Top Banner
The Geometry of Soliton Moduli Spaces Martin Speight University of Leeds, UK December 14, 2009
108

The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Oct 28, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

The Geometry of Soliton Moduli Spaces

Martin SpeightUniversity of Leeds, UK

December 14, 2009

Page 2: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Topological solitons

Smooth, spatially localized, lump-like solutions of relativisticnonlinear wave equations

Stable for topological reasons

Like strings. . .hypothetical particles, resolve many theoretical puzzles in HEP

. . . only better!exist in real world: magnetic flux tubes in superconductors,magnetic bubbles, optical pulses, crystal dislocations

Page 3: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Topological solitons

Smooth, spatially localized, lump-like solutions of relativisticnonlinear wave equations

Stable for topological reasons

Like strings. . .hypothetical particles, resolve many theoretical puzzles in HEP

. . . only better!exist in real world: magnetic flux tubes in superconductors,magnetic bubbles, optical pulses, crystal dislocations

Page 4: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Topological solitons

Smooth, spatially localized, lump-like solutions of relativisticnonlinear wave equations

Stable for topological reasons

Like strings. . .hypothetical particles, resolve many theoretical puzzles in HEP

. . . only better!exist in real world: magnetic flux tubes in superconductors,magnetic bubbles, optical pulses, crystal dislocations

Page 5: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Topological solitons

Smooth, spatially localized, lump-like solutions of relativisticnonlinear wave equations

Stable for topological reasons

Like strings. . .hypothetical particles, resolve many theoretical puzzles in HEP

. . . only better!exist in real world: magnetic flux tubes in superconductors,magnetic bubbles, optical pulses, crystal dislocations

Page 6: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Soliton moduli spaces

Interesting special case: static solitons exert no net force on eachother

Moduli space of static n-soliton solutions Mn, dimMn = n dimM1

Low energy dynamics reduces to geodesic motion in Mn!

Soliton dynamics←→ Riemannian geometry

Page 7: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Soliton moduli spaces

Interesting special case: static solitons exert no net force on eachother

Moduli space of static n-soliton solutions Mn, dimMn = n dimM1

Low energy dynamics reduces to geodesic motion in Mn!

Soliton dynamics←→ Riemannian geometry

Page 8: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Soliton moduli spaces

Interesting special case: static solitons exert no net force on eachother

Moduli space of static n-soliton solutions Mn, dimMn = n dimM1

Low energy dynamics reduces to geodesic motion in Mn!

Soliton dynamics←→ Riemannian geometry

Page 9: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Soliton moduli spaces

Interesting special case: static solitons exert no net force on eachother

Moduli space of static n-soliton solutions Mn, dimMn = n dimM1

Low energy dynamics reduces to geodesic motion in Mn!

Soliton dynamics←→ Riemannian geometry

Page 10: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Plan

Planar antiferromagnets→ CP1 model

The Bogomol’nyi argument, Mn

The metric on Mn, soliton scattering

Other solitons

Open problems

Page 11: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

Square spin lattice: S : Z×Z→ S2

Neighbouring spin like to anti-align

Lattice energy: H := ∑i,j

[2+Sij · (Si,j+1 +Si+1,j)]

Dynamics:dSij

dτ=−Sij ×

∂H∂Sij

First order, spin couples to nearest neighbours.

Continuum limit?

Page 12: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

Square spin lattice: S : Z×Z→ S2

Neighbouring spin like to anti-align

Lattice energy: H := ∑i,j

[2+Sij · (Si,j+1 +Si+1,j)]

Dynamics:dSij

dτ=−Sij ×

∂H∂Sij

First order, spin couples to nearest neighbours.

Continuum limit?

Page 13: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

Square spin lattice: S : Z×Z→ S2

Neighbouring spin like to anti-align

Lattice energy: H := ∑i,j

[2+Sij · (Si,j+1 +Si+1,j)]

Dynamics:dSij

dτ=−Sij ×

∂H∂Sij

First order, spin couples to nearest neighbours.

Continuum limit?

Page 14: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

Square spin lattice: S : Z×Z→ S2

Neighbouring spin like to anti-align

Lattice energy: H := ∑i,j

[2+Sij · (Si,j+1 +Si+1,j)]

Dynamics:dSij

dτ=−Sij ×

∂H∂Sij

First order, spin couples to nearest neighbours.

Continuum limit?

Page 15: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

Square spin lattice: S : Z×Z→ S2

Neighbouring spin like to anti-align

Lattice energy: H := ∑i,j

[2+Sij · (Si,j+1 +Si+1,j)]

Dynamics:dSij

dτ=−Sij ×

∂H∂Sij

First order, spin couples to nearest neighbours.

Continuum limit?

Page 16: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

Page 17: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

Page 18: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

αβ

Page 19: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

αβ

A

B

−2,1

−2,1

Page 20: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

dAαβ

dτ= −(Bα,β−1 +Bαβ +Bα−1,β +Bα−1,β−1)

dBαβ

dτ= −(Aα+1,β +Aα+1,β+1 +Aα,β+1 +Aα,β)

δ

x = αδ, y = βδ, t = 2τδ

Assumption:

Aα,β

Bα,β

}δ→0−→

{A(x ,y)B(x ,y)

Replace Aα+1,β by A+δAx + 12 δ2Axx + · · · etc

Work to order δ2

Page 21: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

dAαβ

dτ= −(Bα,β−1 +Bαβ +Bα−1,β +Bα−1,β−1)

dBαβ

dτ= −(Aα+1,β +Aα+1,β+1 +Aα,β+1 +Aα,β)

δ

x = αδ, y = βδ, t = 2τδ

Assumption:

Aα,β

Bα,β

}δ→0−→

{A(x ,y)B(x ,y)

Replace Aα+1,β by A+δAx + 12 δ2Axx + · · · etc

Work to order δ2

Page 22: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

dAαβ

dτ= −(Bα,β−1 +Bαβ +Bα−1,β +Bα−1,β−1)

dBαβ

dτ= −(Aα+1,β +Aα+1,β+1 +Aα,β+1 +Aα,β)

δ

x = αδ, y = βδ, t = 2τδ

Assumption:

Aα,β

Bα,β

}δ→0−→

{A(x ,y)B(x ,y)

Replace Aα+1,β by A+δAx + 12 δ2Axx + · · · etc

Work to order δ2

Page 23: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

2δAt = −A× [4B−2δ(Bx +By)+δ2(Bxx +Byy +Bxy)]

2δBt = −B× [4A+2δ(Ax +Ay)+δ2(Axx +Ayy +Axy)]

