N

2 P

tJ,3

'=G

(J,

11

D

O

4.

J=

IPl.

,N

T=

O .0

00

3

K=

IP-l

tN

3 'f

=T

"G

(K

,Jl*

D(K

,3}

4. D

(J ,

.1) =

T"'* T

T

55

= O

. 0

05

K

=Y

P1

,N

5 S

S=

SS

+D

(K,3

J#

P{K

.IJ

SS

=0

.5E

"0

*S

5*T

T

DO

6

K=

IPl,

N

6 P

(K

,·2

}=

P(K

.ll-

S5

#P

(K

,31

no

7 J=

IP

1,

N

DO

7

K=

J,N

G(K

, J

)=G

{ K

, J

)-(P

{ J

. 2

) *

P(

K,

:'I,

,,P

( K

.2) #

?( J

,:)'

7 G

tJ,K

)=

G(K

,J)

GC

T

I""I

"I

89

TT=O.O~O

H(I,I)=

G(I,II

H(I

,21

=O

.OE

O

B

G(I,I

'=T

T

9 l-

HN

Io1

1,1

)=

G{N

MI

,NM

1)

H(N

M1

,2'=

G(N

Io1

1,N

)

,1·H

N,1

)=

G(N

,Nl

H(N

,2)=

o.

20

0

ce

NT

tNU~

CA

LC

UL

AT

IO"'

l O

F

EIG

,,:"

NV

AL

UE

S

CF

T

RA

NS

FO

RM

ED

M

AT

R!x

9

Y BINA~Y

CH

Cp

oIN

G

TT=A~S(H{1,1»+ABS(H{I,2»

r)C

1

0

I=2

,N

S=

A8

S(

H(

I ,1

,

) +

AS

S(

H (

I ,

2) )

+A

AS

(H

( I

-1

,2

),

10

T

T=

MA

XI

(TT

, S

1

10

T

T=

A"1

AX

l(T

T,S

)

r)O

1

1

I=

I,N

11

D

(l,

3'=

H(I,2

)*t-<

I,2

)

lEQ

O=

I.0

E-"

38

1<=

1 1

Ft

IND

.EO

.2)

TT

=-T

T

V=

TT

00

1

2

1=

1 ,

NE

V

12

E

n )

=-T

T

13

L

=E

(K}

EP

5=

1. O

E-7

* A

B S

(U

)

14.

T=

O.5

E+

0*(L

+U

) IF

«A

E'S

(U

-T

).L

E.F

OS

).O

P.(

A8

S(T

-L

).L

::.E

OS

»

GO

T

O

30

J=O

1=

1

16

5

=H

( Y

,1 )

-T

19

IF

(S.G

=:.

-ZE

RO

) J=

J+

l YF(_g~{5).LE.l=:QO)

GO

T

n

20

I =

I +1

IF

(I.

GT

.N)

GO

T

O

21

S

=H

{I,

1 )

-T

-P

( I-l,3

)/S

GO

T

O

19

20

1

=1

+2

IF

{

{.L

E.N

}

GO

T

O

ll")

21

G

O

TO

(2

3,2

2).

lND

2

2

J=

N-

J

23

I

F{

J .G

E.K

)

GO

T

O

24

U=

T

GO

T

I)

14

2

4

L=

T

"1=

MrN

O(

J,

r-JE

V)

')0

2

6

I=K

,M

26

E

(I) =

... G

O

TO

1

4

30

!:

:(K

)=T

K=

K"1

Y

F{

K.L

!:.N

::V

) G

G

TO

1

:3

SH~1

75

C

5H

03

1

76

0

SH~ 1

7

7C

S H

91

7

80

5H

61

7

9C

SH

BI

BO

O

5H

91

8

10

5

H'1

1

.~<!c

SH

el

81

0

5H

Cl.

l 8

4C

SH

81

8

50

SH

RI

86

0

SH

91

8

7e

5H

91

B

fJO

SH

91

8

90

<:;

H9

1

90

0

SH

I"I.

I 9

10

5H

"'.1

9

2C

S

H'3

1

9:;

:0

5H

="1

9

40

SH~ 1

9~0

SH

l:!l

9

60

SH

91

9

7C

5H

81

9

80

SH

gl

99

0

5H

91

10

00

5H

91

10

10

SH

Cl.

11

02

C

5H

91

10

30

5H

91

10

40

5H

'31

10

50

SH

91

10

60

S

H':

III0

7C

SH

31

10

80

5H

91

10

90

SH

91

11

0C

SH

91

11

10

5

H'3

11

12

0

SH

91

11

30

51

-1'3

11

14

0

5H

91

11

50

SH

91

11

60

SH

91

11

7C

sH

'31

11

J3

C

SH

BI1

19

0

SH

91

12

0C

S

HB

11

21

0

5H

91

12

20

SH

Bl1

23

0

5H

91

12

40

SH

91

12

50

SH

'31

12

60

5H

'31

12

70

SH

31

12

80

5H

91

12

90

SH

91

13

00

S

HB

l13

10

5H

B1

13

20

5

H9

11

3::

0

5H

'31

13

40

5H

'31

13

50

5

H9

11

36

0

SH

91

13

70

S

H9

11

3g

0

5H

,11

39

0

5H

91

14

00

5

H8

11

41

0

SH

91

14

20

SH

91

14

30

SH

'31

14

-40

5

H9

11

45

0

SH

BI1

4f,

O

5H

B1

14

70

5H

91

14

80

SH

91

14

90

co

TF

{"JV

FC

.ES

.O)

c-::::~u;;.'"

CA

LC

I)L

AT

I('''

J :J

;=

::::!G~"'V':::("T("t:;'S

flY

W

1fL

_"JC

T:t

.5

l":V

=::

;:C

;:::

: !r

=;:

)AT

I""'

N

TO

= 1

2""

>4

=","

'" ,)

"6

00

I=

l,N

V"'C

fl

'"")

4

4

J::

1 ,~

o (J.

1 )=

J.

'"){

J. 2

) =

H{

J. ~)

D (

J.") =

H(

J,

1 )-

::(

I )

44

V

{J,I

)::

:1 ..

0E"+~

'::"IQ5T=.T~U':.

'10

~o J=l,~Ml

OJ3

=D

{J,3

)

HJ1=H(J,~)

!1=

(AC

l.S

{DJ"l

.L-.

A=

'O.(

1--

!jll)

(;0

T

'l

45

SS=YJ1/~J

..,

o (J.

4)-

= o

. G

C

... r,

4

~

46

S

S=

DJ'/

i-IJl

::> (

J. t

z.)

= 1

. !'

)<;'.

+<

}

::> (

J. '

t) =

H(

J.

21

T

=O

(J+

1.3

)

D(J+l.3I=C(J.~1

:> (J.

21

= T

P{

J.l

)=

O(J+

l.2

1

0(J+

1,.

"'1

=0

.

45

=

>( J.

'" 1

= S

S

0(J+

l.2

)=

O{

J+

-l,

21

-5

5"'O

{J.!

)

::>

(J+

l.3

1=

D( J+-l.::n-c:~*p( J.2

)

IF

(P

(J,:I.E

f:.O

.)

0(J.:

:1=

1.0

"-"3

0

!F

(0

{J.:

I).=

:<1

.0.)

P

(J.:

)=

1.0

O:-

30

'30

CO

"lT

YN

U':

:

rF

(p

(N

."'t

).F

.J.O

.)

::>

(N."

"")=

1.0

=:-

"""C

IF

(!.

=:(

).I

.Jc .• _8'O.(~( 1

)-=

:( I

-l»

.r;<

::.T

T::

<t.

OE

-6

)

r;c

TC

5

4

r'I

[ ~ 2

J

=1

,"l

(R=

IP*4

aR

28

12

5

52

V

(J,

I )=

"'L

flA

T(

p:n

"'o

. 4

t56

61

3E

-C

')2

V

(J,Y

l:::

I<A

"l"

'(O

.O)

54

C

AL

L r,V~Q~L(II}

S4

caNTINU~

0';

,:.

.(-,

J =

1 ,N

I( =

!\J-

J+

1

T =

V (

K,

i )

62

s=

o.

$S

= o

. tC

::{K

.LT

.N)

5=

V(K

+l.

!)

IC::

(K.L

T.N

M1

) C

:5=

V{K

+2

,1)

V (

K ,

1

1 =

(T

-s*:

;> (

1(,

2) -ss >

::.;:'

(K

. 1

I ) /0

(K

",

::)

CA

LL

"V

:::P

I"L

( r

r )

II

=L

E(;

VA

O(V

(K.,

III

r'::"c

! 1

."Jc.l

)

~':'

Tf"

"I

for

"")0

6

4

"" =

1 ,

'\J

64

v{'

-1.1

1=

{"".I)*1.0~-5

T=

"''''1

.0

-5

C

;C

TO

15-

6-'

; C

ON

"'-!

NU

IF

(.~IJT.<=I;:;>5T

l G

:J

Tn

7

4

I" t'

:lS

T=

.FA

LS

E.

"")'1

7

0

J =

1 .

I\)t

.\1

Jet

=J+

1

tF{

D(J.4

).N

'::.

0.O

)

GC

T

f.'

foB

V(J

P1

.! )

=v(

J:>

I. t

)-P

( J

.<::

:I*V

(J,!

)

G C

"'-

S

"70

68

T

=V

(J. I

)

V(J

,1

) =

V(

J'-

'1 •

I

) V{J01,~ I=T-P(J,5l~V(J~I,II

70

C

I")N

T I

"!u

r:

GJ:

: T

n

')4

74

G

O

TQ

(4

00

.<::

:'l0

1,I

Tr.

"I

40

0

Il""

(N.o

:"O

.21

r;o

T

O

:;;0

0

:":J

7

8

J=

1 ,N~2

T=

O.

'C:"~-J-l

,-\=

K+

-l

1)C

""

"6

J<".K

= ~,"!

76

T

::: ..

... G

(K

K,I

()*

V(K

K,I

)

51

--1

""1

15

00

so

.;=t

11

'51

C

SH

=!1

15

2 ::

>

O:;

H9

11

53

0

SH

=t1

15

40

Sf-l~11550

SH

91

15

60

S

I-n

11

57

0

51

-1"'

,11

5'3

C

S'""'~1159C

51

-1"'

31

16

00

:;'H

91

1e

10

51

-19

11

62

0

5H9116~C

51

-1"'

l11

64

C

SH~11650

31

-1'1

11

6,,

0

-';H

'31

16

"70

5H~116"5C

-::: H

'31

16

QO

5H

'31

17

'10

SH

91

17

1C

S

H"!

11

72

0

SH

C,1

17

3C

SH

i31

17

4C

SH

91

17

50

5'-

i'3

11

76

C

SH

f'3

11

77

0

5H

'31

17

80

SH~1179C

5H

91

18

00

SH

'31

18

1 C

SH

SI1

A2

0

'0.1

-1""

1118

30

SH

"OJt1

84

0

S!--1P,118~0

SH

91

18

6C

5

H9

11

87

0

5H

al1

f18

0

'0.1

-1'3

11

89

0

5H

"l1

19

00

SH

'31

19

1C

'O.H

i31

19

20

5w

n 1

93

0

SH

91

19

40

5H

"H 1

95

0

SH

91

19

6C

5

H9

11

97

0

5H

'31

19

80

S

H'3

11

Qg

C

SH

91

20

00

5H

Q1

20

1C

SH

Q!2

02

0

SH

91

20

l-0

<

;H"'

I12

04

0

SH

'11

20

50

5

H'3

12

06

0

$H

;:I1

20

"70

5H

'31

20

8 C

SH

'31

20

9C

S

H9

12

10

0

5H

g1

21

10

5H

91

21

20

SH

R1

21

3C

")

H9

12

14

0

SH

,12

15

0

5H

91

21

6C

SH

91

21

"""0

S

HC

,12

10

30

O:;

H8

12

19

0

5H

'31

22

00

5H

91

22

1 C

Sl-

'91

22

20

5

H9

12

23

0

'O.H

-31

22

40

tV

o 0'\

Page 223: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

T=

T*

G(K

,K)

DO

7

8

KK

=M

,N

78

V

(K

K,I

I=

V(K

K,I

I-T

$G

(K

K,K

I

50

0

T=

O.

DO

8

0

J=

1,N

S

S=

AB

S(

V( J,

)

80

IF

(S

S.G

T.T

l T

=S

S

DO

6

1

J=

l,N

8

1

V(J,I

)=

V(J,I

)/T

T=

O.

DO

8

2

J=

I,N

8

2

T=

T+

V(J,I

)$

V(J,I

)

T=

SO

RT

{T

, D

O

60

0

J=

1,N

60

0

V(J,Il=

V(J,!'/

T

QE

TU

RN

!::N

D

SU

BR

OU

TIN

E

FP

LT

NG

(P

S,P

T,P

P,N

CA

SE

,L!N

El,

LIN

E2

,

XX

,YY

,XE

ND

,TH

T,

IND

EX

' D

IME

NS

ION

P

5(3

, 1

),P

T(3

, 1

),P

P(l,

IJ,X

X{

1l,

YY

(

11

,

LIN

EI

(1

) ,

LIN

E2

(l)

DIM

EN

SIO

N

GIV

'::N

{S

),S

PE

CS

(30

}

DIM

EN

SIO

N

XX

2(2

1,Y

Y2

(2)

RE

AL

"!

AX

IF

( IN

DE

X.E

O.q

gc;n

G

C

TO

9

00

0

I=

IF

IX

(X

EN

O/S

.+

.99

)

XX

3=

FL

OA

T(

I >*

5.

LIN

E1

(S

)=O

L

INE

2(7

}=

O

MA

X=

O.

DO

I2

00

I=

I,N

CA

'SE

tl

=(M

AX

-P

S(l,

)

11

00

,12

00

,12

00

1

10

0

MA

X=

PS

Cl,

II

.

12

00

C

ON

TIN

UE

C

T

O

DE

TE

RM

INE

L

AY

OU

T

OF

Y

-AX

IS

SC

AL

E

GIV

EN

(! )=~AX

GIV

EN

(2)=

O.

GIV

EN

(31

=""3

. G

IVE

N(4

1=

2.

GIV

EN

(S '=

1.

CA

LL

F

AG

LT

Y

(GIV

E"N

,SP

EC

S)

OM

5

=S

PE

CS

( 5

1

DM

6

=5

PE

CS

( 6

}

DM

8

=5

PE

C S

( 8

)

OM

lo=

SP

EC

S(

10

)

GrV~N(3 1

=4

. C

AL

L

FA

GL

IY

(GIV

EN

,SP

EC

S)

tF(S

PE

'"C

S(

8).

GE

.Oo

,ll

81

G

O

TO

1

50

0

SD

EC

S(

5) =

D"I

5

SP

EC

S(

61

=D

M

e: S

PE

CS

( R

) =

OM

8

SP

EC

Sfl

0)=

DM

tO

15

00

G

{V

EN

(3)=

5.

DIrII

5

=S

PE

CS

( 5

)

OM

6

=S

PE

CS

( 6

)

O~

8=

SP

EC

S(

9)

DM

I0=

SP

EC

S(

10

1

CA

LL

F

AG

L T

Y

(GIV

F..

N,S

PE

CS

) !F

(SP

E'"

CS

( I3

).G

T.O

M

8)

GO

T

O

16

00

SO

EC

S (

5

)=O

M

s S

PE

CS

( 6

) =

0"1

6

SO

EC

S(

81

=IJ

M

8

SO

EC

S(

10

.=

OM

I 0

16

00

C

ON

TIN

UE

S

PE

CS

( 1

)=

1.

~PECS{

2) =

1.

XL

=

.6

25

S

PE

CS

( 7

1=

xx3

*X

L

::;P

EC

S(

9)

=x

x;:

!/S

.+.

00

1

SP

E"C

S(1

1 '

=1

.

SH

"3

12

25

a

SH

'31

22

6D

SH

'31

22

70

SH

'31

22

!30

$H

13

12

29

0

SH

ry1

2:=

,OO

SH

13

12

:='1

0

SH

91

23

20

S

HR

12

33

0

SH

91

23

40

$H

'31

23

50

SH

13

12

36

0

$H

"1

23

7C

S

HB

12

38

0

SH

13

12

39

0

$l-

lR1

24

00

SH

13

12

41

0

1= P

L T

FP

L T

1

0

FP

L T

2

0

FP

L T

3

C

F P

L T

4

0

"'" P

L T

5

G

FP

L T

6

C

F" P

L T

7

0

FP

L T

8

0

FP

LT

9

0

FP

LT

1

0C

FD

L T

1

10

FP

LT

1

20

FP

LT

1

30

F

PL

T

14

0

FD

L T

1

50

FP

L T

1

60

F

PL

T 1

70

FD

LT

1

80

FP

LT

1

90

FP

LT

2

00

FP

LT

2

10

FP

LT

2

20

F~L T

2

30

F

PL

T

24

0

FP

LT

2

50

F

PL

T

26

0

!:P

LT

2

70

!:P

L T

2

80

FP

LT

2

90

F

PL

T

30

0

F P

l T

:;

10

FP

LT

3

20

F

PL

T ~30

FP

L T

3

40

FP

L T

3

S 0

FP

L T

3

60

F

PL

T

37

0

FP

L T

3

80

FP

LT

3

90

F

PL

T

40

C

FP

LT

4

10

F

PL

T

42

0

FP

LT

4

30

F

PL

T

44

0

FP

LT

4

5C

FP

L T

4

60

F

PL

T

47

0

FP

L T

4

80

FP

LT

4

90

!:

PL

T

50

0

FP

LT

5

10

F

"P

lT

52

0

C;D~(S( 1

2 )

=q

q.

R::CTA~S'JL"'P

G::

;>I'

) P

LO

TT

!""

Fr::!

=; S~AP<::

;:::U"'C~IO~

CA

LL

G

OlI

LI

<S

PE

CS

)

"SP

EC

S(

9)=

{XX

3'"

.0

0'.

>*

? C

AL

L

AX

LIL

I (S

PE

CS

) S

DE

C':

:;(

"3

)=xx-'

SP

EC

<::

( 4

)=

0.

S::

l:;:

rsc

9)=

XX

3/2

."'+

.0

01

",D

EC

S(1

7):

::

.1'"

<3DEC~( 1

81

=

.1':

' sP

Fes (

lQ

I::

o.

SO<:

":C

S{ 2

1)

=1

. <

;::l

EC

S(

24

)=

.1

5=

>E

'(S

{ 2~ )=

1 .

.

CA

LL

N

0"L

T'"

(S

CE

CS

)

$,-

,FC

S{

?O

)=

0.

5P

E"C

S(2

fl)=

.1

C

AL

L NQ~L T

L

(5

0::(5

)

5::::

><::C

S(

1::

' )=

;::L

C',

o.T

{NC

A,S

E'+

.1

)01

C

;;:JE

C S

( 1

4)

::: 1

.

SD

E("

S(

1=

;'-=

1.

PL

'1T

S

HA

DlC

' F

V"\

!(""

TT

CN

22

00

J=

l,::

' n

o ~100

l=l,

"Jrtl

Sf

21

00

Y

YC

I'::

:::>

'S{

J,I

)

22

00

C

AL

L

PL

T? (J,SD~CS,XX.YY)

SD

EC

S(!

7):

::

ole

S

D::

: C

"i {

1

R ,

=

• 1

e C

Jl.L

L

T[T

L":P

(l?

HH

l (1

./5

EC

.).5

PO

::C

S)

CA

LL

TITL~L

( 7

HS

rGM

A,

.SP

EC

S)

RE

CT

A,N

GU

LA

Q G~YD

cL

GT

TIN

G F~~

TY

fTA

,

S~lC'CS{ 2)=~.,:,

S::

>fC

S<

2

)=1

.><

SD~(""':;(

q )=

xx3

/?'"

