Top Banner
40
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The MIT Leg Lab: From Robots to Rehab.
Page 2: The MIT Leg Lab: From Robots to Rehab.
Page 3: The MIT Leg Lab: From Robots to Rehab.
Page 4: The MIT Leg Lab: From Robots to Rehab.
Page 5: The MIT Leg Lab: From Robots to Rehab.
Page 6: The MIT Leg Lab: From Robots to Rehab.
Page 7: The MIT Leg Lab: From Robots to Rehab.
Page 8: The MIT Leg Lab: From Robots to Rehab.
Page 9: The MIT Leg Lab: From Robots to Rehab.

The MIT Leg Lab: From Robots to Rehab

Page 10: The MIT Leg Lab: From Robots to Rehab.

State Of The ArtState Of The ArtFlex-FootOtto Bock C-Leg

Page 11: The MIT Leg Lab: From Robots to Rehab.

State of the Art: State of the Art: Prosthetist defines knee dampingProsthetist defines knee damping

Otto Bock C-Leg

Page 12: The MIT Leg Lab: From Robots to Rehab.

The MIT Knee: A Step The MIT Knee: A Step Towards AutonomyTowards Autonomy

Virtual Prosthetist

Virtual Biomechanist

Page 13: The MIT Leg Lab: From Robots to Rehab.

How The MIT Knee Works:How The MIT Knee Works:MechanismMechanism

Page 14: The MIT Leg Lab: From Robots to Rehab.

How The MIT Knee Works:How The MIT Knee Works:SensorsSensors

Knee PositionAxial ForceBending Moment

Measured Local to Knee Axis (no ankle or foot

sensors)

Amputee can use vertical shock system

Page 15: The MIT Leg Lab: From Robots to Rehab.

Goal: Early Stance Flexion & Goal: Early Stance Flexion & ExtensionExtension

How the MIT Knee Works: How the MIT Knee Works: Stance ControlStance Control

Page 16: The MIT Leg Lab: From Robots to Rehab.

Stance Control: Three StatesStance Control: Three States

Stance Flexion & Stance Extension– A variable hydraulic damper– Damping scales with axial load

Late Stance– Minimize damping

Toe-Loading to trigger late-stance zero damping is automatically adjusted by system

Page 17: The MIT Leg Lab: From Robots to Rehab.

Stance Flexion

Page 18: The MIT Leg Lab: From Robots to Rehab.

Goal: Control Peak Flexion Angle & Goal: Control Peak Flexion Angle & Terminal ImpactTerminal Impact

How the MIT Knee Works: How the MIT Knee Works: Swing ControlSwing Control

Page 19: The MIT Leg Lab: From Robots to Rehab.

0

10

20

30

40

50

60

70

80

90

1 6 11 16

Number of steps taken

Max

imum

sw

ing-

flex

ion

angl

e (d

egre

es)

0

10

20

30

40

50

60

70

80

90

100

Swin

g-fl

exio

n da

mpi

ng

valu

e (a

rbit

rary

uni

ts)

Swing Control: FlexionSwing Control: Flexion

Page 20: The MIT Leg Lab: From Robots to Rehab.

Swing Control: FlexionSwing Control: Flexion

0

30

60

90

0.0 0.5 1.0 1.5 2.0 2.5

Speed (m/sec)

Ang

le (d

egre

es)

0

30

60

90

0.0 0.5 1.0 1.5 2.0 2.5Speed (m/sec)

Ang

le (d

egre

es)

Page 21: The MIT Leg Lab: From Robots to Rehab.

Swing Phase: ExtensionSwing Phase: Extension

Extension damping adaptation Stage one:

– Map tc versus impact force

– Apply appropriate damping Stage two:

– Control final angle while minimizing impact force 0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5Velocity (m/s)

Time

(s)

Foot Contact Time

Page 22: The MIT Leg Lab: From Robots to Rehab.

The MIT Knee In Action

Page 23: The MIT Leg Lab: From Robots to Rehab.

Human Knees Human Knees Brake Brake andand Thrust Thrust

0

1

-1

Pow

er (

W/K

g)

Percent Gait Cycle

Page 24: The MIT Leg Lab: From Robots to Rehab.

Human Ankles are Smart Springs

Variable stiffnessfoot-anklesystems

Leg stiffness control in walking and

running humans

Page 25: The MIT Leg Lab: From Robots to Rehab.

Human Ankles are PoweredHuman Ankles are Powered

Page 26: The MIT Leg Lab: From Robots to Rehab.

Future of O&P Leg Systems: Future of O&P Leg Systems: Intelligent Application of PowerIntelligent Application of Power

• Greater Distance & Less Fatigue

• Natural Gait - Dynamic Cosmesis

• Enhanced Stability

• Increased Mobility

Page 27: The MIT Leg Lab: From Robots to Rehab.

Human Rehab: A Road Map Human Rehab: A Road Map to the Futureto the Future

Better Power Systems and Actuators

Page 28: The MIT Leg Lab: From Robots to Rehab.

Series-Elastic ActuatorsSeries-Elastic Actuators(Muscle-Tendon)(Muscle-Tendon)

Page 29: The MIT Leg Lab: From Robots to Rehab.

Controlling Force, not Position

Weight: 2.5 lbs.Stroke: 3 in.Max. Force: 300 lbs.Force Bandwidth: 30 Hz

Page 30: The MIT Leg Lab: From Robots to Rehab.

• Nearly autonomous

• Controllable

• Swam 0.5 body length per second

Biomechatronics GroupBiomechatronics GroupHybrid RobotsHybrid Robots

Page 31: The MIT Leg Lab: From Robots to Rehab.

Human Rehab: A Road Map Human Rehab: A Road Map to the Futureto the Future

Improved Walking Models

Page 32: The MIT Leg Lab: From Robots to Rehab.

Low Stiffness Control: Virtual Model Low Stiffness Control: Virtual Model Control LanguageControl Language

• Passive walkers work using physical components

• Q: Can active walker algorithms be expressed using physical metaphors?

• A: Yes, and they perform surprisingly well

Page 33: The MIT Leg Lab: From Robots to Rehab.

Virtual Assistive Devices for Legged Virtual Assistive Devices for Legged RobotsRobots

Page 34: The MIT Leg Lab: From Robots to Rehab.

Troody

Page 35: The MIT Leg Lab: From Robots to Rehab.

Science Technology What are the biological

models for human walking?

Virtual Model Control

Active O&P Leg Systems

Page 36: The MIT Leg Lab: From Robots to Rehab.

Human Rehab: A Road Map Human Rehab: A Road Map to the Futureto the Future

Distributed Sensing and Intelligence

Page 37: The MIT Leg Lab: From Robots to Rehab.

Virtual Prosthetist

Virtual Biomechanist

User Intent

Page 38: The MIT Leg Lab: From Robots to Rehab.

CollaboratorsCollaborators

Leg LaboratoryGill Pratt

Biomechatronics GroupRobert Dennis (UM)Nadia Rosenthal (MGH)Richard Marsh (NE)

Spaulding Gait LaboratoryCasey KerriganPat Riley

Page 39: The MIT Leg Lab: From Robots to Rehab.

Sponsors

•Össur

•DARPA

•Schaeffer Foundation

Page 40: The MIT Leg Lab: From Robots to Rehab.

SummarySummary

Advances in the science of legged locomotion, bioactuation, and sensing are necessary to step towards the next generation of O&P leg systems