Top Banner
TENSILE AND CREEP RUPTURE PROPERTIES AT ELEVATED TEMPERATURES OF (I..' UNCOATED AND (2) COATED ENGINEERING ALLOYS by Louis J. Fritz and W.P. Koster METCUT RESEARCH ASSOCIATES INC. CINCINNATI, OHIO Prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA-Lewis Research Center Cleveland, Ohio Contract NAS3-18911 Peter T. Bizon, Project Manager https://ntrs.nasa.gov/search.jsp?R=19770016292 2020-03-24T18:22:19+00:00Z
175

TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

Mar 18, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TENSILE AND CREEP RUPTURE PROPERTIES

AT ELEVATED TEMPERATURES OF (I..' UNCOATED AND (2) COATED ENGINEERING ALLOYS

by

Louis J . F r i t z and W.P. Koster

METCUT RESEARCH ASSOCIATES INC. CINCINNATI, OHIO

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA-Lewis Research Center Cleveland, Ohio

Contract NAS3-18911

Peter T . Bizon, Project Manager

https://ntrs.nasa.gov/search.jsp?R=19770016292 2020-03-24T18:22:19+00:00Z

Page 2: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TABLE OF CONTENTS

PAGE -- SUMMARY INTRODUCTION

GENERAL BACKGROUND

Mater ia ls Specimen Prepara t ion Test P rocedures

TEST RESULTS

Material 1 - *, 075-T6 Aluminum Material 2 - Amzirc Copper Material 3 Material 4 - H- 13 Tool Steel Material 5 - D-979 Material 6 - A-286 Material 7 - L-605 Material 8 - 304 Stainless Steel Material 9 - 316 Stainless Steel Material 10 - Udimet 700 Material 11 - T A Z 8A hlaterial 12 - I N 100 Mcterial 13 - I N 100 t Jocoat Material 14 - B 1900 Material 15 - B 1900 t Jocoat Material 16 - b,"ar M200 Material 17 - Mar M302 Material 18 - Rene 80

- Titanium - 6Al- 2 Sn -4 Z r - 2Mo

1

1

2

2 4

10

14

14 23 31 40 49 58 67 76 85 94

103 112 12 1 129 138 146 155 164

Page 3: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

SUMMARY

Tensile, c r eep rupture and Poisson 's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research Center. of the materials were additionally tested a f te r a Jocoat* coating was applied,

Two

The tensile and Poisson 's Ratio test data are supplied i n tabular f o r m - with samples of the load-strain c u x e s . presented i n tabular and graphical form - the graphs being i so- thermal plots of the rupture life data as well as families of plastic deform-ation versus time plots.

Creep rupture data are

All such data are grouped according to alloy designations.

4 Jocoat is a high temperature oxidation-resistant coating proprietary to P r a t t & Whitney Aircraf t Corporation applied by an approved source according to Specification PWA A47.

i

Page 4: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

IN TRO DU C TION

Over the past s e v e r a l yea r s , a considerable amount of high temperature , low cycle fatigue data have been generated at the Lewis Resea rch Center on a variety of alloys. A significant p a r t of this testing was to develop improved methods for predicting high tempera ture fatigue behavior. SpecificaLly, there was a th rus t to a sce r t a in whether fatigue behavior could be predicted f r o m a knowledge of the tensile propert ies a t the various tempera tures of interest . No such tensile da ta existed on the par t icu lar heats of the ma te r i a l s which had been evaluated in low cycle fatigue testing, although handbook values existed for some mater ia l - tempera ture combinations.

In o r d e r to make a critical evaluation of life prediction appraaches, it became imperat ive to genera te the tensile and c r e e p rupture propert ies on the same heats as were used to genera te the fatigue data.

This r epor t represents the culmination of the test effort to collect the necessary tensile and c r e e p rupture data for correlat ing with existing fatigue data. by NASA-Lewis Research Center.

MateriaL f o r this evaluation was supplied from the t e s t heats

- 1 -

Page 5: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

GENERALBACKGROUND

Mate ria 1s

The materials and test temperatures in this program are as follows:

A llov

1. 2. 3. 4. 5, 6. 7, 8. 9.

10. 11. 12 . 14. 15. 16. 17. 18.

3 3 .

7075-T6 Aluminum Amzirc Copper Titaniuni-6A 1-2Snr4Zr -2Mo H- 13 Tool Steel D-979 A-286 L-605 304 Stainless Steel 316 Stainless Steel Udimet 700 TAZ-8A IN 100 IN 100 t Jocoat B 1900 B 1900 + Jocoat M a r -M2 0 0 Mar-M302 &ne' 80

TI ( " C ) (OF)

12 1 2 50 482 900 482 9 00 538 1000 593 1100 593 1100 593 1100 593 1100 593 1100 760 1400 850 1562 850 1562 850 1562 850 1562 850 1562 871 1600 850 1562 850 1562

T2 ( " C ) ('F)

149 3 00 538 1000 538 1000 593 l i00 649 1200 649 1200 649 1200 649 1200 704 1300 816 1500 925 1697 925 1697 925 1697 925 1697 925 1697 927 1700 925 1697 925 1697

T3 JOG) (OF) 177 350 593 1103 593 1100 649 1200 704 1300 704 1300 704 1300 760 1400 816 1500 927 1700

1000 1832 1000 1832 1000 1832 1000 1832 1000 1832 982 1800

1000 1832 1000 1832

Alloys 1-10 were furnished by the Government in the form of wrought ba r s - - 0.75 inch diameter by 27 to 36 inches tang. Specimens of these alloys were machined as described elsewhere in this repor t (page 4).

Alloys 11-18 were furnished by the Government as c a s t remel t stock - - 2-1/2 to 3-1/2 inch diameter by 6 to 43 inches long. Specimens of these alloys were cast to size. The remelt stock was shipped from Metcut to Howmet Corporation-Misco Division, where it was cast into specimen blanks per Figure 1.

The specifics of any heat t reatment o r coating of the alloys is covered in the segment of this repor t covering those par t icular alloys.

- 2 -

Page 6: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

Q

'D 0

.3

N

--. 0

cg N

.-4

-3-

Page 7: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

GENERAL BACKGROUND (continued)

Specimen P repa ra t ion

The wrought ma te r i a l s (Alloys 1-10) were cu t into appropriate blank s i zes for machining into the tensile, c r e e p and Poisson ' s Ratio teat specimens shown in Figures 2, 3, and 4, respectively. On the assumption that the ma te r i a l was uniform f r o m bar to bar, the blanks were cu t up without sketching specimen location within the bars . Al l tensile blanks might be f r o m consecutive positions in one o r two b a r s with the same procedure followed f o r c r e e p and Poisson ' s Ratio blanks.

Once the blank was cu t to its approximate size, it was faced and centered; thereafter, all machining was performed with re ference to these centers . Such pract ices a s s u r e centratif-y of the finished specimen.

As previously stated, a l l specimen blanks f r o m the cast ma te r i a l s were supplied to a single configuratim. F r o m this blank, the creep, tensile and Poisson 's Ratio specimens were machined per F igures 3, 5, and 6, respect ive Ly.

All specimens (except the Amzi rc Copper) wer? machined using Metcut's "Low s t r e s s " grinding techniques to finish the gage section. Amzi rc Copper specimens were turned a d polished in the reduced gage section.

The

-4-

Page 8: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

rJ .# n

om

"I" I

d

0

-5-

Page 9: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

ir i-

-6-

Page 10: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

v

c

rr)

I c)

r(

i

-4

3

c

0

In

t

I ?--

N

0 0

+I

0 0

In

m

- 7-

Page 11: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

X

'c-r

-8-

Page 12: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

(\1

0 0

+I

-T- 3

.z

rD P

03 N

J-i

I

4

u W

C

v1 m

w

o

pc .r

(

C

0

P

.rl

4

?. cd w

-9-

Page 13: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

G EN ERA L BA C KG RO U - N D ( c o F. tinu e d )

T e s t Procedures

A. Genera l Test P rocedures

All measurements of specimen dimensions were made using mic ro - meters or ca l ipers t raceable to the National Bureau of Standards. Specimen d iameters were measu red to the n e a r e s t . 0001 in. ; specimen lengths were measu red using cal iper which read to the n e a r e s t .001 in. made using s tandard mechanical extensometers. C r e e p readings were made using both optical and electromechanical extensometers . Poisson ' s Ratio was determined using bonded s t ra in gages verified pe r ASTM Method E251. Coated specim-en d iameters were measured pr ior to coating. The reduction of area calculations were cor rec ted for this thickness.

=tension measu remen t s on tensile specimens were

The coating thickness was nominally 7. G O 4 in.

Elevated tempera ture tests were conducted in s tandard wire-wound res i s tance type furnaces. of sa turab le core r eac to r s which have a capability of mair.tsining tempera tures to within f 1 O C . tests through 871°C w e r e made using type K thermocouple wire. Above this tempclrature, measurements were made using Pt- 1370a.h thermocouple wire. C a l i b r a i o n of the thermocouple wire at Metcut routinely follows the procedures ou;;ined in ASTM E 220.

These furnaces were controL1ed by means

Tempera ture measurements on a l l

T:.e tensile machines and s t r e s s rupture f r a m e s at Metcat a r e vr cified to less than one percent erro: Method E74. maintained ir. . ,alibration to s tandards which a r e NBS traceable. Calibrations a r e performed at regular ly scheduled intervals.

*sing methods detai leJ in ASTM All t e s t equipment proposed for u s e i n this program is

B. Tensi le T e s t Procedures

Tensile tes t s to determine ult imate tensile strength, yield strer-gths (0.02 and 0.270 offset), percent alongation, percen, reduction of area, s t r a in hardening exponent, and t rue f r ac tu re strength were performed on a minimum of three (3) specimens at each of four (4 ) t es t t empera tures - - room and three eievated temperatures .

- 1 0 -

Page 14: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

B. Tensile Teat Procedures (continued)

A l l testing was performed in one of two Batdwin universal hydraulic testing machines. Both machines are equipped with in tegra l s t r a i n pacers and autographic load-strain recording sys terns.

Room temperature s t r a i n was monitored using a linear differential t ransformer extensometer which was clipped d i rec t ly to the test section. A t elevated temperatures , the motion was t r ans fe r r ed to a n LVDT extensometer through extension arms attached to the specimen gage section.

A s t r a i n ra te of 0.005 cm/cm/min. was maintained through the 0.2q0 yield strength; thereaf ter , a controlled head rate of 0.125 cm/min. was used.

All strength calculations were based on loads and cross-sectional areas measured to the accuracies as descr ibed earlier. Drxctility values were calculated using initial and final measurements as measured to these accuracies also.

Elongation measurements for the wrought alloys were made bctweei; gage marks (1 in. length) i n the reduced section. For the cast mater ia ls , where such m a r k s could adversely affect the test resul ts , the elongation was measured using the overa l l specimen length. Pe rcen t elongation was then calculated using the adjusted reduced gage section length as described i n ASTM E21.

The units of measurement in all cases werc the U.S. customary sys tem of units. Measurements were made in inches, loads in pounds and stresses calculated in pounds pe r inch.2 The SI units presented in the report are from conversions using NBS values.

