Top Banner
Theory of Brownian Motion Revisited - from Einstein and Smoluchowski to Swarm Dynamics Werner Ebeling Humboldt-University Berlin
52

Theory of Brownian Motion Revisited - from Einstein and …th- · 2007. 11. 20. · Theory of Brownian Motion Revisited - from Einstein and Smoluchowski to Swarm Dynamics Werner Ebeling

Jan 29, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Theory of Brownian Motion Revisited

    - from Einstein and Smoluchowski

    to Swarm Dynamics

    Werner Ebeling

    Humboldt-University Berlin

  • Contents

    • About Brown, Einstein and Smoluchowski,

    • Langevin, Fokker,Planck, Klein,Kramers,Ornstein,Debye,Hückel,Onsager,Falkenhagen

    • Foundations:Markov,Kolmogorov, Enskog,Grad

    • Zwanzig’s projection operator formalism

    • Model of selfpropelled Brownian motion

    • Stochastic theory of selfpropelled particles

    • Collective motions of interacting particles

    • Conclusions and outlook

  • 1. Brown to Einstein-SmoluchowskiRobert Brown 1773-1858

    Perrin:mastix-particles in water obs every 30s

    Perrin Brown

  • An open problem: How Brownian

    dynamics is related to the 2nd law

  • and how BM is related to STATPHYSL. Boltzmann J.W. Gibbs

  • EINSTEIN: Annalen 17, 549 (1905)

  • Smoluchowski’s contributionLemberg (1900-13), Krakow(1913-17)

    • 1904 theory of thermodyn fluctuations

    • 1906 Smoluchowski equation: pde fordistribution functions (method “moredirect, simpler and thus more convincingthan E.”), influence of external forces actingon molecules,

    • understood the relation between microscopic

    motion and second law of thermodynamics

  • WIKIPEDIA

    • Marian Smoluchowski

    • (ur. 28 maja 1872 - zm. 5 wrzesnia 1917), wybitny polski fizyk.

    • Urodzony w Vorderbrühl pod Wiedniem w Austrii, w latach 1890-

    1894 studiowal fizyke na uniwersytecie w Wiedniu. Poslubil

    Zofie Baraniecka (1881-1959), córke profesora matematyki

    Uniwersytetu Jagiellonskiego, z która mial dziecko - córke

    Aldone. W 1894-1895 odbyl sluzbe wojskowa, w 1895 obronil z

    wyróznieniem prace doktorska na tymze uniwersytecie. Przez

    kilka lat pracowal w laboratoriach róznych osrodków naukowych

    Europy (Sorbona, Glasgow, Berlin). W 1898 otrzymal prawo

    wykladania (tzw. veniam legendi). W latach 1899-1912 pracowal

    na Uniwersytecie Lwowskim, od 1900 jako profesor. Od 1912

    profesor na Uniwersytecie Jagiellonskim, w katedrze fizyki

    doswiadczalnej. Smoluchowski jest klasykiem fizyki

    statystycznej. Prawie równoczesnie z Einsteinem sformulowal

    teorie ruchów Browna. Jedno z równan teorii dyfuzji jest znane

    jako równanie Smoluchowskiego. Byl tez zapalonym taternikiem.

    Kilka miesiecy przed smiercia wybrany rektorem UJ. Zmarl 5

    wrzesnia 1917 w Krakowie.

  • Einstein/Smoluchowski about the relation BM-2nd law

    • Einstein Ann..Physik, Band 17 (1905) 549-560: “In

    dieser Arbeit soll gezeigt werden, daß ....

    suspendierte Teilchen von mikroskopischer Größe ...

    Bewegungen ausführen müssen, ... die leicht ..

    nachgewiesen werden können..... , so ist die

    klass.TD für mikr. Räume nicht mehr ..gültig, ...”

    • Smoluchowki: constructs examples for micros-

    copic violation of 2nd law, (“limits of validity of

    2nd law”) the ratchet concept, developes the

    theory of fluctuations and recurrence time

  • Experimental work checking the

    Einstein-Smoluchowski predictions

    • Svedberg, Siedentopf, Gouy:

    the theory describes Brownian

    motion correctly!

