Top Banner
JUNE 2014
258

Technical Report: River basin and Flood Modeling and Flood ...

Dec 08, 2016

Download

Documents

dinhkhanh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Technical Report: River basin and Flood Modeling and Flood ...

1JUNE 2014

Page 2: Technical Report: River basin and Flood Modeling and Flood ...

2

THE PROJECT TEAM

Designation Name AffiliationStudy Team Leader ENRICO C. PARINGIT, Dr. Eng. UP TCAGPFlood Hazard Expert ALFREDO MAHAR FRANCISO LAGMAY, PhD UP NIGSSub-Team Leader for Land Cover CZAR JAKIRI P. SARMIENTO, MSRS UP TCAGPHydrographic Survey Consultant LOUIE P BALICANTA, MAURP UP TCAGPResearch Associates RAQUEL FRANCISCO

JULIUS NOAH SEMPIOFRA ANGELICO VIRAY

UP TCAGP

© Copyright 2014. All rights reserved.

Any part of this document may be used and reproduced, provided proper acknowledgement is made.

Published by the Climate Change Commission under the CCC-UNDP-Australian Government Project - Project Climate Twin Phoenix

For inquiries, please contact:

Climate Change Commission2U LPLP Building, JP Laurel StMalacañang Compound, Manila City Email: [email protected]

Page 3: Technical Report: River basin and Flood Modeling and Flood ...

3

Page 4: Technical Report: River basin and Flood Modeling and Flood ...

ACKNOWLEDGEMENTS

We are very grateful to the following individuals and agencies for their untiring support and for sharing theirgenerous time during the conduct of our field surveys and other activities undertaken in this study:

1. Mindanao State University – Iligan Institute of Technology (MSU – IIT), especially Engr. Dan Mostrales, for providing the datasets.

2. Xavier University, especially Prof Dexter Lo, for providing some background information on their studies made regarding the

3. The Department of Public Works and Highways Regional Office X (DPWH-10), especially Engr. Aldrin Albano, for the exchange of information.

4. City Planning and Development Office (CPDO) of Cagayan de Oro City for the coordination work during the long-term flow measurements in Cagayan de Oro and Iponan Rivers.

5. City Planning and Development Office (CPDO) of Iigan City for the coordination work during the long-term flow measurements in Mandulog and Iligan Rivers.

6. Advanced Science and Technology Institute (ASTI) for the use of their High-performance Computing Facility.

7. DREAM staff who helped in the field surveys—Jeremy Acosta Regine Faelga, Joana Patricia Decilos, Cara Punay, JMSon Calalang and the rest of the field team

8. To the technical and administrative staff of the CCC-Project Climate Twin Phoenix led by Ms Susan Rachel G. Jose, Ms Julie Amoroso, Mr. Bayani Arcenas, Ms. Marie France Balawitan and Mr Ramon Enrico Punongbayan, Mr Jim Tangonan, the PCTP Liason Officer in Cagayan de Oro City for the assistance.

i

Page 5: Technical Report: River basin and Flood Modeling and Flood ...

ii

TABLE OF CONTENTS

Chapter(1( 1

INTRODUCTION( 11.1#Background# 1

1.2#Scope#of#this#Study# 2

1.3#Expected#Outputs#and#Deliverables# 5

1.4#Professional#StafCing#and#Implementation# 6

1.5#Structure#of#this#report# 6

Chapter(2( 7

RIVER(BASIN(CHARACTERISTICS( 72.1#General#Characteristics# 7

2.2#SubJwatersheds#and#tributaries# 12

Chapter(3( 13

METHODOLOGY( 133.1#Research#for#existing#data# 13

3.2#Sites#Reconnaissance# 14

3.3#Watershed#RainfallJRunoff#Modeling# 143.3.1$Image$Classi.ication$and$Processing$ 143.3.2$Determination$of$Hydrological$Parameters$SCS=CN$Determination$ 153.3.3$Land$Cover$Change$Detection$ 153.3.4$Discharge$Modeling$using$HEC=HMS$ 163.3.5$HEC$HMS$Rainfall=Runoff$Hydrologic$Model$Components$ 16

3.4#DEM#Generation#from#LIDAR# 17

3.5#River#Measurements# 183.5.1$Cross$Section$and$Pro.ile$Measurement$ 183.5.1.2$River$Pro.ile$Survey$ 183.5.2$Data$Processing$ 213.5.3$Hydrometry$ 213.5.4$River$bathymetry$ 24

3.6#Spot#Mapping#of#Flooded#Areas# 24

3.7#Rainfall#Statistics# 25

ii

Page 6: Technical Report: River basin and Flood Modeling and Flood ...

iii

3.8#Roughness#from#Land#Cover#Map# 25

3.9#Flood#Inundation#Modeling# 263.9.1$Brief$Model$Description$ 263.9.2$Pre=Requisite$Data$Files$ 273.9.3$Programming$Code$ 273.9.4$Cases$Supplied$ 283.9.5$Model$pre=processing$ 29

Chapter(4( 33RESULTS#OF#FIELD#SURVEY#DATA#PROCESSING#AND#ANALYSIS# 33

4.1#Gathered#CrossJsection#Survey#Points# 33

4.2#Generated#DEM#of#River#Basins# 36

4.3#Gathered#River#ProCile#Survey#Points# 38

4.4#Merged#Elevation#Data#Points#from#Field#Surveys#and#Other#Sources# 40

4.5#River#Bed#Characteristics# 40

Chapter(5( 46

RESULTS(OF(RIVER(BASIN(MODELING( 465.1#Modeling#domain# 46

5.2#HEC#HMS#Model#Preparation# 485.2.1$Model$Pre=processing$ 515.2.2$Land$Cover$Change$Projections$ 52

5.3#Actual#Rainfall#Events# 62

5.4#Hypothetical#Rainfall#Events# 64

5.5#RainfallJRunoff#Simulations#using#HECJHMS# 665.5.1$Simulated$Runoff$from$Cagayan$de$Oro$River$ 675.5.2$Simulated$Runoff$from$Iponan$River$ 735.5.3$Simulated$Runoff$from$Mandulog$River$ 785.5.4$Simulated$Runoff$from$Iligan$River$ 85

Chapter(6( 91

RESULTS(OF(FLOOD(MODEL(SIMULATIONS( 916.1#Simulated#Flood#Maps#and#Analysis# 91

6.1.1$Cagayan$de$Oro$Simulated$Flooding$ 916.1.2$Iponan$Simulated$Flooding$ 1106.1.3$Mandulog$River$Simulated$Flooding$ 1296.1.3.1$Mandulog$River$Flooding:$2013$Land$Cover$Condition$ 1296.1.3.2$Mandulog$River$Flooding:$2020$Land$Cover$Condition$ 135

iii

Page 7: Technical Report: River basin and Flood Modeling and Flood ...

iv

6.1.3.3$Mandulog$River$Flooding:$2050$Land$Cover$Condition$ 1376.1.4$ligan$River:$Simulated$.looding$ 140

6.2#Combined#Flood#Hazard#Map# 1596.2.1$Cagayan$de$Oro$City$(Cagayan$and$Iponan$Rivers)$ 1596.2.2$Iligan$City(Iligan$and$Mandulog$River)$ 164

6.3#Comparison#of#Flood#Depths# 1736.5$Results$of$Flood$Inundation$Height$Validation$ 180

6.5#Simulated#Velocity#Maps# 1836.5.1$Cagayan$de$Oro$ 1836.5.2$Iponan$Simulated$Flooding$ 1966.5.3$Mandulog$Velocity$Maps$ 2096.5.4$Iligan$Velocity$Maps$ 216

Chapter(7( 229

DISCUSSIONS( 2297.1#Enhancements#introduced#in#the#Flood#Hazard#Maps# 229

7.2#Factors#Aggravating#the#Flooding#Problem# 2307.2.1$Changes$in$land$use/land$cover$conditions$ 2307.2.2$Sedimentation$and$Flooding$ 2317.2.3$Urban$Development$$Aspects$of$Flooding$ 233

Chapter(8( 235

CONCLUDING(REMARKS( 2358.1#Summary# 235

8.2#Recommendations# 235

8.3#Concluding#Remarks# 236

REFERENCES( 237

iv

Page 8: Technical Report: River basin and Flood Modeling and Flood ...

v

LIST OF TABLES

Table&1.&Sub+watersheds&of&Cagayan&de&Oro&River&Basin& 12

Table&2.&Curve&Number&Values&Adapted&For&Rainfall+Runoff&Model.& 15

Table&3.&Land&Cover&Threshold&for&Change.& 15

Table&4.&&HEC+HMS&models&selected&to&&constitute&&the&&three&&components&of&&the&rainfall+runoff&model.& 16

Table&5.&Sample&Mandulog&Bridge&Hydrometry&Dataset&dated&April&13,&2013& 22

Table&6.&Land&Cover&Roughness&Values&Utilized& 26

Table&7.&Input&data&and&parameters&used&in&the&Tlood&modeling&using&Gerris&Flow&Solver& 27

Table&8.&Code&and&Respective&Descriptions.& 28

Table&10.&Summary&of&river&characteristics&based&on&the&results&of&the&Tield&surveys.& 41

Table&11.&Land&Cover&Threshold&for&Change.& 52

Table&12.&ClassiTication&of&antecedent&moisture&conditions&(AMC)&for&the&runoff&curve&number&method& 55

Table&13.&Curve&Number&(II)values&adapted&for&the&rainfall+++runoff&model&(Source:&NRCS,&1986).& 55

Table&14.&Rainfall&Intensity&Frequency&Duration&(RIDF)&data&generated&by&PAGASA&for&Cagayan&de&Oro.& 64

Table&15.&Rainfall+++Intensity&Frequency&Duration&(RIDF)&data&generated&by&PAGASA&for&Lumbia& 65

Table&16.&Rainfall+++Intensity&Frequency&Duration&(RIDF)&data&generated&by&PAGASA&for&MSU.& 65

Table&17.&Simulated&OutTlow&Volume&and&Peak&OutTlow&Rate&at&Cagayan&De&Oro&River&for&the&5+&Year&Rainfall&Event.& 71

Table&18.&Simulated&OutTlow&Volume&and&Peak&OutTlow&Rate&at&Cagayan&De&Oro&River&for&the&25+&Year&Rainfall&Event& 71

Table&19.&Simulated&OutTlow&Volume&and&Peak&OutTlow&Rate&at&Cagayan&De&Oro&River&for&the&50+&Year&Rainfall&Event& 71

Table&20.&Simulated&OutTlow&Volume&and&Peak&OutTlow&Rate&at&Cagayan&De&Oro&River&for&the&100+&Year&Rainfall&Event& 72

Table&21.&Simulated&outTlow&volume&and&peak&outTlow&rate&at&Iponan&River&for&the&5+year&rainfall&event.& 77

Table&22.&Simulated&outTlow&volume&and&peak&outTlow&Rate&at&Iponan&River&for&the&25+year&rainfall&event.& 77

Table&23.&Simulated&OutTlow&Volume&and&peak&outTlow&rate&at&Iponan&River&for&the&50+&Year&Rainfall&Event& 77

Table&24.&Simulated&outTlow&volume&and&peak&outTlow&rate&at&Iponan&River&for&the&100+year&rainfall&event& 77

Table&25.&Simulated&OutTlow&Volume&and&Peak&OutTlow&Rate&at&Mandulog&River&for&the&5+&Year&Rainfall&Event.& 84

Table&26.&Simulated&OutTlow&Volume&and&Peak&OutTlow&Rate&at&Mandulog&River&for&the&25+&Year&Rainfall&Event& 84

Table&27.&Simulated&OutTlow&Volume&and&Peak&OutTlow&Rate&at&Mandulog&River&for&the&50+&Year&Rainfall&Event& 84

Table&28.&Simulated&OutTlow&Volume&and&Peak&OutTlow&Rate&at&Mandulog&River&for&the&100+&Year&Rainfall&Event&84

Table&29.&Simulated&OutTlow&Volume&and&Peak&OutTlow&Rate&at&Iligan&River&for&the&5+&Year&Rainfall&Event& 89

Table&30.&Simulated&OutTlow&Volume&and&Peak&OutTlow&Rate&at&Iligan&River&for&the&25+&Year&Rainfall&Event& 89

Table&31.&Simulated&OutTlow&Volume&and&Peak&OutTlow&Rate&at&Iligan&River&for&the&50+&Year&Rainfall&Event& 89

Table&32.&Simulated&OutTlow&Volume&and&Peak&OutTlow&Rate&at&Iligan&for&the&100+&Year&Rainfall&Event& 90

v

Page 9: Technical Report: River basin and Flood Modeling and Flood ...