The s t r a in hardening exponent "nl1 was calucated using the power expression of the form,

where C = 1.0, and n is the s t r a in hardening exponent. The value of n is rnos t accurately determined from tensile s t r e s s - s t r a i n data obtained in a tensile test using special high elongation extensometry.

is t rue s.ress, G p is t rue plastic s t ra in , K is the s t r e s s a t

P

-11 -

Page 15: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

B. Tensile Test Procedures (continued)

The extensometry used in normal s t r e s s - s t r a in testing has higher precision, but will not permit measurement of plastic strains Larger than a few percent. It is possible, however, to get a good estimate of the strain hardening exponent from load elongation data obtained in normal tensile testing. The Limitation is that the t rue s t r e s s versus t rue plastic s t r a in resul ts occurs only over a Limited range of strain. Plotting the ava i la t -e data points on log-log coordinates and taking the s lope of the straight line between them yields an estimate of n which is useful for engineering comparisons of s t ra in hardening behavior among various types of materials. This was the procedure used in this report.

The modulus of elasticity is another value which theoretically can be calculated from a s t r e s s - s t r a in plot of a tensile test. In reality, however, the load and s t ra in magnificavdns necessary to produce a complete tensile curve are not necessar i ly the ranges one would choose for measuring modulus of elasticity. elasticity was obtained with the same specimen as that used for tensile testing, by loading seve ra l times to loads well below the proportional limit at suitable load and s t ra in magnification ranges.

The modulus of

ALL tensile data is reported in both SI and the U.S. customary systems of units.

C. Poisson's Ratio

Tension specimens having a rectangular cross-sect ion per Figures 4 and 6 were used fo r this determination. Strain gages were bonded on the .250 in. wide tes t surface at mid-span. The gages w e r e 90" rosettes with 0.100 in. grids. Gages were mounted on opposite faces to compensate for any bending which occurred during testing.

Static loads were applied in approximately ten equal steps with the maximum stress on the specimen being held well below the proportional limit. Strain measurements w e r e made at the individual s tep loads while Loading and anloading the specimen. cycle was performed a total of three t imes on each specimen.

The ent i re

-12-

Page 16: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

C. Poisson's Ratio (continued)

The loads were applied while the specimen was mounted in a stress rupture frame and were either d i r ec t dead weight loaded or lever loaded, depending on the maximum stress to which the specimen was subjected. numerically to produce the individual and sample mean (average) value for Poisson 's Ratio and both 90 and 95 percent confidence limits. measured. Poisson 's Ratio was not determined using the slope of the plotted values.

The load-strain values thus obtained were analyzed

The values so analyzed were the individual values as

D. Creep Rupture Procedures

Creep rupture testing was performed using procedures as detailed in ASTM E 139 on specimens .having a 2 in. gage length (F igure 3).

Readings were made using optical c r e e p cathetometers for the longer time and higher temperature tests. A mechanical c r eep sys tem was used to obtain maximum d a h points for the sho r t e r time tests, .since it gave 24 hour per day coverage of these readings.

The data so generated, 3ssis ted by the employment of a variety of numerical analysis procedures, yielded the following:

(1) A plotted curve of c reep s t r a in v e r s u s time

(2) The time to the onset of third-stage c reep

( 3 ) The time to achieve 1% c r e e p s t r a in

(4) The minimum creep rate

( 5 ) The time to rupture

( 6 ) The percent elongation a t failure

(7) The percent reduction of area at fai lure

F r a m the minimumA of five ( 5 ) t es t s a t each of three (3) tes t temperatures , and u s i n g the appropriate isothermal and parametr ic relationships, the s t r e s s levels to produce rupture lives of 100, 300, and 1000 hours were determined.

- 1 3 -

Page 17: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS

Material 1: 7075-T6 Aluminum

This high strength, heat t reatable aluminum alloy was supplied as fully heat treated, wrought b a r s tcck by NASA-Lewis Research Center. Nominal composition of this alloy is as follows:

Zinc Magnesium Copper Chromium Manganese Iron Silicon Titanium Other Impurit ies,

each Other Impurit ies,

tota 1 A luminum

5. I - 6.1% 2.1 - 2.9 1.2 - 2.0 0.30 max. 0.50 max. 0.40 max. 0.20 max.

a. 18 - 0.35

0.05 max.

0.15 max. Ba Lance

Tensile resul ts are presented as Table I with samples of the load-strain curves compiled as Figure 7.

Poisson 's Ratio values are as listed below:

Specimen Average Value Confidence Limits

I - P I -0.3244 k. 0018 f. 3022

1 -P2 -0.3190 k. 0030 *. 0036 1 -P3 -0.3285 t. 002 1 f. 0026

Number Poisson's Ratio -- 9070 95%

Creep rupture data are presented in Table 11. t ime vahes are plotted i n Figures 8, 9, and 10. the rupture life data appear as Figure 11.

Creep deformation versus Isothermal plots of

- 14-

Page 18: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Material 1: 7075-T6 Aluminum (continued)

An analysis of the creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

Stress to Produce Failure at

100 hours 300 hours 1000 hours ("3 (OF) MN/m2 - ksi MN/rn2 - k s i MN/m2 - k s i

12 1 2 50 365.4 53 .0 324.1 4 7 . 0 298 .6 4 2 . 0

149 3 00 255.1 37 .0 206.8 30 .0 165.5 24.0

177 3 50 151.7 22.0 124.1 18.0 103.4 15 .0

- 1 5 -

Page 19: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

<N

l-

**

m

cr

ml

m

ml

.: "4

0-

0 000

00

1 0

01

.

..

..

. .

.I

.

.I

s

ao

0

00

0

00

0

0 I

00

I

"4 X

Il

l

Il

l

11

1

Il

l

11

1 I

ll

I

ll

I

ll

I

ll

I

ll

(

I;

I

ll

Il

l

Il

l I

ll

I

ll

I

ll

I

ll

I

ll

I

ll

1

11

I

ll

1

11

I

ll

,

Il

l

Il

l

Il

l I

ll

0

0

0

0

m

0

Lrl

dl*l

r- N

0

m

E

- 10-

Page 20: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

- 6( 0

0

VI N

u’ 2

d

Y

N

r+ I r(

I I

I

1-

0

0

i.

I I

I I

I 0

0

0

0

* N

0

0

0

d,

4

I-(

?S

Y ‘SS3IJ.L

S

-17

- F

igu

rc 7

Page 21: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

Ob

0

mn

l a

o0

NO

QI

Q)@

NQ

II

n

mo

oi

oo

o

co

oo

0

00

00

~000'00

00

00

0

00

00

0

~ In

s*

dd

e-W

-0

a

ot

Q-

00

0.

.

.. .

e.

-.

.....

'*( =: N ci

I-

O 0

m

6

d

c(

0

ui m

mn

l

E .r(

0

Q, a

-18-

Page 22: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

1 I

I I

I 1

I

l- u 1 c(

U

-1

\ \I

I.

\U

0 0

I-

0

0

* C

0

m

0

0

hl

0

0

- 0

-19

- F

iKurc 8

Page 23: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

00 u

t I

1

-1

\ \

L

U

I nl

I r(

0

0

0 0

I-(

0 0 6

0 0

00

0

0

12

09

In

0"

s

3

0 9

2 A Y u c-c

0 0

e

0

0

m

0 0

N

0 0

#-4

0

-20

- F

igure 9

Page 24: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

0 0 0

CI

0 0

m

0

0

03

Q 0

I'..

0

0

* 0

0

m

Q

0

N

0 0

- 0

-21

- F

igu

re 10

Page 25: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

0

00

0 0

0

Pa

m d

rr) 0

m

0

00 9

(\1

r(

U

!BY 'S

S3X

LS

-2

2-

Figu

re 11

Page 26: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 2: Amzi rc C o m e r

This copper zirconium alloy, developed to produce good strength Levels a t high temperature , was supplied as fully processed (half-hard) wrought b a r stock by NASA-Lewis Research Center.

Chemical composition of this heat of m a t e r i a l (supplied by NASA-Lewis R -:search Center) is as follows:

I ron 0.00270 Nicke 1 0.002 Z i r co nium Copper Ba Lance

0. 18

Tensile resu l t s are presented as Table 111 w.l;h samples of the Load-strain curves compiled as Figure 12.

Poisson 's Ratio values are as listed below:

Specimen Average Value Confidence Limits Number Poisson 's Ratio 9 0% 95 /a

2 - P 2 -0.3656 f . 0028 f. 0034

2 -P3 -0.3623 t. 0027 f. 0032

2 -I.. -0 .3570 f . 0013 f. 0016

C r r ep rupture data are presented in Table IV. t i w e values a r e plotted in Figures 13, 14, and 15. the rupture Life data appear as Figure 16.

Creep deformation versus i so thermal plots of

An analysis of the c r e e p rupture data using parametr ic plots of the data in conjunction with the isothermal plot yields the follov.ing values of the rupture s t r e rg ths to produce 100, 300, and 1000 hour life data a t the appropriate test tempe ra turea .

St re s s to Produce Fail l ire a ' Temp. 100 hrs . 30C hrs . 1000 h:.s.

M!h/m2 ksi

482 90C 4 8 . 3 7 . 0 3 7 . 9 5. 5 3 1 . 0 2 . 5 - "C - "F MN/m2 -- ksi M N / m 2 k s i -

538 1000 2 9 . 6 4 . 3 22 .8 3 . 3 16 .3 2 . 4

593 1100 17 .9 2 . 6 13 .8 2 . 0 10 .3 1 . 5

- 2 3 -

Page 27: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

,oG

w '$ 000

OO

VI 000

lc

Q

... ...

*.

I

NNM

4N

.G

N9N

CO

N

NNN NNN MmM

bb

l m

m

N

Qd

VI

V

IM

N

MC

6e

9

9

000 000 OOC

mr

ul

...

ddd ddd 000 dd' 0

0

m

Il

l

Il

l

Il

l

II

II

I

II

I

11

1

11

1

Il

l

mo

b

00

r-m

NN

N

...

mlc

4-

NM

.. G

I.

Ir

(

v)

Y

m

a,

SD Y

C k

5

P

a, h

5

Id k a, a

a,

.d

U

E U

QeC

O

NQ

N

MMM

... MMd

mc

ob

0

..

00 cv I"

m9

CO

W

NN

... u

r(

C.

-No

**

m

..

I.

#

MI

9

NN

N

V

a, a

0

0

m

0 0 0

m

0 0

u

Y

.a

U

@

m

e, &I

a, > u e,

.rl

Y

N

00 zr

00 M

In

Page 28: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

U

N

30

0

.r N

1

v

N

Ec I N

-25

-

Page 29: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

mo

o

00

...(

0.

-mo

o

,P

a0

-

fu

00

0 00

9036

1O

QN

OO

I

Ql

6*

&N

..... c(

,0

00

3O

N

05

00

0*

c

o*

01

ce

m

NN

NM

--

......

0 0

r(

c(

0 0

0

4

co cr) In

m

Ql

In

..

-26

-

Page 30: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

I

0

c1

u I N

-. ‘-4

I 30 d

0

-0

0

W

0

0

0.

