Top Banner

of 9

The Effect of Particle Size and Viscosity Grade on the Compaction Propertis of HPMC

Jun 02, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 The Effect of Particle Size and Viscosity Grade on the Compaction Propertis of HPMC

    1/9

    t

    ~>~i ~.

    -~ ~

    E L S E V I E R

    International Journal of Pharmaceutics 126 (1995) 189-197

    i n t e r n t i o n l

    j o u r n l o f

    p h r m c e u t i c s

    T h e

    ef fect of part ic le s i ze and v i scos i ty grade on the compact ion

    propert i e s o f hydroxypropy lmet hy lce l lu los e 22 8

    A . N o k h o d c h i , M . H . R u b i n s t e in , J . L . F o r d *

    School of Pharmacy Liverpool John Moores University Byrom Street Liverpool L3 3AF UK

    Received 22 D ecember 1994; revised 3 May 1995; accepted 22 M ay 1995

    A b s t r a c t

    T he i n f lue nc e o f pa r ti c l e s iz e a nd v i s c os it y g r a de o f hyd r ox ypr opy l me t hy l c e l l u l o s e 2208 ( H P M C ) on t he t e ns il e

    s t r e ng t h , c ompr e s s i b il i ty , e ne r g ie s i nvo l ve d du r i ng c o ns o l i da t i on , m e a n y i e l d p re s s u r e a nd e l as t ic r e c ove r y o f H P M C

    c om pa c t s ha ve be e n de t e r mi ne d . T h e r e l a t i ons h i p be t w e e n pa r t ic l e s iz e, t e n si le s t r e ng t h a nd t he v i s c os i ty g r a de o f

    H P M C w a s c ompl e x . A t s ma l le r pa rt i c le s iz es ( < 45 a nd 4 5 - 1 25 ~ m) , a n i nc re a s e i n t he v i sc os i ty g r a de o f H P M C

    r e s u lt e d i n a r e du c t i on i n t he t ens il e s t r e ng t h o f i ts c omp a c t s . H ow e ve r , a t l a r ge r pa r ti c l e si ze s (125 - 180 , 180 - 250 o r

    2 5 0 - 3 5 0 / ~ m ) , t h e te n si le s t r e n g th o f H P M C c o m p a c t s d e cr e a se d w i t h a n i n c re a se i n v is c o si ty g ra d e u p t o H P M C

    K 1 5M , bu t f o r H P M C K 1 00M t he r e w a s a sma l l inc r e a se i n t e nsi le s t re ng t h . T he c ompr e s s i b i l i ty ind i c es o f H P M C

    K 1 0 0 , H P M C K 4 M , H P M C K 1 5 M a n d H P M C K 1 0 0 M i n c re a s ed 5 8% , 74 % , 4 9 % a n d 7 0% , re sp e c ti ve ly , a s t h e

    pa r t ic l e si ze w a s r e duc e d f r o m 25 0- 35 0 / t m t o < 45 / ~ m. T h i s ind i c a te s t ha t t he in t e r pa r ti c l e f ri c t iona l a nd c ohe s i ve

    forces inc reased w i th decreas ing pa r t i c l e si ze . The t ens i l e s t rength o f com pac t s mad e o f the smal les t pa r t i c l e si ze ( < 45

    / t m) f r a c t i on a t e a c h v i s c os it y g r a de w e r e a t l e a st t h r e e t ime s m or e t ha n t he t e ns il e s t re ng t hs o f c om pa c t s m a de o f

    25 0 - 3 50 / ~ m . P a r t i cl e s iz e w a s the s i ng le mos t i m por t a n t f a c t o r i n c on t r o l l i ng t he t ens il e s tr e ng t hs o f H P M C t a b le t s.

    T he me a n y i e l d p r es s u r e t o i nduc e p l a s t i c de f o r m a t i on c a l c u l a te d f r o m t he s l ope s o f H e c ke l p l o t s w a s t he l ow e s t f o r

    H P M C K I 00 , I nc r e a s e in pa r t i cl e s iz e r e su l t ed i n a n i nc r ea s e i n e la s ti c r e c ove r y , p r e s um a b l y due t o a r e d uc t i on i n t he

    num be r o f pa r ti c l e- pa r t ic l e i n t e r a c t i on p o i n t s du r i ng c om pa c t i on , a nd i n a r e duc t i on o f t he p l a st i c e ne r gy f o r al l t he

    samples . Th e v i scos i ty grad e of HP M C had no e f fec t on the e l as ti c energy. Par t ic l e s ize , how ever , d id s igni f i cant ly

    a f fe c t t h e el as ti c e n e r g y o f H P M C K 4 M a n d H P M C K 1 0 0 M .

    Keywords:

    H yd r oxyp r opy l m e t hy l c e l l u l o s e ; V i s c os i ty g r a de ; T e ns il e s t r e ng t h ; P a r t ic l e s iz e; C om pa c t i o n e ne r gy ; C o m-

    press ib i l i ty index

    1 . I n t r o d u c t i o n

    * Corresponding author.

    T h e p a r t i c l e s i ze o f a m a t e r i a l is o n e o f t h e m o s t

    i m p o r t a n t f a c t o r s a f fe c t in g t a b le t s t r e n g t h

    ( S h e i k h - S a l e m a n d F e ll , 1 9 8 2 ). I t h a s b e e n

    c l a i m e d t h a t w h e n t h e i n t e r p a r ti c u l a te b o n d s i n a

    0378-5173/95/$09.50 1995 Elsevier Science B.V. All rights reserved

    SSDI

    0 3 7 8 -5 1 7 3 ( 9 5 ) 0 4 1 2 2 - Q

  • 8/10/2019 The Effect of Particle Size and Viscosity Grade on the Compaction Propertis of HPMC