LIST OF FIGURES

Figure  1.  Location  and  de1inition  of  the  cities  of  Cagayan  de  Oro  and  Iligan  in  Mindanao,  Philippines.   2

Figure  2.  Location  of    cross  section,  pro1iles  and  bathymetry  along  the  Cagayan  de  Oro  River  as  planned  for  the  1ield  surveys   3

Figure  3.  Location  of    cross  section,    pro1iles  and  bathymetry  along  the  Iponan  River  as  planned  for  the  1ield  surveys   4

Figure  4.  Location  of    cross  section,    pro1iles  and  bathymetry  along  the  Mandulog  River  as  planned  for  the  1ield  surveys   4

Figure  5.  Location  of    cross  section,    pro1iles  and  bathymetry  along  the  Iligan  River  as  planned  for  the  1ield  surveys   5

Figure  6.    Map  of  the  Cagayan  de  Oro  River  Basin  superimposed  on  the  city/municipal  and    barangay    boundaries.    The  numbers  indicate  sub-­‐basins.   8

Figure  7.    Map  of  the  Iponan  River  Basin  superimposed  on  the  city/municipal  and    barangay    boundaries.    The  numbers  indicate  sub-­‐basins.   9

Figure  8.    Map  of  the  Mandulog  River  Basin  superimposed  on  the  city/municipal  and    barangay    boundaries.    The  numbers  indicate  sub-­‐basins.   10

Figure  9.    Map  of  the  Iligan  River  Basin  superimposed  on  the  city/municipal  and    barangay    boundaries.    The  numbers  indicate  sub-­‐basins.   11

Figure  10.  Flowchart  of  overall  project  methodology.   13

Figure  11.  Flow  chart  of  Watershed  Rainfall-­‐Runoff  Model  development.   17

Figure  12.  HI-­‐TARGET  VF  echosounder  with  GPS  setup  in  a  rubber  boat   19

Figure  13.  Flow  Discharge  from  the  Mandulog  Bridge  Hydrometry  Dataset  Dated  April  13,  2013.   22

Figure  14.    Photographs  showing  the  the  team  setting  up  the  1low  meter  used  to  collect  water  velocity   23

Figure  15.  Flow  meter  with  1in  and  counterweight   24

Figure  16.    Spot  map  of  1looded  areas  in  Iligan  City  during  Typhoon  Sendong   25

Table  9.    Look-­‐up  table  used  to  convert  the  land-­‐cover  map  to  Manning’s  n  values   29

Figure  17.    Map  showing  the  location  of  boundary  condition  points  where  time  series  of  water  surface  elevation  and  incoming  1low  were  assigned  for  every  model  simulation  in  the  Cagayan  de  Oro  River   30

Figure  18.  Map  showing  the  location  of  the  boundary  conditions  points  where  time  series  of  water  surface  elevation  and  incoming  1low  were  assigned  for  every  model  simulation  in  the  Iponan  River.   31

Figure  19.  Map  showing  the  location  of  the  boundary  conditions  points  where  time  series  of  water  surface  elevation  and  incoming  1low  were  assigned  for  every  model  simulation  in  the  Mandulog  River.   31

Figure  20.  Map  showing  the  location  of  the  boundary  conditions  points  where  time  series  of  water  surface  elevation  and  incoming  1low  were  assigned  for  every  model  simulation  in  the  Iligan  River.   32

Figure  21.  Flow  chart  of  river  1lood  model  development.   32

Figure  22.    Map  showing  the  actual  river  pro1ile,  cross-­‐section,  and  bathymetry  data  gathered  from  the  1ield  survey  in  the  Cagayan  de  Oro  River.   33

Figure  23.  Map  showing  the  actual  river  pro1ile,  cross-­‐section,  and  bathymetry  data  gathered  from  the  1ield  survey  in  the  Iponan  River.   34

Figure  24.  Map  showing  the  actual  river  pro1ile,  cross-­‐section,  and  bathymetry  data  gathered  from  the  1ield  survey  in  the  Mandulog  River.   34

Figure  25.  Map  showing  the  actual  pro1ile,  cross-­‐section,  and  bathymetry  data  gathered  from  the   35

vi

Page 10: Technical Report: River basin and Flood Modeling and Flood ...

1ield  survey  in  the  Iligan  River.   35

Figure  26.    Map  showing  the  DEMof  the  Cagayan  de  Oro  River  Basin  and  Flood  Plains;  and  the  1lood  model  domain  boundary   36

Figure  27.    Map  showing  the  DEM  of  the  Iponan  River  Basin  and  Flood  Plains;   37

and  the  1lood  model  domain  boundary   37

Figure  28.    Map  showing  the  DEM  of  the  Mandulog  River  Basin  and  Flood  Plains;   37

and  the  1lood  model  domain  boundary   37

Figure  29.  Map  showing  the  DEMof  the  Iligan  River  Basin  and  Flood  Plains;   38

and  the  1lood  model  domain  boundary   38

Figure  30.  Bed  elevation  pro1ile  of  Cagayan  de  Oro  River.    The  coordinate  of  the    1irst  point  is  (940436.917  N,  682364.126  E)   39

Figure  31.  Bed  elevation  pro1ile  of  Iponan  River.    The  coordinate  of  the    1irst  point  is  (942107.489  N,  677567.738  E)   39

Figure  32.  Bed  elevation  pro1ile  of  Mandulog  River.    The  coordinate  of  the  1irst  point  is      (912657.717  N,  637105.214  E)   40

Figure  33.  Bed  elevation  pro1ile  Iligan  River.    The  pro1ile  data  was  collected  from  downstream  to  upstream.   40

Figure  34.  Map  showing  the  narrowest  and  widest  portions  of  the  Cagayan  de  Oro  River.   42

Figure  35.  Map  showing  the  narrowest  and  widest  portions  of  the  Iponan  River.   43

Figure  36.  Map  showing  the  narrowest  and  widest  portions  of  Mandulog  River.   44

Figure  37.  Map  showing  the  narrowest  and  widest  portions  of  the  Iligan  River.   45

Figure  38.  Map  showing  the  1lood  model  domain  (enclosed  in  red  line)  in  the  Cagayan  de  Oro  River  Basin  while  the  subbasin  divides  are  shown  in  violet  line.   46

Figure  39.  Map  showing  the  1lood  model  domain  (enclosed  in  red  line)  in  the  Iponan  River  Basin  while  the  subbasin  divides  are  shown  in  violet  line.   47

Figure  40.  Map  showing  the  1lood  model  domain  (enclosed  in  red  line)  in  the  Mandulog  River  Basin  while  the  subbasin  divides  are  shown  in  violet  line.   47

Figure  41.  Map  showing  the  1lood  model  domain  (enclosed  in  red  line)  in  the  Iligan  River  Basin  while  the  subbasin  divides  are  shown  in  violet  line.   48

Figure  42.    The  Cagayan  de  Oro  River  Basin  model  generated  thru  HEC-­‐HMS   49

Figure  43.    The  Iponan  River  Basin  model  generated  thru  HEC-­‐HMS   50

Figure  44.    The  Mandulog  River  Basin  model  generated  thru  HEC-­‐HMS   50

Figure  45.    The  Iligan  River  Basin  model  generated  thru  HEC-­‐HMS   51

Figure  46.    Land  cover  distribution  in  the  Cagayn  de  Oro  River  Basin   52

Figure  48.    Land  cover  map  of  the  Cagayan  de  Oro  River  Basin  used  for  the  estimation  of  the  CB  and  watershed  lag  parameters  of  the  rainfall-­‐runoff  model.   56

Figure  49.    Land  cover  map  of  the    Iponan  River  Basin  used  for  the  estimation  of  the  CB  and  watershed  lag  parameters  of  the  rainfall-­‐runoff  model.   56

Figure  50.    Land  cover  map  of  the  Mandulog  River  Basin  used  for  the  estimation  of  the  CB  and  watershed  lag  parameters  of  the  rainfall-­‐runoff  model.   57

Figure  51.    Land  cover  map  of  the  Iligan    River  Basin  used  for  the  estimation  of  the  CB  and  watershed  lag  parameters  of  the  rainfall-­‐runoff  model.   57

Figure  52.    Soil  map  of  the  Cagayan  de  Oro  River  Basin  Used  for  the  Estimation  of  the  CN  Parameter   58

vii

Page 11: Technical Report: River basin and Flood Modeling and Flood ...

Figure  53.    Soil  map  of  the  Iponan  River  Basin  Used  for  the  Estimation  of  the  CN  Parameter   58

Figure  54.    Soil  map  of  the  Mandulog  River  Basin  Used  for  the  Estimation  of  the  CN  Parameter   59

Figure  55.    Soil  map  of  the  Iligan  River  Basin  Used  for  the  Estimation  of  the  CN  Parameter   59

Figure  56.  Map  showing  the  weighted  CN  values  assigned  to  each  watershed  in  the  Cagayan  de  Oro  River  Basin(also  called  Sub-­‐basin  in  HEC-­‐HMS)   60

Figure  57.  Map  showing  the  weighted  CN  values  assigned  to  each  watershed  in  the  Iponan  River  Basin(also  called  Sub-­‐basin  in  HEC-­‐HMS)   60

Figure  58.  Map  showing  the  weighted  CN  values  assigned  to  each  watershed  in  the  Mandulog  River  Basin(also  called  Sub-­‐basin  in  HEC-­‐HMS)   61

Figure  59.  Map  showing  the  weighted  CN  values  assigned  to  each  watershed  in  the  Iligan  River  Basin(also  called  Sub-­‐basin  in  HEC-­‐HMS)   61

Figure  60.  Rainfall  and  hydrograph  event  recorded  at  Pelaez  Bridge.    These  rainfall  events  were  used  to  generate  runoff  hydrographs  to    calibrate  the  Cagayan  de  Oro  River  Basin  1lood  model   62

Figure  61.    Six-­‐hourly  rainfall  event  at  San  Simon  Bridge.    This  rainfall  event  was  used  to  generate    runoff  hydrographs    to  calibrate  the  Iponan  River  Basin  1lood  model   62

Figure  62.  Six-­‐hourly  rainfall  event  at  Mandulog  2  Bridge.    This  rainfall  event  was  used  to  generate  runoff  hydrographs  to  calibrate  the  Mandulog  River  Basin  1lood  model   63

Figure  63.  Six-­‐hourly  rainfall  event  recorded  at  Mandulog  Bridge.    This  rainfall  event  was  used  to  generate  runoff  hydrographs  to  calibrate  the  Iligan  River  Basin  1lood  model   63

Figure  64.    Interface  of  the  Cagayan  de  Oro  River  Basin  HEC  HMS  Rainfall-­‐Runoff  Model  developed  in  this  project   66

Figure  65.    Cagayan  de  Oro  watershed  out1low  hydrographs  for  the  5-­‐Year  Rain  return  period  in  2013  land  cover  conditions.   67

Figure  66.    Cagayan  de  Oro  Watershed  simulated  out1low  hydrographs  for  the  25-­‐Year  rain  return  period  with  2013  land  cover  conditions.   67

Figure  67.  Cagayan  de  Oro  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2013  Land  Cover.   68

Figure  68.  Cagayan  de  Oro  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2013  Land  Cover.   68

Figure  69.  Cagayan  de  Oro  Watershed  Out1low  Hydrograph  for  the  5-­‐  Year  Rainfall  Event  in  2020  land  cover  and  rainfall  pattern  from  climate  change  projection.   68

Figure  70.  Cagayan  de  Oro  Watershed  Out1low  Hydrograph  for  the  25-­‐  Year  Rainfall  Event  in  2020  land  cover  and  rainfall  pattern  from  climate  change  projection.   69

Figure  71.  Cagayan  de  Oro  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2020  Land  Cover.   69

Figure  72.  Cagayan  de  Oro  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2020  Land  Cover.   69

Figure  73.  Cagayan  de  Oro  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2050  Land  Cover.   70

Figure  74.  Cagayan  de  Oro  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  25-­‐  Year  Rainfall  Event  in  2050  Land  Cover.   70

Figure  75.  Cagayan  de  Oro  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2050  Land  Cover.   70

Figure  76.  Cagayan  de  Oro  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2050  Land  Cover.   71

viii

Page 12: Technical Report: River basin and Flood Modeling and Flood ...