0 0

00

0 0

b

3

22

3

0

z

ow

- 2

2

F:

0

0

* 0

0

rrl

0 0

fu

0

0

c(

0

-27- F

igu

re 13

Page 31: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

3

3 3

II

3

3 r

3 9

P

0 0

P-

O 0

9

0

0

tn 0

0

d

0 0

rr)

0

Q

tu 0 0

d

0

Figu

re 14 1

Page 32: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I

\

N

\

0 0 0

c.l

0 0

OI

3

a0

0 0

* 0

0

9

0

0

In

0

0

v

0 0

f-0

0

0

nl

0

0

1

0

Figu

re 15

Page 33: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

0

0

0

d

0

0

a0

I I

t1

I

1 I

11

1 1

I 1

I 0

0 0

om

am

*

rr) N

d(r)

N

r(

!*Y ‘S

Srn

LS

4

-30- F

igu r

0

0

9

0

0

In

0 0

m

0

0

N

0

0

0

9

‘e 16

3

8 Y

Page 34: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 3 : Titanium -6A 1-2Sn -42 r - 2Mo This super-alpha t i tanium alloy, developed to produce a good combination of tensile, c reep , toughness, and stabil i ty to 1050°F was supplied as fully processed wrought b a r s tock by NASA-Lewis Resea rch Center.

Nominal composition of this alloy is as follows:

A luminum Tin Zirconium Molybdenum I ron Carbon Nitrogen Hyd r oge n Oxygen Titanium

5.5 - 6.570 1.8 - 2.2 3.6 - 4.4 1.8 - 2.2 0.25 max. d.05 max. 0.05 max. 0.0150 max. 0.12 max. Balance

Tensi le resul ts are presented as Table V with samples of the load-strain curves compiled as F igure 17.

Poisson ' s Ratio values are as listed below:

S pec imen ~ v e r a g e Value Confidence Limits 9570 - Number Poisson ' s Ratio 90%

3-P1 -0.301 7 f . 0012 +. 0015

3-P2 -0.3076 f. 0026 t. 003 1

3-P3 -0.3115 t. 0016 +. 0020 -

Creep rupture data a r e presented in Table VI. t ime values are plotted in F igures 18, 19, and 20. the rupture life data appear as F igure 21.

Creep deformation versus Isothermal plots of

An analysis of the c r e e p ruptdre data using paramet r ic plots of the data in conjunction with the i so thermal plot yields the following values of the rupture s t rengths to produce 100, 300, and 1000 hour liie d a t a at the appropriate k s t temperatures .

- 3 1 -

Page 35: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Material 3: Titanium-6Al-2Sn-4Zr-2Mo (continued)

Stress to Produce Failure at Temp. 100 hour '306 hour 1000 hour

482 900 620.5 90.0 579.2 84 .0 254.0 76.0

538 1000 399.9 58 .0 324.1 4 7 . 0 258.6 37.5

MN/m2 ks i -- "C "F M N /m2 - ka i MN /m2 - ks i -

593 1100 227.5 33 .0 162.0 2 3 . 5 113 .8 16.5

-32-

Page 36: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

5 0 0

Q)

Y

.-l

a, Yl

5 is E

mN

S m

m4

O

I-

4

*cool

000 4

-4

0-4 000

000 000 000 000

... ... ... ..

.

Il

l

I1

1

11

1

Il

l

11

1

11

1

Il

l

Il

l

11

1

Il

l

11

1

Il

l

11

1

11

1

Il

l

11

1

11

1

11

1 I

ll

I

ll

1

11

1

11

1

11

I

ll

1

11

1

11

I

t1

I

ll

0

0

0

C

0

0

0

0

4

4

4

&?I r-

6

E

L

0000

"I I-0

00

ti.

604

.-

4

4

El

-33

-

Page 37: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I "I

I

T-

-3 0

0

Page 38: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

--m

dl

d.

Y

I

I h

-"I ld

M

C

'D

ld 0

C 0

.r(

d

.dl 00000 ooooom oooom

1

V

V 0

e, k

0

0

rc

CI

co Pl m

-35

-

Page 39: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

a w w r(

rr: u

u I

rr)

0

OD 9

CI

N

r(

(Ohlo) NO

ILV

tJf)NO

’T3 d332l3

-36

- F

igure 18

d

N

0

Page 40: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

1 1

I I

I

9

.-(

u I vl

L

0

0

0

c

0

0

0-

0

0 a

0

0

b

0

0

9

0

0

In 0

0

rs

0

0

m 3

0

Y

0

0 e

0

Page 41: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

7

I I

1 I

I 1

..I(

A

\

-38- F

igu

re 20

Page 42: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

-I -

Il

l I

Il

l

b( 0

3

5

Ln

Y Q

i I

II

I I

II

II

Il

l I

I I

I I 8

3c

30

0

00

0

03

0

0

00

00

0

33

0

OT

X

o

:n

0 0

0

d

0 0

a0

c

0 9

0

0

VI

0

0 e

0

0

rF,

G

0

N

0

m

- 0

0

- C

X

C

3

c

- r

- m

s: 0

3

d

=r c

Y

Page 43: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 4: H-13 Tool Steel

This air-hardening, hot work tool and die s t ee l was eupplied as bar stock bv NASA-Lewis Research Center. Nominal composition of this alloy is as follows:

Carbon 0.35% Manganese 0.35 Silicon 1.00 Chromium 5.00 Vanadium 1.00

Iron Balance Molybdenum 1.50

P r i o r to finish machining, the ma te r i a l was heat treated at Metcut using the following NASA recommended heat treatment.

Preh-a t specimen blanks to 1400°F for 1/2 hour. Transfer to 1850°F/1 hour i a i r cool. Double temper a t 1200°F for two hours, air cool to room temperature each time. .

T

Tensile resul ts are presented as Table VI1 with samples of the load-strain curves compiled as Figure 22.

Specimen Average V a l u e Confidence Limits Number Poisson 's Ratio 90% - 95%

4-PI

4-P2

t. 0023

t. 0020 - t. 001 9

-0.2786 t. 0017 -0.2746 -

- t. 0018 - t. 0015 - 4 -P3 -0.2758

Creep rupture data are presented in Table VU. t ime values are plotted in Figures 23, 24, and 25. rupture life data appear as Figure 26.

Creep deformation versus Isothermal plots of the

An analysis of the creep rupture data using paramet r ic plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate t e s t temperatures.

-40-

Page 44: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESL ..TS (continued)

Material 4: H- 13 Tool Stee l (continued)

S tres s to Produce Fai lure a t

Temp. 100 hours 300 hours 1000 hours "C

538 1000 282.7 4 1 . 0 237 .9 34 .5 193.0 2 8 . 0

593 1100 165.5 24.0 134.4 19.5 106.9 15.5

049 1200 96.5 14.0 79 .3 1 1 . 5 62 .0 9 . 0

MN/m3- k s i - MN/m2 k s i MN/m2 - "F - -

- 4 1 -

Page 45: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

.+;a

-=+tu

+m

m mqw 9 I

w

::ao

0

00

0

00

000

01

0

Id

ad

4

4-

0

00

000

01

0

..

. ... ...

.I

.

m:

X

3: 7 a, 1

11

1

11

I

ll

1

11

1

11

I

ll

I

ll

I

ll

I

ll

I

ll

I

O I

11

I

ll

1

11

1

11

1

11

0

0

0

0

0

0

0

4

N

E 6'1 H

.+

H

0000

.r4l b

oo

0

-42

-

Page 46: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

0

0

- 0

N d

n

Ir 0

O

b

I\

0

0

3

0

N

3

c.

I

0

0

-r 0

0

Y

0

0

N

Page 47: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

OC

QO

N-

In

r;rcL

no

o

-009

-N

m

oo

oo

oln

QQ

*m

mn

l

... U

idd

Ln

oo

o

0 0

0

d

00 m

VI

m 0' VI

0' * 9

-44

-

Page 48: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

3 3

s.

3

3

x3

3 3

b

Y

Fc

Page 49: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I 1

\ c(

(Ob

) NO

TL V9N013 d3323 3

-46

- F

igure 2

4

Page 50: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I -

1

'-- I

'- -I

-'I

I m

0

0

-0

- 0

-

0

m

0

-0

00

0

-0

r-

\

0

0

4

0

0

In

0

0

I +

I" W

0

0

-47

-

Page 51: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

I I

I I

I I

I c

00

0 0

0

0

m

0

00 9

FS

ln

*

M

N

r(

.-(

!SY ‘SS3X

;LS

-473- F

igure 2

6

0

z Y

Page 52: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 5: D-979

This precipitation hardening austenit ic, high temperature superalloy was supplied as fully processed wrought bar stock by NASA-Lewis Research Center.

-

Nominal composition of this alloy is as follows:

Carbon Manganese SiLicon Phosphorus Chromium M o lybdenum Tungs ten Titanium A Luminum Boron Iron Nickel

0.08 max. 0.75 max. 0.75 m2x. 0.040 max. 14.00 - 16.00 3. OC - 4.50 3.00 - 4. 50 2.70 - 3.00 0.75 - 1.30 0.008 - 0.016 25.00 - 29.00 42.00 - 48.00

Tensile resu l t s a r e presented as Table IX with samples of the load- s t r a in curves compiled as Figure 27.

Poisson 's Ratio values a r e as listed below:

Specimen Average Value Confidence Limits 9 570 -- Number Poisson 's Ratio 90%

5-P1 -0.2852 t. - 0026 t. 003 1

5-P2 -0.2853 t. - 0016 t. 0020 - ;r. 0012 f. 0014 5 -P3 -0.3013

Creep rupture data a r e presented i n T.:ble X . t ime values a re plotted in F i g u r e s 2 8 , 23 , and 30. thc rupture life data appear a s Figurc : J 1.

Creep deformation v e r s u s Isothcrmal pl,.cs of

Page 53: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 5: D-979 (continued)

An analysis of the c r e e p rupture data using paramet r ic plote of the data in conjunction with the i so the rma l plot j i e l d s the following values of the rupture s t rengths to produce 100, 300, and 1000 hour life data at appropriate test temperatures .

Stress to Produce to Fa i lu re at

Temp. 100 hour 300 hour 1000 hour MN/m2 kel klN/m2 kai MN/m2 k s i - "F - C" -

593 1100 758.4 1'1.0 696.4 101.0 627.4 91.0

649 1200 599.8 87.0 537.8 78.0 482.6 70.0

7 04 1300 468.8 68.0 427.5 62.0 386.1 56.0

-53-

Page 54: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

a

.- *

LI

..

..

..

..

..

..

-51

-

Page 55: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I

h

6( 0

0

r-

m 1m

0

0

0

3

0

0

0

0

0

0

00 9

d

Y

0

9

0

0

N

0

0

7 1

r -

1 1 T

-I ‘1 21

Page 56: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

FO

Q

--

00

0

OG

OO

O

4m

N-

O

..... N

-Q

)

mQ

O.3

-

*N

-O

O

ooooc

.....

mN

+m

a

m!

-J

oo

-

00

00

0

00

00

.....

3

Y

z cd 3

0

.r(

&I

00

00

0

oo

co

o

OQ

U'

NO

c

z'

.J

)F

r-

F

..

..

. 0

00

00

....

GO

Y3

.3

b

FQ

4m

..... O

NO

rn

O

H0

03

\3

\

CI

-R

m $

0

0 c

c

0

0

Pl -

c- Y

9

?