.0

01

SP

EC

S{

10

) =

4.

Ctl

LL

G

DL

ILI

(S~ECSI

5~'7.C5{lO)=12..

CA

LL

A

XL

ILI

(S

PE

rS

)

SD

<=

:CS

{ 5

)::

: 9

0.

SO~CS{

6)=

-Q

O.

S::

lEC

S(

10

)=

4.

SD

f("<

::(1

7)=

.1

5

S::>::CS(l~l= .1~

Sp

s::

r:S

(2E

)=

.1

SD

!':C

S(2

8)=

O

.

CA

LL

~aOLIL

(S::

lEC

S)

DlO~

(TH

FT

A)

'lC

3

1"'0

J=

1.=

' 1

");)

3

10

0

!=l,

"lC

AS

E

31

00

Y

Y(

I )=

DT

(J,t

)

31

50

C

AL

L

OL

T? (J,SD~CStxx,YYl

TH:::TA=~HT

32

00

IF

( T

H",

:TA

.L:"

::.-

90

.)

TI-'~TA=TI-ETA+1'lO.

IF{

TH

ET

A,.

GT

. ~O.I TH=-:-"'=TH~"T"A-1QO.

IF«(THETA.L~.-90.).("'r::.{TH:=~Jl..r:T.

QO

.)

GO

T

:J

32

00

X

X2

fl)=

xx

:<

XX

:2{2

)=0

. Y

Y"2

( 1 )=Tl-l~TA

YY

2f2

}=

TH

ET

A

nA

SH

"" .2

SP

AC

E=

.1

SD

EC

S{

13

)=2

.00

1

Ctl

LL

D

LL

ILI

(XX

?Y

YZ

.8IA

SH

,SP

AC

f,S

PE

CS

)

$P

EC

5(1

7)=

.1

8

SP

.<::

CS

(lB

):::

.le

CA

LL

T

ITL

EL

(S

I-'T

HE

TA

,SP

EC

Sl

i:<

:EC

TA

NG

UL

AQ

G

Oy

'"

0L

OT

TY

",G

F

('C

P

HI

SO'<

::CC

;(

2'=

"'.

""'

SO

f:C

S{

P ,=

.9

5

0,=

( C

;( 1

0) :

:: 3

.

CA

LL

G

"JL

ILI

(SP

':":

CS

) SC>~C<::(10)=

n.

CA

LL

A

XL

IL!

(5

0::

:CS

I

SP

E'"

CS

{ ':

)=

90

. ::

:oE

CQ

( 6

)=

o

.

FD

lT

53

0

-F"P

l T

5

4C

cP

L T

5

50

~PLT

56

C

FP

L T

5

70

FP

lT

58

0

FD

LT

5

90

FP

LT

6

00

F

DL

T

f:lC

CP

LT

6

20

FP

LT

6

30

FP

lT

64

C

"'"

PlT

6

50

cP

LT

6

6e

FP

lT

67

0

FD

LT

6

80

FP

LT

6

9C

F

PL

, 7

00

F D

L T

7

1 C

FD

L T

7

20

FP

LT

7

30

=P

lT

74

0

FP

LT

7

50

FP

lT

76

0

FP

lT

77

0

FP

LT

7

"30

CP

LT

7

9C

FP

LT

9

00

FO

LT

A

l C

"'P

lT

82

0

FP

lT

83

0

FP

L ~

84

0

FD

LT

8

50

FP

LT

8

60

;=

PlT

8

7C

FP

LT

8

80

F

PL

T

89

0

FP

lT

90

0

FP

lT

91

0

FP

lT

92

0

FP

lT

93

0

FP

L T

9

40

FP

lT

95

0

FP

LT

9

60

F

PL

T

g7

C

FP

LT

9

80

F

PL

T

9Q

C

FP

LT

10

0C

FP

LT

I0

I0

FP

L T

10

20

FP

LT

I03

0

FP

LT

I04

G

FP

LT

I0

50

FD

LT

10

60

FD

lT1

07

C

FP

L T

I08

0

FP

L T

lO

gO

FP

LT

I1

00

C

P

L T

Ill G

FD

LT

11

20

F

PL

T1

13

0

FP

LT

11

4C

FP

LT

l15

0

FP

lT1

16

C

FP

LT

11

7C

FD

LT

I1B

O

FP

L T

11

ge

FP

LT

12

00

FP

lT1

21

0

FP

LT

12

20

F

PL

T1

23

0

FP

LT

12

4G

F

DL

T1

25

0

FD

L T

12

60

FP

LT

12

7C

tv

o -.J

Page 224: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

!:P

C::

:CS

{ 1

0)

=3

. S

PE

CS

( 1

7)=

.1

5

SO

EC

S(1

8)=

.1

5

SP

E'C

S(2

6l=

.1

C

AL

L NO~L l

L

-( S

PE

CS

'

PL

OT

(P~11

SP

EC

5{

13

)=

cL

OA

T('

\lC

AS

E)+

.0

0'

~o

42

00

J=

l ,~.

00

4

10

0

J =

1 ,

"IC

AC

;f

41

00

Y

Y(

I) =

PP

( J, I

J

42

00

C

AL

L

PL

T2

(J,S

PE

CS

.xX

,YY

)

SP

'!':

-CS

( 1

7}

=

.. 1

SP

EC

S(1

8}

=

.1

CA

LL

T

ITL

E

("'!I-'PHI,~PfC5'

SP

!:::

CS

( 9

J=

(XX

+

.0

01

1""2

.

-::D

E C

S(

25

) =

0 C

AL

L

SA

XL

! T

(S

PE

CS

)

SP

EC

S(

9}

=X

X3

/2.5

+

.00

1

SP

EC

S(I?)=

.1

5

SP~CS(IB)=

.15

-::o~CC;(25)=

.2

SD

EC

S{

2R

)=I

..

CA

LL

"'

tOD

L I

T

(SP

EC

S)

SP

EC

S(2

2)=

I.

SP

EC

S(2

3)=

7.4

qL

LE

=I.

CA

LL

T

ITL

::G

(~VLEtLINE2tSPEC3)

SO

E C

S (

17

1 =

.1

8

SP

EC

S(1

8)=

..

1S

S

OE

CS

{ 2

3)=

7.7

CA

LL

T

ITL

EG

(R

UL

E,L

INE

I,S

PE

CS

)

CA

LL

"'

tXT

Fc/

1,4

(SP

EC

S)

ClE

TV

RN

90

00

W

t<'I

TE

(6,9

10

0)

91

00

F

QP

MA

T(

IHO

,20

X,

19

HP

Lo

TT

ER

T

ER

fro'

IN4.

TE

O.'

SOEC~( 1

2) =

9Q

. C

AL

L

GO

SE

ND

(S

OE

CS

) R

ET

UR

N

':N

D

SU9qOUTI~E

PL

T2

(I,S

.XX

,Yv

)

DIM

EN

SIO

N

S(I) ,

XX

(1)

,YY

( 1

) I

GO

T

O

(1

00

0,2

00

0,1

00

0),1

10

00

C

AL

L

SL

LIL

I

(XX

,VY

,S)

GO

T

(l

50

00

20

00

D

AS

H

=

.1

GO

T

r)

40

00

~ooo

')A

SH

=

.0

4

40

00

S

PA

CE

=

.05

CA

LL

eL

L I

L I

(X

X,

YV

, D

AS

H.

C;P

AC

E, 5

)

0:;:

000

RETUQ~

=::N

D

l""P

LT

I28

C

;PL

T1

29

0

"-P

LT

13

0C

F

PL

T1

31

0

FP

LT

13

Z.G

FP

L T

13

2'0

J:

"PL

TI3

40

F

PL

Tl3

5C

FP

L T

13

60

J:"

PL

TI3

7(

>=

"PL

T1

38

0

FP

LT

l:n

O

F"P

LT

14

QO

F

"P

LT

14

10

F=

"PL

T1

42

0

I=P

LT

14

:!O

F

"PL

T1

44

0

I=P

L T

14

50

FP

L T

14

6.o

F

OL

TI4

?Q

cDLT14~O

FP

LT

l49

0

FD

L :

15

0C

FP

LT

15

1C

I=D

LT

15

20

F"P

L T

15

30

F

PL

T1

54

Q

FP

LT

15

50

;=

PL

T1

5f:

0

J:"D

LT

15

70

FP

L T

15

90

::-P

LT

15

90

""P

LT

I60

C

FP

Llicle

Fo

L T

16

20

F

DL

TIe.)

c

FO

LT

I64

Q

I""D

LT

16

50

FP

LT

l66

C

DL

T

0 D

LT

,

0 D

L T

2

0

DL

T

30

P

LT

4

0

PL

T

50

D

LT

6

G

PL

T

'0

DL

T

eo

DL

T

90

D

LT

1

00

P

L T

1

10

tv

o OJ

Page 225: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

PR

OG

RA

M

PG

M2

1

(IN

PU

'" ,O

UT

PU

T, 7

U5

39

, T

AP

ES

= IN

PU

T,

T A

PE

6=

OU

TP

UT

, T

AP

E7

=P

UN

CH

,

TA

PE

l, T

AP

E9

9)

CO

J4M

EN

T

MO

VIN

G

FO

UR

IE

P PP(lGl=<A~

CQ

M"'

tEN

T

SU

8R

OU

TIN

!::S

, P

EO

UIR

ED

C

SU

BR

OU

TIN

E

SH

BI

SU

BR

OU

TI

NE

F

F T

P

C

SU

I3R

OU

TIN

E

HA

NN

G

SU

'3Q

OU

TIN

E

LE

VE

L

SU

'3R

OU

TIN

E

OU

To

UT

cc

DIM

EN

SIO

N

CQ

RT

IL(2

00

',IC

OR

( 1

00

),F

CO

R(

10

0)

DI"

't!:

NS

ION

O

AT

.H3

,15

00

) D

IME

NS

ION

W

OR

K(

25

6),

AC

OS

l(

12

9),'

3S

INl(

1

29

),S

(

6"3

1

DIM

EN

SIO

N

CN

TQ

UR

(3

,52

,51

) ,

yY

( 5

2),

TT

{ 5

1)

,"3

U':-

F;:

:t<

:{ 7

50

}

DIM

EN

SIO

N

AC

C{3

, 2

50

) D

IME

NS

ION

G

(3

,3),E

(3

),V

(3

,3),H

(3

,2),P

(3

,5)

,CQ

MP

(31

DIM

EN

SIO

N

LA

BE

Ll

(5

l,L

AB

EL

2{7

)

DIM

EN

SIO

N

ZA

RE

A(S

l,S

2)

INT

e:G

ER

C

OR

T tL

EO

UIV

AL

EN

CE

(A

CC

e

l),CO~:<TILC1'I,(ACC(

20

1),I

CO

P(lJ

lt

(AC

C(

30

lJ,F

CO

'H1

))

EO

U IV

AL

EN

CE

(C

NT

OU

R(

30

51

) ,

OA

T A

(I) )

EQ

UIV

AL

EN

CE

(A

CC

{l),

BU

FF

ER

C1

»

EO

UIV

AL

EN

CE

(Z

AR

E.A

{11

,W(1

RK

(1»

,(Z

AP

EA

(10

25

),A

Cn

Sl(

I)),

(

ZA

R E

A( 1

53

8)

,85

P>

JI (

1

) ,

, [Z

AR

EA

(2

05

1),5

( 1

) )

CA

LL

S

ET

FX

El

(1

,2!5

00

,10

0)

CC

T

l T

I"E

L

EN

GT

H

OF

'W

IND

OW

T

IME

, S

KIP

PE

D

CC

T

2

CC

T

3

TE

RM

INA

TE

L

EN

GT

H

OF"

T

IME

cc

10

00

R

EA

O(5

dO

l)

NS

KIP

,Tl,

T2

,T:3

,NF

FT

,IS

"IT

H

IF"(N

SK

IP.E

a.9

99

' G

O

TO

9

90

0

cc 1

01

F

"OR

"'A

T(

18

,3

F8

. 0

,61

8)

10

2

FO

R"I

AT

f B

AIO

) 1

11

F

"QR

IJIA

T(1

0Il

O)

11

3

FO

RM

AT

CIO

FIO

.ll

CC

R

EA

DIN

G

MA

GN

ET

IC

FIL

ES

ET

5

IF{N

SK

IP.E

a.O

)

GO

T

O

12

00

N5

KIP

=3

*N

SK

IP

CA

LL

S

KIP

F

C5

LT

AP

E1

,NS

KIP

,3H

EO

F)

12

00

W

QIT

E{6

,20

0)

DO

2

00

0

J=

1,3

R

EA

DC

l,1

02

} C

OR

TIL

tF(!:

:OF

,ll1

30

0,1

40

0

13

00

R

EA

D(lt

l02

)

CO

RT

IL

14

00

W

RIT

E(6

,21

0)

J,

(CO

RT

IL( I), [=

1 ,

B),

(CO

RT

IL

( 1

),1

=4

1,5

6),

1 (C

OR

TIL

tll,

I=1

6Q

d7

6)

RE

AD

(!,1

11

) le

aR

C

OM

P{ J) =

FL

OA

T(

leO

R(

27

) )

K'A

ZU

=IC

OR

{53

)

RE

AI)

(1,1

13

) F

CC

R

t*"(K

AZ

U.G

T.1

50

0)

KA

ZU

=1

50

0

Q:E

AD

{l,1

13

) (O

AT

A(J,r

),r

=I,

KA

ZU

)

CA

LL

S

KIP

F

(SL

TA

DE

l,

20

00

C

ON

TIN

UE

1 ,3

HE

QF

)

DO

2

10

0

1=

1,4

2

10

0

LA

BE

Ll (I )

=C

OR

T I

L( I

+4

0)

00

2

11

0

1=

1,6

2

11

0

LA

'3E

L2

{ t

l=C

OQ

T IL

(1

+4

8'

cc 2

00

F

"OR

MA

T( 1

Hl)

2

10

F

OR

IJIA

T{I

HO

,1

3H

RE

CO

RD

N

O.

=

,12

, /lH

,S

)(,8

AI0

,

1 /I

H

, 5

X,R

AI0

,/lH

,

5X

,8A

IO,/

IH

, 5

X,9

A1

0)

WR

ITE

(6,3

05

0)

Tl,

T2

,T3

30

50

F

CR

MA

T(/

IHO

,25

!-<

TII

,<jE

L

EN

GT

l-I

OF

WI~DOW

,F1

5.7

,7H

(S

EC

.),

1 /I

H

,25

HT

IME

IN

TE

RV

AL

, S

KID

PE

D

= ,

FI5

.7,7

H

(S

EC

.),

/lH

,25!-<TE~MINATE

LE

NG

TH

=

,F

15

.7,7

H

(SE

C.»

)

WR

ITE

(6,3

10

0)

ISM

TH

31

00

FrH~MAT( I'

lHO

,31

HN

U"1

RE

k

OF

CYCL~

OF

S

MO

OT

HIN

G

= ,I~)

I N

DI

=1

T

I""{

(CQ

MO

(1}.

GT

.CO

MP

(2})

.AN

J).

CC

f'l.

MP

(11

-CO

,",P

{21

.LT

. 9

0.1

)1

I"

JO

l=2

I F

{ (c

aM

P{

2l.

GT

.C

OM

P(

1 )

I .A

ND

.( C

O"1

P{

2 I-

CO

MP

( 1 ). G

T. 2

69

. 9

»

INn

1 =

2

! N

O 2

= 1

-OM

21

PM

21

1

0

DM

21

2

0

PM

21

3

0

PM

21

4

0

PM

Z1

S

O

DM

21

6

C

DM

21

7

0

PM

21

8

C

PM

::!

1 9

0

PM

21

1

00

PM

21

1

1 C

P

M2

1

12

0

PM

21

l~C

PM

21

1

40

PM

21

IS

O

0"1

21

1

60

PM

21

1

70

PM

21

la

c

OM

21

1

90

DM

21

2

00

PM

21

2

1 c

PM

21

2

20

P

M2

1

23

0

PM

21

2

40

PM

21

2

S0

PM

21

2

60

D

M2

1

27

0

PM

21

2

80

PM

21

2

90

PM

21

3

00

P

l.l2

1

31

0

PM

21

3

20

PM

21

3

30

p

M2

1

34

0

P"-

'l21

3

S0

D

M2

1

36

0

DM

21

3

70

0"1

21

3

80

DM

21

3

90

P

M2

1

40

0

DM

21

4

10

PM

21

4

20

DM

21

4

30

D

M2

1

44

0

PM

21

4

50

P

M2

t 4

60

P

M2

1

1I.

70

PM

21

4

80

PM

21

4

90

P

M2

1

50

0

PM

21

5

10

PM

21

5

20

PM

21

5

30

PM

21

5

4C

DM

21

5

50

D

M2

1

56

0

PM

21

5

70

PM

21

5

'3C

PM

21

5

90

D

M2

1

60

0

PM

21

6

10

P

M2

1

62

0

oM

21

6

"3C

PM

21

6

4C

P

M2

1

65

0

PM

21

6

60

DM

21

6

70

D

M2

1

68

0

PM

21

6

90

DM

21

7

00

o

M2

1

71

0

P"I

21

7

20

P

M2

1

73

0

DM

21

7

40

IC(c

n"'D

( ).E

I).5

:00

.)

IN0

2=

2

!F(c

n\1

p{

I.E

r.l.

E:O

O.)

IN

[)2

=1

IF(IN

02

. C

.1)

WO

IT[(

F.,

33

0C

I

33

00

""

,]D

MA

T(

'-i

,40

1-'*

****

VF

.RT

YC

AL

CCMPC!\~NT

NC

A5

f=(

T

-""

I )I'

T2

+1

.00

t

~O

69

00

1

=1

,N

CA

SF

N

t=

FL

l""1

AT

(t-l

l*

T2

/.

02

+1

.00

1

N2

={C

LC

AT

(T

-l)

*

T2

+ ~11/.02+ ~OOl

MN

t =

-N 1

+1

KA

ZU

=N

2+

MN

I G

O

T':J

(4

10

0,4

20

0) ,

INn

l

41

00

1

1=

2

t 2

=1

GO

T

J

4'0

0

42

00

1

1=

1

t 2

=2

4

""0

0

0')

4

40

0

J=

Nl,

N2

K

=J+

"'IN

I

AC

C{

I,K

)=

-OA

TA

( tl,

J}

1I.

40

0

AC

C{2

,K )

=-I

1A

-A(

12

,JI

GO

T

O

(47

CO

,46

00

,47

00

) ,I

ND

2

46

00

"I

:)

46C

'iO

J=

Nl,

r<.J

2

'<=J+"'1~l

46

50

6

.CC

( ?

,K)

=-Q

AT

A{?

,J)

GO

T

O

49

00

47

00

00

47

50

J=

Nl,

N?

I( =

J +

MN

I 4

75

0

A C

C (

:;

:, K

1 =

D

6. T

A (

:!.

J )

4>

30

0

CO

NT

INU

E

SU

M!=

O.

SU

M2

=0

.

SU

"'I 3

= O

. S

UM

4 =

0.

SU~5=O.

SU

Mf,

=O

.

')0

5

10

0

J=

I,<

Jl7

U

XX

1=

AC

C(

1,J

)

XX

2=

AC

C(2

,J)

XX

3=

Ac-C

(3

,J I

SUM1=SUl>.ll+XXl~xxl

SU

M2

=S

UM

2+

XX

1*x

x2

SU

M 3

= S

U"1

3+

XX

I *

x X

3

5UM4=SU~4+Xx2*xx2

SU

0JI5

=S

U'-

15

+xX

Z*x

x?