    2/9

    19

    A . N o k h o d c h i e t a l . / I n t e r n a t i o n a l J o u r n a l o ] P h a r m a c e u t i c s 1 2 6 1 9 9 5 ) 1 8 9 - 1 9 7

    c om pa c t a re we a k e .g . fo r l a c tose ) the i n i ti a l

    pa r t i c l e s i z e i s no t e xpe c t e d t o i n f l ue nc e t a b l e t

    s t re n g t h S h o t t o n a n d G a n d e r t o n , 1 9 6 1 ) . H o w -

    e ve r , Vr om a ns e t a l . 1985) fou nd t ha t a de c re a se

    in par t ic le s ize of l ac tose resu l ted in an increa se in

    t e ns il e s t r e ng t h o f t he t a b l e ts . W he n t he i n t e rpa r -

    t i c u l a t e b o n d s a r e s t r o n g , h o w e v e r , f r a c t u r e o c -

    c u r s a c r o s s t h e g r a i n s o f c r y s ta l s a n d t h e s t r e n g t h s

    of t he re su l t a n t t a b l e t s a re a func t i o n o f t he i n it i a l

    pa r t i c l e s i z e . Ge ne ra l l y , sma l l e r pa r t i c l e s g i ve

    s t r o n g e r t a b le t s H i i t t e n r a u c h , 1 9 7 7 ). S m a l l e r p a r -

    t i c l e s t e n d t o a g g r e g a t e u n d e r c o m p a c t i o n ,

    w h e r e a s l a r g e r p a r t i c l e s a r e f r a c t u r e d . A n u m b e r

    o f s t u d i e s c o n f i r m t h a t t h e f r a g m e n t a t i o n p r o p e n -

    s i t y o f a subs t a nc e unde r l oa d i nc re a se s wi t h i t s

    pa r t i c l e s iz e He rse y e t a l ., 197 3; M c K e n na a n d

    M c C a f f e r t y , 1 9 8 2 ; A l d e r b o r n e t a l. , 1 9 8 5 ) . F o r

    t h i s r e a s o n a c h a n g e i n m e a n p a r t i c l e s i z e m a y

    a l te r t h e p r e d o m i n a n t c o n s o l i d a ti o n m e c h a n is m .

    Al d e rb orn e t a l. 1988) c a t e gor i se d t he e f fe c t s o f

    pa r t i c l e s i z e on t he ba s i s o f t he me c ha ni sms i n -

    v o l v e d d u r i n g c o m p a c t i o n . F o r m a t e r i a l s w i t h a

    h i g h t e n d e n c y t o f r a g m e n t , t h e o r i g i n a l p a r t i c l e

    s iz e is o f le ss i mp or t a n c e t h a n fo r p l a s t i c ma t e r i a l s

    a n d t h e t a b l e t s tr e n g t h i s g e n e r a l ly i n d e p e n d e n t o f

    pa r t i c l e s i z e . For ma t e r i a l s wi t h i n t e rme di a t e t e n-

    d e n c y t o f r a g m e n t , t h e t a b l e t s t r e n g t h i s i n c re a s e d

    wi t h re duc i ng pa r t i c l e s i z e . For ma t e r i a l s wi t h a

    l o w t e n d e n c y t o f r a g m e n t , t h e s i t u a t i o n i s c o m -

    pl e x . R e duc t i on i n pa r t i c l e s i z e c a n g i ve a n i n -

    c r e a s e i n t a b l e t s t r e n g t h , p r o b a b l y d u e t o t h e

    i n c re a s ed n u m b e r o f p o i n t s o f c o n t a c t b e t w e e n

    part ic les .

    C o m p a c t i o n s p e e d p l a y s a n i m p o r t a n t r o l e i n

    de t e rmi n i ng t he e f fe c t o f i n i t i a l pa r t i c l e s i z e on

    t e ns i l e s t r e ng t h . Di f fe re nc e s i n t he s t r e ng t hs o f

    t a b l e t s o b t a i n e d f r o m d i f f e r e n t s i e v e f r a c t i o n s o f

    l a c to s e b e c a m e n e g l i g ib l e as t h e c o m p a c t i o n s p e ed

    wa s i nc re a se d Al p a r e t a l ., 19 70) . Th i s i nc re a se

    c a u s e d a g r e a t e r f r a g m e n t a t i o n o f t h e s t a r t in g

    m a t e r i a l w h i c h e l i m i n a t e d a n y d i f f e r en c e s b e tw e e n

    the ini t ial sizes.

    F o r t h e p l a s t i c a l l y d e f o r m i n g m a t e r i a l s , s o d i u m

    c h l o r i d e a n d p o t a s s i u m c h l o r i d e , H e r s e y e t a l .

    1 9 73 ) a n d H u m b e r t - D r o z e t a l. 1 9 82 ) r e p o r t e d

    t h a t y i e l d p r e s s u r e s w e r e i n d e p e n d e n t o f p a r t i c l e

    s i z e . H o w e v e r , f o r m a t e r i a l s w h i c h d e f o r m b y

    p a r t ic l e f r a g m e n t a t i o n l a c to s e a n d c a l ci u m c a r-

    bon a t e ) He rse y e t a l . 1973) a nd Yo rk 1978)

    f o u n d t h a t t h e y i e l d p r e s s u r e o f c o m p a c t s i n -

    c re a se d wi t h a r e duc t i on i n pa r t i c l e s i z e .

    T h e a i m s o f t h i s s t u d y w e r e t o d e t e r m i n e t h e

    e f fe c t o f d i f fe re n t pa r t i c l e s i z e s o f HPMC 2208 of

    d i f f e r e n t v i s c o s i t y g r a d e s o n c o m p r e s s i o n p r o p e r -

    t ie s. M a l a m a t a r i s e t a l . 1994) pa r t l y re se a rc he d

    t h e e f f e c t o f p a r t i c l e s i z e o f H P M C o n i t s c o m -

    p r e s s io n b e h a v i o u r b u t o n l y u s e d th e < 1 2 0 , 1 2 0 -

    3 20 , a n d > 3 20 /~ m f r a c t i o n s o f H P M C K 4 M ,

    H P M C K 1 5 M a n d H P M C K 1 0 0 M . S i m i l a r l y ,

    M a l a m a t a r i s a n d K a r i d a s 1 99 4) e x a m i n e d t h e

    t e n si le s tr e n g t h o f H P M C m a t r i c e s b u t n e i t h e r

    s t u d y f u ll y e x a m i n e d t h e c o m p a c t i o n b e h a v i o u r o f

    H P M C i n th e a b s en c e o f a d s o r b e d m o i s tu r e .

    2 M a ter i a l s an d meth od s

    D i f f e r e n t v i s c o s i t y g r a d e s o f h y d r o x y p r o p y l -

    m e t h y lc e ll u lo s e 2 20 8 H P M C K I 0 0 , H P M C

    K 4 M , H P M C K 1 5 M a n d H P M C K 1 0 0M m a n u -

    f a c t u r e d , r e s p e c t i v e l y , a s M e t h o c e l K 1 0 0 L V ,

    M e t h o c e l K 4 M , M e t h o c e l K 1 5 M a n d M e t h o c e l

    K I 0 0 M b y D o w C h e m i c a l s , U S A ) w e r e u s e d .

