Top Banner

of 35

Frequency Domain Modelling

Jul 07, 2018

Download

Documents

ned_marian
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/18/2019 Frequency Domain Modelling

    1/35

     AMME 3500/9501 :

    System Dynamics and Control

    Frequency Domain Modelling

    Dr. Ian R. Manchester 

     A/Prof Ian R. Manchester Amme 3500 : Introduction

  • 8/18/2019 Frequency Domain Modelling

    2/35

    Slide 3

    Overview

    • Linear Time-Invariant (LTI) Models

     – Linearisation

     – The Principle of Superposition

    • Laplace transform

    • Transfer Functions

     A/Prof Ian R. Manchester Amme 3500 : Introduction

  • 8/18/2019 Frequency Domain Modelling

    3/35

    Slide 4Dr. Ian R. Manchester Amme 3500 : Introduction

    Mathematical Modelling

    • A mathematical model is one or more equations

    that describe the relationship between the system

    variables

    • These models are usually derived from basic

     physical principles, often with some parameters

    that need to be determined experimentally

  • 8/18/2019 Frequency Domain Modelling

    4/35

    Slide 5

    Linearity

    • The net response to a sum of inputs is

    the sum of the output responses of each

    input considered in isolation

    • Mathematically: = ()

    • Linear:  1 + 2   = 1) + (2

     A/Prof Ian R. Manchester Amme 3500 : Introduction

  • 8/18/2019 Frequency Domain Modelling

    5/35

    Slide 6Dr. Ian R. Manchester Amme 3500 : Introduction

    Dynamic Models

    •  A linear differential equation for a single-input, single-

    output system has the form

    Plant

    u(t) y(t)

    • (an-1, …, a0, bm, … b0) are the system’s parameters

    •  An LTI system has parameters that are time-invariant

    • n is the order of the system

    1

    1 0 01

    ( ) ( ) ( )( ) ( )

    n n m

    n mn n m

    d y t d y t d u t  a a y t b b u t  

    dt dt dt  

     

  • 8/18/2019 Frequency Domain Modelling

    6/35

    Slide 7Dr. Ian R. Manchester Amme 3500 : Introduction

     A Familiar Mechanical Example

    • Spring damper system

    • Mass M is suspended by

    a spring and damper 

    • Force f is applied

    • How do we predict the

    motion of this system?M

    f(t)

    y(t)

  • 8/18/2019 Frequency Domain Modelling

    7/35

    Slide 8Dr. Ian R. Manchester Amme 3500 : Introduction

    Translation Mechanical Elements

    • Force-velocity,

    force-

    displacement, and

    impedancetranslational

    relationships

    for springs,

    viscous dampers,and mass

  • 8/18/2019 Frequency Domain Modelling

    8/35

    Slide 9Dr. Ian R. Manchester Amme 3500 : Introduction

    Rotational Mechanical Elements

    • Torque-angular

    velocity, torque-

    angular

    displacement,and impedance

    rotational

    relationships for

    springs, viscousdampers, and

    inertia

  • 8/18/2019 Frequency Domain Modelling

    9/35

    Slide 10Dr. Ian R. Manchester Amme 3500 : Introduction

    Free Body Diagram

    • Draw an FBD

    • Insert forces acting on

    body

    • Sum forces

    d  K yM

    f(t)

    y(t)

     Ky(t )   K d  y(t )

     F  =myå

    my =   f  (t )- Ky(t )- K d  y(t )my+ K d  y(t )+ Ky(t ) =   f  (t )

  • 8/18/2019 Frequency Domain Modelling

    10/35

    Slide 11

    Nonlinear Systems

    • Most real systems are nonlinear:

     – A spring has only so much travel available

     – Wind resistance is a quadratic function of

    velocity

     – Trigonometric terms show up for rotational

     joints

     A/Prof Ian R. Manchester Amme 3500 : Introduction

  • 8/18/2019 Frequency Domain Modelling

    11/35

    Slide 12

    Linearisation (Taylor Series)

    •  A local approximation to a nonlinear

    function can be found by linearisation:

      ≈ 0   +

      − 0   + ℎ. . .