51

00

SU"'6':Su~6+XX::::""Xx:

cc

cc

XX

=I.

/FL

OJlT

(,<

AZ

U)

';C

1,1

1=

SU

'-1

1""

XX

G

{2,1

)=

SU

"12

*XX

G{3

,1 )

=<

::U

"-'l3

*XX

G(I

,2)=

5U

""2

*xX

S(2

,2)=

SU

I>.l

4*X

X

G{3

,21

=S

UM

S*X

X

G (

1,:

'1)=

SU

o,\

3*X

X

G(2

,3)=

5U

MS

*X

X

S{3

,"1

=S

UO

,\O

;,*X

X

TT

( I

)=F

LG

A7

( ....

2+

Nl-

ll*

.01

CA

LL

S

He

l (G

.3

.E

,V

,3

,3

,1

,I,H

,",3

)

(V::

:qT

.)

*****)

CO

'-1

ME

NT

A

C(E

LE

RD

Gq

AM

S,

CO

kR

EL

AT

ED

T

O

pq

INC

!DA

L

AX

ES

r)O

5~OO

J=

I,K

AlU

X

Xl=

AC

C{I,

J)

XX

2=

AC

C(2

,Jl

XX

3=

AC

C("

".J)

I\, c

r (

1 ,

J

1:=

xx 1

"V

( 1

,

1 ). x

X 2

"*V

( 2

• !

). x

x :

:*v (

.3,

1 )

A C

C (

2 ,

J

) =

XX

1 * V

( 1

,2

) +

X x

2 *

v (

2 ,

2 )

+ x

X 3

*v (

3,

2 1

55

00

A

CC

(3

,Jl=

XX

l*V

(!,

31

+X

X2

*V

(2

,3)+

XX

::*V

(1

,:')

1)<

; 6

90

0

K =

1 ,

3

Nl=

(NF

FT

-KA

ZU

)1'2

DIJ

6

10

0

J=

l,N

l 6

10

0

WC

QI(

J)

=0

.

DO

6

20

0

J=

l,K

AlU

N

2=

N 1

+J

62

00

W

OR

I({N

2):

:::A

CC

(K,J

)

N2

=N

1 +

I(A

lU+

l

PM

21

7

5C

D

"-'I2

1 7

50

oM

21

7

70

PM

21

7

80

oM

21

7

9C

PM

21

9

00

DM

21

8

10

o

J.4

21

8

20

D

M2

! 8

,0

DM

Zl

34

0

PM

21

9

50

D

M2

1

86

0

P"'

21

8

7 C

P

M2

1

'38

0

PM

21

8

90

PM

21

9

00

PM

21

9

10

p

M2

1

92

0

PM

21

9

30

PM

21

9

40

::

>M

21

9

50

PM

21

9

60

;::>

"'2

1

97

C

01>.

121

98

0

PM

21

9

90

p

"-'l2

11

00

0

°'-

"21

10

10

::

:>M

21

10

20

DM

21

10

30

DM

21

10

40

PM

21

10

!50

;::>~211060

::>

M2

11

0"C

DM

21

10

f'.0

D"-

'I2

11

09

0

PM

21

11

:)C

PM

21

11

10

"M2

11

12

0

D . ..

., 2

11

1"3

0

P~211140

PM

21

11

5C

DM

21

11

60

-::>

"12

11

17

0

DM

21

11

80

PM

21

11

90

P

M2

11

20

C

PM

21

12

10

PM

21

12

20

D"!

21

12

30

::

H.1

21

12

40

oM

21

12

5C

P

M2

11

26

0

PM

21

12

70

PM

21

12

80

P"'

l21

12

90

D

M2

11

30

0

DM

21

13

10

=

>M

21

13

20

PM

21

13

30

o

M2

11

34

0

D"'

I21

13

50

PM

21

13

60

DM

21

13

70

01

.12

11

38

00

P

M2

11

39

0

PM

21

14

00

PM

21

14

10

O

M2

1'1

42

0

::>

"12

11

43

0

:::>

"12

11

44

0

""1

21

14

50

P

"-'I

21

14

60

P

M2

11

47

C

0"1

21

14

80

0"1

21

14

90

tv

o l.D

Page 226: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

1)0

6

30

0

J=

N2

, N

FF

T

63

00

W

OR

K{

J1

=0

.

cc

CA

LL

F

FT

P

(WO

RK

,Aca

Sl

,EtS

IN1

,"lF

FT

, l,

S,

.02

)

cc

CA

LL

~ANNG

(AC

OS

l,B

SIN

1,

S2

,IS

MT

H)

cc

DO

1

55

00

J=

I,5

2,1

6

50

0

CN

Tn

UR

(K,

J,I)=

69

00

C

ON

TI

NU

E

AC

OS

I IJ)

IF(N

CA

SS

.GE

.51

) G

r'1

TO

7

20

0

J=

NC

Ase

"+1

1)0

71

00

I=

J,5

1

DO

7

00

0

IND

2=

1,5

2

DO

"'

00

0

INr)l=

I,

.,

70

00

C

NT

OV

R(

IN0

1,I

NC

2,

I}=

1

. 7

10

0

TH

I)=

2.

+-.5

#F

LO

A.T

(I'

72

00

C

ON

TIN

UE

C

OM

ME

NT

aU

To

UT

S

.AR

E

ST

OP

ED

I"

l ,a

P>:

1AY

(C~TOUR(#,*,*ll"

DF

QQ

=I.

/(

.02

#F

LO

"T

(NF

FT

))

00

75

10

J=

I,5

2,1

75

10

Y

Y(

J}=

DF

"PO

*F

LC

.AT

(J-l

}

CO

MM

EN

T

CO

MM

EN

T

CC

DE

SIG

N

OF

C

UT

PU

TS

D

ES

IGN

O

F

OU

TP

UT

S

CA

LL

L

EV

EL

(CNTOV~, ~2, ~1, ~2tNCASf"1

CA

LL

O

UT

PU

T

(eN

TO

UR

, co

2,

51

, N

CA

5E

,YY

)

IF(tP

L3

.EQ

.O)

GO

T

O

10

00

C

AL

L

CN

TP

L T

(C

NT

QU

R, T

T,

YY

t Z

AR

F. A

, L

AB

EL

1, L

AB

EL

2,

8U

FI=

"!:S

,

" T

3,5

2, 5

1,7

50

, N

SK

IP,

NC

AS

=)

GO

T

O

10

00

99

00

C

ON

TIN

UE

C

AL

L

CI'

IIT

PL

T

(CN

TO

UP

, T

T,

VY

,Z

AR

E A

,L

AB

EL

l, L

A9

EL

2 ,

BU

FF

ER

,

T3

, 5

2, 5

1,

7S

0,N

SK

I O,NCA.S~l

WR

ITE

(6,9

9Q

O)

99

90

F

OR

MA

T(

1H

O.2

0X

,24

HJO

ft

NO

PM

AL

LY

T

SR

"'It

I'llA

TE

C.1

S

TO

o

END

SU

RP

QU

TIN

E SH~l(G,N,E.V,N~V,NVfC,IND,ITRI,HtP,NLl

C

19

6 ~2/TC/SHBI

CC

C

PU

QP

05

:::

CA

LC

UL

AT

ION

O

F

'5:I

GE

NV

AL

U!:

:S

AN

D

EIG

EN

VE

CT

Ot:

<S

O

F

A

RE

AL

A

N9

C

Syl,

llM

ET

R I

e

MA

TR

IX

.

C

US

AG

!::

C

CA

LL

SH~1 (r

;,N

,E,v

,NE

V,N

VE

C,T

N\)

. IT

OI,

H,D

,NL

)

c C

DE

SC

IHP

T{O

N

OF

T

HE

P

AR

AM

ET

ER

S

G

TH

E

IMP

UT

R

EA

L

SY

"''''

ET

F<

[C

MA

TR

IX,A

RP

AY

(NL

,NL

) N

L

DIM

EN

SIO

N

SIl

!::

OF

M

AIN

P

RO

GA

M

MA

TR

IX

N

TH

E

DIM

fNS

ION

(I

F

DA

TA

M

I'\.

TR

IX

C

E

TH

E

EIG

EN

VA

LU

SS

A~E CONTAIN~D

ON

t:

l:E

TU

QN

. A

RR

AY

(NV

EC

I,

RE

AL

C

T

HE

E

IGE

NV

EC

TO

RS

A

PE

!;

TO

OE

O

ON

R

ET

UQ

N.

I-T

!-\

CO

:"'U

MN

O

F

V

C(lRRE~D('INS

TC

I-

TH

E

IGE

NV

AL

UE

. A

RR

A'(

NL

,NV

EC

l.

RE

AL

NvE

C

IF

NV

EC

=o

,ON

LY

E

tGE

NV

AL

UE

S

AP

E

CO

MD

UT

ED

4

OT

HfR

WI<

;=-

NV

FC

DM

21

15

00

D~2115l 0

DM

2l1

52

0

DM

21

15

30

oM

21

15

40

"''''1

21

15

50

~""-'I2115f>O

0"'

21

15

70

::>

M 2

11

5'3

0

PM

21

I59

0

oM

21

16

0 0

P""

21

15

10

0

"12

11

62

0

oM

21

l63

C

;:>

M2

11

64

C

0"1

21

16

'50

;>M211~60

P"'

21

16

70

;:

>M

21

16

f1C

oM

<?

:11

69

C

oM

21

17

00

PM

21

17

1C

::>~211720

=>

M2

11

73

0

PM

21

17

40

O-M

21

17

50

o

M2

11

76

C

oM

21

17

70

PM

21

17

80

PM

21

17

90

PM

21

18

00

oN

l21

18

1 C

PM

21

18

20

P~211830

oM

21

1?

4Q

PM

21

18

50

D

M2

11

86

C

DM

21

18

70

SH

F31

0

SH

'31

1

0

SH

"ll

20

SH

Bl

30

S

H9

1

40

SH~1

50

SH

'3l

6 C

S H~ 1

7

0

SH

'31

B

e

SH

BI

90

SH

"H

10

0

SH

P.

1 1

1 e

SH

'31

1

20

S

H'3

1

13

0

5H

A1

1

40

S

HB

I 1

5C

SH

BI

16

0

SH

81

1

70

S

H8

1

IBC

SH

BI

19

0

5H

'31

2

00

E

yr;

EN

vE

CT

OF

<5

A

PE

COMPUT~D.

5H

'31

2

10

IND

IF

IN

D=

l,

NE

V

AL

GE

8P

AIC

AL

LY

L

AP

GE

5T

E

IG<

=N

VA

.LU

ES

A

RE

C

OM

PU

TE

D.

SH

RI

22

0

IF

IND

=2

, N

EV

A

LG

EB

RA

ICA

LL

Y S~ALLEST EIGE~VALUES

AC

(E CO~DUTED.SH'31

23

C

INT

EG

ER

S

H8

1

24

0

ITR

t IF

IN

PU

T

MA

TR

IX

IS

NO

T T~I-DIAGONAL

ITQ

1=

1

IF

INP

UT

"'AT~'tX

IS

TR

I-D

[AG

ON

AL

IT

R!=

2

H(I,1

),I=

I' ••• 9

N

DIA

GO

NA

L

EL

EM

!:N

TS

O

F T~I-OIAGONALIZe:D

MA

TR

!X

ON

F

:ET

UP

N.

H(I,2

),I=

I, ••• ,N

-l

CO

-DIA

Gf'

lNA

L

::L:::~!""NT5

'JF

T

RI-

DT

AG

ON

AL

IZE

f)

MA

T Q

I X

C

N

RE

TU

RN

.

AR

RA

Y

I-H

NL

.21

,P

EA

L

'3H

'31

2

50

SH

el

26

0

SH

91

2

70

SH

l31

2

SC

SH

31

2

90

S

HR

I 3

00

5H

'31

3

1 c

W!l

.O"q

"l"

<

;TrQ

t.,.

.,:;

A

PC

AV

P

(I'J

,"",)

. C

F..

A.L

C

PF

V,A

PK

S

nP

Ir;I

"JA

L

qA

T::

'!X

I

C"

f"'I:

='<

-"T

c'"'

'I':''

f).

NV

""C

,,

""J3

T

Nr-

;:::

xr=

F,)

r-

..!:'v

IF

It-.

:PU

'i "R

I:;I

!\,A

L '-\AT~tx

IS TCl-r")IAG'J"'AL,ST'J~:::

p"-

i=

'):"

",,)

NA

L

ELc~FN"S

1"l

H(I,1

14

I=

I, ••• ,

N,

AN

')

.. ~:

;:-

CC

'-D

IAG

l)"J

AL

E

LE

'-'1

:::'

\jT

S y~

51

-'1

1 ~2C

51

-'9

1

::no

S'-l~ 1

3

40

51-'~1

35

0

5'-

1,1

:6

"0

<;H

'31

3

7 C

5H

"'1

3

90

1

-t(2

,2

),!"l'4

•• '~-!'

A1\

:r' S~T

IT~t-::2

.,."r

<':N

(A

LL

l'JG

T

HIS

S"J3=-<'JUTI"J~,

,H=

l,1

3Q

C

t"J

TH

!<;

CA

S::

: AqR~Y

{;

Ie

I "'

Y

1 II

'!

CA

LL

ING

;:

>;;

;r::

'RA

"'I.

3H

OO

I 4

00

C

SU

I3I:

HJU

"'!f

\;r.

o1

Nr=:

F

lJr'

-!C

T!C

JI',

3U~D:;CS~A."'S

~>="f)U[~E8

-;<-1

91

41

C

$'-

13

1

42

C

~~""'!\j=:

51-1

91

43

0

5H

91

4

40

C

"'IETI-!"l~

$1-1

91

45

0

RE

DU

e'"

A

~A-~rX

"8

T~TOIA~ONAL

<=

l)QM

~y ~nUS~~JL~EPS

SH

91

4

60

(O~CUT'" EI~~'JVALl'~~ ~y

P!8

ErT

!0N

y~TH:r.

5H~1

47

C

CO

\.lP

U"T

':: ~T-,,:::"JVEC"')~5

oy

rN

VF

::S

':

IT::

p!,

\TIO

N.

SI-

It:l

l 4~0

DA

L5

TC

"'N

A

"J!J

"'

HL

c ,

MA

H"'

FM

A"r

!C

t.\

~':::THr""<; r.G~

[' IGIT~L

CQ

""O

UT

c';

;;S

,V'lL

2,

5H

91

4

90

lQ6

""

po

:;4-~5C;.

$H

13

1

50

0

'31-

191

51

0

5H

91

!5

20

f"

JI"A

<=

f\;5

ION

G

t"'J

L,i

'JL

I.":

='{

NL

) ,V

("It

..N

L)

,1-'

(Nt.

.,Z

) ,o

l"JL

,5)

$H

"'l

53

0

-;>~AL

L S

H"'

1

54

C

LO

GIC

AL

FI'~5T

$H

91

5

50

1<

= ((N

L-f\

J).L

-.O

)

q::

-TU

"f\J

5

H3

1

56

0

II=

"(N

.L::

:.l)

C

:I:T

lJ"<

!\.'

5H

'31

5

70

T

>:1

.1-I

)TA

r,'"

'NA

LIl

A-I

"."\

I IF

" CdV~N

'l.A

Tc:r

x

qy

Y

OU

5E

HO

t.,J

EQ

t:S

\\

ET

'"iJ

O

sH

"!1

5

90

~OSS=~ .0

1:"

-24

'3

14"'1

1 5

QO

N~1 =

"J-l

S

HJ:

'.1

coe

,,0

TO

:: {lO

O,2

'JO

),I

TQ

I

10

0 !1="("l.~oJ.2)

sn

T

'J

~

".p'~=="l-2

')C

P,

!.

:: 1

, ~o.,!2

! P

1 =

1 +

1

<;'S

= o

. G

K=

G( IQ

!, I)

ClO

1

JO;;

rP

l ,"

l

1 S

S=

<;S

+'J

(J,I

l*G

(J,n

1<

=(

5S

.L T

.=D

55

) G

C

,["

5=

Snp~{SS'

!~(GK.LT.O ..

O)

S"'

-S

Y(

I I

1) =

G( t,

1)

H (

I I

2

)::-

-5

TT

=O

.

TT

=1

.0:'

= +

0/(

SS

+G

K*S

) T

=

,,1

(+5

:,(I

D1

,! )

=T

D (

I P

I, <

. )=

T

[D2

=f

+2

")'1

2

J= T

P 2

, f\J

2 D

(J,3

1=

',(J,I

l

:) ..

.. 4

J=

IP

l,N

T =

0.

'J

")'"

' ,

1<.=

10

1 ,~

~ T=T+G(K.,J)*P(I(,~)

4 :::>

(J. 1

1 '"

T'"

TT

5

5=

0.

1)0

3

'<=

I P

I,

""'J

5 S5=S5+~(K,3P:D(K,l)

S<

;=O

.S:;

:-+

O*S

S-'

<T

T

')D~K=tPl,N

6 D

(K,?

I=':

::>

(!(,

l)-S

S';

'::>

(K,:

'1

')C

7J=

10

1,1'

>I

'")('

"?

K o

:J,

"J

r;(O

<.J

l=

G(

K.

J )-(?

( J

, 2

) *~( K

, ;)

+P

( r

< ,2

1t.

<D

(J,

<.)

1

7 G

(J.K

)=

S(K

,J)

Gr.

T

O

A

89

-T

=O

.O::

::0

H

(T

, 1

) o:

c,( I, II

j"H

I,"=

')=

O.O

FC

~

r:; (I. I) =

TT

Q

H (

'\1"'

1 1

.1 )

-=G

( "J

Y, 1

,~'-\l'

H(i'J~l t?

lo

oG

(NM

1,N

l

H{'l,I) "

'';(

"\I

, ....

)

'"i (

'\I,

2)

= 0

.

5H

91

f,

l C

SH

=! 1

6

2 C

SH

91

6

30

SH

91

6

4 C

<

;H3

1

65

0

5H<

?1

66

0

<;H

"ll

67

C

SH

Ol,

l f.

P.O

5H~1

t:9

C

SH~l

70

0

51-1

91

71

0

SH

Q.l

7

2C

51-1

91

7,0

SH

91

7

40

5H

91

7

50

SH~l

76

0

51-'1

'31

77

C

5H

'31

7

g0

5~P.l

7c,O

$H

:31

B

OC

$H

"'1

F

l10

SH

RI

82

C

5H

91

8

30

$1-<

91

84

0

SH~1

85

0

5H

"11

8

60

SH

"l1

8

7 C

5

H,1

8

80

5H

91

8

9C

5H

91

9

00

$

H9

1

91

0

<;H

91

9

20

5H

91

9

30

SI;

91

9

4C

SH

BI

95

0

SH

91

9

60

SH~1

97

C

SH

"ll

99

0

SI-

i"l1

Q

QC

<;H

", 1

10

0 C

5o

H"'

l11

01

0

5H

91

10

20

$H

"'!1

10

30

SH

'H 1

04

C

5H

ll1

05

C

5H

O,1

10

60

IV

I-'

o

Page 227: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

'20

0

CO

NT

INU

E

SH

81

10

70

C

AL

CU

LA

.TtO

N

OF

<

::IG

EN

VA

LU

E5

O

F Tf:l~NS1=Of:lM~D

MA

TR

IX

'3Y

B

INA

RV

C

HO

PP

ING

S

H9

11

0P

O

TT

=4

BS

(H

(I,1

»)+

A8

S(H

(I,2

»

DO

1

0

1c:2

,N

S=

A8

S(H

(I

t 1

» +A~5(H( I

,2»

+

AB

5{

H (

1-1

,2»

)

10

T

T=

MA

XI

(T

T,S

)

10

T

T=

AM

AX

l{T

T,5

) D

O

11

1

=1

,N

1

1

pn

,3)=

H(I,2

,#ti(J,2

)

ZE

RI'

J= 1

. D

E -

38

1

(=1

IF

( I

ND

. E

a.2

)

TT

=-T

T

U=

TT

D

O

12

1

=1

, N

EV

1

2

E(l)

=-T

T

13

L

=E

(K)

EP

5=

1.0

E-7

*A

BS

(U)

14

T

=0

.5E

+0

*(L

+U

) IF

{(A

PS

(U

-T

'.L

E.E

OS

'.