    P a r t ic l e s iz e f r a c t i o n s < 4 5 , 4 5 - 1 2 5 , 1 2 5 - 1 8 0 ,

    1 8 0 -2 5 0 , a n d 2 5 0 - 3 5 0 / ~ m ) o f e a ch H P M C w e re

    o b t a i n e d b y s i e v i n g t h e m a t e r i a l s t h r o u g h t e s t

    s ie ve s E n d e c o t t s L t d . , L o n d o n , U K ) o n a m e -

    c h a n i c a l v i b r a t o r P a s c a l E n g i n e e r i n g , S u s s ex ,

    U K ) . T h e s i e v e d f r a c t i o n s w e r e d r i e d a t 7 0 C f o r

    5 d a y s p r i o r t o u s e .

    2 1 Determination o f pack ing properties

    Th e c ompre ss i b i l i t y i nde x C a r r , 1965) i s a me a -

    s u r e o f t h e p r o p e n s i t y o f a p o w d e r t o c o n s o l i d a t e .

    T h e t r u e d e n s i t y p g) , b u l k d e n s i t y P b ) a n d t a p

    de n s i t y P t) o f d i f fe re n t pa r t i c l e s iz e f ra c t i ons o f

    d i f f e r e n t v i s c o s i t y g r a d e s o f H P M C w e r e d e t e r -

    m i n e d . T r u e d e n s i t i e s w e r e d e t e r m i n e d u s i n g a

    B e c k m a n a ir c o m p a r i s o n p y c n o m e t e r m o d e l 9 3 0

    C A , U S A ) . T h e b u l k d e n s i t y w a s d e t e r m i n e d f o r

    e a c h p o l y m e r f r o m a w e i g h e d 1 0 g s a m p l e , c a r e -

    f u l ly p o u r e d i n t o a 5 0 m l c y li n d e r . T h e n t h e

    s a m p l e s w e r e t a p p e d 1 00 ti m e s to o b t a i n c o n s t a n t

    v o l u m e . C h a n g e s o c c u r r i n g i n p a c k i n g a r r a n g e -

    m e n t d u r i n g t h e t a p p i n g p r o c e d u r e a r e e x p r e s s e d

    a s t he c ompre ss i b i l i t y i nde x , Eq . 1 .

  • 8/10/2019 The Effect of Particle Size and Viscosity Grade on the Compaction Propertis of HPMC

    3/9

    A. N okho dehi e t al . / In ternat iona l Journ al o f Pharm aeeut ics 126 1995) 189 197

    191

    Compressibility index = [ P t -

    Pb /Pt]

    X 100 (1)

    2.2. Compress ion

    Compressions were carried out using a High

    Speed Compaction Simulator (ESH Testing Ltd

    Brierley Hill, UK), as modified at the Liverpool

    School of Pharmacy, fitted with 12.5 mm fiat-

    faced punches. The details of the compaction

    simulator have been published elsewhere

    (Nokhodchi et al., 1995a, b). Four tablets were

    produced for each particle size of each viscosity

    grade of HPMC. A constant weight of 400 mg

    was maintained for all the samples and each tablet

    was compressed, by a compaction force of 10 kN.

    During compression, upper punch load and

    punch separation were monitored to an accuracy

    of +0.05 kN and + 12 /~ m, respectively

    (Bateman, 1988). Before each compaction, the die

    wall was cleaned with acetone and prelubricated

    with 4 w/w magnesium stearate in acetone.

    2.3. M easu rem ent o f plas t ic an d elas tic energies

    The manipulation of compression data has been

    described previously (Nokhodchi et al., 1995b).

    For a system where both punches are mobile, the

    punch separation may be plotted against upper

    punch force. The area under this curve will be the

    work done or energy (joules). The plastic and

    elastic energy of compaction of the H PMC tablets

    were measured using energy analysis on the force-

    punch separation plot. Gross, plastic and elastic

    energies were determined for each compaction.

    Fig. 1 illustrates a typical force-punch separa-

    tion plot, where A is the punch separation at the

    first measurable force, B is the force at the mini-

    mum punch separation D, and C is the decom-

    pression force. The area under the curve A B D

    gives the gross energy, whilst that under curve

    C B D corresponds to the decompression energy or

    elastic energy. The net compaction energy or plas-

    tic energy was determined from the difference

    between area

    A B D

    and area

    C B D .

    2.4. Heckel analys is

    The data were also analysed using Eq. 2

    (Heckel, 1961a, b):

    ln[1/(1 - O)] =

    K P + A

    (2)

    where D is the relative density of the tablet at

    pressure P and K denotes a material constant

    which is the slope of the straight line portion of

    the Heckel plot (for example, Fig. 2), the recipro-

    cal of which is the mean yield pressure. A is the

    value of the intercept of the straight line and is a

    function of the initial bulk volume. Regression

    analyses were carried out on the Heckel plots for

    data between 20 and 75 MPa and the mean yield

    pressures from each set of data. All data were

    therefore the means of four determinations. The

    relative densities of the powders (Do), at the point

    when a measurable force is applied, and the rela-

    tive density, D~, predicted from the intercept of

    the Heckel plot (Fig. 2), were also calculated.

    2.5. Dete rmin ation o f elastic recover ,

    The percentage elastic recovery of each com-

    pact was determined using Eq. 3 (Armstrong and

    Haines-Nutt, 1972; Malamataris et al., 1984);

    E R = [(Ht- Hm /Hm] x 100 (3)

    o

    t3

    u c r u a e h s p m u ~ [ ] A

    F i g . 1. T y p i c a l f o rc e - p u n c h s e p a r a t i o n p l o t f o r H P M C K 4 M

    o b t a i n e d a t a c o m p r e s s i o n s p e e d o f 1 5 m m / s .

  • 8/10/2019 The Effect of Particle Size and Viscosity Grade on the Compaction Propertis of HPMC

    4/9

    192

    A . N o k h o d c h i e t a l . ,' I n t e r n a t i o n a l J o u r n a l ~ P h a r m a c e u t i c s 1 2 6 ( 1 9 9 5 ) 1 8 9 1 9 7

    -4

    ]}l

    Db= D a DO

    i

    O

    m CompressionP r es m r e [ l ~ ]

    F i g. 2 . T y p i c a l H e c k e l p l o t [ o r H P M C K 4 M o b t a i n e d a t a

    c o m p r e s s i o n s p e e d o f 1 5 m m / s .

    w h e r e H m i s t h e h e i g h t o f t h e t a b l e t a t m a x i m u m

    c o m p r e s s i o n f o r c e a n d / 4 1 is th e t a b l e t h e i g h t 2 4 h

    a f t e r e j e c t i on .

