Top Banner
The Evolution of The Evolution of AGN Obscuration AGN Obscuration Ezequiel Treister (ESO) Ezequiel Treister (ESO) Meg Urry (Yale) Julian Krolik (JHU) Shanil Virani (Yale) Priya Natarajan (Yale)
41

The Evolution of AGN Obscuration

Jan 14, 2016

Download

Documents

tuan

The Evolution of AGN Obscuration. Ezequiel Treister (ESO) Meg Urry (Yale) Julian Krolik (JHU) Shanil Virani (Yale) Priya Natarajan (Yale). Host Galaxy. Active Galactic Nucleus (AGN). supermassive black hole actively accreting matter 1-1000 x galaxy luminosity from few lt-hrs. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Evolution of  AGN Obscuration

The Evolution of The Evolution of AGN ObscurationAGN Obscuration

Ezequiel Treister (ESO)Ezequiel Treister (ESO)Meg Urry (Yale)

Julian Krolik (JHU)Shanil Virani (Yale)

Priya Natarajan (Yale)

Page 2: The Evolution of  AGN Obscuration

Active Galactic Nucleus Active Galactic Nucleus (AGN)(AGN)

supermassive black hole

actively accreting matter

1-1000 x galaxy luminosity from few lt-hrs

Host Galaxy

Page 3: The Evolution of  AGN Obscuration

The AGN Unified ModelThe AGN Unified Model

blazars, Type 1 Sy/QSO

broad lines

Urry & Padovani, 1995

Page 4: The Evolution of  AGN Obscuration

The AGN Unified ModelThe AGN Unified Model

radio galaxies, radio galaxies, Type 2 Sy/QSOType 2 Sy/QSO

narrow linesnarrow lines

Urry & Padovani, 1995

Page 5: The Evolution of  AGN Obscuration

Supermassive Black Supermassive Black Holes Holes

Credit: ESO/NASA, the AVO project and Paolo Padovani

Many obscured by gas and dustMany obscured by gas and dust

How do we know that?How do we know that?

Local AGN Unification

Explain Extragalactic X-ray “Background”

Page 6: The Evolution of  AGN Obscuration

Observed X-ray Observed X-ray “Background”“Background”

Frontera et al. (2006)

Page 7: The Evolution of  AGN Obscuration

AGN in X-raysAGN in X-rays

Increasing NH

Photoelectric absorptionaffect mostly low energy emission making the observed spectrum look harder.

Page 8: The Evolution of  AGN Obscuration

X-ray BackgroundX-ray Background

Treister & Urry, 2005

XRB well explained using a combination of obscured and unobscured AGN.

•Setti & Woltjer 1989•Madau et al. 1994•Comastri et al. 1995•Gilli et al. 1999,2001•And others…

# w NH > 1023 cm-

2

still uncertain.

Page 9: The Evolution of  AGN Obscuration

What do we know so What do we know so far?far?

• More obscured AGN at low luminosity (Steffen et al. 2003, Ueda et al. 2003, Barger et al. 2005, Akylas et al. 2006)• More obscured AGN at high-z? (Ueda et al. 2003: No, La Franca et al. 2005: yes, Ballantyne et al. 2006: yes)

Problems:Problems:• Low number of sources• Selection effects: - X-ray selection (missed obscured sources) - Optical incompleteness (no redshifts) - X-ray classification: “K correction”

Page 10: The Evolution of  AGN Obscuration

Meta-SurveyMeta-Survey

• 7 Surveys, • 2341 AGN, 1229 w Ids• 631 Obscured (no broad lines)• 1042<Lx<1046, 0<z<5

Treister & Urry, 2006

Page 11: The Evolution of  AGN Obscuration

Total effective area of meta-Total effective area of meta-surveysurvey

Treister & Urry, 2006

Page 12: The Evolution of  AGN Obscuration

Ratio vs RedshiftRatio vs Redshift

Treister & Urry, 2006

Page 13: The Evolution of  AGN Obscuration

Ratio vs RedshiftRatio vs Redshift

Treister & Urry, 2006

Page 14: The Evolution of  AGN Obscuration

Ratio vs RedshiftRatio vs Redshift

Treister & Urry, 2006

Page 15: The Evolution of  AGN Obscuration

Ratio vs RedshiftRatio vs Redshift

See also:La Franca et al. 2005Ballantyne et al. 2006Akylas et al. 2006

Key input: Luminosity dependence of obscured AGN fraction.

Treister & Urry, 2006

Page 16: The Evolution of  AGN Obscuration

Ratio vs LuminosityRatio vs Luminosity

Treister & Urry, 2006

Page 17: The Evolution of  AGN Obscuration

Ratio vs LuminosityRatio vs Luminosity

Treister & Urry, 2006

Page 18: The Evolution of  AGN Obscuration

Ratio vs LuminosityRatio vs Luminosity

Treister & Urry, 2006

Hasinger et al.

Page 19: The Evolution of  AGN Obscuration

The AGN Unified ModelThe AGN Unified Model

Urry & Padovani, 1995

obsc

obsc

bol

IR

f

f

L

L

1

Page 20: The Evolution of  AGN Obscuration

A Changing Torus?A Changing Torus?A change in the IR/NUV flux ratio may indicate a change in torus geometry.