OP

.(A

BS

(T

-L

).L

!::

.EP

G

O

TO

3

0

J=O

1=

1

16

S

=H

( 1

,1 )

-T

18

IF

(S.G

E.-

ZE

Rf)

) J=

J+

l IF

(AB

S(S

l.L

E.Z

ER

O,

GO

T

O

20

1=

1 +

1

IF

(I.G

T.N

)

GO

T

O

21

S=

H{

I,1

)-T

-P

(I-l,3

'/5

GO

T

O

18

2

0

1=

1+

2

IF

(I .

LE

. N

) G

O

TO

1

6

21

G

O

TO

(2

3,2

2),

IND

22

J=

N-J

23

IF

{J.G

E.K

)

GO

T

O

24

U

=T

G

O

TO

1

4

24

L

=T

t.

4=

MIN

O(

J,N

EV

)

DO

2

6

I=K

,"I

26

E

(ll

=T

G

O

TO

1

4

30

E

(K l

=T

K

c:K

+l

I1=

(K.L

E.N

EV

) G

O T~

13

IF

( N

VE

C .E

O.O

' R

ET

UR

N

C

CA

LC

UL

&.T

ION

O

F

EtG

EN

VE

CT

OR

S

BY

W

I E

LA

ND

T't

;5

INV

ER

SE

IT

ER

AT

ION

5H

Ql1

09

0

5H

'31

11

0C

5H~11110

SH

91

11

20

5

H'3

11

13

0

5H

'31

t14

0

SH

'31

11

5C

5

H9

11

16

0

5H

91

11

70

5

H9

11

18

0

5H

I"I1

11

90

5

H'3

11

20

C

5H~11210

SH

"H

12

20

5

H9

11

23

0

SH

'31

12

40

5

H8

11

25

C

S1

-I9

11

26

0

5H

'31

12

70

5

H9

11

28

C

5H

'31

12

90

5

H9

11

30

C

SH

'31

13

10

S

H9

11

32

0

SH

"I1

13

30

SH

'31

1 :

:!4

0

SH

91

13

50

S

H'3

11

36

0

5H

91

13

70

SH

!31

13

SC

5

H'3

11

39

0

5H

91

14

00

S

H8

11

41

0

5H

91

14

20

5

H'3

11

43

C

5H

13

11

44

0

SH

13

11

45

0

5H

13

11

46

0

5H

91

14

70

5

H8

11

49

0

5H

'31

14

90

5

H"'I

11

50

0

5H

'31

15

10

S

H3

11

52

0

5H

A1

15

30

S

H'3

11

O::

:40

5

H8

11

55

0

5H

81

15

60

S

H9

11

57

0

5H

B1

15

80

5

H;'

31

15

90

5

H8

11

60

0

5H

'31

16

1 C

5H

81

16

20

5

H9

11

63

0

SH

81

16

40

5

H3

11

65

C

SH

91

16

60

5

H9

11

67

0

SH

91

16

80

5

HA

11

69

0

5H

B1

17

00

5

H9

11

71

0

SH

81

17

20

5

H9

11

73

C

SH

81

17

40

S

H9

11

75

0

SH

81

17

60

S

H9

11

77

0

SH

91

17

80

5

H8

11

79

0

SH

91

18

00

5

HA

11

81

0

C

IR=

12

34

56

""

c

DO

6

00

1

=I,

NV

EC

D

O

44

J=

I,N

P

(J,

1 )=

0.

P(J,2

'=H

(J,2

)

P (

J ,

3)

= H

( J,

1 )

-E

( I

)

44

V

(J,I

)=

1.0

E+

0

FIR

ST

=.T

qU

E.

DO

5

0

J=

I,N

MI

PJ3

=D

(J,3

)

HJl:

:H(J,2

)

IF(A

BS

{P

J3

1.L

T •

.a.B

S(H

J1

)}

Gn

T

O

46

5

5=

HJ

1 /o

J ~

P(J,4

'=0

. G

O

TO

4

8

46

5

S=

OJ:I

'HJ 1

P

(J,4

) =

1.

OE

+-O

0

(J,3

1=

H(J,2

' T

=P

(J+

l,3

)

P (J

+ 1

.3) =

P (

Jf

2)

P(J,2

1=

T

P(J,1

,=P

(J+

l,2

)

o (J

+1

,2)=

O.

413

P(J,5

'=S

5

P(J+

l,2

)=

P(

J+

l ,2

) -

SS

*P

{ J

,1

' P

(J+

l ,3

)=

P( J+

l,

3}

-5

S*

P(J,

21

IF

(P(J,~l.Ea.O.)

P(J,3

)=

1.0

D-3

0

IF

(P

{J,3

1.E

O.0

.I

P(J,3

'-=

1.0

E-3

0

SO

C

ON

TIN

UE

If:{

0(N

,3'.

EO

.0.)

P

(N,3

)=1

.OE

-::"

0

!F(!.EO.l.0R.AES('::(I)-E(I-ll).GC.TT*1.0F-~)

:;0

T

O

54

f)

O

'52

J

,::1

, "J

IO=

!P*

4.'

V3

28

12

':'

~2

V(J,I

)=

FL

<JA

T( IR)*0.4c':'~"'1:::F-9

52

V

(J. I

):

: PA

"'iF

(0

.0)

~4 r~LL ~V~O~L{Ir)

54

((

")f

\/T

!"!

U::

D8

6

6

J=

1

,0.,,

:

K=

"'-

J +

1

T=

V (

K,

1 )

f:2

S

=O

. S

5=

O.

It:"

{K

.L7

.N)

S=

v{

K+

l, I)

IF{

K.L

T.N

MII

S

'3=

V(K

+2

,I)

V {

K.

I I:

: (T

-S

*p

{K

, 2

)-S

5 *

0 (

K ,

1 1

) I

'P (

K,

3)

CA

LL

(1

VE

QF

L{

J I)

CC

II

=L

'::G

VA

R{

V{

K,I

)

cc

IF

(II.N

E.I

)

GO

T

n

66

D

r

64

~=l,"'i

64

V

(..

.."I'=

V("1

,II*

t.0

':-5

T

=T

*1

.0E

-"5

G

O

Til

'S

2

66

C

CN

TlN

U':

: IF

(.

N<

)T.F

IPS

T)

G"J

T

:J ~4

FI

PS

T-=

.F,6

LS

:::.

')C

7

0

J =

1 ,N

"'1

JO

l =

J +

1

IF

(P

(J.4

) .

"'i

E.O

.O)

(,0

T

O

68

V (

J <:

> 1 ,

I

) =

V(

JP

l ,I

) -

Pc J

,5

)';

: V

( J,

! 1

GO

T

O

70

1'

)8

T =

V (

J,

I )

V(J,I

)=

V(

JO

I,I

)

V(JP

l,! )

=T

-O{

J,O

:::I

:.:V

(JP

l, r

l

70

C

C}N

TIN

V::

: G

O

TO

5

4

74

G

O

TO

{

40

0,:

:')o

l,IT

RI

40

0

IF{

N.'

::1

1.2

l G

J T

'1

50

0

00

7

R

J::

t ,N

M?

T=

O.

K =

N-J-l

"'=

K+

-1

1)0

~6

KK

=>

.'I,N

7~

T=

T.t

.G(K

K,K

)';:

V{

I(K

,rl

T=

T'*

G (

I( ,

I()

DO

7

8

KI(

="',

N

78

V

(!(K

,I)=

V(I

(K.I

)-

T*

G(K

K,K

)

50

0

T=

O.

f)C

~o

J=

I,N

5S

=A

B5

( V

( J,!

»

80

I1

={

SS

.GT

.T)

T=

5S

C>C

J'I, 1

J=

I,1

\I

~1

V{

J,l

)=

V{

Jt!

)/T

T

=O

. 1)('~2J=I,N

"'2

T

=T

+V

(J,I

I*

'v(J,I

)

T=

SO

RT

( T

) o

n

60

0

J=

I,N

6

00

V

(J.I

)=

V(J,I

)I'T

P

ET

UQ

N

:::N

I)

5U~I;'OUTIN!'.:

FF

TR

(t.,ACOS,~~·lN,N, IN

r),S

,DT

) FOIJRI'::~ TRANSF"Q~,

A

("-I

)

AC

03

A

P4

(N

I'2

+1

) B

5IN

A

P4

("

-.:/

2+

11

I'l

1

4

I"J,

) 1

4.

AQ

4

(NI'

4-1

)

DT

Q4

FD

WA

PO

T

GA

NS

FQ

GM

A

ND

INVERS~

TR

AN

SF

OO

"1

SA

MP

LE

S

IN

T!

.... =

-DQ

MA

IN

FOUPJ~<:> CO~FFICrENTS

FO

UR

IEP

C

CE

Ft:

" IC

r~NT5

NU

MB

EP

O

F ~.~.T.,

SH

OU

LD

R

E

po

wE

Q

OF

2

. IN~EX

.~0.1

FOWA~D T~ANS~CQM

.EO

. <?

I"JV

ER

5E

TqANScO~"I

WO

RK

! N

G

ARC:

:: A

TH

!'.:

CO

NS

TA

NT

5

AM

PL

I"JG

TI~E

INC

?E

""'f

NT

5H

91

18

20

5

H9

11

83

0

SH

91

18

4C

S

HR

l1e5

0

5H

f31

1f!

6C

S

H'3

11

87

G

SW

H 1

88

0

5H

91

18

90

S

HF

\11

90

0

SH

9l1

91

0

5H

81

19

20

3

H9

11

93

0

SH

"I1

19

40

5

H9

11

95

0

5H

91

19

60

5

HB

11

97

G

SH

91

19

80

5

H9

11

9C

1C

5

1-'

'31

20

00

S

H'3

12

01

0

SH

'H2

02

0

SH~12030

5H

'31

20

40

S

H9

12

05

0

3H

>'l

12

06

0

SH

91

20

70

S

H9

12

0!'

30

5

H"I1

20

90

S

H3

12

10

0

51

-18

12

11

0

SH

91

21

2C

S

H9

12

13

0

SI-l~12140

51

-19

12

15

0

5H

91

21

60

S

H9

12

17

C

5H

91

21

'30

5

H"I1

21

90

S

H9

12

20

0

5H

31

22

10

S

H8

12

22

0

SH

R1

22

30

S

H9

12

24

0

5H

91

22

50

5

H8

12

26

0

SH

81

22

7C

5

HR

12

29

0

5H

91

22

90

SHJ:j12~OO

5H

91

23

10

S

HR

12

32

0

5H

91

23

30

5

H8

1 2

34

0

5H912~50

SH

'31

23

60

SH912~70

5H

'31

23

80

S

HB

l23

QC

5

H9

12

4Q

O

5H

91

24

10

FF

TR

F

FT

Q

FF

TR

FF

TR

F

FT

R

"'F

TR

"'"F

TP

F

FT

P

FF

TR

10

2

0

3C

4

0

50

6

0

70

g

O

00

to

i-'

i-'

Page 228: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

DIM

-=;:

NS

ION

A

tllt

AC

OS

(1

),B

S1

N( 1

'yS

{ 1

1

"'=

N/2

M

PI

=M

+l

-GO

T

O

(IO

OO

.20

00

'y!N

D

CC

F

OW

AR

D T~ANSFORMATtON

10

00

C

AL

L

FF

T2

(A

,AC

OS

,8S

IN,N

,Sl

DO

1

1 0

0

1=

1.I

0Il

6,

CO

S(

I) =

AC

OS

( I

'*D

T

11

00

~SIN(I}=B5IN(I)*OT

AC

OS

(MP

l):=

85

1N

{I'

eS

I N

( 1

) =

0.

8S

1N

(MP

l) =

0.

QE

TU

RN

CC

IN

VE

RS

E TRANSFOP~

20

00

N

P2

=N

+2

XX

= 1

. /{

FL

OA

T (

N }

*D

T 1

A(

1)=

A

CO

S(

1)*

xx

A

(MP

I }:

=

AC

OS

( M

Pl}

*xx

D

O

21

00

1

=2

,M

J=

NP

2-1

A

(l )=

21

00

A

(J):

=

(AC

OS

( I

)+

AS

IN

(t) 1

*X

X

(AC

OS

( I

)-B

SIN

( {

) .

*x

x

CA

LL

F

FT

2

(Ay

AC

OS

,BS

IN.N

,51

A(

11

=A

CO

S(1

) A

("4

Pl

)=A

SIN

(1)

DO

2

30

0

I=2

,M

J=

NP

2-I

A

( I

,=A

CO

S(

I }+

>=

lSIN

( I)

23

00

A

(J)=

AC

OS

(I l

-BS

IN{

I

I

RE

TU

RN

EN

D

SU

BR

OU

TIN

E

FF

T2

(A

,Al,

Pl,

N,S

)

C

18

9

D6

/TC

/FT

P

FA

ST

F

OU

RIE

R TRANSFO~MATION

DIM

EN

SIO

N

A(ll,A

I{

I),B

l(l).S

( 1

1 D

AT

A

"'I/

O

I 1

F(N

-8

)

10

00

,E,5

5 IF

OI-N

)

10

,30

,10

10

M

=N

N

4=

N/4

-1

FL

N=

FL

QA

T(N

)

DO

2

0

I=

I,N

4

S (1

1=

51

N(

FL

OA

T (

I) *

6 .2

83

18

53

/'F

LN

)

20

C

ON

TIN

UE

30

N

l=N

/2

1F

(N

.NE

.Nl*

2)

GO

T

O

12

00

Nll

-::

Nl/

2

DO

1

00

1

=I,

Nl

11

=1

+N

l A

l(I)=

A(I )

+A

( II)

81

(I)=

A(1

)-A

(ll)

10

0

CO

NT

INU

E

DO

1

10

I:=

I,N

l

I01

=1

+N

1

A(I)=

Al(

Il

AtI0

1)=

BltIl

11

0

CO

NT

1N

UE

N

2=

Nl

no

12

0

K=

1,3

0

N2

1:=

N2

/2

IF(N

2.N

E.N

21

*2

)

GO

T

O

12

00

DO

1

30

1

=I,

N2

1

II =

1 +

N2

1

12

=1

+N

l1

tOI

= 1

+N

l

I l1

=I1

"'N

l A

I< I

l=A

(l

)+A

( I II

Al(

Il=

A(I}-A

(Ill

AIC

I21

=A

( lO

ll

81

( 1

2)=

A(

11

1 )

1

""(K

.EO

.l)

GO

T

O

13

0

FF

TQ

1

00

F

FT

q

11

0

FF

TP

1

20

FFT~

13

C

FF

TP

1

40

FF

Tl=

<

15

0

FF

rR

16

0

FFT~

17

0 F

FT

P l~C

FF

TP

1

90

I'

=F

TP

2

00

FF

TP

2

10

"'"F

T ~

22

0

FF

TR

2

30

FFT~

24

0

FF

TR

2

50

FF

TP

2

60

FF

TR

2

70

FF

TR

2

BC

FF

TR

2

90

FF

TP

3

00

"'"F

TR

3

IC

FF

TP

3

20

FF

TR

3

3C

F

FT

R

34

0

FF

TP

3

50

FF

TR

3

eO

FF

TR

3

70

FF

TR

3

80

cF

TR

]9

0

FF

TR

4

00

FT.

o 1

0

FT

R

20

F T~

30

F

TR

4

0

F T

:(

5 C

FT

R

60

FF~

70

F

TR

8

0

FT

;:<

9

0

F T~

10

0

FT

R

11

0

F T

R

12

a

F T

R

13

C

FT

R

14

0

FT'~

15

0

FT

O

16

0

FT

R

17

0

FT

R

19

C

FT

R

19

0

FT

R

20

C

FT

R

21

0

FT

R

22

0

FT

R

23

0

FT

R

24

0

F T

R

25

C

FT

R

26

0

F T

R

27

0

FT

R

2Q

C

FT

R

29

0

F T

R

30

C

FT

R

31

0

F T

R

32

0

FT

R

33

0

FT

R

34

0

F T~

35

0

FT~

36

0

FT1:

<:

37

0

FT

P.

18

0

1:-=

r T

e=~l +

1

J~"If)=NI1-N21

,)C1

14

0

J=

N2

1,J

EN

D,N

21

[3=

t 3

+"1

2

13

1 =

1 3

+ N

1.

! 4

= I

""+

"l2

1

14

1=

14

+N

l T

!:-=

J +

r 1

6=

I6-"

J?

1

Jl

="1

11

-J

A~PI"'f=AI I4

'*S

(Jl'-A

( 1

41

)*"S

(J)

A P

P I

"'IF

;:: A

{ !

41

1 *

s (J 1

) +

A (

14-

1 *

5 (

J

1 A

! (

I 5

) ;::

A (

T ;) +

A P

R I

"'5

<3

1(1

5'=

A( 1111+ePRt~=

A!(

I61

=A

(!::

tl-A

I='R

II.1

E

B1

(I6

);::

-A(I

:31

)+<

:lP

C:I

M::

:

14

0

CO

NT

tI\l

U!=

l~O

CC

'''JT

INU

C:

IF

(N

21

.E0

.1'

RF

TU

RN

DO

1

50

{

=I,N

l

10

1 -0

: !+

N 1

A

(I) =

Al

(! )

A

(lO

l)=

Rl(

J)

15

0

CD

NT

INU

E

'\I2

=N

21

12

0 CONTI"~UE

q~TURN

10

00

W

QIT

E(f),1

10

0)

11

00

"'"C~MAT(15H

(5U

eQ

. R

!::T

UR

N

12

00

W

QIT

E(,

,),I

:0

0)

13

00

F

OR

MA

T(

15

H

('3'L

JI:=

<.

RE

TU

PJ\

J

~NI)

I /

~AH

N

MU

ST

eE

L

Aq

GE

Q

TH

AN

7

I

)/'~H

N ~UST ~F

A P~SITIV~ P0W::~

OF

2

)

SUReOUTI~E

HA

NN

G

(A

l,P

l,N

N,I

CyrL

E)

DI<

.IE

NS

IO"J

A

l(l',

Rl(l)

"JN

P=

NN

+ ICYCL~

I) C

1

10

0

1=

1.

NN

P

11

00

A

l (

I ,

= 5

OR

.,. (

Al

( I

) *

... 1 {

! '''' 9

1 (

I )

"' R

1 (

t

) )

I JK

=O

1~00

IJK

=IJK

+l

IF( IJK.GT.ICYCL~)

GO

T

O

90

00

=A

l (

1l

XP

l=A

l(2

)

Al(

l )=

.5*x+

.25

1.'

<

X ':

>1

1)0

21

00

I=

?,!

\j"lP

X"1

1 =

x

x ;::

XP

I

XP

1=

Al(

J+

l)

21

00

Al(I)::.5*X+.2-'5*(x~1+x~1)

GO

T

I] 1~00

90

00

P

!::T

UR

N

EN

')

SU8~:JUTIJ\JE

LE

VE

L (A,NZ,N3,1.12,~~,

')IM

FN

SIO

N

AL

;,N

2,N

3)

cn·~v.OT\l

/PL

TI/

sp

=:r

S(?