0

r-

.. 'L:

3

u

II

II

I

ml

nl

nm

m

z -5

3-

Page 57: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

In

3

In

G

In

0

In

0

m

rcI fw

N

d

l-4 0

0

0 0

d

0

0

rn

0 0

r)

0

0

r- 0 0

-0

0

0

In

0 t

d

0

0

m

c)

0

ru 0

0

d

0

Figiir$ 2

8

-54

-

Page 58: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

w Fc 3 a w w d

U

-

tu u

I IL

"

1 - I

m 0

m

0

Ln

0

m

m

Y

tu c(

3

NO

ILV

f>N

0?3 d3

BN

3

In

0

0

0

0 0

.-(

C

0

m

0 0

30

0

0

r-

0

0

3

0

0

ln

0

0

* 0

0

rn

0

0

-J 0

0

c1

3

-55

- F

igu

re 2

9

Page 59: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

II

I

I I

I 1

I

t-

I

tn rr)

0

rR

0

CR

cr) nl

N

- 0

in 0

1-)

0

Figu

re 30

0 0 0

CI

0 0

0'

0 0

m 0

0

I-

0 0 9

0

0

u)

0

0 e

0

0

<I

0 0

hl

0

0

c.

0

Page 60: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

II

I I

I I

' I

I P

r'

II

''

'I

I

I

0

;I c-( u' OO

7 0 0

II

I I

1 I

I I

I I

II

II

II

I I

I I I

I c

30

3 0

9

0

0

0

s0

c

00

33

c

0

0

0

m

0C

.z

0 0 0

CI

0 0

9

0 0

In

0

3

w

3

In c

3

0

c(

3

X

3

-r

: y 'ssm7.Ls

- 57

-

Page 61: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 6: A-286

This age hardenable austenit ic nickel-chromium s t ee l was supplied as wrought b a r stock by NASA-Lewis Resea rch Center. composition of this alloy is as follows:

Nominal

Carbon Manganese Silicon P ho s pho rou s Sulfur Chromium Nickel M o lybd e num Titanium A luminum Vanadium Boron I ron

0.08 max. 2 . 0 0 Max. 1.00 max. 0.025 max. 0.025 max. 13.50- 16.00 24 .00-27 .00 1 .00 -1 .50 1 .90-2 .35 0 .35 max. 0 .10-0 .50 0 .003-0 .010 Balance

Prior to finish machining, the ma te r i a l was heat t reated at Metcut using the following NASA recommended heat treatment:

Age at 1325"F/16 hours / a i r cool to room tempera ture

Tensile resul ts are presented as Table XI with samples of the load-strain curves compiled as F igu re 32.

Poisson ' s Ratio values are as listed below:

Specimen Average Value Number Poisson 's Ratio

6-P1 -0 .262 1

6 -P2 -0 .2624

6-P3 -0 .2640

Confidence Limits 9070 9 5% --

?. 0015 ?. 0018 t. 0024 2.0029

!. 0015 f . 0018

C r e e p rupture data a r e presented i n Table XII. v e r s u s t ime values are plotted in F igu res 33, 34, and 35. I so thermal plots of the rupture Life data appear as Figure 36.

Creep deformation

-58-

Page 62: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 6: A-286 (continued)

An analysis of the crr-ep rupture data using paramet r ic plots of the da.a in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures .

Stress to produce fa i lure at Temp. 100 hours 300 hours 1000 hours

"F MN/m2 k s i M N /m2 ks i M N / m 2 k s i - "C - 593 1100 703.3 102.0 648.1 9 4 . 0 593 .0 8 6 . 0

649 1200 524.0 76 .0 437 .8 63 .5 358.5 52 .0

704 1300 303.4 4 4 . 0 217 .2 31 .5 148.2 2 1 . 5

-59 -

Page 63: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

QQ

F

qq

tn

m

ln

w

~i

m

000 000 000

01

0

..

..

..

..

.

I.

000 000 000 d

l0

Il

l

Il

l

11

1 I

ll

I

ll

I

ll

1

11

I

ll

I

ll

I

ll

I

ll

I

ll

I

ll

I

ll

I

ll

I

ll

me-

co

N"

0

av

-4

M

NN

N

..

..

-60

-

Page 64: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I 1

I I

I I

I I

U

3

a - d

U

0

d

h

.J

U

d

v

0

3

0

3

e

-

Y

- X

3

Y

-.I

c

Page 65: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

109000

IN

NS

NO

I

AN

Nm

m

e-

9e

o

m-000

~0000

..... 9

mN

m

tn

r-

mN

4

mo

o0

0

00000

..... "I-

Im

ON

In

N

IN

N4

00

100000

..... 2 0 > ._

c)

m Q)

c,

0

c,

00000

000000

+r

om

*o

+

r*) n.

nl

..

..

..

k 0

k a

.C

..

..

.

OO

urru

In

-0

mm

co

4

4

P)

E" P) c,

I k

9) > 0

0

0

d

.. 0 0

N

CI

0 0 -+l

c(

Q' * 9

+ 0 IC

u 0, a

v)

.. aJ 3

Y

z

-62

-

Page 66: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

v)

F-c 0

4

a

I

V I

0

0

0

c1

0

0

0

0

2

0

0

r- 0

0 a

G

0

In 0

0

-*

a

3

w

0

0

*J

3

- 3

Page 67: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

0 0

0

0 0

co

0 0

r-

0

0

9

0

0

Y,

0 0

m

0

0

N

0

A

v)

e: 3

s

Fig

ure 34

- 64

-

Page 68: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research
Page 69: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

60

$0

I 0 I

0 2 r.4 0 u’ I o T- I i 0

r.4 0

0

3

3

..I

a

0

Q

zW

/NH

‘SS

3NL

S

.-( I

ll

1

11

I I

I I

1 1

I I

I 0

3 3

00

0 0

0

om

0

Ln

c

dt

u

0

co

p4

m

*

WN

N

m

d

-l

-l

r(

!*Y ‘SS323L

S F

igu

re 3

b

2 3

0

z -

-bb-

Page 70: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST XESULTS (continued)

Material 7: L-605

This alloy, a cobalt-base alloy, was supplied irs fully processed wrought b a r skock by NASA-Lewis Research Center. this alloy is as follows:

Nominal composition of

Carbon Manganese Silicon Phosphorous Sulfur Chromium Nic tcel Tungsten Iron Cobalt

0.05-0.15 1.00-2.00 0.040 max. 0.040 max. 0.030 max. 19.00-21.00 9.00-1 1-00 14.00- 16.00 3.00 max. Bala nc e

Tensile resu l t s a re prebenced in Table XI11 with samples of the load- s t ra in cu rves compiled as F i g u r e 37.

Poisson 's Ratio values a r e as l isted belaw:

Specimen Average V a l u e Confidence Limits Number Poisson 's Ratio 90% 95%

7-P1

7-P2

7 -P3

-0.2924 t. 0016 +. 0020

-0.2935 f.0015 ?. 0018

-0.2874 f . 0012 t. 001 5

Creep rupture data a r e presented i n Table XIV. ve r sus t ime values a r e plotted in F igure3 38, 39, and 40. Isothermal plots of the rupture life data appear as Figure 41.

C r e e p deformation

- 6 7 -

Page 71: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

,a ter ia l 7: L-605 (continued)

An analysis of the c reep rupture data using pa rame t r i c plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures .

S t r e s s to produce fai lure a t Temp. 100 hours 300 hours 1000 hours

MN/m2 ks i - A4N/m2 k s i - MN/m2 ks i - "C "F - - 593 1100 551.6 80.0 496.4 72 .0 448.2 65 .0

649 1200 399.9 58 .0 351.6 51.0 299.9 43 .5

704 1300 303.4 44.0 275.8 40 .0 244.8 35.5

-68-

Page 72: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

II

IO

I

11

1

11

1

Il

l

Il

l I

ll

1

11

I

ll

1

11

1

11

1

11

Il

l

Il

l

11

1

11

1

11

1

11

1

11

1

11

1

Il

l

11

1

11

1

Il

l

' 1

11

I

ll

I

11

I

ll

NN

S

mm

r-

v

m4

o

m3

0

aa4 m

mm

m

mm

m

mm

.

..

..

.

..

..

.

mm

m

mm

m i

o0

-0

-

Page 73: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

c

1

?e

3 'SS32TLLS

Figu

re - 70-

37

Page 74: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

-2 2 r,

..4 a c ..4 a

9) a, &

J

0) M

(d m

c,

..- 5 0 c .- M f -5

Id 0

.L

3 0

J

(d 0

c -.

*ma

IC

*@

000

000

... -9

10

0

10

0

80

0

..

N*IC

rn

*

ln

*N

d

-0000

00000

..

..

.

09-

Or

nN

ln

NO

r

nr

nd

00

0

t7

c?

oo

oo

.

..

..

.

000000 00000 omoooo

...... .

..

..

omommo

IC

WO

IC

d

cQ

IC

IC

.0

99

m

mm

**

L

0

.r.

Y

2 & -

a

Or

-

0

0

a, 3

iJ

%

.e

0 0

0

0

Y

d

0

0

- 3

C

3. d

9

d 0

r-

.. VI 1) Y

s

Page 75: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

Y

I

0

n

u I l-

0

0

0

d

0

0 6

0

0

Q)

0

0

r-

3

0 0 1

0 0

m

0 0

N

0

0

n

(%)

NO

ILV

9NO

T3 d33XJ3

Fig

ure 38

-72

-

Page 76: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

-r c(

u I r- \

I I

I

I \

ir,

u

I

r- \

I I

3

-r *J

3

Page 77: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

cr) u IC

rrl

In

-

O 0

0

Ll cr) \ \\ \\

Y

\ \

0

0

0

w

0

0 6

0 0

a0

0 0

IC

h

2 1 o

b

0

In 0

0

* 0 0

cr)

0

0

N

0

0

c(

0

- 74

- F

igu

re 40

Page 78: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

b

Page 79: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 8: 304 Stainless S tee l

This alloy, a low carbon m e m b e r of the austeni t ic s ta in less steel family, was supplied as fully processed b a r s tock by NASA-Lewis Resea rch Center.

Nominal composition of this alloy is as follows:

Carbon Manganese Silicon P ho s p ho r u s Sulfur C hroinium Nickel I ron

0.08 max. 2.00 xnax. 1.00 max. 0.045 max. 0.030 max. 18.00 - 20.00 8.00 - 10.50

Balance

Tensi le resu l t s are presented as Table XV with samples of the load-strain curves compiled PS Figure 42.

Poisson ' s Ratio values are as Listed below:

Specimen Average Value Confidence Limits Number Poisson ' s Ratio - 90% 9 5%

8-P4 -0.2609 - 8-P5 -0.2458 -

t. 0039 - t. 0046 t. 0040 - +. 0048

t. 0057 - t. 0047 - 8-P6 -0.2617

Creep rupture data a r e presented in Table XVI. time values a=e plotted in F igu res 43, 44, and 45. rupture life data appear a s F igu re 46.

Creep deformation versus I so thermal plots of the

An analysis of the c r e e p rupture data us i rg paramet r ic plots of the data in conjunction with the i so thermal plot yields the following values of the rupture s t rengths to produce 100, 300, and 1000 hour life data at the appropriate t e s t temperatures .