    • Perrin: systematic,quantitative,

    exp. investigations, msd,

    Avogadro-number, Planck’s

    constant, Nobel price

    Perrin

  • • Langevin: stochastic diffeq. with noise source(‘100x more simple than E.’),

    • Fokker: Diss (U Zürich) + letter to Annalen,p.d.e. for distrib-function in phase space,

    • Planck: derivation + generalization,

    • Klein/Kramers: general form of FPE,

    • Uhlenbeck/Ornstein/Debye/ Onsager/Falkenhagen: studied special stochasticprocesses (ions, ionpairs, dipole molecules)

    2. Further development of the Einstein-Smoluchowski theory in 20th century

  • Fokker,1914; Planck,1917

  • Relative diffusional motion:

    Pair correlation functions

    • M. von Smoluchowski: “Versuch einer mathe-

    matischen Theory der Koagulationskinetik

    kolloidaler Losungen”,

    Z. physikal. Chemie 92, 129-135 (1917)

    • here Smoluchowski considered the relative

    motion of particles and presented new solutions

    • this work led to the stochastic theory of absorber

    problems, of ion pairs, and finally to the modern

    theory of diffusion-controlled reactions

  • Debye/Hückel/Onsager/Falkenhagen:

    ionic pair correlation functions

    • Debye/Hückel formulated Smolu-eqs for pair

    correlation functions, presented solutions

    including Coulomb interactions, measurable

    effects on electrolytic conductance,

    • Onsager corrected an error (symmetry),

    generalization, TD of irreversible processes

    • Falkenhagen found time-dependent solutions,

    frequency-dep conductance and shear viscosity

    • 60s: Kadomtsev/Klimontovich: appl to plasmas

  • Einstein,Fokker/Planck/Debye

    formulated d.e. for rotational motion

    • In the book

    • POLARE MOLEKELN

    • Peter Debye presented many solutions for

    rotational motions and gave a comprehensive

    theory of dielectric polarization and other

    applications

    • In the following decades many applications to

    the motion of macromolecules were given,

    including hydrodynamic interactions (Oseen)

  • 3. Mathematical and statisticalfoundation

    • A.A. Markov 1905-22: developed the

    theory of M-chains, M-processes,

    • the theory was generalized and further

    developed by Chapman and Kolmogorov to

    the modern theory of stochastic processes,

    • Kolmogorov/Petrovskii/Piscounov (1937):

    Etude de l eq. diff. avec croissance de la

    matiere et son application a un problem

    biologique

  • Statistical-mechanical derivation

    • Kinetic theory of gases: Enskog/Chapman

    • molecular distribution functions BBGKY

    • method of projection operators Zwanzig

    110L L );'''L('

    P' ;''' ; L

    ∇−=+=∂

    =+==∂

    vPt

    t

    ρρρ

    ρρρρρρρ

  • First applications of Zwanzig meth to derive Smoluch eq:

    Falkenhagen/Eb.:Phys.Lett.15(1965);Ann.Phys.16(1965)

    ))0(''()(r)-(t

    ))0(''()'(r

    v)'A('v......)(r

    )L)G1exp(()(A :propagator

    ......),r('

    )( L)(

    11

    0

    1

    11

    1eq

    0

    11211

    12eq1eq

    ρτττ

    ρ

    ρ

    ρρρρρ

    ρρ

    ftnd

    ftn

    ttdtdvdvdrdrtnt

    tt

    dvdvdrdrtnG

    R,R'VV'ttR,R'VV't

    t

    t

    NN

    NN

    +

    −∇Φ∇=

    +∇

    −Ω∇=

    −=

    Ω=Ω==

    =∂

    ∫∫∫

    ∫∫

  • In local (in time and space) approximation follows

    Odessa-Fisher’s diffusion equation for c.p :

    Kowalenko/Eb.: phys.stat.sol. 30(1968)533

    [ ]

    al.et Sokolovby e.g. used as eq. diff.

    fractalobtain may wekernelsmemory specialwith

    )( ' );(

    '),(

    00

    1111

    4

    11

    2

    ∫∫∝∝

    ==

    ∂∂∂∂

    ∂−+

    ∂∂

    ∂=

    ττϕτττϕ αβαβαβαβ

    δγβαγδαβαβγδβααβ

    dDdD

    rrrr

    nDDD

    rr

    nDtrn

    t

  • 4. Generalization to selfpropelled(active) Brownian motion

    • Dynamic theory of active osc/circuits:Helmholtz: “Tonempfindungen”, Rayleigh:“Theory of Sound”,v.d.Pol, Andronov.

    • Stratonovich: Stochastic theory ofdriven/active oscill/circuits,

    • Klimontovich: Statistical physics of opensystems/active motion, concept of nonlin.BM,

    • Transition from driven oscill/circuits to systemsof many interacting driven particles--> theory of selfpropelled motion

  • Ruslan L. Stratonovich, 31.05.1930 - 13.01.1997

  • Yuri Lvovich

    Klimontovich

    *28.09.1924+27.11.2002

    solved FPE

    treated manyspecial

    problems

  • The dissipative nonlinear force

  • Particles in traps........................................with lasercooling ......................................

    Pohl et al.