5),

ZZ

( o

J

10

1 V

=6

.

XT

)::"

'L("

AT

(JD

IV)+

.9

9

'10

9

10

0 K=l,M~

JO

~100

1=

1,

,

x x=

o.

1')0

1

20

0

J=

I,

',12

I!=

( X

X-A

Ct ,J,K

Il

11

00

,12

00

,12

00

1

10

0

XX

=A

{I.

J,K

)

,:-T

P

3q

0

FT~

40

0

F T~

41

C

FT~

42

0

FT~

43

C

FT~

44

C

FT

;;Z

4

50

F

Tq

4

6 C

.' 0

I"

" T

Q

4R

0

~T~

49

C

FT

q

50

0

F T

Q

51

C

FT

R

52

0

FT

Q

53

0

"'r1:

<:

54

0

"'T

~

55

0

F T

O

56

0

FT

R

5"'

0

F"T

R

58

0

FTI~

59

0

FT

I;;!

6

00

F

T

q

61

C

FT

q

62

0

FT

R

63

0

FT~

64

C

!=T~

6'5

0

F T~

66

C

"'T~

67

C

FT~

68

0

F T

Q

69

C

FT

q

70

0

FT~

71

0

FT

q

72

0

FT

R

73

0

HA~N

HA

'IN

1

0

HA

NN

2

0

HA

NN

3

0

HA

NN

4

0

HA

NN

5

C

HA

"JN

6

0

HA

NN

7

0

HA

'IN

8

0

HA

NN

9

0

HA

NN

1

00

HA

NN

1

1 0

HA

NN

1

20

HA

"IN

1

30

HA

"JN

1

40

>-i

AN

N

15

0

HA

"lN

1

60

HA

NN

1

7C

HA

f\lN

1

P-O

LE

vL

LE

VL

1

0

LE

VL

2

0

LE

VL

3

0

LE

VL

4

a L

EV

L

50

LE

VL

6

0

L E

VL

7

0

LE

VL

8

0

L E

VL

9

0

L!C

:VL

1

00

N

I-'

N

Page 229: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

12

00

C

ON

TIN

UE

xx=

xo

/XX

DO

.1

00

J=

l,"1

2

41

00

A

(l,

J,K

l=

A{

I,J

,K}

*

XX

81

00

C

{1N

TlN

UE

SP

EC

S(3

1 )

=F

LO

AT

{N3

)+

.00

1

SP

EC

~(32l =

"'L

O A

T( N

2)"

.00

1

SP

EC

S(

3"\,

=F

LC

lAT

( IO

IV)"

.0

01

0

09

10

0

l=l,

IO

IV

9

10

0

Zl(

I )=

FL

OA

T(

t 1

RE

TU

RN

EN

D

SU

9R

OU

TIN

E

OU

TP

UT

(A

,N

2,N

3,

DIM~NSION

A(3

,N2

,N3

l,Y

(1

)

DIM

EN

SIO

N

IX

(S

l)

DO

6

00

0

1=

1,

'3 W

RI

TE

(6 ,

11

00

)

11

00

F

OR

MA

T{

1H

1 ,

GO

T

O

(1

11

0,1

12

0,1

13

0),1

11

10

J=

10

HM

AJO

R

K=

10

H

GO

T

I')

12

00

11

20

J=

10

HIN

TE

PM

ED

IA

K=

10

HT

E'

GO

T

O

12

00

11

30

J=

10

H"1

INQ

R

K=

10

H

12

00

W

RtT

E(6

,13

00

)

J,K

"'13

, Y

)

13

00

F

OR

MA

.T(I

H

,5H

**

(

,2A

I0,1

9H

PR

[NC

JP

AL

A

XIS

)

**.

WP

I T

E(6

,1

10

0)

LE

VL

1

10

LE

vL

1

20

L

EV

L

13

0

LE

VL

1

4C

LE

VL

1

50

LE

VL

1

60

LE

VL

1

7C

LE

VL

1

80

L

EV

L

lQC

LE

VL

2

00

LE

VL

2

10

LE

VL

2

20

OT

oT

QT

PT

1

0

OT

P'T

2

0

OT

DT

3

0

IJ T

OT

4

C

OT

oT

5

0

a T

OT

6

0

OT

PT

7

0

aT

PT

8

0

o T

OT

9

0

OT

PT

1

00

oT

PT

1

10

D

TP

T

12

0

OT

P'T

1

30

OT

oT

1

40

OT

oT

1

50

D

TO

T

16

0

OT

OT

1

7C

'll'R

ITE

(6,2

00

11

C

lTP

T

lAO

20

01

F

OR

MA

T(

IH

,9X

,12

3H

O.O

* *

*' *

2.5

*

*' *

*"5

.0*

* *'

*7

.5*

*' *

10

.0*

*'

OT

PT

1

90

1*

1

2.5

* *

* 1

5.0

*' *

*' 1

7.'

:"*

*

* 2

0.0

* *

*' 2

2.5

*

* >I<

2

5.0

*

*' ±

2

7.5

0T

DT

2

00

2*

*'

* 3

0.0

)

OT

OT

2

10

D

O

32

00

L

=1

,52

O

TP

'T

22

0

J=

53

-L

Q

TP

T

23

0

DO

3

10

0

K=

t,M

3

I I

=A

(

I ,J

, K,

+ 1

. G

O

TO

{

30

01

, 3

00

2,3

00

3,3

00

4,3

00

5

30

01

IX

(K

)=

2H

GO

T

O

31

00

3

00

2

IX(K

)=:2

H

1 G

O

TO

3

10

0

30

03

!X

(I(}

=2

H

2

GO

T

n

31

00

3

00

4

IX(I

<)=

2H

:3

GC

T

O

31

00

3

00

5

tX{K

}=

2H

4

31

00

C

ON

TIN

UE

WR

ITE

(6,5

12

01

WR

IT!:

:(6

,31

40

1

Y(J), (IX

(K

),I

(=

I,M

3)

31

40

FOPMATCIH+,130X,1~*)

32

00

C

ON

TIN

UE

51

20

F

OR

MA

T(

1H

, F

7 .3

, 3

X,

IH

*,

ex, 5

1 A

2)

60

00

W

RI T

E(6

,2

00

1)

RE

TU

RN

EN

D

SU

BR

OU

TIN

E

CN

TP

LT

(A

,X,Y

,Z,L

INE

1 ,

LIN

E2

, B

UF

XY

Z,

XE

ND

, N

2,

N ~,LENGTH, I

ND

EX

, "'1

M)

CO

MM

ON

/P

LT

l/ SPECS(3~),lLEVEL(

0)

DIM

EN

SIO

N

A(3

,N2

,N3

) ,l{

N;,N

2'

,8U

FX

Yl{

LE

NG

T'-

O

OT

ME

Nsro

"'J

x(l)

,Y

( 1

),L

INE

1(1

),L

INE

2( 1

)

IF

( I

ND

EX

.EQ

.C;9

9)

GO

T

r'

90

00

LIN

El(

'5l=

O

LJN

E2

(7

) =

0

1,1

!

QT

PT

2

40

OT

DT

2

50

OT

PT

2

60

O

T::

JT

2

7C

OT

OT

2

80

OT

PT

2

90

OT

oT

3

00

OT

PT

3

10

OT

PT

3

20

OT

PT

3

30

OT

PT

3

40

GT

PT

3

50

OT

oT

3

60

0

TD

T

37

C

OT

oT

3

80

OT

PT

3

90

O

To

T

4.0

0

GT

PT

4

.10

GT

PT

4

20

G

TO

T

43

0

I)T

::>

T

44

0

CN

TP

CN

T p

to

C

N T

O

2 a

(NT

P

30

eN T

Cl

40

C

NT

P

50

CN

TP

e

O

CN

TP

7

C

I=!I

="IX

{X

r::.

N.D

/5.+

.9C

)

xX

3=

FL

:JA

.T(

I )±

'3.

'3D

EC

S(

1 1

=1

SDE

C<:

;,{

2)=

2.

SD

FC

S(

31

=xx::

'3~<:C

<::

( 4

) =

0.

SP

EC

S(

'5)=~.

SD

2:C

S{

6)=

0.

XL

::: .

1f'

IF

(X

X-.L

E.1

S.1

X

L=

.32

S

P,=

CS

( 7

)=X

X_

#X

L

SP~CS(

'31

=2

.

5?E

CS

( q)=xx~+.OOl

IF(XX::.L=.l~.)

SP

!':C

S(

9)=

2.*

SP

EC

S(

9)

SPEC~( 1

0 1

=4

.00

1

SP

E'C

5{t

1)=

1.

SD

EC

5(

12

)=

91

. 5

01

'0(:

5(1

7)=

.t

SD

EC

<:;

( U

:'l)

=

.1

SD

EC

S(1

9)=

.0

5

PE

C5

(20

)=

.0

SD

EC

S(2

1 )

=1

. S

DE

CS

(24

)=

.07

SD

E(S

f2fl

)=

I.

CA

LL

S

AX

L!9

(S

P!:

:CS

l

5?

EC

S(

9J=

XX

3/"

'.+

.OO

l rl

="(X

x-:

.LE

.IE

.)

S~:::CS(

9)=~.*St::'ECS(

g)

CA

LL

N~~Lre

(SD

EC

S)

50feS

(1

7)=

.1

'3

So

EC

S{1

81

=

.1':

' C

AL

L

ytT

L>

::E

(1

1H

T!M

E'

(S::

O:C

.l,s

oE

CS

)

! "1

= S

P::

:C '3

( 3

1 )

J"'

=S

DE

CS

(:3

2)

r)C

4

10

0

K=

l,:'

I S

DE

'"C

S(

2)=

2.+

"'"

LO

AT

(K-l

}*'2

.37

5

CA

LL

A

XL

ILI

(SP

EC

S)

SO

EC

S(

?7

1=

-O

.15

CA

LL

S

AX

LIH

(S

PE

CS

)

5D

:::C

S(

17

) =

.1

SO

F;C

S(I

>3

1=

.1

S<

:lE

CS

C?

6)=

.0

7

CA

LL

N

OD

L!

L (S

PE

C5

)

5P

EC

5(1

7}

=

.1'3

SP

EC

S(1

8)=

.1

5

CA

LL

T

ITL

=:L

(1

0H

FR

EO

. (H

Z),

.5::

>!:

.("S

)

Ko

=lI

.-K

')0

2

10

0

J=

l,J'-

1

00

21

00

!=

I,T

M

21

00

l<

I,Jl=

A(K

D,J

,I1

S

PE

CS

( "'

3)=

X(M

MI

)10

0

32

00

SP

EC

S(

71

=X

(MIJ

)*x

L

CA

LL

C

ON

LI

(X,Y

,Z,Z

LE

V::

-L,F

U""X

YZ

,LE

NG

TH

,SP

EC

S1

SP

EC

S(

:3 )

=X

X"3

SD

=C

"S{

7

)=X

X3

*X

L

SP

E'C

S(2

5)=

.0

GO

T

O

(31

00

,3":?

OO

,3?O

O),

KO

C~LL

T!T

LE

T

( 5

HM

AJO

R

SO

T

O

41

00

,SP

EC

S)

CA

LL

T

ITL

ET

(1

2H

INT

Ef;

IJ::

DIA

TE

,SP

EC

S)

GC

T

O

41

00

3~00

CA

LL

TITL~T

( 5H~rNO~

,SC

lEC

S)

41

00

C

ON

T I

NU

E

SO

EC

S(

O)=

xx

3+

.00

1

I"'"

(X

X3

.L5

.15

.1

5P

fCS

( Q

)=2

.*'5

i:>

EC

S(

9l

CA

.LL

S

AX

L I

T

(SP

EC

S)

5P

EC

5(

g)=

xx

::,\

/5.+

.00

1

II=

"{X

X3

.LE

.t5

.)

5i:

>E

CS

{ 0

) =

?*5

P':

:CS

{ 9

) S

PE

CS

(l"'

7)=

.1

SO

E'C

S(l

<>

')=

.1

CA

LL

N

JO

LIT

(S

OE

CS

)

,sP

EC

S(2

2)=

I.

<:=

ClE

CS

(23

)=

0.:

: Q

UL

E=

I.

CA

LL

T

[TL

cG

(QULE,L!NE2,SPEC~)

SD

"'"

CS

( 1

7

1""

• 1

'5

CN

TP

~O

CN

TP

g

O

(NT

P

10

0

CN

T P

1

10

(N

TP

1

2c

(NT

P

13

0

(NT

P

14

0

CN

TP

1

50

(N

TP

1

60

,:

NT

P

17

0

("IT

P

1 g

O

(NT

P

19

0

(NT

P

20

0

(NT

P

21

0

CN

TP

2

20

(!\

lTD

2

30

CN

TP

2

40

CN

TP

2

5C

(N

TP

2

60

CN

TP

2

70

C

NT

P

28

0

(NT

P

29

0

(NT

O

30

0

(NT

P

31

0

(N

TP

3

20

(NT

P

33

0

(NT

P

34

0

(N

TP

3

50

(NT

P

31

)0

(1\I

TP

3

70

(NT

P

3f1

0

(NT

D

39

0

(NT

P

40

0

(NT

P

41

0

CN

TP

4

20

(NT

P

43

C

(N

TP

4

40

CN

TP

4

50

CN

TP

4

1S

0

(NT

P

47

0

(NT

P

49

0

(NT

P

49

0

(NT

P

50

0

(NT

P

51

0

(N

TP

5

20

("IT

o

53

C

(NT

P

54

0

CN

TP

5

50

CN

TP

5

60

(N

TP

5

70

(NT

P

58

C

(NT

P

59

0

CN

TP

6

00

CN

TP

6

10

(N

TP

6

20

(NT

P

63

0

CN

TP

6

40

(N

TP

6

5C

(N

TP

6

60

(NT

P

67

0

(NT

P

68

C

CN

TP

6

90

CN

TP

7

00

(N

TP

7

10

(N

TP

7

20

(NT

D

"'7

30

(NT

P

74

0

(NT

O

75

C

CN

TP

7

60

C

NT

P

77

0

(NT

P

78

0

(NT

!="

79

0

(NT

O

80

0

(NT

P

91

0

(NT

P

82

0

N

I-'

W

Page 230: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

SP

EC

S.(

IB)=

.1

5

~PECS(23)=

9.

7'5

C

AL

L

TIT

LE

G

(QU

LE

,LIN

El,

SP

FC

S)

CA

LL

N

XT

FfH

I (S

PE

CS

1

t:!I

5'T

UR

N

90

00

W~ITE(6-t9100.

91

00

F(]R~AT-(lHOt20X,19YPLCTIER TE~MII\IATE"D.)

SO

EC

S-(

12

)=

99

. C

AL

L

GO

SE

ND

(S

PE

CS

)

RE

TU

RN

EN

D

CN

TP

8

30

C

Nrp

8

40

CN

TP

6

50

C

NT

O

e-;

c

CN

TP

8

70

(NT

P

88

0

CN

rp

89

0

CN

TP

9

00

C

NT

O

91

C

CN

TP

9

20

C

NT

P

93

0

I\.)

I-'

,j:>.

Page 231: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

PJ:

:'OG

RA

M

PG

"'5

1

( tN

PU

T ,

OU

TP

UT

,P

UN

CH

, T

AP

E5

=t

NP

UT

, T

AO

E6

=O

UT

PU

T,

T AP~7=OU"lCH)

cc

CO

MM

EN

T

GE

NE

RA

TIN

G

NC

N-S

TA

TIO

NA

RY

S

t,",

UL

AT

EC

M

OT

IO

".JS

cc

c c S

UB

RO

UT

INE

S.

RE

OU

IRE

D

SU8~0UTINE

SIM

LT

E

SU

8R

OU

TIN

E

8A

SL

JN

SU

BP

OU

TI

"lE

L

INC

OR

F

UN

CT

ION

S

HA

PE

C

CI'

)MM

EN

T

FU

NC

TIO

N

FP

EO

cc

CC

C

C

OIM

EN

SIO

N

CA

TA

( 1

50

11

.AC

C(S

OO

),D

AT

Al(

'3

, 1

50

11

, T

T4

())

DIM

EN

SIO

N ~AME{8}

,F

X(lO

}

• L

Ae

EL

l (3

)

DA

TA

L

AB

EL

l /3

H

I,:!

H II,~HIlI/

10

0

FO

RM

AT

(F1

5.1

4)

10

1

I"'O

RN

lAT

(2IB

,BF

S.O

)

10

2

FO

RM

AT

(8A

l0)

10

3 FO"PMAT(3I~,26X,A

7)

DU

MM

Y

INIT

IAL

V

AL

VE

F

OP

G

E"'

lEP

AT

ING

A

U

NIF

Oq

M

RA

ND

OIo

4 NUM9E~

I:;!

EA

D(S

,10

0)

DV

M"I

V

DU

"l,.

,y=

DU

MM

V*l

. E

6

Rl

=R

AN

F(O

UM

MY

)

WR

ITE

(6 ,

23

0)

DU

MM

Y, q

l

1)0

1

00

0

1=

1,1

0

<JU

MM

y=

RA

NF

( 0

.0)

10

00

W

P[T

E(6

,24

0)

DU

MM

Y

CC

C

C

NC

OM

O

CC

Ir

IIC

AS

E

CC

T

l

CC

T

2

C C

T

3

CC

T

T4

C

NU

M8

ER

C

F

CQ

MP

ON

FN

TS

, G

EN

ER

AT

ED

S

IMU

L T

E"I

EQ

US

LV

NU

MB

ER

O

F

SIN

US

OID

AL

W

AV

ES

, ~EING

SU

oE

RP

OS

ED

TIM

E

LE

NG

TH

O

F

WIN

DO

W

TIM

E,

SK

IPP

ED

TE

RM

INA

TE

L

EN

GT

H

OF

T

I M

E

LIN

EA

R

CO

RP

EC

TIC

N

ON

A

G

EN

ER

AT

ED

A

CC

EL

ER

OG

RA

M

IS

DO

NE

F

RO

M

( 0

.0)

SE

CS

. T

(I

(TT

o4

) S

EC

S.

IF(T

T4

.LT

.O ..

Ol

TH

EN

L

INE

AR

C

OP

RE

CT

tON

W

ILL

N

OT

~E

EM

PL

OY

ED

PM

51

0"1

51

1

0

PM

Sl

20

P

M:3

1

30

PM

51

4

0

oM

51

5

C

PM

51

6

0

oM

51

7

0

PM

51

8

0

0~51

90

0"'

15

1

10

0

PM

51

1

10

P'-

'I5

1

12

0

P"l

51

1

30

P

MS

I 1

40

PM

SI

15

0

PM

51

1

60

o

MS

l 1

70

;)M

SI

18

0

;:>

""5

1

lQO

':::''

''151

2

00

PM

'S1

2

10

PM

51

2

20

oM

51

2

30

P

M5

1

24

0

oM

SI

2S

0

oM

51

2

60

O

M5

1

27

0

PM

51

2

8C

oM

SI

29

0

0"'

15

1

30

0

OM

S!

31

0

PM

51

3

20

PM

51

3

30

PM

SI

34

0

PM

51

3

50

PM

S!

36

0

PM

SI

37

0

PM

51

3

8C

CC

N

AM

E

LA

BE

L

ON

P

RI

NT

O

UT

S~EETS

PM

51

3

90

CC

N

SA

M"P

ID

EN

TIF

ICA

TIO

N

NU

M8

EP

O

N

PU

NC

HE

D

OU

T

CA

RD

S

PM

51

4

00

CC

IP

q IN

T

IF(IP

RIN

T.E

O.O

)

TH

EN

, [N

TE

GR

AT

EO

V

EL

OC

ITIE

S

AN

D nOU~LE

PM

51

4

10

INT

EG

RA

TE

D

DIS

PL

AC

EM

EN

TS

O

F

TH

E

AC

CE

LE

RC

"Gq

AM

W

ILL

N

OT

9

E

oM

51

4

20

PR

INT

ED

O

UT

P

M5

1

43

C

CC

IP

UN

CH

C

tF(I

PU

NC

l-i.