-76-

Page 80: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Material 8: 304 Stainless Steel (continued)

Stress to Produce Failure a t Temp. 100 hour 300 hour 1000 hour

"C "F MN/m2 k s i MN/m2 - k s i MN/m2 - k s i

593 1100 237.9 34 .5 206 .8 30 .0 179.3 2 6 . 0 - --

649 1200 162.0 2 3 . 5 134.4 19.5 106.9 15.5

760 1400 68 .9 10.0 59 .3 8 . 6 50 .3 7 . 3

- 77-

Page 81: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

b

im

b-

4

ON

-

9Q

pr

l

0

IO

O

ON

-.-I- 00-

0

IO

000 000 000

.I

. .

..

..

..

..

II

I

I

II

II

I

1

II

I

I

- 78-

Page 82: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

I I

I I

d

a,

VI U

Lrc 0

.-

Id VI Y

9

0

m

II

T 3

0

0

i

I I

I c

c

E

2 d

0

0

0

d

0

3

3

3

M

3 3 I

0

33

c

r: u

Page 83: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

A

0, u K

l U

m

m

a, C

A

.d

b VI * 0 M U

0

a &

a 0

Lc

m

.d

c)

a a

k

L)

1 u & 2 0 > U

m

fu

MW

b

InH

109-

r(

M

1-

00

...

.. ....

rn

oo

oo

NNN--

.... 4MO009

0

0

H

.-(

0

0

lu H

0 0

d

.-(

I

IJ a

r

LI

0' d 9

0 9

r-

-80-

Page 84: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

L

I

X

Page 85: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

m

d

0

(\1

d

0

r(

3

c1

N

N

N

(Ob) N

OIL

V9N013 d33X 3

0

0

0

r(

0

0

06

0 0

0

0

* 0 0

m

0 0

N

0

0

c1

0

Fig

ure 4

4

-82-

Page 86: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

\

X

Page 87: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I'

I I

'I

IT

"'

I I

I I

I I

I I

A c

I

Oi

0

0

=0

Irr

'i I 0

0

0 i

$1 0

0

e

"Q

7 I / I

1

I 1

11

11

11

1 I

I I

I I 1

I 1

1

Q

0

0

0

0

0

0

VI d

m

0

0

0000 0 0

0

0

In

06

CO

F 9

In

d

N

- "

-J uf / NVV 'S

SW

L S

I I

I I

I I

I I

I I

c

u

00

0

0

0

In

0

30 9

QI

n

d

0

e; r(

"

!SY

'SSm

3L.S

Fig

ure 46

-84

-

Page 88: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 9: 316 Stainless S tee l

This molybdenum bearing grade of austeni t ic s ta inless , which can oe hardened only by cold working, was supplied as ‘~~Lly processed wrought bar stock by NASA-Lewis Research Center.

The nominal composition of this alloy is as follows:

Carbcn Mangancs e Silicon Pho s pho r u s Su Lfur Chromium Nickel Titanium I ron

0.08 max. 2.00 max. 1.00 max. 0.045 max. 0.030 max. 17.00 - 19.00 9.00 - 12.00

5XC min. Balance

Tensile resu l t s are presented as Table XVII with samples of the to ld-s t ra in curves compiled as Figure 47.

Poisson’s Ratio values are as listed below:

Specimen Average Value Confidence Limits Numher - Poisson’s Ratio - 9 0% 95Yo

9-P4 -0.2881 k. 0028 f . 0033

9-P5 -0.2d46 2.0023 t. 0027

9-P6 -0.2928 t. 0035 t. - 0043

Creep rupture data a r e presented i l l Table XVIII. versus time valuez are plotted in Figures 48, 49, and 50. Isothermal plots of the rupture life data appear as Figure 51.

Creep deformation

- 8 5 -

Page 89: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Material 9: 316 Stainlees Stee l (continued)

An analysis of Lhe creep rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data a t the appropriate test temperatures.

Stress to Produce Failure at emp. 100 hour 300 hour I000 hour -.I

"F MN/m2 - k s i MN/m2 k s i MN/m2 - k s i - - -- 1 1100 303.4 44.0 282.7 41.0 255.1 37.0

704 1300 134.4 19.5 113.8 16.5 93.1 13.5

816 1500 64.1 9.3 51.7 7.5 40.7 5.9

- 8 6 -

Page 90: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

rn rn a2 C

Ri

- .+

NQ

V

N-

N

000

..

. -

m-

N

NN

000

..

.

11

1

Il

l

I1

1

11

1

11

1

11

1

11

1

11

1

11

1

11

1

11

1

Il

l

11

1

11

1

I1

1

11

1

Il

l

11

1

11

1

11

1

11

1

11

1

Il

l

11

1

II

II

II

I

ll

I

ll

00

0

m

t-30

4

-

4m

u

NC

.0

L

or-

m

Ln 4

u?

In

0

c

0

0

m

+

a

X

-87

-

Page 91: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

A

h

0

0

b

u’ CI

N

Y

rn

Fc I b

\

\

I I

I I

I I

I

3

in T

0

0

m

0

0

0

m

0

m

N

N

c(

7U

J/NW

‘SS3?.!.LS

0

0

- 0

0

In

0

* 0

0

m

N

!SY

‘S

S3H

l.S

0’

Fig

ure

47

-a!+-

Page 92: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

.....

00

00

0

Qm

NU

-ln

*

**

mm

.....

oo

lnln

o

rY

C5

bQ

.....

l-44

0

0

0

0

ln

0

0

CI

- m

+

rs) 0.

ln

3 0

t-

Page 93: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

N

m

5 a

9 G m

3

m

d w > z 0 w 4

u 4

w a w w d

u Y

3

z 3 3

A

9

2 8 3

Y

0

0

In

id

0

0

d

0

c

m

0

0

N

0

0

- 0

-90 -

Page 94: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

L.

Page 95: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

a w w d 'u

u N

-

3 3

tc

0 3

v

0

0

rr)

0 0

N

0

0

CI

Page 96: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

3

3

3

3

3

v

in -r

,-l

h

Page 97: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESU LTS (continued)

Mater ia l 10: Udimet 700 - Thie nickel-base alloy was developed for high tempera ture tensile strength, c r e e p res i s tance and high fatigue strength. Chemica L composition of this heat of m a t e r i a l (supplied by NASA) is ds follows:

Carbon Manganese Silicon Chromium Coba lt I ron Mo lybde num Boron Zirconium Sulfur Copper Tic ke 1

0.07% <o. 10 <o. 10 14.6 19.0 0. 19 4.85 0.027

<O. 05 0.003

CO. 10 Balance

The b a r stock supplied by NASA-Lewis Research Center required this recommended heat t rea tment pr ior to final machining.

2125"F/4 hours / a i r cool to room tempera ture 1975"F/4 hours / a i r cool to room tempera ture 1 550"F/24 hours /air cool to room tempera ture 1400°F; 16 hours /air cool to room tempera ture

Tensile resul ts a r e presented as Table XIX with samples of the load- s t r a in curves compiled as Figure 52.

Poisson's Ratio values a r e as listed below:

S pecime n Average Value Confidencc Limits Number Poisson ' s Ratio 90% 9 5%

10-P1 -0.2903 f. 0014 +. 0017 10-P2 -0.2926 t. 0 2 3 t. 0023 - iO-P3 -0.2862 f . 001 7 f . 0020

-94-

Page 98: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I I

TEST RESULTS (continued)

Mater ia l 10: Vdimet 700 (continued)

Creep rupture data are presented in Table XX. Creep deformation versus t h e values are plotted in Figures 53, 54, and 55, Isothermal plots of the rupture Life data appear as Figure 56,

L e analysi, ,f the c r e e p rupture data using parametric plots of the data in conjunction with the isothermal plot yields the following =lues of the r:?ture strengths to produce 100, 300, and 1000 hour Life data at the appropriate test temperatures.

Stress to Produce Fa i lure at Temp. 100 hour 300 hour 1000 hour -- "C "F MN/rn2 - k s i MN /m2 - ks i MN/m2 - ks i

760 1400 482.6 70.0 420.6 61 .0 358.5 52 .0

816 1500 372.3 54.0 331.0 4 8 . 0 289.6 4 2 . 0

927 1700 186.2 27 .0 151.7 22 .0 120.7 17.5

-95-

Page 99: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

da

oa

o -

**

f4m

w

MO

O 0

00

0

00

00

0 0

00

0

00

. . . . . . . . .

0

0

0

0

0

0

In

IC

2 cI

d

0

9

IC

9

4

N

IC

m

m

Il

l

Il

l

Il

l

000 003 0

00

4

-0

r

(-

(r

(

c(cIc(

Page 100: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

I I

I

I

I

CI

cr 0

0

0

* d u’ 0

9

r-

In

- F I

d

0

L-

crr 0

0

0

In

c(

u’ 9

d

00

rc -

0

0

F

crr I

0 -

0

d

T * 0 0

0

0

0

0

0

0

0

0

0

0

d 0

00 9

e

d

00 9

w

N

(u

N

w

c1

d

4

c1

!*Y ‘SS3lT

L.S

-07

-

Fig

ure 52

Page 101: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

ma*

N*

N~

l

U)

OO

O

,0

00

0

0.

0 . .

0

0

YP w

0

0

In

e-4

0

0

IC w

I

0

9

IC

9

a0 r(

pc N

QI

Page 102: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

M

d

u t 0

I

. 0

!i ni w t4

G W

\-

r- t u 0

I t

f I

i I

(Ob) N

OI.L

V9N

OT

3 d338tJ3 F

igure 53

-99

-

Page 103: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

I I

1 I

r

.

I I

1 I

I 1

U

0

Figu

re 54

0

0

* 0

0

c*)

0

0

N

0

0

r(

8

- 100-

Page 104: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

I I

I

I I

0

0 0

4

0 0

Q‘

0 0

co

0

0

r- 0

Iv)

0 0

crl

0

-10

1-

Page 105: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

Il

l I

I I

‘ I

I

a Il

l

00

0

6

v-4

I .

g

00

C

OIC

.-. UJ/AIw

‘SS3XL

S ,Z

-

I I

I I

1

Figu

re 56 -1

02

-

Page 106: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 11: TAZ-8A

This alloy was developed by NASA-Lewis Research Center for go3d elevzted temperature s trengths and excellent cor ros ion resistance. The ma te r i a l was supplied as cast remelt stock and was cast into bar specimens by Howmet Corporation-Misco Division. perfomred on the ma te r i a l in the as-cast condition.

Testing was

Chemical analysis of this heat of material (supplied by NASA-Lewis Research Center) is as follows:

Carbon Manganese Silicon Chromium M o lybd enum Tung:, ten Iron Sulfur A luminum Co lumbium Tanta lum Boron Zirconium Bismuth Lead Nickel

0.13% 0.04 0 . 1 1 6.10 3.90 4.00

<o. 10 0.015 5 .78 1.81 8.10 0.005 0 .57 c . 2 ppm

Balance < 1 PPM

Tensile resul ts are presented as Table XXI with samples of the load- s t r a in curves compiled as Figure 57.

Poisson 's Ratio values are as listed below:

Specimen Average Value Confidence Limit 9

Number Pois s on' s Ratio 9 0% 95%

+. 0080 - t. 0067 - l l -P1 -0.3092

1 1 -P2

1 1 - P 3

+. 0029 - t. 0024 -0 .3295 - t. 0101 - t. 0084 - -0.3111

-103-

Page 107: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 11: TAZ-8A (continued)

Creep rupture data are presented i n Table XXII. Creep deformation versus time values are plotted in Figures 58, 59, and 60. Isothermal plots of the rupture life data appear as Figure 61.