Figure  77.  Iponan  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2013  Land  Cover.   73

Figure  78.  Iponan  watershed  out1low  hydrographs  for  the  25-­‐year  rainfall  event  in  2013  land  cover.   73

Figure  79.  Iponan  watershed  out1low  hydrographs  for  the  50-­‐year  rainfall  event  in  2013  land  cover.   74

Figure  80.  Iponan  watershed  out1low  hydrographs  for  the  100-­‐year  rainfall  event  in  2013  land  cover.   74

Figure  81.  Iponan  watershed  out1low  hydrographs  for  the  5-­‐year  rainfall  event  in  2020  land  cover.   74

Figure  82.  Iponan  watershed  out1low  hydrographs  for  the  25-­‐year  rainfall  event  in  2020  land  cover.   75

Figure  83.  Iponan  watershed  out1low  hydrographs  for  the  50-­‐year  rainfall  event  in  2020  land  cover.   75

Figure  84.  Iponan  watershed  out1low  hydrographs  for  the  100-­‐year  rainfall  event  in  2020  land  cover.   75

Figure  85.  Iponan  watershed  out1low  hydrographs  for  the  5-­‐year  rainfall  event  in  2050  land  cover.   76

Figure  86.  Iponan  watershed  out1low  hydrographs  for  the  25-­‐year  rainfall  event  in  2050  land  cover.   76

Figure  87.  Iponan  watershed  out1low  hydrographs  for  the  50-­‐year  rainfall  event  in  2050  land  cover.   76

Figure  88.  Iponan  watershed  out1low  hydrographs  for  the  100-­‐year  rainfall  event  in  2050  land  cover.   77

Figure  89.  Mandulog  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2013  Land  Cover.   78

Figure  90.  Mandulog  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  25-­‐  Year  Rainfall  Event  in  2013  Land  Cover.   78

Figure  91.  Mandulog  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2013  Land  Cover.   79

Figure  92.  Mandulog  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2013  Land  Cover.   79

Figure  93.  Mandulog  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2020  Land  Cover.   80

Figure  94.  Mandulog  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  25-­‐  Year  Rainfall  Event  in  2020  Land  Cover.   80

Figure  95.  Mandulog  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2020  Land  Cover.   81

Figure  96.  Mandulog  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2020  Land  Cover.   81

Figure  97.  Mandulog  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2050  Land  Cover.   82

Figure  98.  Mandulog  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  25-­‐  Year  Rainfall  Event  in  2050  Land  Cover.   82

Figure  99.  Mandulog  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2050  Land  Cover.   83

Figure  100.  Mandulog  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2050  Land  Cover.   83

Figure  101.  Iligan  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2013  Land  Cover.   85

Figure  102.  Iligan  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  25-­‐  Year  Rainfall  Event  in  2013  Land  Cover.   85

Figure  103.  Iligan  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2013  Land  Cover.   86

ix

Page 13: Technical Report: River basin and Flood Modeling and Flood ...

Figure  104.  Iligan  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2013  Land  Cover.   86

Figure  105.  Iligan  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2020  Land  Cover.   86

Figure  106.  Iligan  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  25-­‐  Year  Rainfall  Event  in  2020  Land  Cover.   87

Figure  107.  Iligan  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2020  Land  Cover.   87

Figure  108.  Iligan  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2020  Land  Cover.   87

Figure  109.  Iligan  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2050  Land  Cover.   88

Figure  110.  Iligan  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  25-­‐  Year  Rainfall  Event  in  2050  Land  Cover.   88

Figure  111.  Iligan  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2050  Land  Cover.   88

Figure  112.  Iligan  Watershed  Out1low  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2050  Land  Cover.   89

Figure  113.  Flood  Map  of  the  Cagayan  de  Oro  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2013  land  cover  overlain  over  the  hillshaded  topography.  The  roads,  streets  and  the  barangay  names  are  also  superimposed  in  the  inundation  map.   93

Figure  114.  Estimated  Extent  of  Flooding  in  Barangays  in  Cagayan  de  Oro  for  the  5-­‐Year  Rainfall  Event,  2013  Land  Cover   94

Figure  115.  Flood  Map  of  the  Cagayan  de  Oro  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2013  land  cover   95

Figure  116.  Estimated  Extent  of  Flooding  in  Barangays  in  Cagayan  de  Oro  for  the  25  Year  Rainfall  Event,  2013  Land  Cover   96

Figure  117.  Flood  Map  of  the  Cagayan  de  Oro  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2013  land  cover  condition.   97

Figure  118.  Estimated  Extent  of  Flooding  in  Barangays  in  Cagayan  de  Oro  for  the  50  Year  Rainfall  Event,  2013  Land  Cover   98

Figure  119.  Flood  Map  of  the  Cagayan  de  Oro  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2013  land  cover  condition.   99

Figure  120.  Estimated  Extent  of  Flooding  in  Barangays  in  Cagayan  de  Oro  for  the  100  Year  Rainfall  Event,  2013  Land  Cover   100

Figure  121.  Flood  inundation  map  of  the  Cagayan  de  Oro  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2020  land  cover.   101

Figure  122.  Flood  inundation  map  of  the  Cagayan  de  Oro  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2020  land  cover.   102

Figure  123.  Flood  inundation  map  of  the  Cagayan  de  Oro  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2020  land  cover.   103

Figure  124.  Flood  inundation  map  of  the  Cagayan  de  Oro  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2020  land  cover.   104

Figure  125.  Flood  inundation  map  of  the  Cagayan  de  Oro  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2050  land  cover.   106

Figure  126.  Flood  inundation  map  of  the  Cagayan  de  Oro  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2050  land  cover.   107

x

Page 14: Technical Report: River basin and Flood Modeling and Flood ...

Figure  127.  Flood  inundation  map  of  the  Cagayan  de  Oro  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2050  land  cover.   108

Figure  128.  Flood  inundation  map  of  the  Cagayan  de  Oro  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2050  land  cover.   109

Figure  129.  Flood  Map  of  the  Iponan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2013  land  cover  condition.   111

Figure  130.  Estimated  Extent  of  Flooding  of    Iponan  River  for  the  5  Year  Rainfall  Event,  2013  Land  Cover   112

Figure  131.  Flood  Map  of  the  Iponan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2013  land  cover  condition.   113

Figure  132.  Estimated  Extent  of  Flooding  of    Iponan  River  for  the  25  Year  Rainfall  Event,  2013  Land  Cover   114

Figure  133.  Flood  Map  of  the  Iponan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2013  land  cover  condition.   115

Figure  134.  Estimated  Extent  of  Flooding  of    Iponan  River  for  the  50  Year  Rainfall  Event,  2013  Land  Cover   116

Figure  135.  Flood  Map  of  the  Iponan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2013  land  cover  condition.   117

Figure  136.  Estimated  Extent  of  Flooding  of    Iponan  River  for  the  100  Year  Rainfall  Event,  2013  Land  Cover   118

Figure  137.  Flood  Map  of  the  Iponan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2020  land  cover  condition.   120

Figure  138.  Flood  Map  of  the  Iponan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2020  land  cover  condition.   121

Figure  139.  Flood  Map  of  the  Iponan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2020  land  cover  condition.   122

Figure  140.  Flood  Map  of  the  Iponan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2020  land  cover  condition.   123

Figure  141.  Flood  Map  of  the  Iponan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2050  land  cover  condition.   125

Figure  142.  Flood  Map  of  the  Iponan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2050  land  cover  condition   126

Figure  143.  Flood  Map  of  the  Iponan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2050  land  cover  condition   127

Figure  144.  Flood  Map  of  the  Iponan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2050  land  cover  condition   128

Figure  145.  Flood  Map  of  the  Mandulog  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2013  land  cover  condition   131

Figure  146.  Estimated  Extent  of  Flooding  in  Barangays  in  Mandulog  for  the  5  Year  Rainfall  Event,  2013  Land  Cover   131

Figure  147.  Flood  Map  of  the  Mandulog  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2013  land  cover  condition   132

Figure  148.  Estimated  Extent  of  Flooding  in  Barangays  in  Mandulog  for  the  25  Year  Rainfall  Event,  2013  Land  Cover   132

Figure  149.  Flood  Map  of  the  Mandulog  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2013  land  cover  condition   133

Figure  150.  Estimated  Extent  of  Flooding  in  Barangays  in  Mandulog  for  the  50  Year  Rainfall  Event,  2013  Land  Cover   133

xi

Page 15: Technical Report: River basin and Flood Modeling and Flood ...

Figure  151.  Flood  Map  of  the  Mandulog  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2013  land  cover  condition   134

Figure  152.  Estimated  Extent  of  Flooding  in  Barangays  in  Mandulog  for  the  100  Year  Rainfall  Event,  2013  Land  Cover   134

Figure  153.  Flood  Map  of  the  Mandulog  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2020  land  cover  condition   135

Figure  154.  Flood  Map  of  the  Mandulog  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2020  land  cover  condition   136

Figure  155.  Flood  Map  of  the  Mandulog  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2020  land  cover  condition   136

Figure  156.  Flood  Map  of  the  Mandulog  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2020  land  cover  condition   137

Figure  157.  Flood  Map  of  the  Mandulog  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2050  land  cover  condition   138

Figure  158.  Flood  Map  of  the  Mandulog  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2050  land  cover  condition   138

Figure  159.  Flood  Map  of  the  Mandulog  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2050  land  cover  condition   139

Figure  160.  Flood  Map  of  the  Mandulog  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2050  land  cover  condition   139

Figure  161.  Flood  Map  of  the  Iligan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2013  land  cover  condition   141

Figure  162.  Estimated  Extent  of  Flooding  in  Barangays  in  Iligan  for  the  5  Year  Rainfall  Event,  2013  Land  Cover   142

Figure  163.  Flood  Map  of  the  Iligan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2013  land  cover  condition   143

Figure  164.  Estimated  Extent  of  Flooding  in  Barangays  in  Iligan  for  the  25  Year  Rainfall  Event,  2013  Land  Cover   144

Figure  165.  Flood  Map  of  the  Iligan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2013  land  cover  condition   145

Figure  166.  Estimated  Extent  of  Flooding  in  Barangays  in  Iligan  for  the  50  Year  Rainfall  Event,  2013  Land  Cover   146

Figure  167.  Flood  Map  of  the  Iligan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2013  land  cover  condition   147

Figure  168.  Estimated  Extent  of  Flooding  in  Barangays  in  Iligan  for  the  100  Year  Rainfall  Event,  2013  Land  Cover   148

Figure  169.  Flood  Map  of  the  Iligan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2020  land  cover  condition   150

Figure  170.  Flood  Map  of  the  Iligan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2020  land  cover  condition   151

Figure  171.  Flood  Map  of  the  Iligan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2020  land  cover  condition   152

Figure  172.  Flood  Map  of  the  Iligan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2020  land  cover  condition   153

Figure  173.  Flood  Map  of  the  Iligan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2050  land  cover  condition   155

xii

Page 16: Technical Report: River basin and Flood Modeling and Flood ...