  • birds above the Spree riverk

    coherent translation

    Ants rotating around a center of motion and two

    leading researches rotating around the ants

  • rotation modes of fishes

  • 5. FP and Smoluchowski- equations for

    self-propelled Brownian motion

    )(2Dv)( v 2 tvdt

    dv ξγ ⋅+−=

    friction function with negative part for small velocity

  • Our model: particles with energy depot and ‘engine’ (SET)

  • The Fokker-Planck equation for freeparticles with velocity-dep friction

  • Smoluchowki eq for free motion (spatial diffusionD_r strongly increases with driving strength)

    v

    rrD

    vDtnDtn

    t

    4

    0 );,r( ),r( =∆=∂

  • 6. Active diffusion in external fields

    ( forcing, chemotactic gradients,..)

    221

    2

    2

    )(

    ),(2Dv)(m

    1v

    vv

    tvdr

    dU

    dt

    dv

    γγγ

    ξγ

    +−=

    ⋅+−=+

  • Parabolic confinement by parabolic

    wells or chemotactic hills

    • Normal BM:

    • Boltzmann disfunc =

    centered around

    minimum of potential

    • Active BM: force equ.

    • Active BM: right + left

    limit cycle rotation

    0

    00

    0

    2

    0

    0

    2

    0

    ω

    ω

    vr

    rmr

    mv

    =

    =

  • Swaest1.gif

    10000 active particles in parabolic well (Tilch)

  • clock-wise and counter-clockwise

    limit cycles in x-y-v_y space

  • Transition from FP- to Smol-eqs is

    possible including centrifugal forces:

    We need direction c=v/|v| as add var

    [ ]

    ∂+

    +−∇+∇∇

    =∂

    =∂

    ϕϕϕϕ

    ϕβϕϕϕ

    ϕβϕ

    ϕ

    ϕϑϕ

    UnnD

    UnnD

    tnt

    ,r,

    tnt

    rrr

    ),r( ),r(

    ) F)(,r(),r(

    ),,r(

    } { 3din or } {r, var : 2dIn

    ?)c,,r(

  • 7. Collective motionsincluding interactions

    negative friction at small velocities

    )()(' jiij rrr −=Φ α

  • Erdmann/E/Mikhailov (PRE, 71, 051904 (2005))

    Stochastic bifurcations: translational --> rotational modes

    translational mode

  • translation comes to stop -->

    1D:osc mode, 2D: rotational mode

    Mikhailov/Zanette (1D)+Erdmann/E./Mikhailov (2D):

    noise induced phase transition:

  • ABM with Morse- Coulomb

    and Oseen interactions

    ))](exp(2

    ))(2[exp()(

    σ

    σ

    −−−

    −−=Φ

    ij

    ijij

    rb

    rbDr

    (Morse 1928; minimum (-D) at r = sigma; )

    Morse potential (shape similar to Lennard-Jones)

  • rotating cluster of Morse particles:

    bistability of L

  • Hydrodynamic interactions(Stokes Oseen)

    j

    ij

    ijij

    ij

    ijrr

    r

    uurr

    Rr

    vrr

    дv

    rrдv

    ⊗+=

    +=∆

    ][)(

    )(4

    3)(

    2

    02

    ζ

    Oseen: parallel and radial components of induced

    flow of particles located at distance r

    Effect of parallelization of motion

    Velocity creatd by a moving sphere:

  • Simulation of ABM in a parabolic well with Oseen int.

  • Charged grains in dusty plasmas with Coulombrepulsion (with Dunkel/Trigger)

    +

  • Examples: Dusty plasmas

    (Melzer et al. PRL 2001)

  • A few references

    • Phys. Rev. Lett. 80, 5044-5047 (1998)

    • BioSystems 49, 5044-5047 (1999)

    • Eur.Phys.J. B 15, 105(2000);44, 509(2005)

    • Phys.Rev.E 64, 021110 (2001); 65, 061106 (2002);

    71, 051904 (2005); Complexity 8, No 4 (2003);

    • PhysicaD 187,268 (2004); FNL 3,L137,L145(2003).

    • Acta Phys. Polonica 36, 1757 (2005)

    • Ebeling/Sokolov: Statistical thermodynamics and

    stochastic theory of nonequilibrium systems,

    World Scientific 2005

  • Conclusions• Einsteins & Smoluchowskis papers on BM are

    still source of important physics,

    • exist many generalizations and applications,

    • a new direction the theory of BM is based onthe idea of ‘self-propelled motion (negativefriction / active forces)’.

    • new phenomena are rotations (centrifugalforces) in external fields, bifurcations, severalmodes of collective motion (coll transl. rotat.),

    • hydrodynamic effects lead to parallelization

    • new appl to physics/biology/social agents ?

  • Thanks you for attention

    Please look for references, reprints etc. at

    www.werner-ebeling.de,

    summa.physik.hu-berlin.de/tsd

    th-www.if.uj.edu.pl/stattherm

    contact by email: [email protected]