An analysis of the c r e e p rupture data using parametric plota of the data in conjunction with the isothermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

Stress to Produce Fa i lure at Temp. 100 hour 300 hour 1000 hour

MN/m2 k s i MN/mZ ks i MN/m2 - k s i

850 1562 417.1 60.5 348.2 50.5 282.7 41.0

92 5 1697 244.8 35.5 203.4 29.5 166.5 24.0

1000 1832 137.9 20.0 117.2 17.0 96.5 14.0

- - "F - "C -

-104-

Page 108: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

9-

b

QN

Q 9

69

Q

I6

m

0-

0 040 -0- 00-

. . . . . . . . . 0

00

000 000 d

dd

N0

50

4-1

9

...

w i pI

0

N

pc nl

r

9

6

m

m

9

00 rl

- rl

0

Page 109: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I

c N

co I

8

- __.-

I

c? N

I U U

H

-1

-

0

0 -

I I

I 0

0

- 0

0

0

0

0

0

0

0

0

0

0

3

0

0

00 9

d

hl

d

2

U

l-4

- 106- F

igure 57

Page 110: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

0

rr) 0

ln 4 00

or-

turn e

cln

lnln

o

(u

ln

a-9

N

N

e.

..

.

.....

, o

oo

oln

o

2 0 >

tn 9) l.I

rn c,

e,

ec 6

9

4

E 0,

ln N

6

0

-10

7-

Page 111: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

In

0

In

Q

In

0

m

0

0

. 0

. cc)

rn nl

N

- U

d

NO

ILV

DN

CY

I3 dO

m3

F

igure 58

- 108-

Page 112: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

0

0

0

0

d

0

0

R

Figu

re 59

-109-

Page 113: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I '-

I-' 1 1

-

-I--' 1

0

-0

0

U

0

0

'6

VI r(

0

d

d

\

0

-0

00

0

-0

rc

0

-0

9

0

-0

VI

0

-0

-P 0

-0

rn

0 0

'h

)

0

0

4

'0

I-

In

h)

U

0

($) N

01.L V9

NO

T3

d33?33

Figu

re 60

- 110-

Page 114: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I'

I I

I""I"" 1 I

1 I

I 1

1

I 9

N

In0

..v I

0

0

0

0

In

*

0

rl

u' In

N ! QI 0

i Il

l

II I I I I I

I I

I I I--I. ,I,. I

I I

0

0

wl

0

0

0

m

N

c(

0000 0 0

0

Oo

\Q

)r

CQ

In

d( r(

W/N

M 'S

S3V

.I.S

I I

I I

I 2

I I

I I

0

00

0 0

I- rr)

0

In

N

r(

0

a0 9

r(

0

0

0

r(

0 0

a0

0 0

9

0 0

In

0 0

*-

3

mu

w r3

sg

3 0

0

0

In

r(

0 0

r(

0

Q)

0

9

0

dl

Figu

re 61 ?B

y 'SS3IlLS

-11:-

Page 115: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 12: IN 100

This nickeI- ' w e alloy, developed for high temperature e trength, was supplierl by '4ASA-Lewis Research Center as c a e t remelt stock. Scbeeqlient y, it wae cae t into bar epecimens by Howmet Corporation- Misco Divic: ion. condition.

Testing wae performed on the material in the a e -cast

Chemical composition of thie heat of material (supplied by NASA-Lewis Research C nter ) is as follows:

Carbon Manganese Silicon Chromium Goba lt Molybdenum Aluminum Titanium Zirconium Boron Iron Vanadium ':.ckel

0.17 < o m 02

0.11 10.30 15.10 2.96 5.45 4.76 0.084 0.016 0.021 0.97 Balance

Teneile reautte are presented as Table XXIII with samples of the load- s t r a i n curveH compiled as Figure 62.

Poieson's Ratio va lues are a e listed below:

Spec in ien Average Value Confidence Limits Number Poie son's Ratio 90% 9 5% - -- 12-PI -0.3038 - +. 0080 - t. 0096

t. 0038 - t. 0046 12 t 2 -0.3188 - t. 0059 - t. 0049 - 12 -P3 -0.2717

- 1 12-

Page 116: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 12: IN 100 (continuea)

Creep ru r tu re data are presented in Table XXIV. Creep deformation versus t ime values are plotted in F igures 63, 64, and 65. I so thermal plots of the rupture Life data appear as Figure 66.

An analysis of the c r e e p rupture data using paramet r ic plots of the data in conjunction with the isothermal plot yeidls the following values of the rupture strengths to produce 100, 300, and 1000 hour Life data at the appropriate test temperatures.

Stress to Produce Fa i lu re at

MN;m2 k s i MN/m2 MN/m2 ks i Temp. 100 hour 300 hour 1000 hour

- - "C O F

850 1562 427.5 62.0 358.5 52.0 296.5 43.0

925 1697 262.0 38.0 206.8 30.0 158.6 23.0

1000 1832 137.9 20.0 113.8 16.5 93.1 13.5

- -

-113-

Page 117: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

d

XI

mo

b

040

Odd

*O

O

--

4

000

... 48

4-

... 000

-6-

-04

ddd

0

PI

4

N

N 9

m

r(

0

m

co

IC

rn 9

r(

m hl rn

N

m

co 9-l

0

0 0

9-l

Page 118: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

n

k

0 0

n

0 k

cu 9

In

r(

u’ ?2 0

In

In I b

!BY

‘SS3X

LS

-115-

Figu

re 62

Page 119: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

O\O

\l-I*

N

N9

m-

w

do000

00000

..... *a40

N N

- moo00

00

00

0

o.

..

.

00000

mm

NN

N

..... c

o~

tc

mm

N

9

m c(

N

m

Oo U

0

m

a0

m

N

m

0

0 0

U

- 116-

Page 120: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

.

I I

-

1'

- -

-

I -a

I I

I

VI w

.

m

N

r(

0

I- 9 (%

) N

OIL

V9N

OT

3 d33X3

-11

7-

Figu

re 63

0

0

0

r(

0

0

0

0

Q)

0

0

I-

.-.

w I

nH

O

E;

0

0

0

w

0 0

m

0 0

tu 0

0

N

0

Page 121: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

t- 9

rr, M

cv U

0

(%I N

OIL

LN

OT

3 d33X3

- 118- F

igure 64

0

0

0

rl

0

0

QI

0

0

(c

0

0

rn

0

0

N

0

0

1-4

0

Page 122: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

- 4

I

I I

I I

I f

+

9

ln

d

rr) N

U

0

NO

XL

V9N

013 d3m

3

0

0

0 0

cr5

0

0

N

0

- 119- F

igure 65

Page 123: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I zU

J / NIN ‘ S

Sm

L S I

I I

I I

I I

I

0

In

cv 9-l

0

00 9

4

w F’ 3

?B

Y ‘S

S3

2n

S

-12

0-

Figu

re 66

Page 124: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continvied)

Mater ia l 13: IN 100 t Jocoat

Some of the c a s t IT! 100 b a r s (Mi ie r i a l 12) were coated with PW ?2 A 47 Jocoat at TRW Inc. -Turbine Components Division. A t the end of the coating cycle, the b a r s were heat t reated in vacuum as foliows:

1975 "F/4 hours / rap id a r g o i quench

Tenoile reaul,, are prese3ted a8 Table XXV with samples of the load-st. iia curves compiled as Figure 67.

Creep rupture data are presented i n Table XXVI. Creep deformation versus time values are plotted in F igures 68, 69, and 70. I so thermal plots of the rupture life data appear as Fivre 71.

An analysis of the c r e e p rupture data using paramet r ic plots of the data i n conjunction with the i so thermal plot yields the following values of the rupture s t rengths to produce 103, 300, a d 1000 hour life data at the appropriate tea t temperatures .

Stress to Produce Fa i lu re at Temp. 1 002 hour 300 hour 1000 hour

" C OF MN/m - k s i MN/m2 - ks i MN/m2 & -- 850 1562 413.7 60.0 344.7 50.0 i d . 7 41.0

925 1697 244.8 35.5 199.9 29.0 158.6 23.0

1000 1832 137.9 20.0 106.5 15.5 82.7 12.0

-121-

Page 125: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

2;

5h 04.4 999

mm

m

rD

&

00

0 0

00

0

00

0

00

gj 1 w

4-

4

00

0 0

00

0

00

.

..

..

..

..

..

.

- 122-

Page 126: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

1 I

I 1

I

.n

aJ 0

0

c, + 0

0

n

I I

I 0

0

0

0

0

0

0

0

0

0

0

0

0

0

e

N

0

OD 9

e

N

U

Y

2 b I cr) r(

d 0

0 .

1, I

0

0

0

0

0

0

0

0

0

0

0

0

00 9

N

H

r(

N

0

OD 9

e

N

.-(

r(

P

U

?BY ‘S

S3X

LS

-12

3-

Figu

re 67

Page 127: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

m9

mr

-0

0

bv

)*

mo

-

00

00

0

00

00

.....

9ln

Inr-

r-

om

m-

N

-0

00

00000

.....

oo

oo

ln

N

9

ln

r(

N

m

co .-(

0

v)

co In

N

6

0

0 0

rc

- 124-

Page 128: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

I 1

t 1

1

Ps

\

Figu

re 68 - 125-

Page 129: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

0

0

0

d

0

0 6

0 c

0 0

P-

0 0

m

0

0

N

0

0

-.1

Figu

re 69

- 126-

Page 130: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

I I

I I

vi

r(

Figu

re 70 -127-

Page 131: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I'

cr 0

cv 9

Ln

U

.

I

0 P 0

I

0 l

II

II

I

II

00

co

b

II

I 0

5 0

Sl

n

d

0

0 0

r(

0

0

00

0

0

9

0

0

m

3 0

* 0 0

rn

0

0

N

0

In

.-(

0

0

r(

m

0 9

0

*

w

I I

I I

I I

I I

I I

00

0 0

0

0

VI

0

Q)

Q

+Q

ln

*

m

hl

c1

c(

?B

Y 'SSrnL

LS

Figu

re 71

- 128-

Page 132: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 14: B 1900

This nickel-base alloy, developed by Prate & Whitney Aircraf t for turbine applications was supplied by NASA-Lewis Research Center as cast remel t stock. The alloy was cast into specimen blanks by Howme t Go rporation- Mia co Divis ion.

Chemical composition (supplied by NASA-Lewis Research Center) of this heat of mater ia l is as follows:

Carbon Manganese Silicon Chromium Cobalt Molybdenum Tungs ten A luminum r i tanium Zirconium Boron Tantalum Iron N i c ke 1

0.10 0.10

eo. 10 8.11 10.15 6.11

(0.10 6.09 0.98 0.08 0.013 4.28 0.16 Balance

Prior to finiah machining the specimens were heat treated i n air per NASA-Lewis Research Center. Instructions w e r e as follows:

1550°F/24 h o u r s / a i r cool to room temperature

Tensile resul ts a r e presented as Table XXVII with samples of the load- s t r a i n curves compiled a s Figure 72.