New fields: m =12(A+B) ϕ =

12(A−B)

|m|= O(δ) , |ϕ|= 1+O(δ2)

mt = −(∂x +∂y)[m×ϕ]+δ

4[2ϕ× (ϕxx +ϕyy +ϕxy) (1)

δϕt = 4m×ϕ−δϕ× (ϕx +ϕy)+O(δ2) (2)

Solve (2): m =δ

4

[ϕ×ϕt −ϕx −ϕy

]+O(δ2)

Subst in (1): ϕ×ϕtt = ϕ× (ϕxx +ϕyy)+O(δ)

Page 24: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

2δAt = −A× [4B−2δ(Bx +By)+δ2(Bxx +Byy +Bxy)]

2δBt = −B× [4A+2δ(Ax +Ay)+δ2(Axx +Ayy +Axy)]

New fields: m =12(A+B) ϕ =

12(A−B)

|m|= O(δ) , |ϕ|= 1+O(δ2)

mt = −(∂x +∂y)[m×ϕ]+δ

4[2ϕ× (ϕxx +ϕyy +ϕxy) (1)

δϕt = 4m×ϕ−δϕ× (ϕx +ϕy)+O(δ2) (2)

Solve (2): m =δ

4

[ϕ×ϕt −ϕx −ϕy

]+O(δ2)

Subst in (1): ϕ×ϕtt = ϕ× (ϕxx +ϕyy)+O(δ)

Page 25: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

2δAt = −A× [4B−2δ(Bx +By)+δ2(Bxx +Byy +Bxy)]

2δBt = −B× [4A+2δ(Ax +Ay)+δ2(Axx +Ayy +Axy)]

New fields: m =12(A+B) ϕ =

12(A−B)

|m|= O(δ) , |ϕ|= 1+O(δ2)

mt = −(∂x +∂y)[m×ϕ]+δ

4[2ϕ× (ϕxx +ϕyy +ϕxy) (1)

δϕt = 4m×ϕ−δϕ× (ϕx +ϕy)+O(δ2) (2)

Solve (2): m =δ

4

[ϕ×ϕt −ϕx −ϕy

]+O(δ2)

Subst in (1): ϕ×ϕtt = ϕ× (ϕxx +ϕyy)+O(δ)

Page 26: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

2δAt = −A× [4B−2δ(Bx +By)+δ2(Bxx +Byy +Bxy)]

2δBt = −B× [4A+2δ(Ax +Ay)+δ2(Axx +Ayy +Axy)]

New fields: m =12(A+B) ϕ =

12(A−B)

|m|= O(δ) , |ϕ|= 1+O(δ2)

mt = −(∂x +∂y)[m×ϕ]+δ

4[2ϕ× (ϕxx +ϕyy +ϕxy) (1)

δϕt = 4m×ϕ−δϕ× (ϕx +ϕy)+O(δ2) (2)

Solve (2): m =δ

4

[ϕ×ϕt −ϕx −ϕy

]+O(δ2)

Subst in (1): ϕ×ϕtt = ϕ× (ϕxx +ϕyy)+O(δ)

Page 27: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

2δAt = −A× [4B−2δ(Bx +By)+δ2(Bxx +Byy +Bxy)]

2δBt = −B× [4A+2δ(Ax +Ay)+δ2(Axx +Ayy +Axy)]

New fields: m =12(A+B) ϕ =

12(A−B)

|m|= O(δ) , |ϕ|= 1+O(δ2)

mt = −(∂x +∂y)[m×ϕ]+δ

4[2ϕ× (ϕxx +ϕyy +ϕxy) (1)

δϕt = 4m×ϕ−δϕ× (ϕx +ϕy)+O(δ2) (2)

Solve (2): m =δ

4

[ϕ×ϕt −ϕx −ϕy

]+O(δ2)

Subst in (1): ϕ×ϕtt = ϕ× (ϕxx +ϕyy)+O(δ)

Page 28: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

2δAt = −A× [4B−2δ(Bx +By)+δ2(Bxx +Byy +Bxy)]

2δBt = −B× [4A+2δ(Ax +Ay)+δ2(Axx +Ayy +Axy)]

New fields: m =12(A+B) ϕ =

12(A−B)

|m|= O(δ) , |ϕ|= 1+O(δ2)

mt = −(∂x +∂y)[m×ϕ]+δ

4[2ϕ× (ϕxx +ϕyy +ϕxy) (1)

δϕt = 4m×ϕ−δϕ× (ϕx +ϕy)+O(δ2) (2)

Solve (2): m =δ

4

[ϕ×ϕt −ϕx −ϕy

]+O(δ2)

Subst in (1): ϕ×ϕtt = ϕ× (ϕxx +ϕyy)+O(δ)

Page 29: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

Leading order

ϕ×�ϕ = ϕ×(ϕtt −ϕxx −ϕyy

)= 0

�ϕ− (ϕ ·�ϕ)ϕ = 0 (∗)

Nonlinear wave equation! Lorentz invariant!

Variational formulation: action of field ϕ : R×Σ→ S2

S[ϕ] =12

ZR×Σ

(|ϕt |2−|ϕx |2−|ϕy |2

)dt dx dy

ϕ solves (∗) iff ϕ a critical point of S.

Physicists call this the CP1 model

Page 30: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

Leading order

ϕ×�ϕ = ϕ×(ϕtt −ϕxx −ϕyy

)= 0

�ϕ− (ϕ ·�ϕ)ϕ = 0 (∗)

Nonlinear wave equation! Lorentz invariant!

Variational formulation: action of field ϕ : R×Σ→ S2

S[ϕ] =12

ZR×Σ

(|ϕt |2−|ϕx |2−|ϕy |2

)dt dx dy

ϕ solves (∗) iff ϕ a critical point of S.

Physicists call this the CP1 model

Page 31: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

Leading order

ϕ×�ϕ = ϕ×(ϕtt −ϕxx −ϕyy

)= 0

�ϕ− (ϕ ·�ϕ)ϕ = 0 (∗)

Nonlinear wave equation! Lorentz invariant!

Variational formulation: action of field ϕ : R×Σ→ S2

S[ϕ] =12

ZR×Σ

(|ϕt |2−|ϕx |2−|ϕy |2

)dt dx dy

ϕ solves (∗) iff ϕ a critical point of S.

Physicists call this the CP1 model

Page 32: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Antiferromagnets

Leading order

ϕ×�ϕ = ϕ×(ϕtt −ϕxx −ϕyy

)= 0

�ϕ− (ϕ ·�ϕ)ϕ = 0 (∗)

Nonlinear wave equation! Lorentz invariant!