    2 6 T e n s i l e s t r e n g t h

    T e n s i l e s t r e n g t h s w e r e d e t e r m i n e d f r o m t h e

    f o r c e r e q u i r e d t o f r a c t u r e t a b l e t s b y d i a m e t r a l

    c o m p r e s s i o n o n a m o t o r i s e d t a b l e t h a r d n e s s t e s t e r

    (mode l 2E , Sc h l e un i ge r , Zur i c h , Swi t z e r l a nd) . The

    t e n s i l e s t r e n g t h s w e r e c a l c u l a t e d a c c o r d i n g t o E q .

    4 (Fe l l a nd Ne wt on , 1970) :

    T = 2 P / ~ r D H

    (4)

    whe re T i s t he t e ns i l e s t r e ng t h , P i s t he a pp l i e d

    l o a d , D a n d H a r e t a b l e t d i a m e t e r a n d t h i c k n e s s ,

    respec t ive ly.

    2 7 S t a t i s t i c a l a n a l y s i s

    A l l d a t a w e r e s t a t i s t i c a l l y a n a l y s e d b y t w o - w a y

    a n a ly s i s o f v a r i a n c e a n d T u k e y s m u l t ip l e c o m -

    pa r i son t e s t . R e su l t s a re quo t e d a s s i gn i f i c a n t

    where P < 0.05.

    3 R e s u l t s a n d d i s c u s s i o n

    T a b l e 1 g i v es d a t a i n d i c a t i n g t h e e f f ec t s o f

    v i s c o si ty g r a d e a n d p a r t ic l e siz e o f H P M C o n t h e

    t e n si le s t r e n g t h o f it s c o m p a c t s . T w o - w a y a n a l y s i s

    o f v a r i a n c e c o n f i r m e d t h a t t h e r e w e r e s i g n i f i c a n t

    d i f fe re nc e s i n t e ns i l e s t r e ng t h be t we e n t he va r i ous

    v i s c o si ty g r a d e s . T u k e y s t e s t s h o w e d t h a t t e n s il e

    s t r e n g t h d e c r e a s e d a s t h e v i s c o si t y g r a d e i n c r e a s ed

    f r o m H P M C K 1 0 0 , t h r o u g h H P M C K 4 M t o

    H P M C K 1 5 M f o r a l l p a r t i c l e s i z e s . H o w e v e r ,

    w i t h th e e x c e p t io n o f t h e 2 5 0 - 3 5 0 p m f r a c t io n s ,

    t he re we re no s t a t i s t i c a l d i f f e re nc e s be t we e n t he

    d a t a f o r H P M C K 1 5 M a n d f o r H P M C K 1 0 0 M .

    T w o - w a y a n a ly s i s o f v a r ia n c e a l s o s h o w e d t h a t

    t he re wa s i n t e ra c t i on be t we e n pa r t i c l e s i z e a nd

    v i sc o s it y g r a d e o f H P M C .

    T h e t e n si le s t r e n g t h s o f t a b le t s c o n t a i n i n g t h e

    s m a l l e r p a r t ic l e s iz es ( < 4 5 a n d 4 5 - 1 2 5 /~ m ) o f

    H P M C K 1 0 0 o r H P M C K 4 M w e r e s t a t i s t i c a l l y

    s i mi l a r (Tuk e y s t e s t) bu t we re s i gn i f i c a n t ly h i gh e r

    ( T u k e y s t e st ) th a n f o r t a b l e t s c o n t a i n i n g t h e s a m e

    size f r ac t io n o f H P M C K 1 5 M o r H P M C K 1 0 0 M

    whi c h we re a l so s t a t i s t i c a l l y i nd i s t i ngu i sha b l e

    f r o m e a c h o t h e r ( T u k e y s t es t) . T h e t e n si le

    s t r e ng t hs o f ma t r i c e s c on t a i n i n g 125 180 or 180

    2 50 p m H P M C K 1 0 0 w e r e s ig n i fi c an t ly h i g h e r

    ( T u k e y s t e s t) t h a n t h e t e n s il e s t r e n g t h s o f t a b le t s

    c o n t ai n in g s im i la rl y s iz ed H P M C K 4 M , H P M C

    K 1 5 M o r H P M C K 1 0 0 M w h i c h w e r e a l s o i n d i s -

    t i n g u i s h a b l e b y T u k e y s t e s t f r o m e a c h o t h e r

    (Ta b l e 1 ). Pa ra d oxi c a l l y , the s t r e ng t hs o f ta b l e t s

    c o n ta in i ng 2 5 0 - 3 50 p m H P M C K 1 0 0 o r H P M C

    K 1 0 0 M w e r e s t a t i s t i c a l l y h i g h e r t h a n t h o s e o f

    m a t r i c e s c o n t a i n i n g s i m i l a r s i z e d f r a c t i o n s o f

    H P M C K 4 M o r H P M C K 1 5M .

    F o r e a c h p a r t i c l e s i z e , c o m p a c t s m a d e f r o m t h e

    l o w e st v is c o si ty g r ad e ( H P M C K 1 0 0 ) h a d t h e

    h i ghe s t t e ns i l e s t r e ng t hs a nd t he l owe s t t e ns i l e

    s t r e n g t h s w e r e f o u n d f o r c o m p a c t s c o m p o s e d o f

    e it he r H P M C K 1 5 M o r H P M C K 1 0 0 M ( T ab l e 1).

    The se re su l t s i nd i c a t e t ha t de ns i f i c a t i on o f t he

    po l yme r be c a me l e s s d i f f i c u l t a s t he v i sc os i t y

    g r a d e o f H P M C d e c re a se d . T h e s u b s e q u e n t in -

    crease in t ens i le s t rength a t l a rger par t i c le s izes

    w a s p r o b a b l y d u e t o a n i n c r e a s e i n p l a s t i c f l o w ,

    w h i c h w o u l d c a u s e a r e s i s t a n c e t o f r a c t u r e d u r i n g

    t h e d i a m e t r a l c o m p r e s s i o n .