Figure  174.  Flood  Map  of  the  Iligan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2050  land  cover  condition   156

Figure  175.  Flood  Map  of  the  Iligan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2050  land  cover  condition   157

Figure  176.  Flood  Map  of  the  Iligan  1lood  plain  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2050  land  cover  condition   158

Figure  177.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2013  land  cover  condition   159

Figure  178.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2013  land  cover  condition   160

Figure  179.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2013  land  cover  condition   160

Figure  180.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2020  land  cover  condition   161

Figure  181.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2020  land  cover  condition   161

Figure  182.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2020  land  cover  condition   162

Figure  183.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2020  land  cover  condition   162

Figure  184.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2020  land  cover  condition   163

Figure  185.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2020  land  cover  condition   163

Figure  186.  Flood  Map  of  the  Iligan  and  Mandulog  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2013  land  cover  condition   164

Figure  187.  Flood  Map  of  the  Iligan  and  Mandulog  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2013  land  cover  condition   165

Figure  188  Flood  Map  of  the  Iligan  and  Mandulog  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2013  land  cover  condition   166

Figure  189.  Flood  Map  of  the  Iligan  and  Mandulog  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2020  land  cover  condition   167

Figure  190.  Flood  Map  of  the  Iligan  and  Mandulog  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2020  land  cover  condition   168

Figure  191.  Flood  Map  of  the  Iligan  and  Mandulog  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2020  land  cover  condition   169

Figure  192.  Flood  Map  of  the  Iligan  and  Mandulog  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2050  land  cover  condition   170

Figure  193.  Flood  Map  of  the  Iligan  and  Mandulog  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2050  land  cover  condition   171

Figure  194.  Flood  Map  of  the  Iligan  and  Mandulog  1lood  plains  showing  the  maximum  1lood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2050  land  cover  condition   172

Figure  195.    Distribution  of  1lood  depths  for  various  return  periods  for  Cagayan  de  Oro  River    for  present  (2013).   173

Figure  196.    Distribution  of  1lood  depths  for  various  return  periods  for  Iponan  River  for  present  (2013).   174

Figure  197.    Distribution  of  1lood  depths  from  combined  effects  of  Cagayan  de  Oro  River  and  Iponan  River  for  various  return  periods  for  Cagayan  de  Oro  City  in  present  condition  (2013).   174

xiii

Page 17: Technical Report: River basin and Flood Modeling and Flood ...

Figure  198.    Distribution  of  1lood  depths  for  various  return  periods  for  Mandulog  River  for  present  (2013).  175

Figure  199.    Distribution  of  1lood  depths  for  various  return  periods  for  Iligan  River  for  present  (2013).   175

Figure  200.    Distribution  of  1lood  depths  from  combined  effects  of  Mandulog  River  and  Iligan  River  for  various  return  periods  for  Iligan  City  in  present  condition  (2013).   176

Figure  201.    Comparison  of  of  1lood  depth  distribution  from  combined  effects  of  Cagayan  de  Oro  and  Iponan  Rivers  for  5-­‐year  rainfall  return  period  for  2013,  2020  and  2050   176

Figure  202.    Comparison  of  1lood  depth  distribution  from  the  combined  effects  of  Cagayan  de  Oro  and  Iponan  Rivers  for  25-­‐year  rainfall  return  periods  for  Cagayan  de  Oro  City  for    present  condition  (2013)  and  from  future  scenario  (2020  and  2050).   176

Figure  203.    Comparison  of  1lood  depth  distribution  from  combined  effects  of  Cagayan  de  Oro  and  Iponan  Rivers  for  100-­‐year  rainfall  return  periods  for  Cagayan  de  Oro  City  for    2013,  2020,  2050   177

Figure  204.    Comparison  of  1lood  depth  distribution  from  combined  effects  of  Mandulog  and  Iligan  Rivers  for  5-­‐year  rainfall  return  periods  for  Iligan  City  for    2013,  2020,  and  2050   178

Figure  205.    Comparison  of  1lood  depth  distribution  from  combined  effects  of  Mandulog  and  Iligan  Rivers  for  25-­‐year  rainfall  return  periods  for  Iligan  City  for    2013,  2020,  and  2050   178

Figure  206.    Comparison  of  of  1lood  depth  distribution  from  combined  effects  of  Mandulog  and  Iligan  Rivers  for  100-­‐year  rainfall  return  periods  for  Iligan  City  for    2013,  2020,  2050   179

Figure  207.    Correlation  of  1lood  heights  during  Sendong  event    for  Cagayan  de  Oro  River  (n=37).   181

Figure  208.    Correlation  of  1lood  heights  during  Sendong  event  for  Iponan  River  (n=35).   181

Figure  209.    Correlation  of  1lood  heights  during  Sendong  event  for  Mandulog  River  (n=143).   182

Figure  210.    Correlation  of  1lood  heights  during  Sendong  event  for  Iligan  River  (n=35).   182

Figure  211.  Simulated  1lood  inundation  and  velocity  map  of  Cagayan  de  Oro  River  for  a  5-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   184

Figure  212.  Simulated  1lood  inundation  and  velocity  map  of  Cagayan  de  Oro  River  for  a  25-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   185

Figure  213.  Simulated  1lood  inundation  and  velocity  map  of  Cagayan  de  Oro  River  for  a  50-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   186

Figure  214.  Simulated  1lood  inundation  and  velocity  map  of  Cagayan  de  Oro  River  for  a  100-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   187

Figure  215.  Simulated  1lood  inundation  and  velocity  map  of  Cagayan  de  Oro  River  for  a  5-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   188

Figure  216.  Simulated  1lood  inundation  and  velocity  map  of  Cagayan  de  Oro  River  for  a  25-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   189

Figure  217.  Simulated  1lood  inundation  and  velocity  map  of  Cagayan  de  Oro  River  for  a  50-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   190

Figure  218.  Simulated  1lood  inundation  and  velocity  map  of  Cagayan  de  Oro  River  for  a  100-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   191

Figure  219.  Simulated  1lood  inundation  and  velocity  map  of  Cagayan  de  Oro  River  for  a  5-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   192

Figure  220.  Simulated  1lood  inundation  and  velocity  map  of  Cagayan  de  Oro  River  for  a  25-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   193

Figure  221.  Simulated  1lood  inundation  and  velocity  map  of  Cagayan  de  Oro  River  for  a  50-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   194

Figure  222.  Simulated  1lood  inundation  and  velocity  map  of  Cagayan  de  Oro  River  for  a  100-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   195

xiv

Page 18: Technical Report: River basin and Flood Modeling and Flood ...

Figure  223.  Simulated  1lood  inundation  and  velocity  map  of  Iponan  River  for  a  5-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   197

Figure  224.  Simulated  1lood  inundation  and  velocity  map  of  Iponan  River  for  a  25-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   198

Figure  225.  Simulated  1lood  inundation  and  velocity  map  of  Iponan  River  for  a  50-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   199

Figure  226.  Simulated  1lood  inundation  and  velocity  map  of  Iponan  River  for  a  100-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   200

Figure  227.  Simulated  1lood  inundation  and  velocity  map  of  Iponan  River  for  a  5-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   201

Figure  228.  Simulated  1lood  inundation  and  velocity  map  of  Iponan  River  for  a  25-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   202

Figure  229.  Simulated  1lood  inundation  and  velocity  map  of  Iponan  River  for  a  50-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   203

Figure  230.  Simulated  1lood  inundation  and  velocity  map  of  Iponan  River  for  a  100-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   204

Figure  231.  Simulated  1lood  inundation  and  velocity  map  of  Iponan  River  for  a  5-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   205

Figure  232.  Simulated  1lood  inundation  and  velocity  map  of  Iponan  River  for  a  25-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   206

Figure  233.  Simulated  1lood  inundation  and  velocity  map  of  Iponan  River  for  a  50-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   207

Figure  234.  Simulated  1lood  inundation  and  velocity  map  of  Iponan  River  for  a  100-­‐year  rainfall  return  period  under  2050  land  cover  conditions   208

Figure  235.  Simulated  1lood  inundation  and  velocity  map  of  Mandulog  River  for  a  5-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   209

Figure  236.  Simulated  1lood  inundation  and  velocity  map  of  Mandulog  River  for  a  25-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   210

Figure  237.  Simulated  1lood  inundation  and  velocity  map  of  Mandulog  River  for  a  50-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   210

Figure  238.  Simulated  1lood  inundation  and  velocity  map  of  Iponan  River  for  a  100-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   211

Figure  239.  Simulated  1lood  inundation  and  velocity  map  of  Mandulog  River  for  a  5-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   211

Figure  240.  Simulated  1lood  inundation  and  velocity  map  of  Mandulog  River  for  a  25-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   212

Figure  241.  Simulated  1lood  inundation  and  velocity  map  of  Mandulog  River  for  a  50-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   212

Figure  242.  Simulated  1lood  inundation  and  velocity  map  of  Mandulog  River  for  a  100-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   213

Figure  243.  Simulated  1lood  inundation  and  velocity  map  of  Mandulog  River  for  a  5-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   213

Figure  244.  Simulated  1lood  inundation  and  velocity  map  of  Mandulog  River  for  a  25-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   214

Figure  245.  Simulated  1lood  inundation  and  velocity  map  of  Mandulog  River  for  a  50-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   214

xv

Page 19: Technical Report: River basin and Flood Modeling and Flood ...

Figure  246.  Simulated  1lood  inundation  and  velocity  map  of  Mandulog  River  for  a  100-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   215

Figure  247.  Simulated  1lood  inundation  and  velocity  map  of  Iligan  River  for  a  5-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   217

Figure  248.  Simulated  1lood  inundation  and  velocity  map  of  Iligan  River  for  a  25-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   218

Figure  249.  Simulated  1lood  inundation  and  velocity  map  of  Iligan  River  for  a  50-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   219

Figure  250.  Simulated  1lood  inundation  and  velocity  map  of  Iligan  River  for  a  100-­‐year  rainfall  return  period  under  2013  land  cover  conditions.   220

Figure  251.  Simulated  1lood  inundation  and  velocity  map  of  Iligan  River  for  a  5-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   221

Figure  252.  Simulated  1lood  inundation  and  velocity  map  of  Iligan  River  for  a  25-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   222

Figure  253.  Simulated  1lood  inundation  and  velocity  map  of  Iligan  River  for  a  50-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   223

Figure  254.  Simulated  1lood  inundation  and  velocity  map  of  Iligan  River  for  a  100-­‐year  rainfall  return  period  under  2020  land  cover  conditions.   224

Figure  255.  Simulated  1lood  inundation  and  velocity  map  of  Iligan  River  for  a  5-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   225

Figure  256.  Simulated  1lood  inundation  and  velocity  map  of  Iligan  River  for  a  25-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   226

Figure  257.  Simulated  1lood  inundation  and  velocity  map  of  Iligan  River  for  a  50-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   227

Figure  258.  Simulated  1lood  inundation  and  velocity  map  of  Iligan  River  for  a  100-­‐year  rainfall  return  period  under  2050  land  cover  conditions.   228

Figure  259.    Photo  of  Cagayan  de  Oro  River  merging  (foreground)  tributary  taken  from  Bubunawan  station,  Bubunawan.  Bukidnon  upstream.   231

Figure  260.    View  of  San  Simon  Bridge  along  Iponan  River.   232

Figure  261.    Paseo  de  Oro  high-­‐end  shopping  and  hotel  complex  in  front  of  Cagayan  de  Oro  River.   233

Figure  262.    Sky  view  of  Paseo  del  Rio  right  beside  Cagayan  de  Oro  River   234

xvi

Page 20: Technical Report: River basin and Flood Modeling and Flood ...

LIST OF ABBREVIATIONS

ADCP Acoustic Doppler Current ProfilerCADD Computer Aided Drafting and DesignCCC Climate Change Commission CdO Cagayan de OroCST Cross-section TeamDEM Digital Elevation ModelDOST Department of Science and TechnologyGIS Geographic Information System GNSS Global Navigation Satellite SystemGPS Global Positioning System HEC HMS Hydrologic Engineering Center Hydrologic Modeling System LiDAR Light Detection and RangingNAMRIA National Mapping and Resource Information Authority NRCS Natural Resources Conservation ServiceNIWA National Institute of Water and Atmospheric ResearchPAGASA Philippine Atmospheric, Geophysical and Astronomical Services Administration PRS92 Philippine Reference System of 1992PPCS/TM Philippine Plane Coordinate System/ Transverse MercatorRIDF Rainfall Intensity Duration FrequencySCS-CN Soil Conservation Services Curve NumberTGBM Tidal Gauge BenchmarkUNDP United Nations Development ProgrammeUP TCAGP UP Training Center for Applied Geodesy and PhotogrammetryUSDA United States Department of Agriculture

xvii

Page 21: Technical Report: River basin and Flood Modeling and Flood ...

Chapter  1INTRODUCTION

1.1  Background

The   Climate   Change   Commission   (CCC)   is   implementing   Project   Climate   Twin   Phoenix   with  support  from  the  United  Nations  Development  Program  and  the  Australian  government.      The  component   for   the   Typhoon   Sendong-­‐affected   areas   aims   to   assess   the   risks   and  vulnerabilities  of   the  cities  of  Cagayan  de  Oro  and  Iligan  to  extreme  weather  events,  including  the  potential  impacts  of  climate  change.    