Variational formulation: action of field ϕ : R×Σ→ S2

S[ϕ] =12

ZR×Σ

(|ϕt |2−|ϕx |2−|ϕy |2

)dt dx dy

ϕ solves (∗) iff ϕ a critical point of S.

Physicists call this the CP1 model

Page 33: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

The Bogomol’nyi argument (Belavin, Polyakov, Lichnerowicz)

ϕtt −∆ϕ− [ϕ · (ϕtt −∆ϕ)]ϕ = 0

Static solutions are critical points of potential energy

E =12

ZΣ|ϕx |2 + |ϕy |2

Assume ϕ(x)→ ϕ0 fixed as |x| → ∞. Then ϕ extends to a ctsmap Σ∪{∞} ∼= S2→ S2

Fields fall into disjoint homotopy classes labelled byn = degϕ ∈ Z. WLOG can assume n ≥ 0Topological lower energy bound:

0 ≤ 12

ZΣ|ϕx +ϕ×ϕy |2 = E−

ϕ · (ϕx ×ϕy) = E−4πn

E ≥ 4πn

E = 4πn ⇔ ϕx +ϕ×ϕy = 0 1st order PDE!

Page 34: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

The Bogomol’nyi argument (Belavin, Polyakov, Lichnerowicz)

ϕtt −∆ϕ− [ϕ · (ϕtt −∆ϕ)]ϕ = 0

Static solutions are critical points of potential energy

E =12

ZΣ|ϕx |2 + |ϕy |2

Assume ϕ(x)→ ϕ0 fixed as |x| → ∞. Then ϕ extends to a ctsmap Σ∪{∞} ∼= S2→ S2

Fields fall into disjoint homotopy classes labelled byn = degϕ ∈ Z. WLOG can assume n ≥ 0Topological lower energy bound:

0 ≤ 12

ZΣ|ϕx +ϕ×ϕy |2 = E−

ϕ · (ϕx ×ϕy) = E−4πn

E ≥ 4πn

E = 4πn ⇔ ϕx +ϕ×ϕy = 0 1st order PDE!

Page 35: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

The Bogomol’nyi argument (Belavin, Polyakov, Lichnerowicz)

ϕtt −∆ϕ− [ϕ · (ϕtt −∆ϕ)]ϕ = 0

Static solutions are critical points of potential energy

E =12

ZΣ|ϕx |2 + |ϕy |2

Assume ϕ(x)→ ϕ0 fixed as |x| → ∞. Then ϕ extends to a ctsmap Σ∪{∞} ∼= S2→ S2

Fields fall into disjoint homotopy classes labelled byn = degϕ ∈ Z. WLOG can assume n ≥ 0Topological lower energy bound:

0 ≤ 12

ZΣ|ϕx +ϕ×ϕy |2 = E−

ϕ · (ϕx ×ϕy) = E−4πn

E ≥ 4πn

E = 4πn ⇔ ϕx +ϕ×ϕy = 0 1st order PDE!

Page 36: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

The Bogomol’nyi argument (Belavin, Polyakov, Lichnerowicz)

ϕtt −∆ϕ− [ϕ · (ϕtt −∆ϕ)]ϕ = 0

Static solutions are critical points of potential energy

E =12

ZΣ|ϕx |2 + |ϕy |2

Assume ϕ(x)→ ϕ0 fixed as |x| → ∞. Then ϕ extends to a ctsmap Σ∪{∞} ∼= S2→ S2

Fields fall into disjoint homotopy classes labelled byn = degϕ ∈ Z. WLOG can assume n ≥ 0

Topological lower energy bound:

0 ≤ 12

ZΣ|ϕx +ϕ×ϕy |2 = E−

ϕ · (ϕx ×ϕy) = E−4πn

E ≥ 4πn

E = 4πn ⇔ ϕx +ϕ×ϕy = 0 1st order PDE!

Page 37: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

The Bogomol’nyi argument (Belavin, Polyakov, Lichnerowicz)

ϕtt −∆ϕ− [ϕ · (ϕtt −∆ϕ)]ϕ = 0

Static solutions are critical points of potential energy

E =12

ZΣ|ϕx |2 + |ϕy |2

Assume ϕ(x)→ ϕ0 fixed as |x| → ∞. Then ϕ extends to a ctsmap Σ∪{∞} ∼= S2→ S2

Fields fall into disjoint homotopy classes labelled byn = degϕ ∈ Z. WLOG can assume n ≥ 0Topological lower energy bound:

0 ≤ 12

ZΣ|ϕx +ϕ×ϕy |2 = E−

ϕ · (ϕx ×ϕy) = E−4πn

E ≥ 4πn

E = 4πn ⇔ ϕx +ϕ×ϕy = 0 1st order PDE!

Page 38: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

The Bogomol’nyi argument (Belavin, Polyakov, Lichnerowicz)

ϕtt −∆ϕ− [ϕ · (ϕtt −∆ϕ)]ϕ = 0

Static solutions are critical points of potential energy

E =12

ZΣ|ϕx |2 + |ϕy |2

Assume ϕ(x)→ ϕ0 fixed as |x| → ∞. Then ϕ extends to a ctsmap Σ∪{∞} ∼= S2→ S2

Fields fall into disjoint homotopy classes labelled byn = degϕ ∈ Z. WLOG can assume n ≥ 0Topological lower energy bound:

0 ≤ 12

ZΣ|ϕx +ϕ×ϕy |2 = E−

ϕ · (ϕx ×ϕy) = E−4πn

E ≥ 4πn

E = 4πn ⇔ ϕx +ϕ×ϕy = 0 1st order PDE!

Page 39: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

The Bogomol’nyi argument

ϕx +ϕ×ϕy = 0 [⇔ ϕy −ϕ×ϕx = 0]

In fact, it’s the Cauchy Riemann condition!

S2 is a complex manifold. Can turn each tangent space into acomplex vector space of dimension 1.Need to define (a+ ib)X for any X ∈ TϕS2,a,b ∈ R.Suffices to define iX , i.e. need linear map

J : TϕS2→ TϕS2 s.t. J2 =−1

Then (a+ ib)X := aX +bJX . JX =−ϕ×X does the job.

Σ = R2 ∼= C is also a complex manifold.JΣ∂x = ∂y , JΣ∂y =−∂x

Bogomol’nyi equation equivalent to dϕ◦ JΣ = J ◦dϕ

that is, ϕ : Σ→ S2 is holomorphic

Page 40: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

The Bogomol’nyi argument

ϕx +ϕ×ϕy = 0 [⇔ ϕy −ϕ×ϕx = 0]

In fact, it’s the Cauchy Riemann condition!

S2 is a complex manifold. Can turn each tangent space into acomplex vector space of dimension 1.