  • 8/10/2019 The Effect of Particle Size and Viscosity Grade on the Compaction Propertis of HPMC

    5/9

    A . N o k h o d c h i e t a l. / I n t e rn a t i o n a l J o u r n a l o f P h a r m a c e u t ic s 1 2 6 1 9 9 5 ) 1 8 9 - 1 9 7 193

    T a b l e 1

    T h e e f f e c t o f p a r t ic l e si z e o n t h e t e n s i l e s t r e n g t h s M P a ) o f H P M C c o m p a c t s o f d i f f e r e n t v i s c o s it y g r a d e s p r e p a r e d a t a c o m p r e s s i o n

    s p e e d o f 1 5 m m / s a n d c o m p r e s s i o n f o r ce o f 1 0 k N r e su l ts a r e t h e m e a n s a n d s t a n d a r d d e v i a t i o n s o f f o u r d e t e r m i n a t io n s )

    P a r t i c l e s i z e / ~m ) T e n s i l e s t r e n g t h M P a S D

    H P M C K 10 0 H P M C K 4 M H P M C K I 5 M H P M C K 1 00 M

    < 45 2.03 _+ 0.1 0 2.02 _+ 0.06 1.73 0.41 1.67 _+ 0.0 6

    45 -12 5 1.47 _+ 0.23 1.33 -+ 0.02 0.85 0.06 0.88 _+ 0.03

    125 180 1.01 _+0.04 0.70_+ 0.06 0.64_ +0.07 0.74_+0.06

    180 -250 0.82 _+ 0.07 0.64 _+ 0.02 0.60 _+ 0.04 0.64 _+ 0.04

    25 0-3 50 0.57 -+ 0.04 0.48 _+ 0.03 0.45 _+ 0.01 0.57 _+ 0.05

    Pa r t i c l e s iz e ha d a m a rk e d e f fe c t on t h e t e ns i le

    s t r e n g th o f t h e H P M C c o m p a c t s ( T a b le 1 ). A

    de c re a se i n t he pa r t i c l e s i z e re su l t e d i n a n i nc re a se

    i n t e n s il e s t r e n g t h o f c o m p a c t s a t a l l v is c o s i ty

    g r a d e s o f H P M C . P a r ti c le s iz e is o n e o f t h e m o s t

    i m p o r t a n t f a c t o r s w h i c h c o n t r o l s t h e t e n s i l e

    s t r e n g t h o f c o m p r e s s e d t a b l e t s. B o t h t h e d i r e c t i o n

    a n d m a g n i t u d e o f t h e e f f e c t o f p a r t i c l e s i z e o n

    t a b l e t s t r e n g t h v a r y b e t w e e n s u b s t a n c e s a n d a r e

    r e la t e d t o t h e f r a g m e n t a t i o n p r o p e n s i t y o f th e

    m a t e r i a l s . F o r a h i g h l y f r a g m e n t i n g m a t e r i a l , su c h

    a s d i c a l c i u m p h o s p h a t e ( D e B o e r e t a l . , 1 9 7 8 ) t h e

    or i g i na l pa r t i c l e s i z e i s o f l e s s i mpor t a nc e t ha n fo r

    p l a s t i c ma t e r i a l s a nd t he t a b l e t s t r e ng t h i s ge ne r -

    a l ly i n d e p e n d e n t o f p a r t i c le s iz e. F o r m a t e r i a l s

    whi c h f ra gme nt t o a l e s se r e x t e n t , e . g . l a c t ose

    (C ol e e t a l . , 1975) s i gn i f i c a n t c ha n ge s i n t a b l e t

    s t r e n g t h d u e t o c h a n g e s i n p a r t i c l e s i z e o r s h a p e

    h a v e b e e n o b s e r v e d . I n m a t e r i a l s u n d e r g o i n g e x -

    t e n s i v e f r a g m e n t a t i o n , n e w c l e a n s u r f a c e s a r e c r e -

    a t e d d u r i n g t h e c o m p r e s s i o n a n d t h e r e f o r e t h e

    pa r t i c l e s i z e o f t he o r i g i na l ma t e r i a l e xe r t s a

    s m a l l e r e f f e c t c o m p a r e d w i t h t h o s e m a t e r i a l s

    w h i c h a r e l e s s p r o n e t o f r a g m e n t a t i o n .

    T h e d e p e n d e n c e o f t a b l e t s t r e n g t h o n p a r t i c l e

    s iz e f o r e a c h o f th e H P M C s s u g g e s t s t h a t e x t e n -

    s iv e f r a g m e n t a t i o n d i d n o t o c c u r d u r i n g c o m p r e s -

    s i o n o f H P M C . G e n e r a l l y , t h e p a r t i c l e s i z e o f

    H P M C h a d a s i g n i fi c a n t e f fe c t ( t w o - w a y a n a l y s is

    of va r i a nc e ) on t e ns i le s t r e ng t h . Th e t e ns i le

    s t r e n g t h s o f e a c h p a r t i c l e s i z e f r a c t i o n o f H P M C

    K 1 0 0 c o u l d c l e a r l y b e d i f f e r e n t i a t e d f r o m e a c h

    o t h e r ( T u k e y s t es t) . O n t h e o t h e r h a n d , t h e r e

    we re no s i gn i f i c a n t d i f fe re nc e s be t w e e n t he 125

    1 8 0 / ~ m a n d 1 8 0 - 2 5 0 / ~ m f r a c t i o n s o f H P M C

    K 4 M a n d H P M C K 1 5 M ( T u k ey s te st). F o r

    H P M C K 1 0 0 M t h e 1 8 0 -2 5 0 a n d 2 5 0 - 3 5 0 /~ m

    f r a c ti o n s c o u l d n o t b e d i f fe r e n ti a te d b y T u k e y s

    test .

    Ta b l e 2 sho ws t he e f fe c t o f pa r t i c l e s iz e a nd

    v i s c o s i t y g r a d e o f H P M C o n t h e c o m p r e s s i b i l i t y

    i nde x (C I ) . Inc re a se i n pa r t i c l e s i z e re su l t e d i n a

    d e c r e a s e i n c o m p r e s s i b i li t y in d e x f o r e a c h g r a d e o f

    H P M C . T h i s i n d i c a t e s t h a t t h e r e i s a n i n c r e a s e i n

    b o t h t h e i n t e r p a r t i c u l a t e f r i c t i o n a l a n d c o h e s i v e

    forc e s wi t h de c re a s i ng pa r t i c l e s i z e . The se fa c t o r s

    ma y e xp l a i n t he i nc re a se i n t a b l e t t e ns i l e s t r e ng t h

    wi t h de c re a s i ng pa r t i c l e s i z e o f d i f fe re n t v i sc os i t y

    g r a d e s o f H P M C ( T a b le 1) a n d t h e C I m a y

    i n d i c a t e t h e e a s e w i t h w h i c h p a r t i c l e r e a r r a n g e -

    m e n t o c c u r s . T w o - w a y a n a l y s i s o f v a r i a n c e

    s h o w e d t h a t b o t h p a r t ic l e s iz e a n d v i s c o s i ty g r a d e

    ha d a s i gn i f i c a n t e ffe c t (P < 0 .05) on t he c om -

    p r e s s ib i l it y i n d e x o f H P M C s a m p l e s a n d t h e r e

    wa s i n t e ra c t i on be t we e n pa r t i c l e s i z e a nd v i sc os i t y

    g r a d e o f H P M C . T u k e y s t es t s h o w e d t h a t t h e

    c o m p r e s s i b i l i t y i n d i c e s o f H P M C K 1 0 0 a n d

    H P M C K 1 0 0 M w e re a f f e c t e d u p to 1 25 1 8 0 / t m .