     A/Prof Ian R. Manchester Amme 3500 : Introduction

  • 8/18/2019 Frequency Domain Modelling

    12/35

    Slide 13

    Pendulum Example

    • + sin =

     A/Prof Ian R. Manchester Amme 3500 : Introduction

  • 8/18/2019 Frequency Domain Modelling

    13/35

    Slide 14

    Hydraulic Pump Example

     A/Prof Ian R. Manchester Amme 3500 : Introduction

  • 8/18/2019 Frequency Domain Modelling

    14/35

    Slide 15Dr. Ian R. Manchester Amme 3500 : Introduction

    Impulse Response

    • vid

  • 8/18/2019 Frequency Domain Modelling

    15/35

    Slide 16

    Impulse Response

    Dr. Ian R. Manchester Amme 3500 : Introduction

  • 8/18/2019 Frequency Domain Modelling

    16/35

    Slide 17

    Examples

    • Response of a car suspension system to a pothole

    • Flexing “modes” of an aircraft wing

    • Or a high-precision industrial robot arm

    • The response of blood glucose concentration, insulin

     production, etc after eating a meal

    Dr. Ian R. Manchester Amme 3500 : Introduction

  • 8/18/2019 Frequency Domain Modelling

    17/35

    Slide 18Dr. Ian R. Manchester Amme 3500 : Introduction

    The Unit Impulse

    • An impulse is an infinitely short pulse at t =0

    • Any signal can be thought of as

    the summation (integral) of

    many impulses at different points

    in time

    • By the principal of

     superposition, if we can find the

    response of the system to one

    impulse, we will be able to find

    the response to an arbitrary

    input 

    ( ) ( ) ( ) f t d f t   

    f(t)

    t

  • 8/18/2019 Frequency Domain Modelling

    18/35

    Slide 19

    Impulse Response

    • Suppose the input consisted of just three

    impulses at times t = 0, 1, 2 of size 7, 8, 9.

    • What is the value of y(t ) at time t = 5?

    Dr. Ian R. Manchester Amme 3500 : Introduction

     y =   f   (u1 + u2 + u3)

    =   f   (u1)+   f   (u2)+   f   (u3)

    = 7h(5)+ 8h(4)+ 9h(3)

  • 8/18/2019 Frequency Domain Modelling

    19/35

    Slide 20Dr. Ian R. Manchester Amme 3500 : Introduction

    Convolution Integral

    • The output is the sum (integral) of each impulse

    response of the system to each individual impulse of

    the input , delayed by the appropriate time

    • We call this convolution, and it is written as

     

     y(t ) =   h(t  )u(t -t  )d t  0

    ¥

    ò

     y(t ) = h(t )*u(t )

  • 8/18/2019 Frequency Domain Modelling

    20/35

    Slide 21Dr. Ian R. Manchester Amme 3500 : Introduction

    Example : Solving in time

    • Assume we have a system described by the

    following differential equation

    • The impulse response for this system is

    ( )   kt h t e

    ˙ y(t )+ ky(t ) = u(t )

  • 8/18/2019 Frequency Domain Modelling

    21/35

    Slide 22Dr. Ian R. Manchester Amme 3500 : Introduction

    • If we want to find the response of the system

    to a sinusoidal input, sin(wt )

    Example : Solving in time

    ( ) ( ) ( )

    sin( ( ))k 

     y t h u t d 

    e t d   

      

    w   

  • 8/18/2019 Frequency Domain Modelling

    22/35

    Slide 23Dr. Ian R. Manchester Amme 3500 : Introduction

    Cascaded systems

    •  Now what happens if

    we have multiple

    components in thesystem?

    h (t)u(t) y1(t)

    h1(t)y(t)

    1

    1 1

    1

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ( ) * ( )) * ( )

     y t u t h d 

     y t y t h d 

     y t u t h t h t 

      

      

  • 8/18/2019 Frequency Domain Modelling

    23/35

    Slide 24Dr. Ian R. Manchester Amme 3500 : Introduction

    Step Response

    • Often we are interested inthe response of a system to astep change, e.g. the change

    of reference signal

  • 8/18/2019 Frequency Domain Modelling

    24/35

    Slide 25

    Paradox?

    • How can we have a step response for a

    system defined by derivatives of the input?