Need to define (a+ ib)X for any X ∈ TϕS2,a,b ∈ R.Suffices to define iX , i.e. need linear map

J : TϕS2→ TϕS2 s.t. J2 =−1

Then (a+ ib)X := aX +bJX . JX =−ϕ×X does the job.

Σ = R2 ∼= C is also a complex manifold.JΣ∂x = ∂y , JΣ∂y =−∂x

Bogomol’nyi equation equivalent to dϕ◦ JΣ = J ◦dϕ

that is, ϕ : Σ→ S2 is holomorphic

Page 41: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

The Bogomol’nyi argument

ϕx +ϕ×ϕy = 0 [⇔ ϕy −ϕ×ϕx = 0]

In fact, it’s the Cauchy Riemann condition!

S2 is a complex manifold. Can turn each tangent space into acomplex vector space of dimension 1.Need to define (a+ ib)X for any X ∈ TϕS2,a,b ∈ R.

Suffices to define iX , i.e. need linear map

J : TϕS2→ TϕS2 s.t. J2 =−1

Then (a+ ib)X := aX +bJX . JX =−ϕ×X does the job.

Σ = R2 ∼= C is also a complex manifold.JΣ∂x = ∂y , JΣ∂y =−∂x

Bogomol’nyi equation equivalent to dϕ◦ JΣ = J ◦dϕ

that is, ϕ : Σ→ S2 is holomorphic

Page 42: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

The Bogomol’nyi argument

ϕx +ϕ×ϕy = 0 [⇔ ϕy −ϕ×ϕx = 0]

In fact, it’s the Cauchy Riemann condition!

S2 is a complex manifold. Can turn each tangent space into acomplex vector space of dimension 1.Need to define (a+ ib)X for any X ∈ TϕS2,a,b ∈ R.Suffices to define iX , i.e. need linear map

J : TϕS2→ TϕS2 s.t. J2 =−1

Then (a+ ib)X := aX +bJX .

JX =−ϕ×X does the job.

Σ = R2 ∼= C is also a complex manifold.JΣ∂x = ∂y , JΣ∂y =−∂x

Bogomol’nyi equation equivalent to dϕ◦ JΣ = J ◦dϕ

that is, ϕ : Σ→ S2 is holomorphic

Page 43: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

The Bogomol’nyi argument

ϕx +ϕ×ϕy = 0 [⇔ ϕy −ϕ×ϕx = 0]

In fact, it’s the Cauchy Riemann condition!

S2 is a complex manifold. Can turn each tangent space into acomplex vector space of dimension 1.Need to define (a+ ib)X for any X ∈ TϕS2,a,b ∈ R.Suffices to define iX , i.e. need linear map

J : TϕS2→ TϕS2 s.t. J2 =−1

Then (a+ ib)X := aX +bJX . JX =−ϕ×X does the job.

Σ = R2 ∼= C is also a complex manifold.JΣ∂x = ∂y , JΣ∂y =−∂x

Bogomol’nyi equation equivalent to dϕ◦ JΣ = J ◦dϕ

that is, ϕ : Σ→ S2 is holomorphic

Page 44: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

The Bogomol’nyi argument

ϕx +ϕ×ϕy = 0 [⇔ ϕy −ϕ×ϕx = 0]

In fact, it’s the Cauchy Riemann condition!

S2 is a complex manifold. Can turn each tangent space into acomplex vector space of dimension 1.Need to define (a+ ib)X for any X ∈ TϕS2,a,b ∈ R.Suffices to define iX , i.e. need linear map

J : TϕS2→ TϕS2 s.t. J2 =−1

Then (a+ ib)X := aX +bJX . JX =−ϕ×X does the job.

Σ = R2 ∼= C is also a complex manifold.JΣ∂x = ∂y , JΣ∂y =−∂x

Bogomol’nyi equation equivalent to dϕ◦ JΣ = J ◦dϕ

that is, ϕ : Σ→ S2 is holomorphic

Page 45: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

The Bogomol’nyi argument

ϕx +ϕ×ϕy = 0 [⇔ ϕy −ϕ×ϕx = 0]

In fact, it’s the Cauchy Riemann condition!

S2 is a complex manifold. Can turn each tangent space into acomplex vector space of dimension 1.Need to define (a+ ib)X for any X ∈ TϕS2,a,b ∈ R.Suffices to define iX , i.e. need linear map

J : TϕS2→ TϕS2 s.t. J2 =−1

Then (a+ ib)X := aX +bJX . JX =−ϕ×X does the job.

Σ = R2 ∼= C is also a complex manifold.JΣ∂x = ∂y , JΣ∂y =−∂x

Bogomol’nyi equation equivalent to dϕ◦ JΣ = J ◦dϕ

that is, ϕ : Σ→ S2 is holomorphic

Page 46: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Moduli space

R2

2

S

u(z)x + iy = z

(z)φ

u(z) =a0 +a1z + · · ·+anzn

b0 +b1z + · · ·+bnzn

Boundary condition: ϕ(∞) = (0,0,1)⇒ bn = 0.

u(z) =a0 +a1z + · · ·+an−1zn−1 + zn

b0 +b1z + · · ·+bn−1zn−1

Moduli space Mn = Rat∗n ⊂ C2n, open

Page 47: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Moduli space

R2

2

S

u(z)x + iy = z

(z)φ

u(z) =a0 +a1z + · · ·+anzn

b0 +b1z + · · ·+bnzn

Boundary condition: ϕ(∞) = (0,0,1)⇒ bn = 0.

u(z) =a0 +a1z + · · ·+an−1zn−1 + zn

b0 +b1z + · · ·+bn−1zn−1

Moduli space Mn = Rat∗n ⊂ C2n, open

Page 48: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Moduli space

R2

2

S

u(z)x + iy = z

(z)φ

u(z) =a0 +a1z + · · ·+anzn

b0 +b1z + · · ·+bnzn

Boundary condition: ϕ(∞) = (0,0,1)⇒ bn = 0.

u(z) =a0 +a1z + · · ·+an−1zn−1 + zn

b0 +b1z + · · ·+bn−1zn−1

Moduli space Mn = Rat∗n ⊂ C2n, open

Page 49: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Moduli space

R2

2

S

u(z)x + iy = z

(z)φ

u(z) =a0 +a1z + · · ·+anzn

b0 +b1z + · · ·+bnzn

Boundary condition: ϕ(∞) = (0,0,1)⇒ bn = 0.

u(z) =a0 +a1z + · · ·+an−1zn−1 + zn

b0 +b1z + · · ·+bn−1zn−1

Moduli space Mn = Rat∗n ⊂ C2n, open

Page 50: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Moduli space

M1 = C×C×

u(z) =a0 + z

b0

Position −a0, width |b0|, orientation arg(b0)

Page 51: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Moduli space

M2, complicated manifold dimC M2 = 4.