Poisson's Ratio values are as listed below:

Specimen Average Value Confidence Limits Number Poisson's Ratio 9 0% 9 5%

to. 0028 to. 0033 14-P1 -0.2 176 - - to. 0071 to. 0085

to. 0024 to. 0029 - - 14-P2 -0.2118

14-P3 -0.3771 - -

- 129-

Page 133: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST KESULTS (continued)

Mater ia l 14: B 1900 (continued)

Creep rupture data are presented in Table XXVIII. versus time values are plotted in F igures 73, 74, and 75. Isothermal plots of the rupture life data appear as Figure 76.

C r e e p deformation

An analysis of the c r e e p rupture data using parametric plots of the data in conjunction with the isothermal plot yeilds the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

Stress to Produce F a i l u r e at Temp. 100 hour 300 hour 1000 hour

"C "F MN/m2 k s i MN/m2 - k s i MN/m2 && - -- 850 1562 413.7 60 .0 372.3 54 .0 324 .0 47 .0

925 1697 248.2 36 .0 210 .3 30 .5 172.4 2 5 . 0

1000 1832 148.2 21 .5 120.7 17.5 9 6 . 5 14 .0

- 130-

Page 134: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

L'q

bo

bo

I *

0 0010

00

0 0

1

0

.. .

I .

-0

P-

00011)

-131-

Page 135: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

0 0

0

0 .

Y

0 0

QI

r(

E9

I I

I v

0

0

0

0

0

0

0

0

0

* 0

00 .D

*

N

c(

2 v

0

00 .D

*

N

c(

2

0

0

0

0

0

0

0

0

0

od

ni

0

b)

9

* N

f-4

r(

f-4

f-4

ad

0

a0 N

r(

?B

Y ‘SS3X

3.S

Figu

re 72 -1

32

-

Page 136: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

v x 2 P 0

0

E

c)

2 B ?I Id P

0

)

;

10

x 3 4

w

Y

0

;

m

v E

td

U

0

.u

.rl

E Y

.a 10 k

5 0

2 9

UI 9

b

d a Q

) 9) k

U . Y

OI

d P

Q)

Id U

P

C

C

c,

.d

.d

: .rl u P) a

vl

P

A

Y

oommo

Ln

bN

Od

N

mm

bb

U9

a

mr

C.-

o

-0000

00000

.*

.a

.

.... s 4

2 .rl

s d 0

C d P

C 0

U

C ,

5

Y Id k 0)

c,

b .. .4

Y

E c,

E 4 0

(D C Q

) u

A

Id -

P- 6

9

U

N

Q

yr U

N

m

co C

I

0

m

co In

N

m

0

0

0

CI

-13

3-

Page 137: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

,

U

\

0

0 0

r(

0

0 6

0

0

00

0

0 e

"

ln

k

0

0

d(

0 0

r\)

0 0

r(

0

- 134- F

igure 73

Page 138: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

I I

1 1

I

00 I u d

\

\

m

e

m

N

c(

G

(Ob) N

0I.L VD

NO

T3 d

3323

Fig

ure

74

- 135-

0

0 0

- 0

0

m

0

a

a0

0

0

z Y f-c

Page 139: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

0

0

0

d

0 0

m

0

0

Qo

0

0

IC

Oi

ii

3

0

X

0

9

Y

::2 c( t.c

Yr

0 0

w

0

0

m

0 0

N

0

0

r(

0

e

9

VI

m

N

.-(

0

(I)

NOI.T.V!3NO

'T3 cf33?J3

Figu

re 75

-136-

Page 140: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

1'

I I

I'l

'~l

''rr

I

1 1

I I

I

0 i u' 0

!I VI "OO I 0

I

P

0 i I

1 I

I IIIIIIIIII I I

I I

I I

11 0

T#

0

0

0

0

0

00

00

0 0

0

0

c

0

cn O

@C

O+

Q

In

d

0

In

w

m

N Z

Uf/N

W 'SS2IX

LS M

4

I I

I I

I I

I I

I I

VI 0

m

9

M

- 0

0 0

0

0

0

w-

4

In

d

m

N

?BY 'SS3X

LS

Figu

re 76

- 137-

Page 141: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (conti d)

Mater ia l 15: B 1900 + Jocoat

A number of the machine. w e r e shipped to TRW Inc - h r b i n e Componeqts Division tc L -1% the PWA A 47 Jocoat applied. During this coating cycle, the b a r s w e r e vacuum heat t reated as follows:

nd heat t reated cast E 1900 bars (Material 14)

1 9 7 5 OF /4 hours / rapid argon quench

After coating, the specimens w e r e heat t reated ( a t Metcut) in air as follows:

1550°F/24 h o u r s / a i r cool to room temperature

Tensile resul ts are presented as Table XXIX with samples of the load-strain curves compiled as Figure 77.

Creep rupture data are presented i n Table XXX. versus time values are plotted i n F igure 78, 79, and 80. Isothermal plots of the rupture Life data appear as Figure 81.

C r e e p deformation

An analysis of the c r e e p rupture data using parametric plots of the data in conjunction with the i so thermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour Life data at the appropriate test temperatures.

Stress to Produce Fa i lure at

MN/m2 k s i MN/m2 k s i MN/m2 ksi Temp. 100 hour 300 hour 1000 hour

- - "C "F -- 850 1562 393.0 57.0 344.7 50.0 299.9 43.5

925 1697 241.3 35.0 199.9 29.0 165.5 24.0

1000 1832 137.9 20.0 113.8 16.5 93.1 13.5

-138-

Page 142: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

+9

-

Op

cQ

0

0-

-

0-

ddd d

dd

omm

em

1-

No

06

o

m(

U

... ..

.

mm

o 0

00

mmo lc

bb

Q&

O

Om

&

9Q

-P

m

mm

*

*lh

m

mm

N

IC

9

m

ln

9

4

4

0

m

In

N

co a

-139-

Page 143: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

I

0

0

0

0

0

0

0

0

0

0

3

0

0

0

0

0

0

0

90 9

d, N

dr

r(

N

U

r(

p/

NW

‘SS3XIL

S

0

0

0

0

0

0

0

0

0

0

0

0

00 9

cr tu

U

U

U

N

0

00 9

.e r\l

U

r(

E E i U

\

U

3 F

vl

Figu

re 77 -1

40

-

Page 144: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

nl

-I

-@

"

MM

I-

Nm

Q

N0

00

0

00

00

.....

OO

oO

dV

I

-m

dN

-

-0

00

0

00

00

0

..... m

a-

om

l

nI

-m

No

-

00

00

0

00

00

.....

00

00

0

mc

CN

I-

9

Qln

In

eq

..... 0

00

00

bN

6I-In

m

mN

NN

.....

I-

o' 9

d

N

m

00 d

N

9

m

c(

0

m

cb

In

N

m

0

0 0

N

- 141 -

Page 145: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

--

I

I I

1

I 1

1-

-

m u I m

--\

I I

I I

CI

cc 9

m

e

PF) N

R

0

(%I N

OIL

V9

N0

13

d33X3

- 142- F

igure 78

3 3 3

r(

3

O

m 0 0

0 0

IC

Q

0

0

m

0 0

e

0 0

m

0 0

N

0 0

d

L

h

m

d 3 0

3:

w Y

s F:

Page 146: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

0

r(

u I VI c(

+ I

VI

u c(

6

u I

r(

m

0

0 0

r(

0

0 6

0 0

a3

0 0

+

0

0

9

0 0

VI

0

0

* 0

0

M

0

0

N

0

0

c1

0

r- 9

VI d

l rr)

N

- 0

(Ob) N

OIL

Vf)N

0?3 d33M13

Fig

ure

79

-14

3-

Page 147: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

I I

I I

r(

r- 9

In

e

m

N

Figu

re 80

0

c, 0

r(

0

0 6

0

0

00

0

0

IC

0

0

d

0 0

rl

0 0

N

0

- 144-

Page 148: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

D I 0

I

I I

W/N

W 'SS3X

J.S I

I I

I IZ

I I

1 1

1 0

00

0

0

0

Ln

0

co

9

b

am

e

Frl N

U

U

!BY 'S

S3X

LS

F

igu

re 81

-14

5-

0

0 0

r(

0 0

00

0 0

9

0 0

m

0

0

-=t

h

2 3

0 0

"8

Y

03

0

w

ru

b

0

In

1-4

0 0

1-4

0

00

0 9

0

Cr

Page 149: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 16: Mar-M200

The nickel-base alloy, designed for use as a cast turbine blade mater ia l , was supplied as c a s t r eme l t stock by NASA-Lewis Research Center. T e s t specimen blanks ware cast by Howmet Corporation-Misco Division. Testing was performed on the material in the as-cast condition.

Chemical composition (supplied by NASA-Lewis Research Center) on this heat of material is as follows:

Carbon Manganese Silicon Chromium Cobalt Tunga ten A luminum Titanium Z i r c onium Boron Iron Columbium Vanadium N i c ke 1

0.15 <o. 02

0.080 9.20

10.25 12.55 5.05 2.13 0.048 0.017 0.36 0.96

co. 01 Balance

Tensi le resul ts are presented as Table XXXI with samples of the load-strain curves compiled as F igure 82.

Poisson ' s Ratio values a r e as listed below:

Specimen Average Value Number Poisson ' s Ratio

16-PI -0.2843

16-P2 -0.3107

16-P3 -0.3167

Confidence Limits - 9 0% 9 570

t. 0053 - t. 0044 - t. 0042 - - t. 0035

t. 0072 - t. 0060 -

-146-

Page 150: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l lb: Mar-M2OO (continued)

Creep rupture data are presented in Table XXXII. v e r s u s time values are plotted in F igures 83, 84, and 85. plota of the rupture life data appear as Figure 86.

Creep deformation Isothermal

An analysis of the c reep ruptare data usilig paramet r ic plots of the data i n conjunction with the ieo the imal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data a t the appropriate t e a t temperature 8 .

Stress to Produce F A l u r e at Temp. 100 hour 300 hour 1000 hour

"C "F MN/m2 - ksi MN/m2 - ks i MN/m2 ksi 871 1600 400.0 58.0 344.7 50.0 296.5 43.0

927 1700 262.0 38.0 217.2 31.5 175.8 25.5

982 1800 165.5 24.0 137.9 20.0 110.3 16.0

- -

- 147-

Page 151: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

- 148-

Page 152: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

. -1

-

0

0

0

$3 U

0

0

0

0

d

d

?mu/

NM ‘SS3U

;LS

I I

I I

I I

I I

I I 0

I 0

0

0, 9

-r fu

0

0

0

00

0

0

00 9

dN

0

.. r(

U

m

4

tu c(

?S

7 ‘SS3N.L

S

- 14

9-

Fig

ure 8

2

Page 153: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

.I

m

m

9)

&

m

U

Y

Id k

5

0

-d

9)

E 0

&

Q) z

W

Id &

0

s! M

I 2 f4 0

0

9

h

9)

Id

A

U

E .d

SI

O

Ot-N

d

bN

crd

I

0000 I

0000

.... d

~I

c)

pc

Oo

a

m(

Uo

0

00

00

0

00000

.....

00000

F cr) m

1.4

r

r)

m(

YN

(U

.....