For   this   purpose,   CCC   partnered   with   the   University  of   the   Philippines  Training   Center   for    Applied   Geodesy   and   Photogrammetry   (UP-­‐TCGAP)   to   undertake   riverbasin   and   flood  modeling   study  of   four  riversystems  that  transverse   the   two  cities,   namely,   Cagayan   de   Oro,  Mandulog,  Iponan  and  Iligan  (Figure  1).    The   study  covered  profile  and  cross-­‐section  surveys,  inflow  measurements,   flood  inundation  modeling   and,   watershed  and   climate   change   impact  analyses.    It    likewise   incorporates  projected  rainfall  generated  by  the  Philippine  Atmospheric,  Geophysical,  and  Astronomical  Services  Administration  (PAGASA).

The   results  will   act  as  basis   for  priority  mitigation   actions   like   risk   assessment,   community  based  and  managed   early  warning   systems  and,   integrated   contingency  planning,    and  in  the  preparation   or   updating   comprehensive   land   use   and   development   plans   to   make   them  climate  and  disaster  risk  sensitive.

This  comprehensive  study  complements  Project  on  the  Nationwide  Operational  Assessment  of  Hazards  (Project  NOAH)  of  the  Department  of  Science  and  Technology  (DOST),  a  project  which  current   hazard   maps   using   advanced   technology   in   line   with   the   disaster   response   and  mitigation  efforts  of  the  Philippine  Government.    The  flood  modeling  will  enable  the  country’s  agencies     involved   in   disaster  management   to  have   a   six-­‐hour  lead   time   to  warn   vulnerable  communities  against  impending  floods.  

However,   this   study   is   different   from   DOST’s   Project   NOAH  and   its   Disaster   Risk   Exposure  Assessment   and  Mitigation   (DREAM)   component,   because   it   includes   the   Iponan   and   Iligan  River   Basins,     which   both   affected   the   cities   of   Cagayan   de   Oro   and   Iligan   during   the   2011  Sendong  disaster.    An  updated  (2013)  land  cover  was  also  utilized  to  determine   the  impact  of  climate   change,   thus  producing  better  results.     Rainfall  return  periods  were  simulated  based  on  the  predicted  changes  to  the  latest  land  cover  data.  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 1

Page 22: Technical Report: River basin and Flood Modeling and Flood ...

Figure  1.  Location  and  deHinition  of  the  cities  of  Cagayan  de  Oro  and  Iligan  in  Mindanao,  Philippines.

1.2  Scope  of  this  Study

The  preparation  of  the  riverbasin  and  flood  modeling  study  involved    the  following  activities:1. Conduct   measurements   and   surveys   necessary   for   the   1lood   modeling,   including   but   not  

limited   to   reference   (horizontal   and   vertical   control)   surveys,   cross   section   and   pro1ile  surveys,  and  in1low  measurements;

2. Process   data   to   convert   all   surveyed   data   and   existing   datasets   necessary   for   the  development  of  the  1lood  inundation  model;

3. Develop   1lood   inundation   model   including   their  calibration   and   validation   for  each   of   the  four  rivers  based  on  the  datasets  available  from  the  surveys  and  measurements;

4. Generate  1lood  inundation  scenarios  based  on  the  1lood  inundation  model  on  climate  change  projections  to  be  provided  by  PAGASA;  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 2

Page 23: Technical Report: River basin and Flood Modeling and Flood ...

5. Analyze   the   impact   of  watershed  land  cover  and   changes   from   rainfall   characteristics  as  a  result  of  climate  change;  and

6. Convert  the  inundation  results  in  usable  forms  such  as  GIS-­‐ready  maps  and  statistics.  

Figure  2.  Location  of    cross  section,  proHiles  and  bathymetry  along  the  Cagayan  de  Oro  River  as  planned  for  the  Hield  surveys

                 *  Updated  during  the  actual  1ield  surveys

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 3

Page 24: Technical Report: River basin and Flood Modeling and Flood ...

Figure  3.  Location  of    cross  section,    proHiles  and  bathymetry  along  the  Iponan  River  as  planned  for  the  Hield  surveys

                             *  Updated  during  the  actual  1ield  surveys

Figure  4.  Location  of    cross  section,    proHiles  and  bathymetry  along  the  Mandulog  River  as  planned  for  the  Hield  surveys

     *  Updated  during  the  actual  1ield  surveys

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 4

Page 25: Technical Report: River basin and Flood Modeling and Flood ...

Figure  5.  Location  of    cross  section,    proHiles  and  bathymetry  along  the  Iligan  River  as  planned  for  the  Hield  surveys

   *  Updated  during  the  actual  1ield  surveys

1.3  Expected  Outputs  and  Deliverables

The  outputs  (including  electronic  files  in  CD  or  DVD)  of  this  study  consist  of:  

a. Tabulated  coordinates  of  the  established  horizontal  and  vertical  control  points  that  includes  WGS84  and  PRS92  geographic  coordinates,  and  PPCS/TM  grid  coordinates;  

b. Cross  section  and  pro1ile   data  and  maps  using  appropriate  coordinate  system  scale  and  digital  1ile  format  of  choice  (e.g.,  CADD  dwg,  dxf,  shp,  txt);

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 5

Page 26: Technical Report: River basin and Flood Modeling and Flood ...

c. Data   of   in1low  input  measurements   and   computations   for  the   four  river  basins   in  digital  format;

d. Flood  inundation  model  of  the  four  river  basins;e. Flood   Inundation   maps   corresponding   to   1loods  with   four   return   periods   for   the  

present   (2013),   2020   and   2050   land   cover   scenarios   in   hard   copies   and   GIS  shape1iles;

f. Watershed  and  climate  change  impact  analyses  for  the  four  catchments;  andg. Report/  documentation  of  the  study.

1.4  Professional  StafHing  and  Implementation  

The   study   team   was   composed   of   river   hydrographers,   watershed  modeler,   flood   modelers  and  engineers.  The  team  leader  was  a  licensed  geodetic  engineer  and  hydrologist  who  oversaw  and   managed   the   execution   of   all   required   surveys.   The   control,   cross   section   and   profile  surveys   and   flow   measurements   were   handled   by   subteam   leaders.   Survey   works   were  handled  by  survey  aides.  

Field   surveys   were   conducted   from   April-­‐May   and   June-­‐July,   2013,   followed   by   data  processing  and  flood  modeling.  

1.5  Structure  of  this  report  

This   report   consists   of   eight   (8)   chapters.   Chapter   1   (this   chapter)   provides   the   project’s  background,   scope   of   work,   expected  outputs  and   professional   staffing   and   implementation.  Chapter  2  presents  the   riverbasin   characteristics  while   chapter  4  presents  the  methodologies  employed.   Chapter  5  presents  the   results  of   the  field  surveys  and  data  processing.    Chapter  5  provides   the   results  of   the   river  basin  modeling.   Chapter  6   presents  the   development   of   the  flood  model  and  simulation  results.    Chapter  7  provides  the  discussion  and  chapter  8  provides  the  concluding  remarks.    

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 6

Page 27: Technical Report: River basin and Flood Modeling and Flood ...

Chapter  2RIVER  BASIN  CHARACTERISTICS

2.1  General  Characteristics

The  Cagayan  de  Oro  River  Basin  is  one  of   the  18  major  river  basins  in  the  Philippines.  It  has  an  estimated  land  area  of  138  hectares  or  1,521  sq.  km.  and  has  eight  major  rivers  and  along  with  their   respective   tributaries,   that   run   across   seven   municipalities   and   cities.   Those   from  Bukidnon   include  Talakag,  Baungon,  Libona  and  Pangantucan.    Iligan  City  in  Lanao  del  Norte,  Municipality   of   Bubong   in   Lanao   del   Sur,   ARMM   and   Cagayan   de   Oro   are   also   included.   It  covers  a  total  of  120  barangays  in  these  areas  (Figure  6).  The   basin   starts   at   its   upstream   areas   of   the   watersheds   of    Mt.   Kalatungan   and   Kitanglad    Mountain  Ranges  in  Bukidnon.   It   flows   towards   Cagayan   de   Oro  before   discharging   into   the  Macajalar   Bay   with   a   drainage   area   of   1,374.6   sq.   km.   The   downstream   end   of   the   river   is  relatively  flat  and  easily  affected  by  tidal  movements.

Other   river  basins   of   interest   are   Iponan,   Mandulog   and   Iligan.     The   Iponan   River  Basin   is  located  both  in  the  Cagayan  de  Oro  and  Iligan  cities.  Its  main   tributary,  the   Iponan  River,   runs  60   km.   from   its   head   water   in   Iligan   City  before   draining   into  Macajalar  Bay,  which   is   very  much   like   the  Cagayan  de  Oro  River    Basin   (Figure  7).    It  has  a  drainage   area  of  407  sq.   km.  Meanwhile,   the   Mandulog   River   Basin   runs   a   land   area   of   782   sq.   km.   The   basin   starts  upstream   from   the   Kalatungan   range   in  Bukidnon,   running   50   km.,   before   draining   into   the  Iligan  Bay  (Figure  8).    The  smallest  river  basin  studied  among   the  four  is  Iligan  River  (Figure  9)  which   runs  about  19   km  from   its  source,   upstream  in  Lanao  del  Sur,   towards  the   north  of  the  Iligan  Bay.  It  has  a  drainage  area  of  about  243  sq.  km.

The   four  river  basins   cover   three   provinces   in  Region   10   -­‐  Misamis  Oriental,   Bukidnon   and  Lanao  del  Norte,  and  one  province  in   the  Autonomous  Region  in  Muslim  Mindanao  (ARMM)  –  Lanao  del  Sur.      The  Cagayan  de  Oro  River  Basin  can  be  found  in  all  three   provinces  in  Region  10,  while   the  Iponan  river  basin  can  be  found  in  two  -­‐  Misamis  Oriental  and  Lanao  del  Norte.  The  Iponan  river  covers  Opol,   Cagayan  de  Oro  City,  El  Salvador  City,  Manticao  –  all  in  Misamis  Oriental,    and  Iligan  City  in  Lanao  del  Norte.  Meanwhile,   the  Mandulog  and  Iligan  River  Basins  are   both   located  within  Misamis  Oriental,   Lanao  del  Norte   and  Lanao  del   Sur.   The  Mandulog  river  covers  Iligan  City;    Tagoloan   in  Lanao  de  Norte;  Kapai,   Tagoloan  II,  Bubong   in  Lanao  del  Sur;    and  Manticao  in  Misamis  Oriental.        In  terms  of  population  (2010),  Misamis  Oriental  has  a  population   of   813,856;   Bukidnon,   1,299,192;   Lanao   del  Norte,     607,917;   and   Lanao   del   Sur,  933,000.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 7

Page 28: Technical Report: River basin and Flood Modeling and Flood ...

Figure  6.    Map  of  the  Cagayan  de  Oro  River  Basin  superimposed  on  the  city/municipal  and    barangay    boundaries.    The  numbers  indicate  sub-­‐basins.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 8

Page 29: Technical Report: River basin and Flood Modeling and Flood ...

Figure  7.    Map  of  the  Iponan  River  Basin  superimposed  on  the  city/municipal  and    barangay    boundaries.    The  numbers  indicate  sub-­‐basins.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 9

Page 30: Technical Report: River basin and Flood Modeling and Flood ...

Figure  8.    Map  of  the  Mandulog  River  Basin  superimposed  on  the  city/municipal  and    barangay    boundaries.    The  numbers  indicate  sub-­‐basins.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 10

Page 31: Technical Report: River basin and Flood Modeling and Flood ...

Figure  9.    Map  of  the  Iligan  River  Basin  superimposed  on  the  city/municipal  and    barangay    boundaries.    The  numbers  indicate  sub-­‐basins.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 11

Page 32: Technical Report: River basin and Flood Modeling and Flood ...

                                                                                                                                                                                                                                                                                                                                         2.2  Sub-­‐watersheds  and  tributaries

The  Cagayan  de  Oro  River  Basin   is   composed   of   56   sub-­‐basins,  54   reaches  and   55   junctions.  Moreover,  it  has  eight  sub-­‐watersheds,  namely  the  (1)  Bubunawan,  Cagayan  de  Oro  Rivers,  (2)  Tumalaong,   Samalawan   Rivers,   (3)  Tagiti   River,   (4)   Kalawaig,   Tutoban,   Minontay  Rivers,   (5)  Batang,   Banongcol,   Baylanan,   Sangaya,   Sagayan   Rivers,   (6)   Tikalaan,   Picalin   Rivers,   (7)  Pigcotin,  Bulaong  Rivers,  and  (8)  Munigui    River.    More  information  on  the   length  of  the  rivers  and  their  tributaries  can  be  found  in  Table  1.