Expect energy to localize around zeros of u. OK if well-separated

Lose identity when close, e.g. u = z2

Page 52: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Moduli space

M2, complicated manifold dimC M2 = 4.

Expect energy to localize around zeros of u. OK if well-separated

Lose identity when close, e.g. u = z2

Page 53: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Moduli space

M2, complicated manifold dimC M2 = 4.

Expect energy to localize around zeros of u. OK if well-separated

Lose identity when close, e.g. u = z2

Page 54: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Geodesic approximation (Ward, after Manton)

E

Q

Mn

n

4π n

E =12

ZΣ|ϕx |2 + |ϕy |2

S =Z

dt

{12

(ZΣ|ϕt |2

)−E(ϕ)

}

Evolution conserves Etot = E(ϕ)+12

ZΣ|ϕt |2

Constrain ϕ(t) to Mn

S|TMn =Z

dt{12

γ(ϕ, ϕ)−4πn}

Geodesic motion on (Mn,γ) where γ = L2 metric.

Page 55: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Geodesic approximation (Ward, after Manton)

E

Q

Mn

n

4π n

E =12

ZΣ|ϕx |2 + |ϕy |2

S =Z

dt

{12

(ZΣ|ϕt |2

)−E(ϕ)

}

Evolution conserves Etot = E(ϕ)+12

ZΣ|ϕt |2

Constrain ϕ(t) to Mn

S|TMn =Z

dt{12

γ(ϕ, ϕ)−4πn}

Geodesic motion on (Mn,γ) where γ = L2 metric.

Page 56: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Geodesic approximation (Ward, after Manton)

E

Q

Mn

n

4π n

E =12

ZΣ|ϕx |2 + |ϕy |2

S =Z

dt

{12

(ZΣ|ϕt |2

)−E(ϕ)

}

Evolution conserves Etot = E(ϕ)+12

ZΣ|ϕt |2

Constrain ϕ(t) to Mn

S|TMn =Z

dt{12

γ(ϕ, ϕ)−4πn}

Geodesic motion on (Mn,γ) where γ = L2 metric.

Page 57: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Geodesic approximation (Ward, after Manton)

E

Q

Mn

n

4π n

E =12

ZΣ|ϕx |2 + |ϕy |2

S =Z

dt

{12

(ZΣ|ϕt |2

)−E(ϕ)

}

Evolution conserves Etot = E(ϕ)+12

ZΣ|ϕt |2

Constrain ϕ(t) to Mn

S|TMn =Z

dt{12

γ(ϕ, ϕ)−4πn}

Geodesic motion on (Mn,γ) where γ = L2 metric.

Page 58: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

L2 metric

S2

Σ

φ

X ∈ TϕMn is a section of ϕ−1TS2

Concretely, a map Σ→ R3 s.t. X(x) ·ϕ(x) = 0 everywhere. Then

γ(X ,Y ) =ZΣ

X ·Y .

Soγ(ϕ, ϕ) =

ZΣ|ϕt |2

Geodesic motion is constant speed motion along “straightestpossible” curve

Page 59: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

L2 metric

S2

Σ

φ

X ∈ TϕMn is a section of ϕ−1TS2

Concretely, a map Σ→ R3 s.t. X(x) ·ϕ(x) = 0 everywhere. Then

γ(X ,Y ) =ZΣ

X ·Y .

Soγ(ϕ, ϕ) =

ZΣ|ϕt |2

Geodesic motion is constant speed motion along “straightestpossible” curve

Page 60: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

L2 metric

S2

Σ

φ

X ∈ TϕMn is a section of ϕ−1TS2

Concretely, a map Σ→ R3 s.t. X(x) ·ϕ(x) = 0 everywhere. Then

γ(X ,Y ) =ZΣ

X ·Y .

Soγ(ϕ, ϕ) =

ZΣ|ϕt |2

Geodesic motion is constant speed motion along “straightestpossible” curve

Page 61: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

L2 metric

S2

Σ

φ

X ∈ TϕMn is a section of ϕ−1TS2

Concretely, a map Σ→ R3 s.t. X(x) ·ϕ(x) = 0 everywhere. Then

γ(X ,Y ) =ZΣ

X ·Y .

Soγ(ϕ, ϕ) =

ZΣ|ϕt |2

Geodesic motion is constant speed motion along “straightestpossible” curve

Page 62: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Two-lump scattering (Ward, Leese)

u(z) =z2 +a1z +a0

b1z +b0

In general, geodesic flow very complicated

Trick: reduce dimension by finding totally geodesic submanifolds

Discrete group of isometries of M2, Z2×Z2, generated by

u(z) 7→ u(−z), u(z) 7→ u(z)

Fixed point set M2 ⊂M2

u(z) = λ(z2 +µ), λ ∈ R\{0},µ ∈ R

Lumps of equal width ∼ λ−12 located where z2 =−µ

Page 63: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Two-lump scattering (Ward, Leese)

u(z) =z2 +a1z +a0

b1z +b0

In general, geodesic flow very complicated

Trick: reduce dimension by finding totally geodesic submanifolds

Discrete group of isometries of M2, Z2×Z2, generated by

u(z) 7→ u(−z), u(z) 7→ u(z)

Fixed point set M2 ⊂M2

u(z) = λ(z2 +µ), λ ∈ R\{0},µ ∈ R

Lumps of equal width ∼ λ−12 located where z2 =−µ

Page 64: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Two-lump scattering (Ward, Leese)

u(z) =z2 +a1z +a0

b1z +b0

In general, geodesic flow very complicated

Trick: reduce dimension by finding totally geodesic submanifolds

Discrete group of isometries of M2, Z2×Z2, generated by

u(z) 7→ u(−z), u(z) 7→ u(z)

Fixed point set M2 ⊂M2

u(z) = λ(z2 +µ), λ ∈ R\{0},µ ∈ R

Lumps of equal width ∼ λ−12 located where z2 =−µ

Page 65: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Two-lump scattering (Ward, Leese)

u(z) =z2 +a1z +a0

b1z +b0

In general, geodesic flow very complicated

Trick: reduce dimension by finding totally geodesic submanifolds

Discrete group of isometries of M2, Z2×Z2, generated by

u(z) 7→ u(−z), u(z) 7→ u(z)