EO

.O)

TH

EN

, T

HE

P

UN

CH

EC

C

AR

DS

O

F

TH

E

SIM

UL

AT

ED

P

M5

1

44

0

MO

T I

ON

S

WIL

L

NO

....

BE

P

RO

DU

CE

D

OM

S!

45

0

CC

L

AB

EL

L

AB

EL

O

N

GE

NE

RA

TE

D

AC

CE

LE

RO

GR

AM

C

AR

DS

D

EC

K

CC

2

00

0

RE

AD

(5,1

0l)

N

CO

MP

,MC

.llS

E,T

l,T

2,T

3,!

"IT

,(T

T4

( I)

,!=

I,N

CO

MP

)

tF«

NC

OM

P.L

E.

O).

OR

.{N

CO

MP

.GE

. 4

))

GO

T

O

99

00

RE

AD

(S,1

02

) N

AM

E

RE

AD

(5,1

03

) N

SA

MP

, IP

PIN

T.

IPU

NC

H,L

AB

EL

cc

("O

/lilM

EN

T

CC

W

RIT

E{6

,20

0)

NA

ME

G

ro"A

X1

-=

• 0

DO

5

00

0

II=

l,N

CQ

MP

T

4-=

TT

4(

I I)

WR

ITE

(6,2

05

l It

WR

ITE

(6,2

10

) T

1.T

2,T

3,D

T,T

4

WR

ITE

(6,2

20

) M

CA

SF

20

0

FO

RM

AT

(IH

1,4

2(2

H* ),/IH

,2

H*

,8A

I0,2

H*

,/lH

,4

2{2

H*

))

20

5 FORMAT(/IHO,34rCOMPO~ENT

IDE

NT

IF{C

AT

ICN

NU~B=q

=

,14

)

21

0 FOq~AT('1HO,25HTI~E

LE

NG

TH

O

F

WIN

DO

W

,FtS

.. 7

,7H

(S

EC

.),

1 'I

H

,25

HT

IME

IN

TE

I=<

VA

L,

SK

IPP

ED

=

,F

1S

.7,7

1-f

(S

EC

.),

/IH

,2

SH

TE

QM

JN

AT

E

LF

.NG

TH

'::

,F

1S

.7,7

H

(SE

C ..

),

/IHO,2~t-<TIMF

INT

ER

VA

L

=

,F1

5.7

,7H

(S

EC

.),

/IH

O,4

7t-

<L

INE

AQ

B

AS

EL

INE

' ADJUST~ENT

FR

OM

(

0.0

)

SE

rs

TO

,

22

0

"'"O

OM

AT

(/IH

O.2

'5I-

'MC

AS

E,

SE

T

OF

C

OS

INE

" 2

30

~ORMAT(/IHO,25HQANDOM

NU

M8

ER

(R

l)

1 /lH

,2

5'1

-"

(RA

NF

(OII

)

24

0

1=

OQ

MA

T{I

H

,2S

X,F

15

."7

)

NO

AT

A=

T3

/DT

+

.00

1

F1

5 ..

7,7

H

(SE

C.»

,17

, 8

X,

7H

(S

ET

,FIS

.. 7

, ,F

15

. 7

)

;:>I0

Il51

46

0

PM

51

4

-70

PM

51

4

8C

PM

51

4

90

PM

SI

50

0

PM

51

5

'10

PM

51

5

20

P

M5

1

!53

C

PM

51

5

40

O

M5

1

sse

P

M5

1

56

0

PM

51

5

70

PM

51

5

80

PM

SI

59

0

PM

51

6

0C

PM

51

6

1 e

PM

51

6

20

P

M5

1

63

0

DM

51

6

40

PM

5!

65

C

PM

51

6

60

o

M5

1

67

0

PM

51

6

8C

PM

SI

69

0

PM

SI

70

0

;:)M

51

7

10

PM

51

7

20

o

M5

1

73

C

OM

51

7

40

')0

2

10

0

r=

! ,N

"")A

Tt.

21

00

')

AT

A(

1)-=

.0

cc

("O

MM

EN

T

SI~ULATIO~

JF ~ANOP~

pQ

OC

E5

S

cc

CtL

L

SI'-1LT~

(I1

AT

A,A

CC

,')T

, ....

I,

T':>

,MC

AS

S::

: •

II

)

cc

CO

MM

F."

J T

CC

"'

UL

TIP

LV

A

N

AP

fCP

OP

PIA

TE

IJ

ET

EQ

\\tf

'<IS

TIC

S

HA

f-'''

'.:

FU

NC

TI'

JN

1)0

3

10

0

{=1

,"'

CA

TA

3

10

0

,)A

T.I

l{

!)=

[)A

TA

( tl

:t:S

HA

PF

{")T

t:.F

LC

AT

(I-l

l !I)

cc

C'lM

"'IE

NT

?E~(1

RA

SE

LI"

=

C('

RkE

CT

ION

cc

CA

LL

""

-AS

L!"

(DAT",DT,NDATA.G~b.XtT"'!AX, [P

RIN

T)

CA

LL

LI~,np

('1

AT

A,O

T,T

:,T

4,

NO

AT

A)

cc

"'t-

'Axl=

AM

AX

l ('

>"A

X

,GM

AX

l)

)~

40

0Q

I=

lt

"!I)

A'!

"A

40

00

')

AT

Al(

Ir,r

)=

:>A

TA

(

l)

50

00

Cfl"JTI~JUE

cc

:::'l~MENT

DP

If'.

:T

AN

')

PU

I\C

1-!

("

U'"

C

'F

cc

" ....

AX

=

• 9~GG

/G'-

"AX

1

')0

0

51

)0

11

=1

,N

(CM

P

LA

.9E

L2

"'L

A9

"7

:Ll(

IIl

DT)

A

I00

1

=1

,N

DA

TA

G~N~~AT~C ACCELERCG~A~S

81

00

,)

AT

A{

I)=

G"'1

AX

*"'A

TA

1<

II,I

l w

Qr-

E(E

.82

00

) I\

SA

"IO

II

82

00

"'"t]R"'AT(//IHO.27HG=NE~ATED

:::A

RT

YQ

UA

KF

. M

eT

tO"l

, 1

/lHO,34HSA~oLE

NU

MR

ER

/IH

.34HC2~PC'I\ENT

rDF

f'<

TI!

=T

CA

TIC

'N

NU

"I3

'=o

1=

0

L P

'-I !=

,:: 0

8.3

00

I=I+

l I

F(

I .G

T .

. ND

AT

.\ 1

G

O

70

R

eo

o

J=I-I/IO~10

[F{J

.-=

-(.l

.Ol

J=

10

~X(Jl=DATA{

rl

IF(J ..

N::

-.I0

) ::

;0

TC

' R

30

0

!F(M

Of"

'(L

Il'l":

,C:;

).::

:O.O

) W

:::>

ITE

{6,c

50

0)

85

00

1=

QR

.... A

... (

!H

)

L IN

::=

L!

N,:,"

+ 1

W

F'-

iIT

E(6

.8cO

O)

Fx."lSA"'lP,LA8EL,LIN~

I L

AB

!:'L

2

86

00

F

OQ

MA

T(I

H

,10

FI0

.6.I

e,2

x,A

7

,lX

,I"l,

IX,A

31

,I A

. t

19

. /)

IF{I

PU

NC

H."

-IE

.O)

WR

ITE

(7,f

!70

01

F

X,N

SA

",O

,LA

BE

L,L

INE

,

LA

PE

L2

8

70

0

=O

Q..

,AT

(10

Ff;

.4,'

5H

Sll,M

P=

,I2

, A

7,

13

, A

3J

GO

T

O "'~oo

88

00

(D

NT

IN

U E

Q5

00

C

f"1

NT

INU

;;::

GO

T

O

20

00

GQ

OO

C

ON

T I

NU

!:=:

WP

!TE

{6,9

9G

O)

99

90

FOP~AT(

lYO

,20

X,2

4H

JC

9

NO

q.l

/lA

LL

V

T"'

"p"'

r"JA

'!E

'J.)

ST

1D

~NI)

Su

:>;0

8U

T["

l":

StM

LT

E

(DA

TA

,AC

C,D

T,T

l,

D['-

1E

NS

ICr>

..J

[lA

TA

( 1

) ,A

CC

( 1

)

T:3

t '-

lCA

SE

III

~'JNC'!IQN

(FR

::O

),

CEJ':"IN!~G

TI

.... ~-!);;:o!::NDFNT

PO

INE

Q

SP

:::C

.... q

AL

PN

'31

7

50

O

M5

1

76

C

PM

'H

77

C

P'.

15

1

78

0

::lM

Sl

79

C

oM

'51

8

00

PM

51

8

1 C

PM

S 1

8

20

P

M5

1

8"3

0

OM

51

~4C

OM

51

8

50

PM

51

8

60

0"'

15

1

87

C

Pl.

15

1

86

0

;:)1.

,151

8

ge

PM

SI

90

0

°M

51

9

10

P"'

51

9

20

o

M5

1

93

0

:>M

51

9

4C

PM

51

9

50

01

.1'5

1 9

60

P~'S1

97

C

P""

51

9

80

P

MS

I 9

9C

o

M5

11

00

0

PM

51

10

10

0"'5

11

02

0

PM

51

10

:30

:>

M5

11

04

C

P~511050

0~511060

:>t.

'I5

11

07

C

PM

51

10

RO

PM

51

10

9C

0

1.1

51

11

00

PM

'31

11

10

0

1.'

15

11

12

0

PM

51

11

30

D

M5

11

14

C

:::>

.111

":'1

1150

PM

51

11

60

PM

51

11

7C

D

M5

11

18

0

P"'

51

11

90

P

t.'l5

11

20

0

PM

51

12

10

P

M5

11

22

0

01

>1

51

12

30

PM

S1

12

40

;>M

51

12

50

P

M5

11

26

0

PM

51

12

70

PM

51

12

RO

PM

51

12

90

oM

51

13

00

O

M5

11

31

0

SIM

L

SI"

IL

10

SI

"IL

2

0 C

OM

ME

NT

C

CO

MM

EN

T

rEN

SIT

V

"'"U

NC

TIO

N

IS

RE

OU

IoE

O.

SI"

IL

30

I:

;'~F

I(

.T'"

'I(I

, 1

-'.G

':lT

Cl,

T

.AK

IVQ

Sf.

iI

SIM

L

40

GENfP~Tro"J

OF

A

c(T

II=

ICIA

L

EA

PT

I-'O

UA

I(E

S

J'l

D

IGIT

AL

S

[ML

5

0

CD

""IP

UT

EP

3

f;'D

J.E

.C:.

S.

OC

T.,

1

95

6

5IM

L

60

K.T

O'<

I S

It.'

UL

AT

IC'N

O

F

EA

QT

I-'I

"JIJ

AK

:;-

MO

TIO

N

AN

I)

ITS

S

i"'lL

7

C

AO

PL

ICA

TIf

1f\

J

':'-

UL

L.

DIS

AS

T.

Pf:<

::':V

..

RE

S .

. ~AQ •

• 1968St~L

80

l-'.

GO

TO

, ,<

.T[)

KI

ST

"UC

TU

RA

L RESPON~~'

TO

I\

jCN

ST

AT

I'JN

Ao

Y

SI~L

90

OANO~M ~XCITATI~~

4T

H

W ..

C.E

.. ~.

JA

N.

69

S

I""I

L

lOC

C O

MM

:::N

T

GE

N::

':O

AT

I0f'

< o~

ST

AT

ION

AR

Y WMV~

SI~L

11

0

UP

=l.

/( 2

.*[,

T)

SI

'-1L

12

C

N

}-J

U1

Page 232: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

c N

SA

MP

L=

20

0

R"4

S=

1 .

4-1

42

13

56

/5Q

RT

(F

LO

A. T

( N

SA

MP

L)

}

NSA~PL=MCASE

T4

=.5

*T

l T

5=

T3

-T4

NN

=T

l/0

T+

.0

01

J =

0

CO

MM

EN

T

G~NERATtON

OF

UN

IFO

RM

R

AN

DO

M NUM~ER

SIM

L

13

0

5IM

L

14

0

51

ML

1

50

SI"

ML

1

6C

S!M

L

17

0

SIM

L

laC

5t~L

19

0

SIM

L

20

0

StM

L

21

0

SI"

'L

22

0

SIM

L

23

0

StM

L

24

0

SIM

L

25

0

st"

'L

26

0

12

00

C

ON

TIN

UE

X

X=

RA

NF

(O

.0

)

'fY

=R

AN

F{O

.O)

ZZ

=R

AN

F (

0.

O)

xX

=X

X*U

B

YY

=T

3*'

1'Y

CC

xx

FREaV~NCY

VA

RIA

BL

E,

UN

tFO

PM

LV

O

IST

R!9

UT

ED

SI~L

27

0

c F

RO

M

( O

.O)

TC

(N

Va

UIS

T

FR

EQ

U=

NC

V)

SIM

L

28

C

ce

y

y

TIM

E

VA

RIA

BL

E,

UN

fFO

PM

L'1

' D

IST

M!B

UT

ED

F

QO

M

( 0

.0)

TO

(T

3)

51

ML

2

9D

51

"'L

3

00

cc

PP

=F

RE

a (

yy

, xx

, I I)

IF( Z

z.G

E.P

P)

GO

T

O

12

00

,J=

J+

1

XX

=6

. 2

8 ~1 e

53

*xx*D

T

eO

fr4

ME

NT

G

EN

ER

AT

ING

R

AN

DO

M

PH

AS

E

AN

GL

E

ZZ

=R

AN

F(O

.O)

ZZ

=6

.. 2

A3

18

53

*Z

Z

CO

SI

=C

OS

( x

x,

5INlc:~1 N

( xx

} 0

01

70

0

I=l,

NN

H

H=

[-1

IF0

40

NH

H.5

0).E

O.0

)

GO

T

O

16

00

xx

=C

C1

SI*

C0

51

-SIN

E*S

INl

SIN

E =

SI

NE

*CO

SI +

CO

SI*

5 I

N!

CO

S I=

xx

GO

T

O

17

00

16

00

C

OS

I=C

OS

(FL

OA

T(t

Ml)

*xx+

ZZ

) S

IN

E=

51

N(

FL

OA

.T (

1M

I ).

XX

+Z

Z)

17

00

A

CC

(Y)=

C

OS

I C

OM

flilE

NT

C

FILTE~ING

TH

RO

UG

H

CO

SIN

E-B

EL

L

FU

NC

TIO

N

TO

O

ST

AIN

C

O N

T I

NU

ITY

A

T

TH

E

EN

OS

xx=

6.

28

:!'1

85

3/F

LO

A T

( N

N,

AC

C(

1 )=

0.0

K=

N"N

/2

00

2

10

0

1=

2,1

(

IMI

="1

"1-

1+

2

ZZ

=. 5

*( 1

. -C

OS

t X

X#

FL

OA

T( I-I) )

}

A.c

e(

I )=

AC

C(

I }#

ZZ

2

10

0

AC

e(

IMl

)=A

CC

( I~l )#

2Z

~1=( Y

Y-T

4)/

DT

N2

=1

I-

F(V

V.U

::.T

4)

N2

={T

4-Y

'1')

/DT

+l.

N3

=N

N

!F(Y

Y.G

T.T

51

N3=NN-I~IX{(Y'1'-T5)/DT

DO

2

30

0

I =

N2

,N3

1M

! =

Nl+

I 2

30

0

DA

TA

( IM

1)=

DA

TA

{ IM

1)+

AC

C(I

)

IF(J

.LT

.NS

AM

PL

) G

O

TO

1

20

0

XX

=R

AN

F(-l.

' W

RIT

E(6

,31

00

1

xx

31

00

F

OR

MA

T( lH

O,1

0X

,41

H*****

LA

ST

P

RE

CE

ED

ING

R

AN

DO

....

NU

MB

ER

*****,

1 /lH

,2

0X

,F1

5.7

)

~ETURN

~NO

SU

AR

OU

TIN

E

RA

SL

IN

(Z2

,OT

.N,G

MA

X,T

NlA

X,I

P)

St~L

31

0

5 {N

IL

32

0

Sllri

lL

33

0

SI"

ML

3

40

SIN

IL

35

0

SIJ

o!.

L

36

0

SIM

L

37

0

51

ML

3

8-0

S

IML

3

90

SIM

L

40

0

SIM

L

41

0

SI"

'L

42

0

5IM

L

43

0

SIM

L

44

0

5IM

L

45

0

SI~L

46

0

5IM

L

47

0

SIM

L

48

0

StM

L

49

0

S{

ML

5

00

51

tv1

L

51

C

51

ML

5

20

S

IML

5

30

SIM

L

54

0

51

ML

5

50

SIN

IL

56

0

S I

ML

5

70

SIM

L

58

0

SIM

L

59

0

SIM

L

60

0

SIM

L

61

0

SI~L

62

0

SIt

.lL

6

30

SIM

L

64

0

SIM

L

65

0

SI\

IIL

6

6e

51

ML

6

7C

SIM

L

6g

e

5 IM

L

6<;1

0

5I"

"L

7

00

S

lML

7

10

SII

rilL

7

20

SIM

L

73

0

SIM

L

74

0

13

SL

N

BA

SE

LIN

E

AD

JU

ST

ME

NT

':

IF

AC

CE

LE

RO

GR

AM

5

B S

LN

1

0

RE

F.

G.V

.8E

RG

A

ND

G

.W.l

-iO

VS

NE

"q

8S

SA

. V

OL

. 5

1,

NC

. 2

pp

1

75

-P

P

IB9

!'

:IS

LN

2

0

DIM~NS10N

ZZ

(ll,V

O(lO

)

BS

LN

3

0

NP

1=

N+

l B

SL

N

40

ZZ

(NO

ll=

O.

AS

LN

5

0

DT

2=

.5*D

T

BS

LN

6

0

OT

6=

OT

*DT

/6

.

8S

LN

7

0

WP

I T

f" (

-:-,

11

7

1 =

0.

V

=0

. V

I.!,

AX

=O

.

Yl=

O.

Y2

-= o

. Y

3=

0.

')Q

2

00

1

=I,

N=

>1

7

'2=

ZZ

( I)

V=V+'1T2~( Z

l+7

2)

X l=~LOA T

( I)

.x2

=X

l*xl

X~=X2*x 1

V

I =

V /O

T

~SLN

'3 a

=

:"S

LN

q

c R

SL

N

10

0

'3S

LN

1

10

B

SL

N

12

0

f3S

LN

1

.30

~SLN

14

0

i3S

LN

1

50

.,S

LN

1

60

8S

LN

I"

"C

~SLN

18

0

'3SL~

19

0

"3S

LN

2

00

<

=IS

LN

21

0

VI

='1

'1 +

( X

l -

.. 5

1 *

Vl

+ (

-.1

ff-

66

66

67

*X

l +

.1

25

) *

Zl+

( -. 3

33

33

33

3*xl+

.2

0'3

33

3""

'38

SL

N

22

C

1 ) *Z~

~5LN

23

0

Y2

::'1

'2+

( X

2 -

Xl +.:'!~:3~33.3l *

v 1

+(

-.1

6if

:t6

66

7* )

(2+

. 2

5>

l<X

l-.