The   Iponan   River   Basin   has   26   sub-­‐basins,   25   reaches   and   26   junctions.   It   includes   smaller  tributaries   such   as   the   Domalokdok   and   Talakag   creeks.   The   Mandulog   River   Basin,  meanwhile,   has   26   sub-­‐basins,   24   reaches   and   33   junctions.   It   conveys   water   through   the  Sardab   and  Saburan   creeks,   and   the   Rogongong,   Digkila-­‐an   and  Kapa-­‐I  rivers,   among   others,  before  pouring   into  the   Iligan  Bay.    The   Iligan  River  Basin  has  31  sub-­‐basins,  29  reaches  and  30  junctions.  It  carries  the  Pugaan  river,  Malindawag  creek  and  other  smaller  streams  into  the  interior  of  the  bay  as  well.

Table  1.  Sub-­‐watersheds  of  Cagayan  de  Oro  River  Basin  

Sub-­‐Watersheds LocationSub  –

Watershed  Area  (sq.  km.)

Length  of  Rivers  (km)

Length    of  Tributaries  

(km.)

Bubunawan,  Cagayan  de  Oro  Rivers

Cagayan  de  Oro,  MisOr,  Libona  &  Baungon,  Bukidnon

26,875.89 71.93      194.27

Tumalaong,  Samalawan  Rivers

Baungon,  Bukidnon 13,352.12 45.71      112.48

Tagiti  River Baungon,  Bukidnon 9,255.24 38.06      61.37

Kalawaig,  Tutoban,Minontay  Rivers

Baungon  &  Talakag,Bukidnon

19,382.66 84.78 109.30

Batang,  Banongcol,Baylanan,  Sangaya,  Sagayan  Rivers

Talakag,  PangantucanBukidnon

31,598.07 109.86 109.86

Tikalaan,  Picalin  Rivers

Talakag,  Bukidnon

7,527.20 60.57 16.98

Pigcotin,  Bulaong  Rivers

Talakag  Buk;  CDO;Bubong,LDS;  Iligan,LDN

24,438.30 69.62    92.28

Munigi  River Cagayan  de  Oro  City 5,504.29 32.13 14.27

TOTALTOTAL 137,933.77 512.68    753.84

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 12

Page 33: Technical Report: River basin and Flood Modeling and Flood ...

Chapter  3METHODOLOGY

The   methods   used   in   this   study   include   research,   field   reconnaissance,   watershed   rainfall-­‐runoff   modeling,   filed   measurements,   and   flood  modeling.   The   relationships   of   the   different  activities  undertaken   in   the   study  can  be   seen   in  Figure  10.  These  major  components  of   the  methodology  will  be  described  in  detail  in  the  following  sections.

Figure  10.  Flowchart  of  overall  project  methodology.  

Flood  modeling  including  

calibration  and  validation

Surveys  and  measurements

Flood  inundation  maps  from  CC  

rainfall  scenarios

Conversion  of  PAGASA

Climate  Change  Rainfall  Scenarios  

Vulnerability  Assessment

Flood  Early  warning  system

Compilation  of  Topographic,  Land  Use  and  other  Physical  

Data

Online  Hydromet  Sensor  Deployment  and  Installation

Data  Conversion  into  GIS

Survey  data  Processing

Watershed  runoff  modeling,  calibration/      validation

Evaluation  of  Land  Use  Impacts  and  Watershed  Management  Implications

Note:  The  boxes  colored  in  grey  are  not  part  of  the  study  but  will  be  part  of  the  overall  framework  in  support  of    the  disaster  management  activities  for  the  study  areas.

3.1  Research  for  existing  data

Gathering   of   pertinent   technical   information   and   coordination   with   concerned   agencies,  including   the   National   Mapping   and   Resource   Information   Authority   (NAMRIA),   were  conducted.   Reference   data   included   locations   and   descriptions   of   horizontal   controls   (in  WGS84   and   PRS92   coordinate   system)   and   vertical   controls   (elevation   benchmarks)   on   or  near   the   project   area   sites.   These   were   gathered  prior  to   the   execution  of   the   actual   survey  work.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 13

Page 34: Technical Report: River basin and Flood Modeling and Flood ...

Existing   soil  maps  were  obtained   from  the  Bureau  of  Soils  and  Water  Management.  Elevation  data   (SRTM)  used  for  the  watershed  modeling  were  obtained  from  the  United  State  Geological  Survey  (USGS).

3.2  Sites  Reconnaissance

Reconnaissance   was   done   at   least   one   day   before   the   actual   ground   control   survey   for  purposes  of   recovery  of   control  point  monuments  on  the   ground.  The  most  effective  locations  of  control  points  (horizontal  and  vertical)  were  identified,  as  well  as  that  of  cross  section  lines,  profile  survey  routes  and  tributaries  for  the  river  basins.  

The  reconnaissance  activity  also  provided  an  opportunity  to  explore  potential  routes  for  doing  the   ground   truth   validation   in   relation   to  the   generation   of   new  land   cover  information   that  will  be  generated.

3.3  Watershed  Rainfall-­‐Runoff  Modeling

A  watershed  study  component,  that  considers  the   impact  of   climate   change,  was  incorporated.    Watershed   runoff  models  were   constructed  by  analyzing   the   relationship  between   land  use,  land   cover,   soil   type,   soil   condition   and   watershed   management   conditions.   These  characteristics  controlled  the  generation  of  peak  flows  values  and  arrival  time,  and  total  runoff  in   the   considered   rainfall–runoff   models.   Event   flow   due   to   different   levels   of   rainfall  conditions  was  also  analyzed.  

The   model   determined   the   effect   of   various   land   use   and   cover   conditions   on   the   runoff  behavior  of  water  at  different  stages  and   the  severity  of  storm  events.    Results  can  be  used  to  develop  planning  and  policy  interventions  and  overall  flood  management  of  the  river  basins.  

The  study  utilized  actual   rainfall  data   sets  collected   from  April   to  May,   and  June   to  July  2013  and  hypothetical  rainfall  data  sets    based  on  the  24-­‐hour  Rainfall  Intensity  Duration  Frequency  (RIDF)   curves   provided   by   PAGASA.     Return   periods   (also   called   “average   recurrence  intervals”)  of   5,   25,  50  and  100  years  were   used   to  create  hypothetical   events  with    12-­‐hour  duration     and   a   maximum   intensity     on   the   50%   of   the   duration   (i.e.,   on   the   6th   hour).   In  particular,   changes   in   peak   flow   due   to   the   predicted   impact   of   projected   rainfall   were  examined  for  the  present  scenario  (2013),  2020  and  2050.  

3.3.1  Image  ClassiHication  and  Processing

Remotely-­‐sensed   imagery   was   classified   to   deduce   and   differentiate   the   land   cover   types  found  in  the  study  areas.  The  different  intensities  of  single  electromagnetic  waves,  as  reflected  by  objects  present  on  the  ground,  are  captured  and  stored  as  gray  scale  pixels  in  images.    The  degree   of  intensity  is  reflected   in  the  brightness  of   specific  features  in  the  area  of  interest.    In  digital   form,   the   pixels   are   given   corresponding   digital   numbers,   ranging   from   0   to   255  (assuming   an  8-­‐bit  quantization).     In   this  study,  LANDSAT  8   images  were   utilized.  Red,  Green  and   Blue   wavelength   band   images   were   combined   to   create   true   color   composite   images,  which  were   converted   from  raster  to  vector  using   Quantum  GIS   1.8.0,  a   free  and  open  source  software.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 14

Page 35: Technical Report: River basin and Flood Modeling and Flood ...

3.3.2  Determination  of  Hydrological  Parameters  SCS-­‐CN  Determination

The  Soil  Conservation  Services  Curve  Number  (SCS-­‐CN)  method  was  developed  by  the  Natural  Resources   Conservation   Service   (NRCS)   of   the   United   States   Department   of   Agriculture  (USDA).  The  CN  model  estimates  precipitation  excess  as  a  function  of  cumulative  precipitation,  soil   cover,   land   use,  and   antecedent  moisture.     The   actual  water  retention  of   the   land  cover,  watershed   storage,   actual   direct  runoff,   total   rainfall,   and   initial  abstraction  were   taken   into  consideration.   Table   2   shows   the   curve   number   values   used   as   reference   to   determine  watershed  storage.

Table  2.  Curve  Number  Values  Adapted  For  Rainfall-­‐Runoff  Model.Land  Cover AMC  II  Curve  Number  for  Hydrologic  Soil  GroupAMC  II  Curve  Number  for  Hydrologic  Soil  GroupAMC  II  Curve  Number  for  Hydrologic  Soil  GroupAMC  II  Curve  Number  for  Hydrologic  Soil  GroupLand  Cover

A B C DBare  Soil 77 86 91 94

Built-­‐up  Area 59 74 82 86Fallow  Land 77 86 91 94Forestland 30 55 70 79Freshwater 98 98 98 98Grassland 39 61 74 80

Plantation/Shrubland 32 58 72 79*Values  based  from  Schiariti  lecture  for  Mercer  County  Soil  Conservation  District  and  Santillan  (2008)*Values  based  from  Schiariti  lecture  for  Mercer  County  Soil  Conservation  District  and  Santillan  (2008)*Values  based  from  Schiariti  lecture  for  Mercer  County  Soil  Conservation  District  and  Santillan  (2008)*Values  based  from  Schiariti  lecture  for  Mercer  County  Soil  Conservation  District  and  Santillan  (2008)*Values  based  from  Schiariti  lecture  for  Mercer  County  Soil  Conservation  District  and  Santillan  (2008)

3.3.3  Land  Cover  Change  Detection

Land  cover  conditions  in  the  study  area  were  highly  dynamic,  and  change  over  time.  To  detect  change,  data  on   the  chronological  set  of   land  cover  in  the   area   of   interest  were  required,  such  as    official   land   cover  maps  and   satellite   images.   The   rate   of   change   in   land   cover  rate   was  determined   by   obtaining   the   percentage   change   of   specified   land   cover   in   an   area   and   its  change  over  the  years.    The  following  formula  was  used  for  this  purpose:  

                                              (3.1)      

In   the   event   that  questionable   results   are   obtained,   such   as   a   great   increase   of   forest   land  cover   that   realistically   takes   decades,   the   following   thresholds   for   change   were   used   as  reference  for  arriving  at  the    final  land  cover  change.

Table  3.  Land  Cover  Threshold  for  Change.Land  Cover  Type ThresholdThreshold

(-­‐) (+)TOTAL    Bare  Soil -­‐10.00% 10.00%Built-­‐up  Area 0.00% 10.00%Forestland -­‐25.00% 5.00%Freshwater -­‐2.00% 2.00%Grassland -­‐10.00% 10.00%Plantation 0.00% 25.00%

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 15

Page 36: Technical Report: River basin and Flood Modeling and Flood ...

3.3.4  Discharge  Modeling  using  HEC-­‐HMS

The   Hydrologic   Engineering   Center-­‐   Hydrologic   Modeling   System   (HEC-­‐HMS),   is   a   free  software   developed   by  the   United   States   Corps  of  Engineers-­‐  Hydrologic  Engineering   Center  (USACE-­‐HMS).    The   HEC-­‐HMS   is  constantly  being   updated  and  has  been  used  extensively  due  to  its  well-­‐documented  performance  and  development.

The  software  is  applicable   to  a  wide  range  of  geographic  areas  thus  making  it  possible  to  solve  a  myriad  of  hydrologically-­‐related  problems.  It  is  also  well  suited   for  urban  watersheds  when  used  to  gauge  the  impact  of  land  use  changes  and  flooding.  The  program’s  hydrographs  can  be  utilized   in  studies  on  water  availability,  urban  drainage,   flow  forecasting,   future   urbanization  impact,  flood  damage  reduction,  floodplain  regulation,  and  systems  operation.