Fixed point set M2 ⊂M2

u(z) = λ(z2 +µ), λ ∈ R\{0},µ ∈ R

Lumps of equal width ∼ λ−12 located where z2 =−µ

Page 66: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Two-lump scattering (Ward, Leese)

u(z) =z2 +a1z +a0

b1z +b0

In general, geodesic flow very complicated

Trick: reduce dimension by finding totally geodesic submanifolds

Discrete group of isometries of M2, Z2×Z2, generated by

u(z) 7→ u(−z), u(z) 7→ u(z)

Fixed point set M2 ⊂M2

u(z) = λ(z2 +µ), λ ∈ R\{0},µ ∈ R

Lumps of equal width ∼ λ−12 located where z2 =−µ

Page 67: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Two-lump scattering

u(z) = λ(z2 +µ), λ ∈ R\{0},µ ∈ R

µ

λx

y

Page 68: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Two-lump scattering

Page 69: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Two-lump scattering

Page 70: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Two-lump scattering

Page 71: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Two-lump scattering

Page 72: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Two-lump scattering

Page 73: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Kahler property (Ruback)

Mn ⊂ C2n is itself a complex manifold, has a J : TϕMn→ TϕMn,J2 =−1

Two natural structures on each tangent space, J and γ. Are theycompatible?Yes: γ(JX ,JY ) = γ(X ,Y ) for all X ,Y ∈ TϕMn

γ is HermitianEven better, ∇J = 0 (J invariant under parallel transport)γ is KahlerAlternative characterization: define Kahler form

ω(X ,Y ) = γ(JX ,Y )

Hermitian⇒ ω(Y ,X) =−ω(X ,Y )Kahler⇒ dω = 0Consequence: centre of mass motion decouples, Mn = C×Mred

n

γ = 4πnγEuc + γred

Page 74: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Kahler property (Ruback)

Mn ⊂ C2n is itself a complex manifold, has a J : TϕMn→ TϕMn,J2 =−1Two natural structures on each tangent space, J and γ. Are theycompatible?

Yes: γ(JX ,JY ) = γ(X ,Y ) for all X ,Y ∈ TϕMn

γ is HermitianEven better, ∇J = 0 (J invariant under parallel transport)γ is KahlerAlternative characterization: define Kahler form

ω(X ,Y ) = γ(JX ,Y )

Hermitian⇒ ω(Y ,X) =−ω(X ,Y )Kahler⇒ dω = 0Consequence: centre of mass motion decouples, Mn = C×Mred

n

γ = 4πnγEuc + γred

Page 75: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Kahler property (Ruback)

Mn ⊂ C2n is itself a complex manifold, has a J : TϕMn→ TϕMn,J2 =−1Two natural structures on each tangent space, J and γ. Are theycompatible?Yes: γ(JX ,JY ) = γ(X ,Y ) for all X ,Y ∈ TϕMn

γ is Hermitian

Even better, ∇J = 0 (J invariant under parallel transport)γ is KahlerAlternative characterization: define Kahler form

ω(X ,Y ) = γ(JX ,Y )

Hermitian⇒ ω(Y ,X) =−ω(X ,Y )Kahler⇒ dω = 0Consequence: centre of mass motion decouples, Mn = C×Mred

n

γ = 4πnγEuc + γred

Page 76: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Kahler property (Ruback)

Mn ⊂ C2n is itself a complex manifold, has a J : TϕMn→ TϕMn,J2 =−1Two natural structures on each tangent space, J and γ. Are theycompatible?Yes: γ(JX ,JY ) = γ(X ,Y ) for all X ,Y ∈ TϕMn

γ is HermitianEven better, ∇J = 0 (J invariant under parallel transport)γ is Kahler

Alternative characterization: define Kahler form

ω(X ,Y ) = γ(JX ,Y )

Hermitian⇒ ω(Y ,X) =−ω(X ,Y )Kahler⇒ dω = 0Consequence: centre of mass motion decouples, Mn = C×Mred

n

γ = 4πnγEuc + γred

Page 77: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Kahler property (Ruback)

Mn ⊂ C2n is itself a complex manifold, has a J : TϕMn→ TϕMn,J2 =−1Two natural structures on each tangent space, J and γ. Are theycompatible?Yes: γ(JX ,JY ) = γ(X ,Y ) for all X ,Y ∈ TϕMn

γ is HermitianEven better, ∇J = 0 (J invariant under parallel transport)γ is KahlerAlternative characterization: define Kahler form

ω(X ,Y ) = γ(JX ,Y )

Hermitian⇒ ω(Y ,X) =−ω(X ,Y )Kahler⇒ dω = 0Consequence: centre of mass motion decouples, Mn = C×Mred

n

γ = 4πnγEuc + γred

Page 78: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Kahler property (Ruback)

Mn ⊂ C2n is itself a complex manifold, has a J : TϕMn→ TϕMn,J2 =−1Two natural structures on each tangent space, J and γ. Are theycompatible?Yes: γ(JX ,JY ) = γ(X ,Y ) for all X ,Y ∈ TϕMn

γ is HermitianEven better, ∇J = 0 (J invariant under parallel transport)γ is KahlerAlternative characterization: define Kahler form

ω(X ,Y ) = γ(JX ,Y )

Hermitian⇒ ω(Y ,X) =−ω(X ,Y )

Kahler⇒ dω = 0Consequence: centre of mass motion decouples, Mn = C×Mred

n

γ = 4πnγEuc + γred

Page 79: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Kahler property (Ruback)

Mn ⊂ C2n is itself a complex manifold, has a J : TϕMn→ TϕMn,J2 =−1Two natural structures on each tangent space, J and γ. Are theycompatible?Yes: γ(JX ,JY ) = γ(X ,Y ) for all X ,Y ∈ TϕMn

γ is HermitianEven better, ∇J = 0 (J invariant under parallel transport)γ is KahlerAlternative characterization: define Kahler form

ω(X ,Y ) = γ(JX ,Y )

Hermitian⇒ ω(Y ,X) =−ω(X ,Y )Kahler⇒ dω = 0

Consequence: centre of mass motion decouples, Mn = C×Mredn

γ = 4πnγEuc + γred

Page 80: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Kahler property (Ruback)

Mn ⊂ C2n is itself a complex manifold, has a J : TϕMn→ TϕMn,J2 =−1Two natural structures on each tangent space, J and γ. Are theycompatible?Yes: γ(JX ,JY ) = γ(X ,Y ) for all X ,Y ∈ TϕMn

γ is HermitianEven better, ∇J = 0 (J invariant under parallel transport)γ is KahlerAlternative characterization: define Kahler form

ω(X ,Y ) = γ(JX ,Y )