0 0

IC

0

0

Q) d

N

oo m

- 150-

Page 154: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

i

9

Ln

bl

rr) tu

c(

0

Fig

ure 8

3

0

0

* 0 0 9

0

0

Ln

c)

0

* 0 0

rr)

0

0

N

3

0

CI

0

3 0

z -

- 151 -

Page 155: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

1 9

I I

I In

dr

m

I N

0

0 0

r(

0

0

m

0 0

00

0 0

IC

e.

0

$2

E

“3

3

Y

0 0

G 0

0

Cr

0 0

m

0 0

nl

0

0

r(

0

0

Figu

re 84

-15

2-

Page 156: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

-1

'

- 7- - -I---- -1' -

-1

0 0

d

0

0

m 0

0

N

0

0

c1

0

9

In

d

rn N

- 0

("16) N

OIL

V!3N

0?3 d33X3

Fig

ure c:G

-153-

Page 157: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

II

I~

I

I

a 1 a

-0

0

-

0

c(

-

00

00

0 0

0

06

\O

ob

g

VI e

4

0

0

0

VI (\1

4

0

0

0

0

0

0

u)

cr rn

U/N

Y\I ‘SS=.M

LS

I I

I I

I I

I I

00

0 0

0

0

VI 0

co 9

?*Y ‘S

Srn

LS

e

cc) h)

U

4

Figu

re 86

- 154-

Page 158: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Material 17: Mar-M302

This cobalt base alloy, having good oxidation and thermal shock resistance, was supplied as cast r e m e l t stock by NASA-Lewis Resea rch Center. Howmet Corporation-Misco Division. All testing was performed on the material in the as-cast condition.

It was subsequently cast into specimens by the

Chemical composition (supplied by NASA-Lewis Research Center) f o r this heat of material is as follows:

Carbon Manganese Silicon Chromium Nickel Mo lybdenum Tungs ten 2 i rconium Boron Tantalum Iron Cobalt

0.88 <o. 10

0.22 21.9

0.49 < 0.1

9.89 0.24

<o. 01 8.80 1.11 Balance

Tensi le resu l t s a re presented as Table XXXIII with samples of t h e load-strain curves compiled as Figure 87.

Poisson ' s Ratio values are as listed below:

Specimen Average Value Confidence Limits Number Poisson 's Ratio 90% 9 5%

17-P1 - 0.300 1 - t. 0020 t. 0024

17-P2

17-P3

-0.2906 t. 0044 - t. 0037 - +. 006 1 - t. 0051 - -0.2907

- 1 5 5 -

Page 159: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Creep rupture data are presented i n Table XXXIV. versus time values are plotted in F igures 88, 89, and 90. Isothermal plots of the rupture life data appear as Figure 91.

Creep deformation

An analysis of the c r e e p rupture data using parametr ic pLots of the data in conjunction with the i so thermal plot yields the following values of the rupture strengths to produce 100, 300, and 1000 hour life data at the appropriate test temperatures.

Stress to Produce Fa i lure at

MN/m2 k s i MN/m2 ksi MN/m2 ks i Temp. 100 hour 300 hour 1000 hour

- - - "C "F -- 850 1562 217.2 31.5 186.2 27.0 155.1 22.5

925 1697 144.8 21.0 120.7 17.5 98.6 14.3

1000 1832 79.3 11.5 65.5 9.5 51.7 7.5

-156-

Page 160: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

m*

m a-00

00

-0

0 *e2

N-m 4-0 0-0 00

000 000 000 000

..

. ... .

..

...

..

.

..

. .

..

0

-

- gL+J

NO

F 4

44

N

mI

'

mm

o

om

co

m

Ln

m

NN

6 M

Nr

n

0

a"l I-

ci F

I

- 157-

Page 161: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

N

0

m 3 rr:

I

crc 0

0

I-

u’ r(

N

r+ I I-

r(

I

- r4 0

N

9

m

d

u’ 0

In

00

d

v

t-c I I- d

I

CI

r4 0

I- rF

9

r(

u‘ m

N

rF

Y

I-

d

I

E E L) --. L) . 5 P v1

I 1

I I

0

0

0

0

--0

I 0

0

0

0

C

0

*)

9

d

N

-b

0

0

N

d

9

w

d W

/NR

‘SS3X.LS

z 1

1 I

I I

I I

I I

I 0

0

0

0

0

0

0

0

3

0

d 0

cn N

0

N

?B

Y ‘SS323L

S F

igu

re 8

7

- 15

8-

Page 162: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

00 Q

\9

b.

.

Uim

oa

m

d

I*. o

pc

m

0

E

- ,

PO

0

5

-m

No

9m

m

mm99 -

4-0

10

:do00 1

0

.... m

mm

N

lc

N0

0

0000

... .... o

ulln

oln

O

bl

cl

nN

m

nl

NN

N

..... o

oo

m

OO

OQ

m

Nd

UU

b.

'.

N 9

m

d

N

m

m

9-4

0

m

00

ln

N 6

0

0 0

- 159-

Page 163: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

0

00 9

d

N

0

4 (Oh)

NO

ILV

9N013 d

33?33

Figu

re 88 0

0

0

4

0 0 6

0 0

m

0

0

IC

0 0

0

0

m

0

0

N

0

0

d

0

- 160-

Page 164: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

4

cu

' E

>

N

o\

Y

m

U I

r- d

N

r(

d

d

0

co 9

d

4

0 0

0

U

0 0

o\

0

0

co

0 0

f- 02

0

0

0

rcl

0

0

N

0 0

c-(

N

0

Fig

ure

89

-16

1-

Page 165: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I 1

..

1

1 I

cn f

w7

I N

9

0

0

0

r(

0

0

CP 0 0

m

Q

Q

pc

0 0

9

Q 0

v)

0 0

* 0

0

M

0

a

N

0

0

.-(

0

.I

0

Figu

re 90 - 162-

Page 166: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I I

pc

In

(u

B

O I

I I

I I

I I

I I

I I

0

0

0

1 CI

0

30 3

#-I

l-l 0

0 0

r-

a

In

d

c.rl N

3

Y

- 163-

Page 167: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS (continued)

Mater ia l 18: Renal 80

i h i s nickel-base alloy, developed f r o m high temperature-high s t rength applications was supplied by NASA-Lewis Research Ceuter as cast remelt stock. Specimen blanks were cast by Howmet Corporation-Misco Division. Subsequently, Miscc aLsd heat treated the blanks as follows:

2200°F (vacuum)/2 hours/vacuum cool to 2000"F, gas fan cool 2000°F (vacuum)/4 hours/gas fan cool 1925°F (vacuum)/4 houre/cool to 1200°F in 1 hour - gas fan cool 1550°F (a rgon) / l6 hour s / a i r cool

Cbemical composition (supplied by NASA-Lewis Research Center) f o r this heat of material is as follos

Carbon Manganese Si licon Chromium Molybdenum Iron Titanium A luminr- rn Cobalt Tungs ten Zirconium Boron Nickel

0.17 <o. 02 CO. 05 13.80 4.11 c. 1 3 4.87 2.95 9.73 3.94 C. 043 0.01 5 Ea !anc e

Tensile results are presented as Table XXXV with samples of the load-strain curves compiled as Figure 92.

Poisson 's Ratio values are as Listed below:

Specimen Average Value Confidence Limits Number Pois s on's Ratio -- 90% 9 SYO

IS-P1 -0.3039 - t. 0038 - t. 0046

t. 0062

t. 01 15 - 18-P2 -0.3312 t. 0051

t. 0095 - 18-P3 -0.3195 -

- 164-

Page 168: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

TEST RESULTS ( con tinu ed )

Material 18: Rene' 80 (continued)

Creep rupture data are presented i n Table XXXVI. versus time values are plotted in F igures 93, 34, and 95. plots of the rupture life data appear as Figure 96.

Creep deformation Isothermal

An analysis of the c r e e p rupture data using parametr ic plots of the data in conjunction with the isothermal plot yields the folloqing values of the rupture s t rengths to produce 100, 300, and 1000 hour Life data a t the appropriate test temperatures.

Temp. "C " F

850 1562

925 1697

1000 1832

-- -

Stress to Produce Fa i lure at 100 hour 300 hour 1000 hour

MN /m2 ks i MN/m2 - ks i MN/m2 - ksi - 358.5 52.0 313.7 45.5 272.3 39.5

227.5 33.0 186.2 2?. 0 155.1 22.5

127.6 18.5 103.4 15.0 82.7 12.3

- 165-

Page 169: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

990.

mom

60s'

N 9

m

c.

3

m

a0

mo

m

mw-

r-r-r- .

..

NN

O

mom

N-

m

In

mv

..

.

m

N

0.

N

m

m

4

0 0

0

r(

Page 170: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

I-

1

-

0

0

0

0

1

N

d

d

c1

I I

n

crc 0

r- OI 9

I-l

n

crc u'

0

nl

In

9

N

In

04 I-l

Y

r- I

d

u" Fc co

0

v)

I

0

0

0

0

0

C 0

0

0

0

0

0

m

9

* N

d

zUJ/N

N 'S

S38L

.S

T'

d 0

0

L.

c

C

U

I 1

I I

I I

1 I

I

0

0

0

0

0

0

G

0

0

0

- N

0

m

9

-r N

I-l

d

m

9

d

0

N

d

L-. d

?SY 'S

SB

XL

S

Fig

ure

\I2

- 167-

Page 171: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

1-I

.s .I a 0

U d

i! O

'O

N

OQ

NR

)

9"

OO

O

@O

OO

O

..... O

b9

9

rC

Qq

,-

2,0000

0 loo00

.... !u

+

In

ln

Cn

N

94-00

-to

o0

0

.....

.. E

a - L*l

N

9

VI m

p5

CSI 9

c(

N

m

00 m

E Q,

t.c ..I 0

u, to

-16

8-

Page 172: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

* 9

Ln

d

vl N

c.

0

(Ohlo) N

OLL V

9N013 d33233

Fig

ure 93

-16

9-

0 0 0

&

0

0 e.

0

0

#

0

0

b

0 0

a

0

0

VI

0

0

‘rf

0

0

m

0

0

ru

0

0

- 0

Page 173: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

of

a

m

-9

E

0

\ In

\ N

9

In

w

rr) N

C

I 0

0 0 0

CI

0 0

m

0

0

03

0

0

F

0 0

d

0

0

rn

0

0

nl

0

Fig

ure 94

- 170-

Page 174: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

d

4

u I m

4

9

CI

u I

r(

co

\

!Oh) N

OI.L

V9N

013 d33?33

0

0

0

.-.

0

0

0'

0

0

30

0

0

r- 0 o

3

99

w L

F: 0

0

ln

0

0

-P

0

0

m

3

3

3

-17

1-

Page 175: TENSILE CREEP RUPTURE PROPERTIES OF UNCOATED (2) … · SUMMARY Tensile, creep rupture and Poisson's Ratio were generated on a group of sixteen materials supplied by NASA-Lewis Research

-

I I

"I I

0

0

0

0

0

0

In

Cr

wl

0

0

0

- 0

0

Q?

0

0

9

0

0

In

0

In

- 0

0

CI

0

30

0

.3

0

3

I I

I I

I I

I I

I I I

0

00

0

0

0

In

0

32 Y

r- a

m *

wl

fu

4

H

!e7 'SS3I3L

S F

igu

re 06

-17

2-