11

*Z

I+( -

.31

33

3:3

8 5

LN

2

4 C

1

,:4

<x2

+.4

16

66

6';

'67

>l<

X1

-.1

::::

1*Z

c

BS

LN

2

50

'1' :

=Y

"3+

{ X

"3 -

1.

5*X

2+

Xl-

. 2

5) II

: V

1 +

{ -. 1

t:f

66

66

7* X

3+

."3

7<

:;*

(X2

+x 1

) +

. 0

83

33

33

3' 8

SL

N

26

0

1*Z1+t-.33333)~3=x3~.~2e*X2-1.l25*Xl+.l1666667)*l~

9S

LN

2

7C

Zl=

7.2

B

SL

N

28

0

Z2

=A

F3

5{v

l

[F{

1.2

.LI:

':.

V ...

. Axl

GO

T

O

10

0

V"IAX'::Z~

TV

MA

X=

( X

l -1

.) ~r::T

10

0

K=

T-I

/I0

>l<

10

IF

{-I(

.Ea

.01

1(=

10

vn

( K

) =

V

to=

(I(.

N<

:;.l

Ol

GO

T

O

20

0

1F

{lo

.EC

.0)

GO

T

CI

19

0

IF{M

O!J

(1,5

0).

EC

.O)

WR

TT

E{6

.7}

\JII

OrT

E{6

,2'

'If'

l

19

0

CO

NT

tf'1

UE

20

0 CONTl"NU~

lII'

QIT

E(6

,41

V

\lA

X,T

V ...

. A,X

W~ITE:{6.6)

Z2

=1

./O

=L

OA

T(N

P1

)

xl=

l2*

Z2

* Z

'2

X2

=Z

2*xt

Yl=

yl*

x1

'1'2

=Y

2*X

2

'1'3

='1

'3*x

Z:t

:Z2

co

=-

:!00.*~1

+

90

0.*

'1'2

-

63

0.*

v:'

\

Cl=

IF

lOO

.*V

l -

:;:7

60

.*"2

+

4

20

0.*

V2

'

C2

=-1

R9

0.*

'1'1

+

6

30

0.*

'1'2

-

47

25

.*V

3

Cl=

C1

*7

2

C2

=C

2*Z

2*Z

2

v =

0.

f)

= O

.

II '=

0.

GM

A X

=O

.

VIr

IIA

X=

O.

DIr

IIA

,X=

O.

1)0

'S

ao

l=

l,N

X1

=F

L0

AT

( It

x2

=C

O+

C l*xl

+C

2*xl

:'I: X

1

ZZ

( I l=

zZ

( J

)+X

2

X:!

=A

.BS

( 'l.

Z (I'

I IF

(X3

.LE

.GM

AX

) G

O

TC

3

00

GM

AX

=X

,

TI.

1A

.X=

( xl-

l.l*

DT

30

0

f)

=D

+-

V

*D

T+

DT

6*(2

.*Z

I+Z

Z(I)

1

X3=AS~(O

) IF

(X3

.L::

:.D

\1A

X)

GO

T

O

40

0

DO

JIA

X=

X3

TD

I.1

A.X

=(

xl-

1.)

:rl:

OT

4

00

V

=V

+D

TZ

*(

Zl

+?

Z (I))

Zl ::

77

( 1

)

l(~=ABS( V

)

IF(X

3.L

E.V

.... A

X)

GC

l T

O

50

0

VM

AX

=X

"'"

TV

MA

X=

{X

l-l.

)*r:r

50

0

1(=

1-1

/10

*1

0

IF(K

.EO

.O)

K=

10

VC

'( K

I =

V

'3S

LN

2

QO

i'3S

LN

3

00

~SLN

31

0

~ S

LN

3

2C

9S

LN

3

30

'3S

LN

3

40

3S

LN

3

50

I'

3S

LN

3

60

BS

LN

3

7C

~SLN

38

0

I3S

LN

3

90

R S

LN

4

00

P

oS

LN

4

10

95

LN

4

2C

i3S

LN

4

30

8

SL

N

44

0

~ 5

LN

4

50

8

SL

N

46

0

'3S

LN

4

7C

85

LN

4

80

AS

LN

4

90

95

LN

5

00

~SLN

SlO

9S

LN

5

20

'3S

LN

5

30

8

SL

N

54

0

'35

LN

5

50

B

SL

N

56

0

BS

LN

5

7C

BS

LN

S

SC

BS

LN

S

gO

'3S

LN

-6

0C

F

3S

LN

6

10

!3S

LN

6

20

8

SL

N

63

0

B5

LN

6

4C

B

SL

N

65

0

BS

LN

6

6 a

B

SL

N

67

C

A5

LN

6

8 a

BS

LN

6

90

B5

LN

7

00

95

LN

7

10

9S

LN

7

20

B

5L

N

73

0

3S

LN

7

40

AS

LN

7

50

RS

LN

7

60

9S

LN

7

7C

R

SL

N

78

0

BS

LN

7

90

9

5L

N

80

0

FlS

LN

B

I0

BS

LN

8

2C

N

r'

0'1

Page 233: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

IF( K

.NE

.l O

} G

O

TO

6

00

IF

f I

P.E

O.

0)

GO

T

O

59

0

IF(M

OO

( I,5

0,.E

a.O

)

WR

ITE

(6,7

)

WR

I TE(6~2)

VO

59

0

CO

NT

IN

UE

6

00

C

ON

TIN

UE

WR

ITE

(6

,3'

Gh

IIA

X, T~AX

WR

ITE

(6

,4)

VM

AX

,TV

MA

X

WRITE(6~5)

DM

.A.X

,TO

MA

X

RE

TU

RN

1

FO

RM

AT

( IH

O,4

1H

INT

EG

RA

TE

O

VE

LO

c-!

TY

O

F

OP

IGIN

AL

S

AM

PL

E

WA

VE

)

2 F

I')R

"'IA

T(

IH

,10

F1

2.4

}

3 F

OR

MA

T(l

HO

,2Q

X,7

HG

MA

X

=

,F1

5.7

,BH

4

FO

RM

AT

(lH

,2

0x,7

HV

MA

X

=

,F1

5.7

,BH

5

FO

RM

AT

(lH

,2

0X

,7H

OM

AX

=

,F

15

.7,8

H

6 F

OR

MA

T{

1H

O,4

4H

INT

EG

RA

TE

"O

VE

LO

CIT

Y

7 F

QR

"4A

T(

1H

)

END

( T

=

,F

9.

3,

oH

S

EC

.)}

T

=

,F9

.3,6

H

SE

C.»

) T

=

,F

9.3

,6H

S

E"C

. I)

OF

C

OR

RE

CT

ED

SA~oLE

WA

VE

)

SU

BR

OU

TIN

E

LIN

ea

R

(A

CC

,OT

,T3

,T4

, D

IME

NS

ION

A

CC

(1)

Nl

IF(T

4.L

E •• 0

)

GO

T

O

90

00

NN

= T

4/1

')T

+ 1

. 0

01

X

X=

AC

C(

1)/T

4

00

1

10

0

I=l,

NN

1

10

0

AC

C (

1 )

=A

CC

( 1

'-xx*( T

4-D

T*F

LO

AT

( I-I)}

90

00

R

ET

UR

N

ENO

FU

NC

TIO

N

FR

EQ

(T

T,X

X,II)

cc

BS

LN

8

30

9

SL

N

84

0

BS

LN

8

50

9S

LN

8

50

9

SL

N

87

0

BS

LN

8

80

B

SL

N

89

0

BS

LN

9

00

8

SL

N

91

0

BS

LN

9

20

BS

LN

9

:30

B

SL

N

94

0

f3S

LN

9

50

8

SL

N

96

0

BS

LN

9

70

BS

LN

g

ee

9S

LN

9

90

BSL~1000

LN

CR

C

LN

CR

1

0

LN

C R

2

0

LN

CP

3

0

LN

CP

4

0

LN

C R

5

0

LN

CP

5

0

LN

CR

7

0

LN

CR

8

0

FR

EO

F

RE

O

1 C

C

OM

ME

NT

A

N

AR

BIT

RA

qy

FU

NC

TIO

N,

WH

ICH

D

EF

INE

S

FQ

EQ

UE

NC

'f

CO

NT

EN

TS

F

RE

D

20

CC

F

RE

O

30

CC

IT

IS

R

EC

O"'

lME

NO

EO

T

C

GIv

e-

TH

E

T I

"'IE

IN

DE

PE

ND

EN

T

VA

LU

E

TO

T

HE

F

RE

O

40

C

P

OW

ER

A

T

TIM

E (T

).

FR

ED

5

0

CC

N

OT

E

TH

AT

IF

T

HE

P

OW

ER

O

F

TH

E

PR

OC

ES

S

(VA

RIA

NC

E)

AT

TI~E

FR

EO

6

0

C

(T

)

IS

DE

PE

ND

EN

T

UP

ON

T

IME

, T

HE

IN

TE

NS

ITY

01

= T

HE

P

RO

CE

SS

F

RE

O

70

WIL

L

NO

T

BE

G

IVE

N

AP

pq

OP

PtA

TE

LY

B

Y

MU

L T

IPL

YIN

G

FR

ED

8

0

TH

E

DE

TE

R"'

INIS

TIC

S

HA

PE

F

UN

CT

ION

F

RE

O

gC

C

C

FR

EO

1

00

GO

T

O (1000,2000,3000)~ II

FR

EO

1

10

10

00

zz=

.2

F

RE

O

12

0

GO

T

O

40

00

F

RE

D

13

0

20

00

Z

Z=

.3

F

RE

D

14

0

GO

T

O

40

00

F

RE

O

15

0

30

00

Z

Z=

.6

40

00

C

ON

TI

NU

E

FG

=-.0

8*T

T+

3.4

F

F=

XX

/FG

F

F=

FF

*F

F

HG

=4

.*Z

Z*Z

Z

xx

= (

1 .

+H

G*F

F )

/( (

1.

-FF

)*

( 1

.-F

F) +

HG

*F

F)

XX

=

XX

*

HG

/

(l.

+H

G)

xx

=X

X

/ F

G

CO

M/l

ilEN

T

1.

-.0

8 *

30

. +

3

.4

CC

X

x

=X

X *

1.

FR

EQ

=X

X

RE

TU

RN

EN

O

FR

EO

1

60

FR

EQ

1

70

FR

EO

1

80

F

RE

O

19

0

FR

EQ

2

00

FR

EO

2

1C

FR

EQ

2

20

F

RE

D

23

0

FR

ED

2

40

FI=

<EQ

2

50

FR

ED

2

60

F

RE

Q

27

0

FR

eQ

2

80

FR

ED

2

90

'FU

NC

TIO

N

SH

AD

:::

(T

T,II)

SH

DF

.

cc

CO

MM

EN

T

CC

SH

DE

AN

A

RB

lrQ

AR

V

F1

)NC

TIO

N,

WH

ICH

G

IvE

S T~E

OE

TE

PM

INIS

TIC

IN

TE

NS

ITY

S

HP

E

10

2

0

30

.0

5

0

SH

PE

CC

T

HE

F

UN

CT

ION

(S

f-O

AD

f)

WIL

L

GIV

E

DE

TE

q"l

INIS

TIC

IN

TE

NS

ITY

S

HP

E

C

FO

R

TH

E ~PI")C:::SS

OF

U

NIF

OP

""'

VA

RIA

f\:C

O::

:

cc

yF

(TT

.GE

•• '5

) G

O

TO

2

10

0

GO

T

O

(50

00

,54

0-0

, 5400'~

II

21

00

IF

(T

T.G

":.

1

.0

)

GO

T

O

2?

00

GO

T

O

(51

00

,54

00

,<=

;40

0),

It

2

20

0

IF{T

T.G

E.

3.5

1

GO

T

O

23

00

GO

T

O

(5

10

0,5

90

0,5

50

0),

II

23

00

JF

"{T

T.G

E.

4.1

25

}

GO

T

O

24

00

(;0

T

O (SqOO,5100,?~OO)~

II

24

00

IF

(T

T.G

E.

6.0

)

GO

T

O

25

00

GO

T

O

(5

90

0,'

55

00

,51

00

),

II

25

00

IF

e T

T.G

E.1

2.0

)

GO

T

('

26

00

G

O

TO

(6

00

0,5

60

0,5

10

0).,

I!

26

00

IF

(T

T.G

E.l

I'l.

O)

GO

T

O

27

00

GO

T

O

(6

10

0,=

;70

0,5

20

0),

II

2"0

0

IF(T

T.G

=.2

4.0

)

GO

T

O

28

00

G

O

Tf)

(5

70

0,6

10

0,5

20

0),

II

28

00

C

!')N

T IN

UF

GO

T

O

(5

80

0,6

20

0,5

30

0),

11

'5

00

0

SH

AP

E

=

TT

GO

T

O

90

00

5

10

0

SH

A.P

E

=

.'5

G:J

T

O

90

00

'5

20

0

SI-l

A'::

:>E

(-.35~;T+I0.2)/12.

GO

T

Cl

00

00

'53

00

S

I-lA

PF

" =

.1

5

GC

T

O

90

00

5

40

0

SH

AD

E

=

o.

GO

T

O

qO

OO

55

00

S

HA

PE

=

.1

6*(T

1'-

1.)

GO

"'

n

<)0

00

5

60

0

SH

AP

E

=

• 9

GO

T

O

90

00

5

70

0

SH

AP

E

=

(-.4

V:T

T+

14

-.4

)/1

2.

GO

P

i 9

00

0

58

00

S

HA

PF

=

.4

GO

T

n

90

00

5

90

0

SH

AD

E

=

.2

*(T

T-l.

)

GC

T

O

90

00

60

00

S

HA

.PF

: =

1

. G

O

TO

9

00

0

61

00

S

HA

DE

' =

(-.8

*T

T+

21

.6)/1

2.

GO

T

O

90

00

6

20

0

SH

AP

E

.2

90

00

Q

ET

UQ

"'l

,=N

f)

SH

PE

S

HP

E

50

SH

PE

7

C

SH

Pr

BO

SH

PE

9

C

SH

PE

1

00

SH

PE

1

10

SH

PE

1

20

S

HP

E

13

0

SH

PE

1

40

SH

PE

1

50

S

Ho

E

16

0

SH

DE

1

70

SH

PE

1

80

SH

PE

1

90

SH

PE

2

00

SH

PE

" 2

10

SI-

lDE

2

20

S

HP

E

23

0

SH

PE

2

40

S

HD

E

25

0

SH

DE

2

60

S

HD

E

27

C

SH

PE

2

80

SH

DE

2

90

SH

PE

3

00

S

HP

E

31

0

SH

PE

3

20

SH

PE

3

30

SH

PE

3

40

S

HP

E

35

0

SH

PE

3

60

SH

PE

3

7C

S

HD

E

38

0

SH

DE

3

90

SH

PE

4

00

S

HP

E

41

0

SH

PE

4

2 a

S

HP

E

43

0

SH

PE

4

40

SH

PE

4

50

S

HP

E

46

0

SH

PE

4

7C

S

HP

E

48

0

SH

PE

4

90

S

HD

E

50

0

SH

PE

5

10

I'J

I-'

-J

Page 234: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

EERC 67-1

EERC 68-1

EERC 68-2

EERC 68-3

EERC 68-4

EERC 68-5

EERC 69-1

EERC 69-2

'EERC 69-3

EERC 69-4 •

EERC 69-5

218

EAR'l'HQUAKE ENGINEERING RESEARCH CENTER REPORTS

"Feasibility Study Large-Scale Earthquake Simulator Facility," by J. Penzien, J. G. Bouwkamp, R. W. Clough and D. Rea - 1967 (PB 187 905)

Unassigned

"Inelastic Behavior of Beam-to-Column Subassemblages Under Repeated Loading," by V. V. Bertero - 1968 (PB 184 888)

"A Graphical Method for Solving the Wave Reflection­Refraction Problem," by H. D. McNiven and Y. Mengi 1968 (PB 187 943)

"Dynamic Properties of McKinley School Buildings," by D. Rea, J. G. Bouwkamp and R. W. Clough - 1968 (PB 187 902)

"Characteristics of Rock Motions During Earthquakes," by H. B. Seed, I. M. Idriss and F. W. Kiefer - 1968 (PB 188 338)

"Earthquake Engineering Research at Berkeley," - 1969 (PB 187 906)

"Nonlinear Seismic Response of Earth Structures," by M. Dibaj and J. Penzien - 1969 (PB 187 904)

"Probabilistic Study of the Behavior of Structures During Earthquakes," by P. Ruiz and J. Penzien - 1969 (PB 187 886)

"Numerical Solution of Boundary Value Problems in Structural Mechanics by Reduction to an Initial Value Formulation," by N. Distefano and J. Schujman - 1969 (PB 187 942)

"Dynamic Programming and the Solution of the Biharmonic Equation," by N. Distefano - 1969 (PB 187 941)

Note: Numbers in parenthesis are Accession Numbers assigned by the National Technical Information Service. Copies of these reports may be ordered from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia, 22161. Accession Numbers should be quoted on orders for the reports (PB --- ---) and remittance must accompany each order. (Foreign orders, add $2.50 extra for mailing charges.) Those reports without this information listed are not yet available from NTIS. Upon request, EERC will mail inquirers this information when it becomes available to us.