    I n o t h e r w o r d s , t h e r e w a s n o s i g n if i c a n t d i f f er e n c e

    b e t w e e n t h e i r 1 8 0 - 2 5 0 a n d 2 5 0 3 5 0

    tm

    f ra c -

    t i o n s . T h e c o m p r e s s i b i l i t y i n d e x o f e a c h p a r t i c l e

    s iz e f r a c t io n o f H P M C K 4 M c o u l d c le a rl y b e

    d i f f e r e n t i a t e d f r o m e a c h o t h e r ( P < 0 . 0 5 ) w i t h t h e

    e x c e p t i o n o f 1 8 0 - 2 5 0 a n d 1 2 5 1 8 0 / z m f r ac t i o n s .

    O n t h e o t h e r h a n d , f o r K 1 5 M , t h e r e w a s n o

    s i gn i f i c a n t d i f fe re nc e be t w e e n t he 250 350 a nd

    1 80 2 5 0 a n d t h e 4 5 - 1 2 5 a n d < 4 5 / z m f r ac t io n s .

    T u k e y s te s t s h o w e d t h a t t h e < 45 tz m f r a c t io n o f

    H P M C K 4 M h a d s ig n i fi c an t ly t h e h ig h e s t c o m -

    p r e s s i b i l i t y i n d e x . A t 4 5 - 1 2 5 / z m t h e c o m p r e s s -

  • 8/10/2019 The Effect of Particle Size and Viscosity Grade on the Compaction Propertis of HPMC

    6/9

    194

    A. N ok hode h i e t a / . / I n t e r na t iona l J our na l o f Phar mac e u t i c s 126 1995) 189 197

    T a b l e 2

    T h e e f f e c t o f v i s c o s it y g r a d e a n d p a r t i c le s i ze o f H P M C o n t h e c o m p r e s s i b i l it y i n d i c e s r e s u l ts a r e t h e m e a n s a n d s t a n d a r d d e v i a t i o n s

    o f f o u r d e t e r m i n a t i o n s )

    P a r t i c l e s i z e / L m ) C o m p r e s s i b i l i t y i n d e x

    ( _ + S D )

    H P M C K 1 00 H P M C K 4 M H P M C K 1 5M H P M C K I 0 0M

    < 45 35.9 + 1.9 42.6 + 0.5 36.9_+ 0.5 39.3 _+ 0.7

    45 125 34.3_+0.8 34.4_+0.9 35.2_+ 1.0 33.1 + 0. 8

    125 180 26.3_+3.1 30.7_+ 1.0 31.7_+0.9 25.7_+ 1.7

    180 -25 0 23.2 _+ 2.1 29.4 _+ 0.6 26.8 _+ 1.6 24.1 _+ 0.2

    250 350 22.7_+ 1.6 24.5_+0.8 24.8_+ 1.0 23.2_+0.9

    ibility index was not affected by viscosity grade of

    HPMC. The compressibility index appeared to be

    independent of the viscosity grade.

    The effects of particle size on the mean yield

    pressures for the HPMCs are shown in Fig. 3. For

    each of the HPMCs, except HPMC K100M, the

    mean yield pressures were independent o f the

    particle size. For HPMC K100M, the mean yield

    pressures decreased with increase in the particle

    size. This would be expected for a material that

    deforms by the combined mechanisms of particle

    fracture and plastic deformation. This conclusion

    is supported by the fact that the calculated mean

    8

    4

    3

    M I ~ ] ~ c K

    1

    I ' r ' I ' I ' I ' I ' I

    5 1 1 5 2 2 8 ; 3 3 8

    P a r t i c l e s i z e [ / ~ m ]

    F i g . 3 . T h e e f f e c t s o f p a r t i c l e s i z e a n d v i s c o s i t y g r a d e o f

    H P M C o n t h e m e a n y i el d p r es s u re s o f t a b le t s c o m p r e s s e d at

    a c o m p r e s s i o n s p e e d o f 1 5 m m / s t o a c o m p r e s s i o n f o r c e o f

    1 0 k N r e s u l ts a re t h e m e a n s a n d s t a n d a r d d e v i a t i o n s o f f o u r

    d e t e r m i n a t i o n s ) .

    yield pressures were unaffected by particle size for

    all the HPMCs except KI00M (Fig. 3), indicating

    that the deformation properties were unchanged

    for HPMC K100, HPMC K4M and HPMC

    KI5M by particle size. Thus H PMC K100M per-

    forms similarly to lactose, where the yield pressure

    increased as its particle size decreased (Roberts

    and Rowe, 1986) in contrast to the other grades of

    HPMC which performed similarly to microcrys-

    talline cellulose (Roberts and Rowe, 1986). Two-

    way analysis of variance showed that there was

    interaction between particle si ze and viscosity

    grade of HPMC (Fig. 3).

    The effects of particle size on the elastic recovery

    of the HPMCs are shown in Fig. 4. Elastic recov-

    ery, in the die, increased with increasing particle

    size and was generally independent of the grade o f

    HPMC. Indeed, for the 250-350/lm fractions of

    HPMC, only HPMC K100M could be differenti-

    ated from the other HPMCs by Tukey s test.

    Two-way analysis of variance showed that there

    was interaction between particle size and viscosity

    grade of HPMC (Fig. 4). The effects of particle

    size on the plastic energy of different viscosity

    grades of HPMC are illustrated in Table 3. Gener-

    ally the plastic energies decreased with increase in

    particle size but were independent of viscosity

    grade and this was confirmed by two-way analysis

    of variance. The smaller particle sizes of HPMC

    gave thinner tablets (Table 4) which would indi-

    cate that the top punch had travelled further

    during compression. The corresponding increase

    in plastic energy or net compaction energy should

    indicate a higher ability of the smaller sized mate-

    rial to deform plastically.

  • 8/10/2019 The Effect of Particle Size and Viscosity Grade on the Compaction Propertis of HPMC

    7/9

    A . N o k h o d c h i e t a l . / I n t e r n a t i o n a l J o u r n a l o f P h a r m a c e u t i c s 1 2 6 1 9 9 5 ) 1 8 9 - 1 9 7 195

    I I I

    1 0 0 2 0 0 3 0 0

    P t r t l e l e s l z e [ p r o ]

    9 I

    4 0 0

    Fig. 4. The effect of particle size and viscosity grade of

    HPM C on the elastic recoveries of compacts compressed at a

    compression speed of 15 mm/s to a compression force of 10

    kN results are the means and stand ard deviations of four

    determinations).