~2x

Granato & DaneseTorus model

Page 21: The Evolution of  AGN Obscuration

Torus StructureTorus StructureSampleSample

Completely unobscured AGNNarrow redshift range, 0.8<z<1.2Wide range in luminosityData at 24 µm from Spitzer

High LHigh L•SDSS DR5 Quasar sample•11938 quasars, 0.8<z<1.2•192 with Spitzer 24 µm photometry•157 of them with GALEX UV data

Low LLow L•GOODS: North+South fields•10 unobscured AGN•All Spitzer 24 µm photometry•8 with GALEX UV data

Mid LMid L•COSMOS•19 unobscured AGN•14 Spitzer 24 µm photometry•All with GALEX UV data

Page 22: The Evolution of  AGN Obscuration

Torus StructureTorus StructureBolometric luminosityconstructed from NUVto mid-IR.

No change in NUV/Bolratio with luminosity!

Treister et al, ApJ submitted.

Page 23: The Evolution of  AGN Obscuration

Torus StructureTorus Structure

Change in 24 µm/Bolratio with luminosity!

Lower ratio at high L Consistent with larger opening anglesat higher luminosities.

Treister et al, ApJ submitted.

Page 24: The Evolution of  AGN Obscuration

Fraction of Obscured AGNFraction of Obscured AGNSimilar luminositydependence as foundon X-ray surveys.

Higher values from fIR/fbol method. Obscured AGNObscured AGNmissed by X-raymissed by X-raysurveys. Detectedsurveys. Detectedin mid-IR?in mid-IR?

Treister et al, ApJ submitted.

Page 25: The Evolution of  AGN Obscuration

HST ACS color image (0.3% of GOODS)

Page 26: The Evolution of  AGN Obscuration

HST+Spitzer color image (0.3% of GOODS)

Page 27: The Evolution of  AGN Obscuration

IR Fraction vs FluxIR Fraction vs Flux

Treister et al 2006

AGN are bright IR sources!

Page 28: The Evolution of  AGN Obscuration

IR Luminosity IR Luminosity DistributionDistribution

Treister et al 2006

On average, AGN are ~10x brighter than normal galaxies

For fainter AGN, the host galaxy makes a significant contribution

Page 29: The Evolution of  AGN Obscuration

Infrared BackgroundInfrared Background

Treister et al 2006

AGN (+ host galaxy) contribute ~3-10% of the total extragalactic background light

Page 30: The Evolution of  AGN Obscuration

Compton Thick AGNCompton Thick AGN

Defined as obscured sources with NH>1024 cm-2.

Very hard to find (even in X-rays). Observed locally and needed to

explain the X-ray background. Number density highly uncertain. High energy (E>10 keV)

observations are required to find them.

Page 31: The Evolution of  AGN Obscuration

INTEGRAL SurveyINTEGRAL Survey

• PIs: Meg Urry, Shanil Virani, Ezequiel Treister• Exp. Time (Msec): 0.7 (archive)+1.5 (2005)+ 1

(2008). Deepest extragalactic INTEGRAL survey

• Field: XMM-LSS (largest XMM field)• Flux limit: ~4x10-12 ergs cm-2 s-1 (20-40 keV)• Area: ~1,000 deg2

• Sources: ~20• Obscured AGN: ~15 (~5 Compton-thick)

Page 32: The Evolution of  AGN Obscuration

INTEGRAL Mosaic (2.2 Ms)INTEGRAL Mosaic (2.2 Ms)

Significance Image, 20-50 keVSignificance Image, 20-50 keV

MCG-02-08-014MCG-02-08-014

Page 33: The Evolution of  AGN Obscuration

MCG-02-08-014MCG-02-08-014

• z=0.0168• Optical class: Galaxy• IR source (IRAS)• Radio source (NVSS)• Narrow line AGN (based on OIII emission)• No soft X-rays (ROSAT)• Good CT AGN candidateGood CT AGN candidate

Page 34: The Evolution of  AGN Obscuration

INTEGRAL AGN logN-logSINTEGRAL AGN logN-logS

Treister et al, submitted

Data points from Beckmann et al. 2006

Page 35: The Evolution of  AGN Obscuration

Space Density of CT AGNSpace Density of CT AGN

Treister et al, submitted

X-ray background does not constrain density of CT AGN

Page 36: The Evolution of  AGN Obscuration

CT AGN and the XRBCT AGN and the XRB

Treister et al, submitted

XRB Intensity

HEAO-1 +40%

Treister & Urry, 2005

Page 37: The Evolution of  AGN Obscuration

CT AGN and the XRBCT AGN and the XRB

Treister et al, submitted

XRB IntensityHEAO-1 OriginalHEAO-1 +10%HEAO-1 +40%

Treister & Urry, 2005

Gilli et al. 2007

Page 38: The Evolution of  AGN Obscuration

CT AGN and the XRBCT AGN and the XRB

Treister et al, submitted

XRB IntensityHEAO-1 OriginalHEAO-1 +10%HEAO-1 +40%

Treister & Urry, 2005

CT AGN Space Density

Most likely solution

Gilli et al. 2007

Page 39: The Evolution of  AGN Obscuration

Treister & Urry 2005

X-ray Background X-ray Background SynthesisSynthesis

Page 40: The Evolution of  AGN Obscuration

X-ray Background X-ray Background SynthesisSynthesis

Treister & Urry 2005

Page 41: The Evolution of  AGN Obscuration

SummarySummaryAGN unification can account well for the observed

properties of the X-ray background.The obscured AGN fraction decreases with increasing

luminosity. Ratio of IR to Bolometric luminosity in unobscured AGN

suggest this is due to a change in opening angle.The obscured AGN fraction increases with redshift as

(1+z)0.4.AGN are luminous infrared sources, but contribute ~5%

to extragalactic infrared backgroundSurvey at high energies starts to constrain the spatial

density of CT AGN.