Hermitian⇒ ω(Y ,X) =−ω(X ,Y )Kahler⇒ dω = 0Consequence: centre of mass motion decouples, Mn = C×Mred

n

γ = 4πnγEuc + γred

Page 81: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Important features

Integer topological charge n

Topological energy bound E ≥ E0nAttained by solutions of a first order nonlinear PDE system,“holomorphic”

Moduli space of energy minimizers Mn is a finite-dimensionalcomplex manifold, with a natural Riemannian metric

Metric is Kahler

Geodesics in Mn ↔ slow n-soliton trajectories

90◦ head-on scattering

Page 82: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Important features

Integer topological charge n

Topological energy bound E ≥ E0nAttained by solutions of a first order nonlinear PDE system,“holomorphic”

Moduli space of energy minimizers Mn is a finite-dimensionalcomplex manifold, with a natural Riemannian metric

Metric is Kahler

Geodesics in Mn ↔ slow n-soliton trajectories

90◦ head-on scattering

Page 83: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Important features

Integer topological charge n

Topological energy bound E ≥ E0nAttained by solutions of a first order nonlinear PDE system,“holomorphic”

Moduli space of energy minimizers Mn is a finite-dimensionalcomplex manifold, with a natural Riemannian metric

Metric is Kahler

Geodesics in Mn ↔ slow n-soliton trajectories

90◦ head-on scattering

Page 84: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Important features

Integer topological charge n

Topological energy bound E ≥ E0nAttained by solutions of a first order nonlinear PDE system,“holomorphic”

Moduli space of energy minimizers Mn is a finite-dimensionalcomplex manifold, with a natural Riemannian metric

Metric is Kahler

Geodesics in Mn ↔ slow n-soliton trajectories

90◦ head-on scattering

Page 85: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Important features

Integer topological charge n

Topological energy bound E ≥ E0nAttained by solutions of a first order nonlinear PDE system,“holomorphic”

Moduli space of energy minimizers Mn is a finite-dimensionalcomplex manifold, with a natural Riemannian metric

Metric is Kahler

Geodesics in Mn ↔ slow n-soliton trajectories

90◦ head-on scattering

Page 86: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Important features

Integer topological charge n

Topological energy bound E ≥ E0nAttained by solutions of a first order nonlinear PDE system,“holomorphic”

Moduli space of energy minimizers Mn is a finite-dimensionalcomplex manifold, with a natural Riemannian metric

Metric is Kahler

Geodesics in Mn ↔ slow n-soliton trajectories

90◦ head-on scattering

Page 87: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Other solitons

Obvious generalization:

ϕ : Σ→ N, E =12

ZΣ|dϕ|2

Σ,N Riemannian mfds (harmonic map problem)

Antiferromagnets: Σ = C, N = S2

Inhomogeneous antiferromagnets: Σ = Σ2, N = S2

Σ,N Kahler, keeps key features: n = [ϕ∗ω]Mn = holn(Σ,N), Kahler

Page 88: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Other solitons

Obvious generalization:

ϕ : Σ→ N, E =12

ZΣ|dϕ|2

Σ,N Riemannian mfds (harmonic map problem)

Antiferromagnets: Σ = C, N = S2

Inhomogeneous antiferromagnets: Σ = Σ2, N = S2

Σ,N Kahler, keeps key features: n = [ϕ∗ω]Mn = holn(Σ,N), Kahler

Page 89: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Other solitons

Obvious generalization:

ϕ : Σ→ N, E =12

ZΣ|dϕ|2

Σ,N Riemannian mfds (harmonic map problem)

Antiferromagnets: Σ = C, N = S2

Inhomogeneous antiferromagnets: Σ = Σ2, N = S2

Σ,N Kahler, keeps key features: n = [ϕ∗ω]Mn = holn(Σ,N), Kahler

Page 90: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Other solitons

Obvious generalization:

ϕ : Σ→ N, E =12

ZΣ|dϕ|2

Σ,N Riemannian mfds (harmonic map problem)

Antiferromagnets: Σ = C, N = S2

Inhomogeneous antiferromagnets: Σ = Σ2, N = S2

Σ,N Kahler, keeps key features: n = [ϕ∗ω]Mn = holn(Σ,N), Kahler

Page 91: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Other solitons: Gauge theory

ϕ a section of a complex vector bundle W over Σ

∇ = unitary connexion on W , curvature F

E =12

ZΣ|∇ϕ|2 + |F |2 +U(ϕ)

n = Chern class of W

E ≥ E0n, equality iff (ϕ,∇) satisfy “self-duality” conditionVortices: Σ2, W = line bundle

n = c1(Σ) =RΣ F

Mn = Sn(Σ), Kahler

Monopoles: Σ3 = R3, W = C2 bundlen = subtleMn = Rat∗n, hyperkahler (Kahler w.r.t. three different complexstructures I,J,K , satisfying quaternion algebra)

Page 92: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Other solitons: Gauge theory

ϕ a section of a complex vector bundle W over Σ

∇ = unitary connexion on W , curvature F

E =12

ZΣ|∇ϕ|2 + |F |2 +U(ϕ)

n = Chern class of W

E ≥ E0n, equality iff (ϕ,∇) satisfy “self-duality” condition

Vortices: Σ2, W = line bundlen = c1(Σ) =

RΣ F

Mn = Sn(Σ), Kahler

Monopoles: Σ3 = R3, W = C2 bundlen = subtleMn = Rat∗n, hyperkahler (Kahler w.r.t. three different complexstructures I,J,K , satisfying quaternion algebra)

Page 93: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Other solitons: Gauge theory

ϕ a section of a complex vector bundle W over Σ

∇ = unitary connexion on W , curvature F

E =12

ZΣ|∇ϕ|2 + |F |2 +U(ϕ)

n = Chern class of W

E ≥ E0n, equality iff (ϕ,∇) satisfy “self-duality” conditionVortices: Σ2, W = line bundle

n = c1(Σ) =RΣ F

Mn = Sn(Σ), Kahler

Monopoles: Σ3 = R3, W = C2 bundlen = subtleMn = Rat∗n, hyperkahler (Kahler w.r.t. three different complexstructures I,J,K , satisfying quaternion algebra)

Page 94: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Other solitons: Gauge theory

ϕ a section of a complex vector bundle W over Σ

∇ = unitary connexion on W , curvature F

E =12

ZΣ|∇ϕ|2 + |F |2 +U(ϕ)

n = Chern class of W

E ≥ E0n, equality iff (ϕ,∇) satisfy “self-duality” conditionVortices: Σ2, W = line bundle

n = c1(Σ) =RΣ F

Mn = Sn(Σ), Kahler

Monopoles: Σ3 = R3, W = C2 bundlen = subtleMn = Rat∗n, hyperkahler (Kahler w.r.t. three different complexstructures I,J,K , satisfying quaternion algebra)

Page 95: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Other solitons: Gauge theory

Instantons: Σ4 = S4,R4, W = C2 bundle, no ϕ,n = c2(W ) =

RΣ tr(F ∧F)

Mn = {self-dual connexions} (meaning ∗F = F ), also hyperkahler

Calorons: Σ4 = S1×R3,T 2×R2, . . .