    Dr. Ian R. Manchester Amme 3500 : Introduction

    1

    1 0 01

    ( ) ( ) ( )( ) ( )

    n n m

    n mn n m

    d y t d y t d u t  a a y t b b u t  

    dt dt dt  

     

  • 8/18/2019 Frequency Domain Modelling

    25/35

    Slide 26Dr. Ian R. Manchester Amme 3500 : Introduction

    The input signal as an Exponential

    • This provides us with a rich basis function for

    describing functions

    • Through Euler ’s formula, we find

    • Fourier analysis tells us that this is sufficient for

    representing any signal

    ( )

    (cos sin )

     st j t 

    t j t 

    e e

    e e

    e t j t  

      

    w w 

  • 8/18/2019 Frequency Domain Modelling

    26/35

    Slide 27

    The “Frequency Domain”

    • We can also consider the response of a system

    to sinusoidal inputs

    • Fourier theory tells us that all signals can be

    decomposed into a sums of sinusoids

    • Our “basis signals” are complex exponentials:

    Dr. Ian R. Manchester Amme 3500 : Introduction

    u(t ) = e st  = e(s  + jw  )t 

  • 8/18/2019 Frequency Domain Modelling

    27/35

    Slide 28Dr. Ian R. Manchester Amme 3500 : Introduction

    Laplace Transform

    • The Laplace transform is defined as:

    • The inverse transform is:

     F  ( s ) =   f    (t  )e - st dt 0

    ¥

    ò

    1( ) ( )

    2

     j st 

     j f t F s e ds

     j

      

        

    Where

     

     s =s  +   jw 

  • 8/18/2019 Frequency Domain Modelling

    28/35

    Slide 29

    Laplace Transform of a Step

    Dr. Ian R. Manchester Amme 3500 : Introduction

     F  ( s ) =   f    (t  )e - st dt 0

    ¥

    ò 

     f   (t )=1

    Step input

    Laplace Trans.

    If s > 0

  • 8/18/2019 Frequency Domain Modelling

    29/35

    Slide 30Dr. Ian R. Manchester Amme 3500 : Introduction

    Table of Laplace Transforms

    • What about that nastyintegral in the Laplaceoperation?

    • We normally use tablesof Laplace transformsrather than solving the

     preceding equationsdirectly

    • This greatly simplifiesthe transformation

     process

  • 8/18/2019 Frequency Domain Modelling

    30/35

    Slide 31Dr. Ian R. Manchester Amme 3500 : Introduction

    Laplace Transform Theorems

  • 8/18/2019 Frequency Domain Modelling

    31/35

    Slide 32Dr. Ian R. Manchester Amme 3500 : Introduction

    How does this help us?

    • Convolution in time is

    equivalent to

    multiplication in theLaplace domain

    ( ) ( ) * ( )

    ( ) ( ) ( )

     y t u t h t 

    Y s U s H s

     

    H(s)U(s) Y1(s)

    H1(s)Y(s)

    1( ) ( ) ( ) ( )Y s U s H s H s

  • 8/18/2019 Frequency Domain Modelling

    32/35

    Slide 33Dr. Ian R. Manchester Amme 3500 : Introduction

    Comparing Solution Methods

    • Starting with an impulse response, h(t), and an

    input, u(t), find y(t)

    u(t), h(t)

    U(s), H(s)

    convolution

    y(t)

    L L -1

    Multiplication,

    algebraic manipulation

    Y(s)

  • 8/18/2019 Frequency Domain Modelling

    33/35

    Slide 34Dr. Ian R. Manchester Amme 3500 : Introduction

    Transfer Function

    • The transfer function H(s) of a system isdefined as the ratio of the Laplace transforms

    output and input with zero initial conditions

    • It is also Laplace transform of the impulse

    response ( ) ( ) * ( )

    ( ) ( ) ( )

     y t u t h t 

    Y s U s H s

     

     H ( s) = Y ( s)U ( s)

  • 8/18/2019 Frequency Domain Modelling

    34/35

    Slide 35Dr. Ian R. Manchester Amme 3500 : Introduction

    Example : Transfer Function

    • Recall the system we examined earlier 

    • To find the transfer function for this system,we perform the following steps

     sY ( s) - y(0)+ kY ( s) =U ( s)

    Y ( s)( s+k )=U ( s)

     H ( s) =Y ( s)

    U ( s)=

    1

     s+ k 

    ( )   kt h t eor 

     

    ˙ y(t )+ ky(t ) = u(t )

  • 8/18/2019 Frequency Domain Modelling

    35/35

    Slide 36Dr Ian R Manchester Amme 3500 : Introduction

    Conclusions

    The “Linear Time Invariant” abstraction

    allows us to completely understand system

    response by looking at certain basic responses

    (impulse, step, frequency)

    The Laplace transform (of signals) and transfer

    functions (of systems) are a very convenient

    representations for analysis