3.3.5  HEC  HMS  Rainfall-­‐Runoff  Hydrologic  Model  Components

The  rainfall-­‐runoff  model  was  developed   to  simulate  inflows  to  the  floodplain  being  modeled.  To   properly   simulate   the   basic   hydrologic   processes   of   runoff   generation   from   rainfall,   its  transformation,   and  routing   towards   the   outlet,   the   model   is  divided  into  three   components.  These   are   the   (1)   Infiltration  Loss  Model,   (2)  Direct  Runoff   Model,   and   (3)   Channel  Routing  Model  (Table  4).  

The   Infiltration  Loss  Model  was  employed  to  calculate  the   amount  of   rainfall  that   falls  on  the  watershed   by  determining  how  much  rainfall  penetrates  the   surface  and   at  what  point  water  begins   to   run   off.     It   is   based   on   the   Soil   Conservation   Services   Curve   Number   (SCS-­‐CN)  method   (USACE,   2000).   Meanwhile,   making   use   of   the   Unit   Hydrograph,   the   Direct   Runoff  Model   describes   the   situation   prior   to   the   infiltration   of   water   into   the   watershed,   and   its  position     being   just   beneath   the   surface.   Finally,   the   Channel   Routing   Model   describes   the  runoff   flow   in   the   channels,   and   towards   the   main   outlet   of   the   rivers;   it   employs   the  Muskingum-­‐Cunge   method.   Further   details   on   the   mathematical   equations   utilized   in   the  models  can  be  found  in  the  HEC-­‐HMS  Technical  Reference  Manual.  

Table  4.    HEC-­‐HMS  models  selected  to    constitute    the    three    components  of    the  rainfall-­‐runoff  model.

Component Model  NameIn1iltration  Loss US  Soil  Conservation  Service–Curve  Number  (US  SCS-­‐CN)Direct  runoff SCS  Unit  HydrographChannel routing Muskingum-­‐Cunge Standard

The  models  presented  in  Table  4  were  selected  based  on  the  following  reasons:  

1. They  are  well-­‐established,  well-­‐documented  and  are  readily  available  for  use.2. There  is   seamless  preparation  of   parameters  and  simulations  due   to  the   fact   that  HEC-­‐HMS  can  combine  the  three  models  into  a  single  system.

3. The  GIS   software  can  be  utilized  for  the  model  preparation  thus  inputs  required   for  the  models  can  be  provided  within  the  time  period  allotted  for  the  project.  Inputs  include  the  speci1ication  of  the  1low  domain,  boundary  and  initial  conditions  and  parameter  values.

4. The   models   are   simple,   which   can   be   used   despite   minimal   information   about   the  watersheds.  In  addition,  parameters  can  automatically  be  estimated  or  optimized,  when  the  hydrologic  data  become  available.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 16

Page 37: Technical Report: River basin and Flood Modeling and Flood ...

The  Watershed  Rainfall-­‐Runoff  Model  was  used  to  determine  the  effect  of  various  land  use  and  cover  conditions  on  runoff  behavior  for  the  5-­‐,  25-­‐,  50-­‐  and  100-­‐year  rainfall  return  periods.  In  producing  the  outputs,   the   latest  land  cover  data  (2013)  based  on  the  satellite  data  analysis  of  the   Cagayan   de   Oro,   Iponan,   Mandulog   and   Iligan   watersheds   was   utilized.   The   predicted  impact   of   projected   changes   in   rainfall   to   peak   flows   were   examined   for   the   years   2013  (present),   2020,   2030  and  2050.  The   results  for  2030  were  utilized  only  for   establishing   the  trend  for  the   land  cover  changes  but  will  not  be  employed  in  the   flood  model  simulations.  The  HEC-­‐HMS   modeling   system   version   3.5   was   used   for   this   study.     The   flow   chart   of   the  watershed  rainfall-­‐runoff  model  development  is  shown  in  Figure  11.

Figure  11.  Flow  chart  of  Watershed  Rainfall-­‐Runoff  Model  development.

3.4  DEM  Generation  from  LIDAR

Continuous   fine   scale   elevation   dataset   is   necessary   to   route   the   course   of   a   river.   Digital  Elevation  Models  (DEM)  were  generated  using  aerial  LiDAR  surveys  through  the  Disaster  Risk  and   Exposure   Assessment   for   Mitigation   (DREAM)   project.   From   26-­‐27   April     2013,   two  missions   were   launched   using   the   Airborne   LiDAR   Terrain   Mapper   (ALTM™   Optech   Inc.)  Pegasus   System.   Data   gathered   were   transferred   to   the   data   server   and   were   processed.  Orientation  parameters  were  corrected  while  coordinates  for  each  individual  point  cloud  were  computed  and  any  misalignment  was  rectified  using    the  LiDAR  Mapping  Suite  (LMS™)  (Optech  Inc).     Possible   remaining  misalignments  between   contiguous  strips  were   checked,  as  well  as  the   target   density   of   the   sites.     Point   clouds   were   classified   into   Ground,   Low   Vegetation,  Medium   Vegetation,   High   Vegetation   and   Buildings.   These   points   were   then   rasterized   to  produce   DEMs  such  as  Digital  Terrain  Models  (DTM)   and  Digital  Surface  Models  (DSM)   on   a  format  readable   by   a   Geographic   Information   Systems  (GIS)   software   package.   Minor  errors  were  corrected  manually  to  produce  DEMs  suitable  for  fine-­‐scale  flood  modelling.  

Ground  truth  points

Land  cover  data  from  NAMRIA  and  MSU-­‐

Marawi

Post-­‐1ield  satellite  image  land  cover  classi1ication

Area  calculation  of  each  land  cover  type  per  subwatershed

Runoff  and  discharge  output.

Soil  type  data SCS-­‐CN  determination

CN  values  plug-­‐in  to  HEC-­‐HMS

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 17

Page 38: Technical Report: River basin and Flood Modeling and Flood ...

3.5  River  Measurements  

This   section   describes   the   methods   used   in   obtaining   direct   measurements   from   the   river  needed   for  the   flood  modeling.   Some  key  data   about  the   geometry  and   the   flow  of   the   rivers  were  obtained  through  field  survey.  

3.5.1  Cross  Section  and  ProHile  Measurement

To  tie   the   cross  section   and  profile  measurements  in   a   uniform  datum,  control   surveys  were  first  conducted  with  the  use  of  global  positioning  systems  (GPS).

3.5.1.1  Horizontal  and  Vertical  Control  Survey

3.5.1.1.1  Establishment  of  Horizontal  Control

Along   the  river,  horizontal  control  points  were  established  with  the  use  of  GPS  receivers  with  accuracy  standard  of   the   third   order,   that  is,   a   relative   error  of  1   in   10,000.    Control  points  were   obtained   with   the   use   GPS   static   surveys   and   were   connected   to   NAMRIA   reference  stations  with  the  same  or  higher  order  of  accuracy.  

Coordinates   of   the   control   points   conformed  with   the   Philippine   Reference   System   of   1992  (PRS92)  and  were  expressed   in  PRS92  and  WGS84  and  Philippine  Plane  Coordinate  System/  Transverse  Mercator  (PPCS/TM)  grid  coordinate  systems.

3.5.1.1.2  Establishment  of  Vertical  Control

Vertical   control   points   or   elevation   benchmarks   were   established   with   the   use   calibrated  digital  levels  and  used  Third  Order  Vertical  Control  (Type  2)  standards:

                                                                          (3.2)    

where   D   is   the   distance   from   the   benchmark   to   the   stations   in   kilometers.   TGPS   receivers    were  used  when  a  known  control  point  was  far  from  the  survey  site.  These  control  points  were  then   referred   to   the  mean   sea   level   (MSL)   referenced  from   the   nearest  NAMRIA   benchmark.  Established   horizontal  control  points  were   also  used  as   vertical   control   points   if   topography  permits  this.  E  stablished  vertical  control  points  were  subjected  to  certification  by  NAMRIA.

3.5.1.2  River  ProHile  Survey

A  combination   of   GPS-­‐depth  meter  with   vertical  resolution  of   10   cm   or   finer  and   horizontal  resolution  of   100  m  or  finer,  were  utilized   in  the  river  profile  surveys.    Ground   control  points  were  used  for  post-­‐survey  correction  of  survey  tracks.

errorerror ≤12mm × D

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 18

Page 39: Technical Report: River basin and Flood Modeling and Flood ...

3.5.1.2.1  Equipment  Setup

The    river    profile    surveys    were    done    simultaneously    with     the    cross  section    surveys.    A  separate     team,     the    Profile     Survey     Team     (PST)    was  deployed     to     conduct    the    profile  measurements.  

A  HI-­‐TARGET  VF  echosounder  with  Global    Positioning    System    (GPS)  mapping  capability  was  utilized   in   the  profile   survey    of     the    main    tributary     of     the    Cagayan   de   Oro,   Iponan  and  Mandulog   River   Basins   (Figure   12).   For   the   Iligan   River   Basin,   the   OHMEX   SonarMite  echosounder  with  Global  Positioning  System  (GPS)  mapping  capability  was  utilized.  Both  had  a  combination  of  GPS  and  depth  meter  with  third  order  vertical  and  horizontal  accuracies.  The  survey  equipment  was  installed  in  a  rubber  boat  or  motorized  banca.    

The  combined  echo  sounder-­‐GPS   setups  recorded  the   location  (longitude,   latitude)  and  depth  at  half-­‐meter  horizontal  distance  (0.5  m)  intervals  with  vertical  (depth)  resolution  of  10  cm.    A  time   stamp   (time   of   recording)  was  also  noted.    The  measured   depth  was  between   the  water  surface  and  the    bottom  (river  bed)  surface.    

Figure  12.  HI-­‐TARGET  VF  echosounder  with  GPS  setup  in  a  rubber  boat

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 19

Page 40: Technical Report: River basin and Flood Modeling and Flood ...

Two  approaches  were   employed   to  convert     the    measured    depth     to    river    bed    elevation    above/below    the    MSL.    The   first  approach  required  the  use  of   a  time  series  of   predicted  tide  levels.  The  depths    measured    by    the    echo    sounder    at    a    location    (x,  y)    in    the    river    during    the    time  (t)    was  corrected  for  tidal  effects  and  converted  to  river  bed  elevation  using  a   linear  relationship:  

                                 (3.3)

where  RBE(x,   y,   t)   is  the   elevation  of   the   river  bed  at  position   (x,   y)   at   time   t.     Tide(t)   is  the  predicted    tide  depth  (reckoned    from    Mean    Lower    Low    Water,    MLLW).    Depth(x,  y,  t)   is  the  depth  recorded  by  the  echo  sounder  at  time  t,  and  k   is  the  height  of   the  Mean  Sea  Level  (MSL)  above  the  MLLW  datum.    The  value  of  k  for  Cagayan  de  Oro  City  (at  the  pier)  was  derived  with  the   use   of   a   Tidal   Gauge   Benchmark   (TGBM)   value.   For   Iligan   City,   meanwhile,   a   leveling  survey  was  executed.   These   approaches  were   used   to   convert  depths   to  RBE(x,   y,   t)   for  the  downstream   portions   of   the   river   basins   connected   to   the   sea,   where   the   effect   of   tide   is  significant.  Meanwhile,   the     second     approach     consisted     of     simultaneously    measuring     the    water    surface    elevation  while  the  profile  survey  progressed.  The  kinematic  GPS   technique  using  the  Topcon  GPS,  for  the  Cagayan  de  Oro,   Iponan  and  Mandulog  River  Basins,  and  Trimble  GPS,   for  the  Iligan  River  Basin,  was  employed.  The  processed  data  recorded  by  the  Topcon  and  Trimble  GPS   (separate   from   the   records   by   the   echo   sounder-­‐GPS   setup)   produced   datasets   that  contained   a   time   stamp   and   its  corresponding  water  surface   elevation.     The     echo     sounder    records     were   then   compared     to     the   Topcon   and   Trimble   GPS   datasets   to   convert   the  measured    depths    to    river    bed    surface    elevation    using    the  formula  at  time  t:

                 where    RBE(x,  y,  t)    is    the    elevation    of    the    river    bed    at    location    (x,  y)    at    time    t.    WSE(x,  y,  t)   is  the   recorded    water     surface    elevation     (above    or    below    MSL)    by    the    Topcon®   or  Trimble®  GPS    at    time  t,    and  Depth(t)  is  the  depth  recorded  by  the  echo  sounder  at  time  t.  The  approach  was  used   in   the   upstream  portions  of   the   river  basins  where   the   effects  of   tide   are  insignificant.    