Page 235: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

EERC 69-6

EERC 69-7

EERC 69-8

EERC 69-9

EERC 69-10

EERC 69-11

EERC 69-12

EERC 69-13

EERC 69-14

EERC 69-15

EERC 69-16

EERC 70-1

EERC 70-2

219

"stochastic Analysis of Offshore Tower structures," by A. K. Malhotra and J. Penzien - 1969 (PB 187 903)

"Rock Motion Accelerograms for High Magnitude Earthquakes," by H. B. Seed and I. M. Idriss - 1969 (PB 187 940)

"structural Dynamics Testing Facilities at the University of California, Berkeley," by R. M. Stephen, J. G. Bouwkamp, R. W. Clough and J. Penzien - 1969 (PB 189 111)

"Seismic Response of Soil Deposits Underlain by Sloping Rock Boundaries," by H. Dezfulian and H. B. Seed - 1969 (PB 189 114)

"Dynamic stress Analysis of Axisymmetric Structures under Arbitrary Loading," by S. Ghosh and E. L. Wilson - 1969 (PB 189 026)

"Seismic Behavior of Multistory Frames Designed by Different Philosophies," by J. C. Anderson and V. V. Bertero - 1969 (PB 190 662)

"stiffness Degradation of Reinforcing Concrete Structures Subjected to Reversed Actions," by V. V. Bertero, B. Bresler and H. Ming Liao - 1969 (PB 202 942)

"Response of Non-Uniform Soil Deposits to Travel Seismic Waves," by H. Dezfulian and H. B. Seed - 1969 (PB 191 023)

"Damping Capacity of a Model Steel Structure," by D. Rea, R. W. Clough and J. G. Bouwkamp - 1969 (PB 190 663)

"Influence of Local Soil Conditions on Building Damage Potential during Earthquakes," by H. B. Seed and I. M. Idriss - 1969 (PB 191 036)

"The Behavior of Sands under Seismic Loading Conditions," by M. L. Silver and H. B. Seed - 1969 (AD 714 982)

"Earthquake Response of Concrete Gravity Dams," by A. K. Chopra - 1970 (AD 709 640)

"Relationships between Soil Conditions and Building Damage in the Caracas Earthquake of July 29, 1967," by H. B. Seed, I. M. Idriss and H. Dezfulian - 1970 (PB 195 762)

Page 236: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

EERC 70-3

EERC 70-4

EERC 70-5

EERC 70-6

EERC 70-7

EERC 70-8

EERC 70-9

EERC 70-10

EERC 71-1

EERC 71-2

EERC 71-3

EERC 71-4

EERC 71-5

220

"Cyclic Loading of Full Size Steel Connections," by E. P. Popov and R. M. Stephen - 1970 (PB 213 545)

"Seismic Analysis of the Charaima Building, Caraballeda, Venezuela," by Subcommittee of the SEAONC Research Committee: V. V. Bertero, P. F. Fratessa, S. A. Mahin, J. H. Sexton, A. C. Scordelis, E. L. Wilson, L. A. Wyllie, H. B. Seed and J. Penzien, Chairman - 1970 (PB 201 455)

"A Computer Program for Earthqualce Analysis of Dams~" by A. K. Chopra and P. Chakrabarti - 1970 (AD 723 994)

"The Propagation of Love Waves across Non-Horizontally Layered Structures," -by J. Lysmer /!l.Ild L. A. Drake -1970 (FE 197 896)

"Influence of Base Rock Characteristics on Ground Response," by J. Lysmer, H. B. Seed and P. B. Schnabel - 1970 (PB 197 897)

"Applicability of Laboratory Test Procedures for Measuring Soil Liquefaction Characteristics unde~ Cyclic Loading," by H. B. Seed and W. H. Peacock'-1970 (PB 198 016)

"A Simplified Procedure for Evaluating Soil Liquefaction Potential," by H. B. Seed ano. 1. M. Idriss - 1970 (PB 198 009)

"Soil Moduli and Damping Factors for Dynamic Response Analysis," by H. B. Seed and 1. M. Idriss - 1970 (PB 197 869)

"Koyna Earthquake and the Performance of Koyna Dam," by A. K. Chopra and P. Chakrabarti - 1971 (AD 731 496)

"Preliminary In-Situ Measurements of Anelastic Absorption in Soils Using a Prototype Earthquake Simulator," by R. D. Borcherdt and P. W. Rodgers 1971 (PB 201 454)

"Static and Dynamic Analysis of Inelastic Frame structures," by F. L. Porter and G. H. Powell - 1971 (PB 210 135)

"Research Needs in Limit Design of Reinforced Concrete Structures," by V. V. Bertero - 1971 (PB 202 943)

"Dynamic Behavior of a High-Rise Diagonally Braced Steel Building," by D. Rea, A. A. Shah and J. G. Bouwkamp - 1971 (PB 203 584)

Page 237: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

EERC 71-6

EERC 71-7

EERC 71-8

EERC 72-1

EERC 72-2

EERC 72-3

EERC 72-4

EERC 72-5

EERC 72-6

EERC 72-7

EERC 72-8

EERC 72-9

EERC 72-10

221

"Dynamic Stress Analysis of Porous Elastic Solids Saturated with Compressible Fluids," by J. Ghaboussi and E. L. Wilson - 1971 (PB 211 396)

"Inelastic Behavior of Steel Beam-to-Column Subassemblages," by H. Krawinkler, V. V. Bertero and E. P. Popov - 1971 (PB 211 335)

"Modification of Seismograph Records for Effects of Local Soil Conditions," by P. schnabel, H. B. Seed and J. Lysmer - 1971 (PB 214 450)

"static and Earthquake Analysis of Three Dimensional Frame and Shear Wall Buildings," by E. L. Wilson and H. H. Dovey - 1972 (PB 212 904)

"Accelerations in Rock for Earthquakes in the Western United States," by P. B. schnabel and H. B. Seed -1972 (PB 213 100)

"Elastic-Plastic Earthquake Response of Soil-Building Systems," by T. Minami - 1972 (PB 214 868)

"Stochastic Inelastic Response of Offshore Towers to Strong Motion Earthquakes," by M. K. Kaul - 1972 (PB 215 713)

"Cyclic Behavior of Three Reinforced Concrete Flexural Members with High Shear," by E. P. Popov, V. V. Bertero and H. Krawinkler - 1972 (PB 214 555)

"Earthquake Response of Gravity Dams Including Reservoir Interaction Effects," by P. Chakrabarti and A. K. Chopra - 1972 (AD 762 330)

"Dynamic Properties on Pine Flat Dam," by D. Rea, C. Y. Liaw and A. K. Chopra - 1972 (AD 763 928)

"Three Dimensional Analysis of Building systems," by E. L. Wilson and H. H. Dovey - 1972 (PB 222 438)

"Rate of Loading Effects on Uncracked and Repaired Reinforced Concrete Members," by S. Mahin, V. V. Bertero, D. Rea and M. Atalay - 1972 (PB 224 520)

"Computer Program for static and Dynamic Analysis of Linear structural Systems," by E. L. Wilson, K.-J. Bathe, J. E. Peterson and H. H. Dovey - 1972 (PB 220 437)

Page 238: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

EERC 72-11

EERC 72-12

EERC 73-1

EERC 73-2

EERC 73-3

EERC 73-4

EERC 73-5

EERC 73-6

EERC 73-7

EERC 73-8

EERC 73-9

EERC 73-10

EERC 73-11

EERC 73-12

222

"Literature Survey - Seismic Effects on Highway Bridges," by T. Iwasaki, J. Penzien and R. W. Clough -1972 (PB 215 613)

"SHAKE-A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites," by P. B. schnabel and J. Lysmer - 1972 (PB 220 207)

"Optimal Seismic Design of Multistory Frames," by V. V. Bertero and H. Kamil - 1973

"Analysis of the Slides in the San Fernando Dams during the Earthquake of February 9, 1971," by H. B. Seed, K. L. Lee, I. M. Idriss and F. Makdisi -1973 (PB 223 402)

"Computer Aided Ultimate Load Design of Unbraced Multistory Steel Frames," by M. B. EI-Hafez and G. H. Powell - 1973

"Experimental Investigation into the Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment and Shear," by M. Celebi and J. Penzien - 1973 (PB 215 884)

"Hysteretic Behavior of Epoxy-Repaired Reinforced Concrete Beams," by M. Celebi and J. Penzien - 1973

"General Purpose Computer Program for Inelastic Dynamic Response of Plane Structures," by A. Kanaan and G. H. Powell - 1973 (PB 221 260)

"A Computer Program for Earthquake Analysis of Gravity Dams Including Reservoir Interaction," by P. Chakrabarti and A. K. Chopra - 1973 (AD 766 271)

"Behavior of Reinforced Concrete Deep Beam-Column Subassemblages under Cyclic Loads," by o. Kustu and J. G. Bouwkamp - 1973

"Earthquake Analysis of Structure-Foundation Systems," by A. K. Vaish and A. K. Chopra - 1973 (AD 766 272)

"Deconvolution of Seismic Response for Linear Systems," by R. B. Reimer - 1973 (PB 227 179)

"SAP IV: A Structural Analysis Program for Static and Dynamic Response of Linear Systems," by K.-J. Bathe, E. L. Wilson and F. E. Peterson - 1973 (PB 221 967)

"Analytical Investigations of the Seismic Response of Long, Multiple Span Highway Bridges," by W. S. Tseng and J. Penzien - 1973 (PB 227 816)

Page 239: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

EERC 73-13

EERC 73-14

EERC 73-15

EERC 73-16

EERC 73-17

EERC 73-18

EERC 73-19

EERC 73-20

EERC 73-21

EERC 73-22

EERC 73-23

EERC 73-24

EERC 73-25

EERC 73-26

223

"Earthquake Analysis of Multi-Story Buildings Including Foundation Interaction," by A. K. Chopra and J. A. Gutierrez - 1973 (PB 222 970)

"ADAP: A Computer Program for Static and Dynamic Analysis of Arch Dams," by R. W. Clough, J. M. Raphael and S. Majtahedi - 1973 (PB 223 763)

"Cyclic Plastic Analysis of Structural Steel Joints," by R. B. Pinkney and R. W. Clough - 1973 (PB 226 843)

"QUAD-4: A Computer Program for Evaluating the Seismic Response of Soil Structures by Variable Damping Finite Element Procedures," by I. M. Idriss, J. Lysmer, R. Hwang and H. B. Seed - 1973 (PB 229 424)

"Dynamic Behavior of a Multi-Story Pyramid Shaped Building," by R. M. Stephen and J. G. Bouwkamp - 1973

"Effect of Different Types of Reinforcing on Seismic Behavior of Short Concrete Columns ," by V. V. Bertero, J. Hollings, O. Kustu, R. M. Stephen and J. G. Bouwkamp - 1973

"Olive View Medical Center Material Studies, Phase I," by B. Bresler and V. V. Bertero - 1973 (PB 235 986)

"Linear and Nonlinear Seismic Analysis Computer Programs for Long Multiple-Span Highway Bridges," by W. S. Tseng and J. Penzien - 1973

"Constitutive Models for Cyclic Plastic Deformation of Engineering Materials," by J. M. Kelly and P. P. Gillis - 1973 (PB 226 024)

"DRAIN - 2D User's Guide," by G. H. Powell - 1973 (PB 227 016)

"Earthquake Engineering at Berkeley - 1973" - 1973 (PB 226 033)

unassigned

"Earthquake Response of Axisymmetric Tower Structures Surrounded by Water," by C. Y. Liaw and A. K. Chopra -1973 (AD 773 052)

"Investigation of the Failures of the Olive View Stairtowers during the San Fernando Earthquake and Their Implications in Seismic Design," by V. V. Bertero and R. G. collins - 1973 (PB 235 106)

Page 240: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

EERC 73-27

EERC 74-1

EERC 74-2

EERC 74-3

EERC 74-4

EERC 74.,.5

EERC 74-6

EERC 74-7

EERC 74-8

EERC 74-9

EERC 74-10

EERC 74-11

EERC 74-12

224

"Further Studies on Seismic Behavior of Steel Beam­Column Subassemblages," by V. V. Bertero, H. Krawinkler and E. P. Popov - 1973 (PB 234 172)

"seismic Risk Analysis," by C. S. Oliveira - 1974 (PB 235 920)

"Settlement and Liquefaction of Sands under Multi-Directional Shaking," by R. Pyke, C. K. Chan and H. B. Seed - 1974

"Optimum Design of Earthquake Resistant Shear Buildings," by D. Ray, K. S. Pister and A. K. Chopra -1974 (PB 231 172)

"LUSH - A Computer Program for Complex Response Analysis of Soil-Structure Systems," by J. Lysmer, T. Udaka, H. B. Seed and R. Hwang - 1974 (PB 236 796)

"Sensitivity Analysis for Hysteretic Dynamic Systems: Applications to Earthquake Engineering," by D. Ray -1974 (PB 233 213)

"Soil-Structure Interaction Analyses for Evaluating seismic Response," by H. B. Seed, J. Lysmer and R. Hwang - 1974 (PB 236 519)

unassigned

"Shaking Table Tests of a Steel Frame - A Progress Report," by R. W. Clough and D. Tang - 1974

"Hysteretic Behavior of Reinforced Concrete Flexural Members with Special Web Reinforcement," by V. V. Bertero, E. P. Popov and T. Y. Wang - 1974 (PB 236 797)

"Applications of ReliabilitY-Based, Global Cost Optimization to Design of Earthquake Resistant Structures," by E. Vitiello and K. S. Pister - 1974 (FB 237 231)

"Liquefaction of Gravelly Soils under Cyclic Loading Conditions," by R. T. Wong, H. B. Seed and C. K. Chan -1974

"Site-Dependent Spectra for Earthquake-Resistant Design," by H. B. Seed, C. Ugas and J. Lysmer - 1974

Page 241: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

EERC 74-13

EERC 74-14

EERC 74-15

EERC 75-1

EERC 75-2

EERC 75-3

EERC 75-4

EERC 75-5

EERC 75-6

EERC 75-7

EERC 75-8

EERC 75-9

225

"Earthquake Simulator Study of a Reinforced Concrete Frame," by P. Hidalgo and R. W. Clough - 1974 (PB 241 944)

"Nonlinear Earthquake Response of Concrete Gravity Dams," by N. Pal - 1974 (AD/A006583)

"Modeling and Identification in Nonlinear Structural Dynamics, I - One Degree of Freedom Models," by N. Distefano and A. Rath - 1974 (PB 241 548)

"Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol. I: Description, Theory and Analytical Modeling of Bridge and Parameters," by F. Baron and S.-H. Pang - 1975

"Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol. 2: Numerical Studies and Establishment of Seismic Design Criteria," by F. Baron and S.-H. Pang - 1975

"Seismic Risk Analysis for a Site and a Metropolitan Area," by C. S. Oliveira - 1975

"Analytical Investigations of Seismic Response of Short, Single or Hultiple-Span Highway Bridges," by Ma-chi Chen and J. Penzien - 1975 (PB 241 454)

"An Evaluation of Some Methods for Predicting Seismic Behavior of Reinforced Concrete Buildings," by Stephen A. Mahin and V. V. Bertero - 1975

"Earthquake Simulator Study of a Steel Frame Structure, Vol. I: Experimental Results," by R. W. Clough and David T. Tang - 1975 (PB 243 981)

"Dynamic Properties of San Bernardino Intake Tower," by Dixon Rea, C.-Y. Liaw, and Anil K. Chopra - 1975 (AD/A008406)

"Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. I: Description, Theory and Analytical Modeling of Bridge Components," by F. Baron and R. E. Hamati - 1975

"Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. 2: Numerical Studies of Steel and Concrete Girder Alternates," by F. Baron and R. E. Hamati - 1975

Page 242: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

EERC 75-10

EERC 75-ll

EERC 75-12

EERC 75-13

EERC 75-14

EERC 75-15

EERC 75-16

EERC 75-17

EERC 75-18

EERC 75-19

EERC 75-20

EERC 75-21

EERC 75-22

EERC 75-23

226

"Static and Dynamic Analysis of Nonlinear Structures," by Digambar P. Mondkar and Graham H. Powell - 1975 (PB 242 434)

"Hysteretic Behavior of Steel Columns," by E. P. Popov, V. V. Bertero and S. Chandramouli - 1975

"Earthquake Engineering Research Center Library Printed Catalog" - 1975 (PB 243 711)

"Three Dimensional Analysis of Building Systems," Extended Version, by E. L. Wilson, J. P. Hollings and H. H. Dovey - 1975 (PB 243 989)

"Determination of Soil Liquefaction Characteristics by Large-Scale Laboratory Tests," by Pedro De Alba, Clarence K. Chan and H. Bolton Seed - 1975

"A Literature Survey - Compressive, Tensile, Bond and Shear Strength of Masonry," by Ronald L. Maye sand Ray W. Clough - 1975

"Hysteretic Behavior of Ductile Moment Resisting Reinforced Concrete Frame Components," by V. V. Bertero and E. P. Popov - 1975

"Relationships Between Maximum Acceleration, Maximum Velocity, Distance from Source, Local Site Conditions for Hoderately Strong Earthquakes," by H. Bolton Seed, Ramesh Murarka, John Lysmer and I. M. Idriss - 1975

"The Effects of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands," by J. Paul Mulilis, Clarence K. Chan and H. Bolton Seed - 1975

"The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear and Axial Force," by B. Atalay and J. Penzien - 1975

"Dynamic Properties of an Eleven Story Masonry Building," by R. M. Stephen, J. P. Hollings, J. G. BoUwkamp and D. Jurukovski - 1975

"State-of-the-Art in Seismic Shear Strength of Masonry -An Evaluation and Review," by Ronald L. .Hayes and Ray W. Clough - 1975

"Frequency Dependencies Stiffness Matrices for Viscoelastic Half-Plane Foundations," by Anil K. Chopra, P. Chakrabarti and Gautam Dasgupt.a - 1975

"Hysteretic Behavior of Reinforced Concrete Framed Walls," by T. Y. Wong, V. V. Bertero and E. P. Popov - 1975

Page 243: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

EERC 75-24

EERC 75-25

EERC 75-26

EERC 75-27

EERC 75-28

EERC 75-29

EERC 75-30

EERC 75-31

EERC 75-32

EERC 75-33

EERC 75-34

EERC 75-35

EERC 75-36

EERC 75-37

227

"Testing Facility for Subassemblages of Frame-Wall Structural Systems," by V. V. Bertero, E. P. Popov and T. Endo - 1975

"Influence of Seismic History on the Liquefaction Characteristics of Sands," by H. Bolton Seed, Kenji Mori and Clarence K. Chan - 1975

"The Generation and Dissipation of Pore Water Pressures During Soil Liquefaction," by H. Bolton Seed, Phillippe P. Martin and John Lysmer - 1975

"Identification of Research Needs for Improving a Seismic· Design of Building Structures," by V. V. Bertero - 1975

"Evaluation of Soil Liquefaction Potential during Earth­quakes," by H. Bolton Seed, I. Arango and Clarence K. Chan 1975

"Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses," by H. Bolton Seed, I. M. Idriss, F. Makdisi and N. Banerjee 1975

"FLUSH - A Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Problems," by J. Lysmer, T. Udaka, C.-F. Tsai and H. B. Seed - 1975

"ALUSH - A Computer Program for Seismic Response Analysis of Axisymmetric Soil-Structure Systems," by E. Berger, J. Lysmer and H. B. Seed - 1975

"TRIP and TRAVEL - Computer Programs for Soil-Structure Interaction Analysis with Horizontally Travelling Waves," by T. Udaka, J. Lysmer and H. B. Seed - 1975

"Predicting the Performance of Structures in Regions of High Seismicity," by Joseph Penzien - 1975

"Efficient Finite Element Analysis of Seismic Structure -Soil - Direction," by J. Lysmer, H. Bolton Seed, T. Udaka, R. N. Hwang and C.-F. Tsai - 1975

"The Dynamic Behavior of a First Story Girder of a Three­Story Steel Frame Subjected to Earthquake Loading," by Ray W. Clough and Lap-Yan Li - 1975

Earthquake Simulator Study of a Steel Frame Structure, Volume II - Analytical Results," by David To. Tang - 1975

"ANSR-I General Purpose Computer Program for Analysis of Non-Linear Structural Response," by Digambar P. Mondkar and Graham H. Powell - 1975

Page 244: TIME AND FREQUENCY DOMAIN ANALYSES OF THREE …

EERC 75-38

EERC 75-39

EERC 75-40

EERC 75-41

EERC 76-1

EERC 76-2

EERC 76-3

EERC 76-4

EERC 76-5

EERC 76-6

228

"Nonlinear Response Spectra for Probabilistic Seismic Design and Damage Assessment of Reinforced Concrete Structures," by Masaya Murakami and Joseph Penzien - 1975

"Study of a Method of Feasible Directions for Optimal Elastic Design of Framed Structures Subjected to Earthquake Loading," by N. D. Walker and K. S. Pister - 1975

"An Alternative Representation of the Elastic-Viscoelastic Analogy," by Gautam Dasgupta and Jerome L. Sackman - 1975

"Effect of Multi-Directional Shaking on Liquefaction of Sands," by H. Bolton Seed, Robert Pyke and Geoffrey R. Martin - 1975

"Strength and Ductility Evaluation of Existing Low-Rise Reinforced Concrete Buildings - Screening Method," by Tsuneo Okada and Boris Bresler - 1976

"Experimental and Analytical Studies on the Hysteretic Behavior of Reinforced Concrete Rectangular and T-Beams," by Shao-Yeh Marshall Ma, Egor P. Popov and Vitelmo V. Bertero - 1976

"Dynamic Behavior of a Multistory Triangular-Shaped Building," by J. Petrovski, R. M. Stephen, E. Gartenbaum and J. G. Bouwkamp - 1976

"Earthquake Induced Deformations of Earth Dams," by Norman Serff and H. Bolton Seed - 1976

"Analysis and Design of Tube-Type Tall Building Structures," by H. de Clercq and G. H. Powell - 1976

"Time and Frequency Domain Analysis of Three-Dimensional Ground Motions, San Fernando Earthquake," by Tetsuo Kubo and Joseph Penzien - 1976