    Since particle size had no significant effect on

    the plasticity, i.e. mean yield pressure, of the

    HPMCs except HPMC K100M (Fig. 3), it may

    therefore be assumed that the effect of particle

    size on the plastic energy is not due to differences

    in the plasticity but is caused by differences in

    particle interactions, i.e. the number of contact

    points. This interaction may be due to interparti-

    cle friction or a different degree of bonding. This

    explanation will also apply to the effects of parti-

    cle size on tensile strength (Table 1), and elastic

    recovery (Fig. 4).

    The plastic energy of HPMC K100M was inde-

    pendent of the particle size. However, for HPMC

    KI00, HPMC K4M and HPMC K15M, the plas-

    tic energies significantly decreased (Tukey s test)

    as the particle size was increased from < 45 /~m

    to 125-180/~m whereas the plastic energies could

    not be differentiated for particle size fractions of

    125-180, 180 250 and 250 -350/zm.

    The effects of particle size on the elastic energy

    of different viscosity grades of HPMC are shown

    in Table 5. Two-way analysis of variance showed

    tha t an increase in particle size generally increased

    elastic energy for all K grades of HPMC. This

    was due to a decrease in the number of particle-

    particle interaction points. These trends were sup-

    ported by the increase in elastic recovery of the

    compacts (Fig. 4) with increasing particle size.

    Two-way analysis of variance also showed that

    the viscosity grade of HPMC had no significant

    effect on the elastic energy.

    Tukey s tests showed that the particle size had

    no significant effect on the elastic energies of

    HPMC K100 and HPMC K15M but had a sig-

    nificant effect on the elastic energies of HPMC

    K4M and HPMC K100M.

    The compression studies showed that HPMC

    K100 is the easiest of four polymers to compress

    and it undergoes more plasticity during compres-

    sion. This study also showed that not only viscos-

    ity grade but also the particle size of HPMC

    affected their compression and compaction prop-

    erties. Since the compaction characteristics of

    polymers are dominant factors in choosing a poly-

    mer for sustained release, the selection of a defin-

    ite particle size and viscosity grade of HPMC may

    be important in the formulation of a controlled

    release drug delivery system.

    4 C o n c l u s io n

    The results suggest that tensile strength, com-

    pressibility index, plastic and elastic energies and

    elastic recovery are significantly affected by parti-

    cle size of HPMCs. It was found that the smallest

    particle size (

  • 8/10/2019 The Effect of Particle Size and Viscosity Grade on the Compaction Propertis of HPMC

    8/9

    196 A . N o k h o d c h i e t al . / I n t e r n a ti o n a l J o u r n a l o f P h a r m a c e u t i c s 1 2 6 1 9 9 5 ) 1 8 9 1 9 7

    T a b l e 3

    T h e e f f e c t o f v i s c o s it y g r a d e a n d p a r t i c le s i z e o f H P M C o n t h e p l a s t i c e n e r g i e s o f t a b l e t s c o m p r e s s e d a t a s p e e d o f 1 5 m m / s t o a

    c o m p r e s s i o n fo r c e o f l 0 k N r e su l t s a r e t h e m e a n s a n d s t a n d a r d d e v i a t io n s o f fo u r t a b le t s )

    P a r t i c l e s i z e / ~ m ) P l a s t i c e n e r g y J ou l e i SD )

    H P M C K I 0 0 H P M C K 4 M H P M C K I 5 M H P M C K 1 00 M

    < 4 5 6 . 8 3 + 0 . 3 1 6 . 8 5 - + 0 . 2 0 6 . 8 0 - + 0 . 2 5 6 . 3 3 - + 0 . 1 5

    45 125 6 . 64_+0 . 25 6 . 60_+ 0 . 22 6 . 58 _+0 .40 6 , 54_+ 0 . 06

    125 -180 6 . 09_+0 . 33 5 . 86_+ 0 . 12 6 . 16_+ 0 . 26 5~88_+0. 22

    1 8 0 - 2 5 0 6 . 0 8 _ + 0 . 1 7 5 . 9 3 _ + 0 . 1 4 5 . 9 8 _ + 0 . 1 8 6 , 1 2 _ + 0 . 5 6

    25 0-3 50 5.97 -+ 0.23 5.91 -+ 0.07 6.13 _+ 0.11 5,85 _+ 0.43

    T a b l e 4

    T h e e f f e ct o f p a rt i c l e si z e o f H P M C o n t h e t h i c k n e s s e s o f t a b l e t s i n t h e d i e a n d o b t a i n e d a t a c o m p r e s s i o n f o r c e o f l 0 k N a n d s p e e d

    o f 1 5 m m / s r e s ul t s a r e t h e m e a n s a n d s t a n d a r d d e v i a t i o n s o f fo u r t a b le t s )

    P a r t ic l e s i ze / ~ m ) T h i c k n e s s o f t a b l e t s m m _ + S D )

    H P M C K I 0 0 H P M C K 4 M H P M C K 1 5M H P M C K 1 00 M

    < 45 2 . 494 + 0 . 020 2 . 473 _+ 0 . 051 2 . 500 _+ 0 . 023 2 . 501 _+ 0 . 004

    45 125 2 . 536_ +0 . 02 9 2 . 526_+ 0 . 027 2 . 549_+ 0 . 021 2 . 551 _+0 .007

    125 -180 2 . 548 _+ 0 . 023 2 . 555 _+ 0 . 013 2 . 555 _+0 .006 2 . 55 6-+ 0 . 01 6

    180 250 2 . 577 _+ 0 . 032 2 . 552 0 . 004 2 . 572 -+ 0 . 008 2 . 575 + 0 . 013

    250 350 2 . 566 0 . 007 2 . 575 -+ 0 . 025 2 . 570 -+ 0 . 009 2 . 580 -+ 0 . 012

    T a b l e 5

    T h e e f f e c t o f v is c o s i t y g r a d e a n d p a r t i c le s i z e o n t h e e l a s t ic e n e r g i e s o f H P M C c o m p a c t s c o m p r e s s e d a t a c o m p r e s s i o n s p e e d o f 1 5

    m m / s t o a c o m p r e s s i o n f o rc e o f 1 0 k N r e s u lt s a r e t h e m e a n s a n d s t a n d a r d d e v i a t i o n s o f f o u r t a b le t s)

    P a r t i c l e s i z e / ~ m ) P l a s t i c e n e r g y J o u l e _ + S D )

    H P M C K 1 00 H P M C K 4 M H P M C K 1 5 M H P M C K 1 0 0M

  • 8/10/2019 The Effect of Particle Size and Viscosity Grade on the Compaction Propertis of HPMC

    9/9

    A. N ok hodc h i e t a l . / In t e r na t i ona l J our na l o f Phar mac e u t i c s 126 1995) 189 - 197 197

    eferences

    Alderborn, G. , Duberg, M. and Nyst rom, C . , Studies on di rec t

    comp ress ion of table t s. X . M easurem ent of t able t s a rea by

    pe r m e a m e t r y .