Monopoles = translation invariant instantons

Vortices = SO(3) invariant instantons

Page 96: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Other solitons: Gauge theory

Instantons: Σ4 = S4,R4, W = C2 bundle, no ϕ,n = c2(W ) =

RΣ tr(F ∧F)

Mn = {self-dual connexions} (meaning ∗F = F ), also hyperkahler

Calorons: Σ4 = S1×R3,T 2×R2, . . .

Monopoles = translation invariant instantons

Vortices = SO(3) invariant instantons

Page 97: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Other solitons: Gauge theory

Instantons: Σ4 = S4,R4, W = C2 bundle, no ϕ,n = c2(W ) =

RΣ tr(F ∧F)

Mn = {self-dual connexions} (meaning ∗F = F ), also hyperkahler

Calorons: Σ4 = S1×R3,T 2×R2, . . .

Monopoles = translation invariant instantons

Vortices = SO(3) invariant instantons

Page 98: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Open questions: Geometry

Volume, diameter of Mn?

Curvature properties?

Periodic geodesics?

Ergodicity?

Symplectic geometry of (Mn,ω)?

Page 99: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Open questions: Quantization

ClassicalField Theory

QuantumTheoryField

Geodesic

Approximation

truncate

quantize

truncate

???quantize

Wavefunction ψ : R×Mn→ C

i∂ψ

∂t=

12∆ψ

Spectral geometry of Mn

Page 100: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Open questions: Quantization

ClassicalField Theory

QuantumTheoryField

Geodesic

Approximation

truncate

quantize

truncate

???quantize

Wavefunction ψ : R×Mn→ C

i∂ψ

∂t=

12∆ψ

Spectral geometry of Mn

Page 101: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Open questions: Validity

Geodesic approximation based on physical intuition. Can weprove it works, i.e. rigorously bound errors?

Proto-theorem: consider one-parameter family of IVPs for fieldequation with initial data ϕ(0) = ϕ0 ∈Mn, ϕt(0) = εϕ1 ∈ Tϕ0Mn,ε > 0. Define time-rescaled field

ϕε(τ) = ϕ(τ/ε).

Then there exists T > 0 such that ϕε : [0,T ]×Σ→ N convergesuniformly, as ε→ 0, to ψ(τ), the geodesic in Mn with initial data(ϕ0,ϕ1).

Proved for vortices, monopoles (Stuart), CP1 lumps on T 2 (JMS)

Page 102: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Open questions: Validity

Geodesic approximation based on physical intuition. Can weprove it works, i.e. rigorously bound errors?

Proto-theorem: consider one-parameter family of IVPs for fieldequation with initial data ϕ(0) = ϕ0 ∈Mn, ϕt(0) = εϕ1 ∈ Tϕ0Mn,ε > 0. Define time-rescaled field

ϕε(τ) = ϕ(τ/ε).

Then there exists T > 0 such that ϕε : [0,T ]×Σ→ N convergesuniformly, as ε→ 0, to ψ(τ), the geodesic in Mn with initial data(ϕ0,ϕ1).

Proved for vortices, monopoles (Stuart), CP1 lumps on T 2 (JMS)

Page 103: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Open questions: Validity

Geodesic approximation based on physical intuition. Can weprove it works, i.e. rigorously bound errors?

Proto-theorem: consider one-parameter family of IVPs for fieldequation with initial data ϕ(0) = ϕ0 ∈Mn, ϕt(0) = εϕ1 ∈ Tϕ0Mn,ε > 0. Define time-rescaled field

ϕε(τ) = ϕ(τ/ε).

Then there exists T > 0 such that ϕε : [0,T ]×Σ→ N convergesuniformly, as ε→ 0, to ψ(τ), the geodesic in Mn with initial data(ϕ0,ϕ1).

Proved for vortices, monopoles (Stuart), CP1 lumps on T 2 (JMS)

Page 104: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Concluding remarks

Geodesic approximation provides a beautiful link betweengeometry and physics

Contributions from diverse sources: Atiyah, Hitchin + · · · ,Gibbons, Manton + · · · , Ward + · · · , Witten, Sen

Mixes Riemannian, symplectic, algebraic geometry, geometricanalysis, particle physics

Lots of interesting, accessible problems

Further reading: “Topological Solitons” Manton and Sutcliffe

Page 105: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Concluding remarks

Geodesic approximation provides a beautiful link betweengeometry and physics

Contributions from diverse sources: Atiyah, Hitchin + · · · ,Gibbons, Manton + · · · , Ward + · · · , Witten, Sen

Mixes Riemannian, symplectic, algebraic geometry, geometricanalysis, particle physics

Lots of interesting, accessible problems

Further reading: “Topological Solitons” Manton and Sutcliffe

Page 106: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Concluding remarks

Geodesic approximation provides a beautiful link betweengeometry and physics

Contributions from diverse sources: Atiyah, Hitchin + · · · ,Gibbons, Manton + · · · , Ward + · · · , Witten, Sen

Mixes Riemannian, symplectic, algebraic geometry, geometricanalysis, particle physics

Lots of interesting, accessible problems

Further reading: “Topological Solitons” Manton and Sutcliffe

Page 107: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Concluding remarks

Geodesic approximation provides a beautiful link betweengeometry and physics

Contributions from diverse sources: Atiyah, Hitchin + · · · ,Gibbons, Manton + · · · , Ward + · · · , Witten, Sen

Mixes Riemannian, symplectic, algebraic geometry, geometricanalysis, particle physics

Lots of interesting, accessible problems

Further reading: “Topological Solitons” Manton and Sutcliffe

Page 108: The Geometry of Soliton Moduli Spaces · 2009. 12. 14. · Low energy dynamics reduces to geodesic motion in Mn! Soliton dynamics ←→Riemannian geometry. Plan Planar antiferromagnets

Concluding remarks

Geodesic approximation provides a beautiful link betweengeometry and physics

Contributions from diverse sources: Atiyah, Hitchin + · · · ,Gibbons, Manton + · · · , Ward + · · · , Witten, Sen

Mixes Riemannian, symplectic, algebraic geometry, geometricanalysis, particle physics

Lots of interesting, accessible problems

Further reading: “Topological Solitons” Manton and Sutcliffe