    Powder Technol. ,

    41 1985) 49-5 6.

    Alderborn, G. , Boryesson, E. , Glazer , M. and Nyst rom, C . ,

    Studies on di rec t compress ion o f table t s . XIX. T he ef fec t of

    par t i c le s ize and shape on the mechanica l s t rength of

    sodium bicarbonate t able t s . Ac t a Phar m. Sue c . , 25 1988)

    31 - 40 .

    Alpar , O. , Hersey, J .A. and Shot ton, E. , The compress ion

    propert ies of lactose.

    J. Pharm. Pharmacol. Suppl. ,

    22

    1970) IS 7S.

    A r m s t r ong , N .A . a nd H a i ne s - N u t t , R .F . , E l a s t ic r e c ove ry a nd

    sur face area changes in compacted powder sys tems. J .

    Pharm. Pharmacol . , 24 1972) 135 P 136P.

    Bateman , S. , The ef fec t of compress ion speed on the com-

    pact ion proper t i es of compacts . PhD . Thes is , School of

    Pharm acy, L iverpool Polytechnic , UK , 1988, pp. 28 120.

    Car r , R .L. , Evaluat ing f low proper t i es of sol ids .

    Chem. Eng. ,

    72 196 5) 163-168.

    Cole , E.T. , Rees , J .E. and Hersey, J .A. , Rela t ions be tween

    c om pa c t i on da t a f o r s om e c r ys t al l ine pha r m a c e u t i c a l m a t e -

    rials. Phar m. Ac t a He l v . , 50 1975) 28-3 2.

    De Boer , A.H. , Bolhuis, G.K . and L erk, C .F. , Bonding char -

    ac ter is ti cs by scanning e lec t ron microscop y of powde r

    mixed wi th magnes ium s teara te . Powder Technol. , 25

    1978) 75-82.

    Fel l , J .T. and N ewton , J .M. , De termina t ion of table t s t rength

    by diamet ra l compress ion tes t . J . Pharm. Sc i . , 59 1970)

    688 691.

    Heckel , R .W. , Dens i ty-pressure re la t ionships in powder com-

    pact ion.

    Trans . Metal l . Soc . AIME. ,

    221 1961a) 671 -675 .

    Heckel , R .W. , An analys i s of powder compact ion phenomena.

    Trans . Metal l . Soc . AIME. , 221 1961 b) 1001-10 08.

    Hersey, J .A. , Rees , J .E. and Cole , E.T, , Dens i ty changes in

    lactose tablets. J . Pharm. Sc i . , 62 1973 ) 2060.

    H um be r t - D r oz , P . , Mor d i e r , D . a nd D oe l ke r , E . , Me t hode

    r a p i de de de t e r m i na t i on du c om por t e m e n t a l a c om pr e s -

    s i on pou r de s e tude de pe r f o r m ul a t ion . Phar m. Ac t a He i r . ,

    57 198 2) 136 143.

    Ht i t t enrauch, R . , Uber den mechanismus des korngrossen

    effekts in der tablet t ierung. Phar maz i e , 32 1977) 130-13 I .

    Malamatar i s , S . and Kar idas , T. , Ef fec t of par t i c le s ize and

    sorbed m ois ture on the t ensi le s t rength of some table ted

    hydr oxypr opy l m e t hy lc e l lu l o s e H PM C ) po l ym e r s . Int. J.

    Pharm. ,

    104 1994) 115-1 23.

    Malamataris, S. , BinBaie, S. and Pilpel , N., Plasto-elast ici ty

    and table t ing of paracetamol .

    J. Pharm. Pharmacol. ,

    36

    1984) 616-617.

    Ma lamatar i s , S . , Kar idas , T. and Goid as , P . , Ef fec t of par t i c le

    s ize and sorbed mois ture on the compress ion behaviour of

    s om e hydr oxypropy l m e t hy l c e ll u l o se H PM C ) po l ym e r s .

    In t . J . Pharm. ,

    103 1 994) 205 215.

    McKenna, A. and McCaffer ty , D.F. , Ef fec t of par t i c le s ize on

    the comp act ion mecha nism and tens ile s t rength of t ablet s.

    J. Pharm. Pharmacol. , 34 1982 ) 347 351.

    N okhodc h i , A . , R ub i ns t e i n , M.H . , La r h r i b , H . a nd G uyo t

    J .C . , Ef fec t of mois ture on the proper t i es of ibuprofen

    tablets. In t . J . Pharm. , 118 1995a) 191-197.

    N okhodc h i , A . , R ub i ns t e i n , M.H . , La r h r i b , H . a nd G uyo t

    J .C . , Ef fect of mois ture con tent on the energies involved in

    t he c om pa c t i on o f i bup r o f e n . In t . J . Pharm. , 120 1995b)

    13 20.

    Robe r t s , R .J . and Row e, R .C. , The ef fect of re la t ionship

    between punch veloci ty and par t i c le size on the comp act ion

    be ha v i ou r o f m a t e ri a ls w i th va r y i ng de f o r m a t i on m e c ha -

    nism.

    J. Pharm. Pharmacol. ,

    38 1986) 567-571.

    Sheikh-Salem, M. and Fell , J .T. The tensile strength o f tablets

    of l ac tose , sodium chlor ide , and the i r mixtures . A c t a

    Pharm. Suec . ,

    19 19 82) 391 396 .

    Sho t ton, E. and Gan der ton , D . , The tens i le s t rength of com -

    pressed tablets. IIL The relat io n of part icle size, bon ding

    and capping in t able t s of sodium chlor ide , aspi r in and

    hexamine.

    J . Pharm. Pharmacol . ,

    13 1961) 144 T 152T.

    Vromans , H. , De Boer , A.H. , Bolhuis , G.K. , Lerk , C .F. and

    Kussendrager , K.D. , Studies on table t ing proper t i es of

    lactose, Part 1. Th e effect of ini t ial part icle size on bind ing

    proper t i es and dehydra t ion charac ter i s t i cs of l ac tose . A c t a

    Pharm. Suec . , 22 198 5) 163-172.

    York, P. , Par t i c le s l ippage and rear rangement dur ing compres-

    s ion of pharmaceut ica l powders .

    J. Pharm. Pharmacol. ,

    30

    1978) 6-10.