3.5.1.2.2  ProIile  Survey  Routes  and  Implementation  

In  all   surveys,   a   handheld   GPS   was  used  for  navigation.   For  the   Cagayan   de   Oro,   Iponan  and  Mandulog  River  Basins,   the  profile   survey  started  upstream  and  then  proceeded  downstream  towards  the   sea.  Meanwhile,   the   profile   survey  for  the   Iligan  river  basin  started  downstream  and  then  proceeded  upstream  until  the  last  point  of  interest  was  reached.  

The    profile     survey     produced   a   number  of   elevation  profile   points  which  were   utilized   to  derive    a    detailed    bottom    profile    of    the    rivers.    The   survey  routes  followed   a  zigzag   line;  midpoints  of   each  succeeding   line  were,   at  most  ,100  meters  apart.  The   profile    points    were    used    to    derive    additional    cross  sections    of    the    river  which  were  later  utilized  for  the  flood  modeling.   Additional   bank   points  were   also   gathered   to   trace   the   outline   of   the   river.   This  supplemented  the  crosssections  that  were  surveyed  by  the  Cross  Section  Team.    

RBE x, y,t( ) = Tide t( )− Depth x, y,t( )− k

RBE x, y,t( ) =WSE t( )− Depth x, y,t( ) (3.4)

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 20

Page 41: Technical Report: River basin and Flood Modeling and Flood ...

3.5.1.3  Cross  Section  Survey

A    Cross  Section  Team  (CST),  composed  of  UPTCAGP  Geodetic  Engineers  and  locally  hired  field  survey  assistants,  was  formed  to  specifically  perform  the  cross  section  surveys  of  the  rivers.    

Cross  section  surveys  were  done  using  calibrated  instruments  equipped  with  vertical  distance  measurement  with  at    least  one  cm  reading  at  100  m  intervals  across  the  flood  plain  and  10  m  intervals  along   the   rivers   to   include   low  water  channel,  bank   top   and  river  top  on  both   sides.  Measurement  points  were   referred   from   the   established  horizontal   control   points  (in  PRS92  and  WGS84)  and  vertical  control  points  (in  MSL).  The  sectional  view  of  main  rivers  and  flood  plains  were  derived  from  this.    

The   CST   utilized   the   differential   kinematic   GPS   survey   technique   in   measuring   the   cross  sections.   Post-­‐processing   was   done   using   the   Topcon   Tools   ver.   7.5   software   and   Trimble  Business  Center  ver.  2.4.

3.5.2  Data  Processing

Data   processing   from   ground   control   survey  to   cross   section   and   profile   survey  were   done  using   appropriate   techniques   and   software.   The   GNSS   observations   were   downloaded  immediately  after  a   day’s  survey  work  to  check  for  consistency  and   accuracy.   Leveling  works  were   downloaded   and   processed   using   a   spreadsheet   program.   Plotting   and   processing   of  topographic  data  were  done  using  a  computer  aided  drafting  and  design  (CADD)  software.

Processing   included  the   derivation  of  the   stage-­‐discharge   curves  or  the   rating   curve   for  each  river  basin  based  on  the  discharge  measurements.  The  rating  curve  was  needed  to  convert  the  river  stage  to  corresponding  flow  discharge.

In    general,   the   output    of     the    cross  section    and    profile     surveys    are     spreadsheet     files  containing   the   WGS84   geographic   coordinates   (Longitude,   Latitude)   and   elevation   above/below  MSL    of    all    the    cross-­‐section    and  profile  points  that  were  measured.  These   files  were  then  imported  in  ArcView  GIS  3.2  software  (ESRI)  and  saved  as  vector  files  in  shapefile  format.

In   addition,   lateral   inflow   measurement   datasets   were   also   processed.     The   water   cross  sectional  area  A,  was  produced  from  the  cross  section  data  at  the   inflow  stations.  The   area  of  each   cross   section   segment  was  derived   using   the   trapezoidal  method.    From   the   computed  values  of   the  cross  section  segment  areas,    A,    were   then  derived.    The  velocities    measured    at    each     segment    of     the     cross   section    were    then     used     to   calculate   (using   area-­‐weighted  averaging)    inflow,  Q.  These  Q  values  represent  base   flow  conditions  of  the   stream  tributaries  of  the  river  in  the  flood  modeling.

3.5.3  Hydrometry

Measurement  of  lateral  inflows  from  the  downstream  tributaries  of  the  rivers  were   conducted  by  measuring   the   height   (nearest   cm),   width   (nearest   cm),   and   water   velocity   (meters   per  second)   just   before   the   river-­‐stream   junction.   Measurement   points   were   referred   from   the  established  horizontal  control  points  (in  PRS92)  and  vertical  control  points  (in    MSL).

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 21

Page 42: Technical Report: River basin and Flood Modeling and Flood ...

Hydrometry   was   employed   to   collect   accurate   data   for   proper   flood   risk   assessment.   It   is  concerned  with   the   measurement  of   flow  discharges  in   the   river  basins.    Data  was   collected  over  a    period  of  two  months  in  2013:  April  to  May  and    June  to  July,  using  several  water  level  sensors   and   rain   gauges.   Rain   gauges   were   used   to   measure   precipitation   over   a   certain  period,  while   depth  gauges  and  water  level  sensors  were   used   to  measure   changes   in  water  depth.  Acoustic  Doppler  Current  Profilers  (ADCP),  Velocity  Meters  and  Flow  Meters  were  used  to  measure  current  velocities.  

Table  5.  Sample  Mandulog  Bridge  Hydrometry  Dataset  dated  April  13,  2013Time Start  

ReadingEnd  

ReadingData Counts/sec Water  

Velocity  (ms)Water  

Level  (m)Discharge

m3s

9:00-­‐9:10  AM 0 11655 11655 27.75 78 1.89 60.3653148

9:10-­‐9:20  AM 11655 23339 11684 27.81904762 78 1.89 60.3653148

9:20-­‐9:30  AM 23339 34922 11583 27.57857143 77 1.92 60.99237455

9:30-­‐9:40  AM 34922 45381 10459 24.90238095 72 1.92 57.03183075

9:40-­‐9:50  AM 45381 55825 10444 24.86666667 72 1.93 57.46849799

9:50-­‐10:00AM 55825 64952 9127 21.73095238 62 1.95 50.23880017

3:00-­‐3:10  PM 0 10406 10406 24.77619048 72 1.8 51.79182392

3:10-­‐3:20  PM 10406 21559 11153 26.5547619 77 1.78 54.45449566

3:20-­‐3:30  PM 21559 32402 10843 25.81666667 73 1.79 52.06842275

3:30-­‐3:40  PM 32402 43253 10851 25.83571429 73 1.78 51.62569069

3:40-­‐3:50  PM 43253 55257 12004 28.58095238 78 1.78 55.16169691

3:50-­‐4:00  PM 55257 66165 10908 25.97142857 72 1.77 50.48182222

The  sample  dataset  was  visualized  into  its  respective  graph,  which  can  be  seen  in  Figure  13.

Figure  13.  Flow  Discharge  from  the  Mandulog  Bridge  Hydrometry  Dataset  Dated  April  13,  2013.

Discharge  m3s  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 22

Page 43: Technical Report: River basin and Flood Modeling and Flood ...

All  ADCP  data  was  collated  and  processed  with  the  use   of  Microsoft  Excel.  The  water  velocity,  water  level  and  discharge  values  were  determined  from  the  set  data.    A  sample  data  table  from  the  Mandulog  Bridge  is  found  in  Table  5.  

Water  level  data  was  collected  with  the  use   of  the   flow  meter  placed  in  selected  bridges  along  the  river.    Measurements  were  taken  twice  daily,  six  hours  apart  and  for  every  set,  a  10-­‐minute  interval  was  allotted  for  an  hour.    When  the  rain  gauge-­‐measured  rainfall  of   two  mm  in  April-­‐May  and   5   mm   for   June-­‐July   and   consequently   triggered   two   consecutive   alerts,   a   six-­‐hour  reading  with  a   7-­‐minute  interval  was  done  instead.    Figure  14    show  photographs  of  the   flow  meter  set-­‐up.

Figure  14.    Photographs  showing  the  the  team  setting  up  the  Hlow  meter  used  to  collect  water  velocity

(a)  tying  up  the  1low  meter  to  the  rope  and  counterweight;  (b)  lowering  the  1low  meter;  (c)  and  (d)  retrieving  the  1low  meter

(a) (b)

(c) (d)

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 23

Page 44: Technical Report: River basin and Flood Modeling and Flood ...

The   flow   meter   system   initially   involved   only   an   assembly   of   a   flow   meter,   pulley   and  counterweight.     For   more   accurate   results,   a   fin   was   later   attached   to   the   flow  meter   to  prevent   it   from   veering   away   from   the   direction   of   the   flow.   On   the   other   hand,   a  counterweight  was  used   to  maintain  the   depth  of   the   flow  meter  and   to  keep  it  from  drifting  during  very  high  flow  conditions  (Figure  15).

Figure  15.  Flow  meter  with  Hin  and  counterweight

3.5.4  River  bathymetry

Bathymetry  data   points  were   collected  with   the   use   of   the   HI-­‐TARGET  VF   echosounder-­‐GPS  setup,  OHMEX   SonarMite   echosounder-­‐GPS   setup,   and  using   kinematic  DGPS   approach.    The  latter  was  utilized  in  the  shallow  portions  of  the  rivers.

3.6  Spot  Mapping  of  Flooded  Areas

Field   data   on   previous   flooding   events,   particularly   typhoon   Pablo   (December   2012)   and  typhoon  Sendong   (December  2011),  were  gathered  to  validate  the   flood  model.  Maps  of   actual  flood  extents  were  obtained  from  the  City  Planning  and  Development  Office    (CPDO).    Features  located   within   the   flood   zones   and   a   few   outside   it   were   targeted   for   surveys.     Survey  questionnaires  were  used    to  gather  data   on   the   extent  of  flood  in  the   area  during   Typhoons  Sendong   and   Pablo.   Local   residents   were   asked   the   peak   flood   height   and   their   time   of  occurrence   as  well.     Flood  marks   in   the  homes  were   documented  with   the  use   of  measuring  tape  while   the  exact  location  of  the   establishments/features  were   taken   thru  a  handheld  GPS.    Figure  16  shows  the  spot  map  for  Iligan.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 24

Page 45: Technical Report: River basin and Flood Modeling and Flood ...

Figure  16.    Spot  map  of  Hlooded  areas  in  Iligan  City  during  Typhoon  Sendong

Source:  Iligan  City  Planning  and  Development  Office  

3.7  Rainfall  Statistics

PAGASA  provided   Rainfall   Intensity  Duration  Frequency   (RIDF)  data,  which  is   the   amount  of  rainfall  over  return   periods  of   5,   25,  50  and   100  years.  Original  values  in    millimeters   (mm)  were  converted   to  millimeters  per  hour  (mm/hr)  for  data  processing   and  modeling   purposes.  Data  of  shorter  durations  with  peak  levels  of  rainfall  intensity  were  requested  from  PAGASA  so  as  to  see   the  result  of   intense  rainfall  during  a  short  period  of   time.  It  was  also  done   to  assess  the  possibility  of   flooding  from  intense  rainfall  alone,  especially  in  areas  which  do  not  directly  surround  the  river  basins.

3.8  Roughness  from  Land  Cover  Map  

A  land  cover  map  was  used   to  derive   the   roughness  value   of  different  areas  of   interest   in  the  cities  of   Cagayan  de  Oro  and  Iligan.  The  map  contains  information  on  the  biophysical  cover  of  the   land,   all   of  which  affect   flooding.  Manning’s  coefficients  n,   or   flow  resistance  coefficients,  were  utilized  as  the  roughness  values  is  dependent  on  land  cover.  A  look-­‐up  table  based  on  the  HEC-­‐RAS   Hydraulic   Reference   Manual   (Brunner,   2010b)   was   used.   The   values   used   are   in  Table  6,  with  unclassified  ground   features  and  other  biophysical   cover  being  assigned  with  a  value   of   0.01.   The   roughness   values   were   assigned   to   each   type   of   land   cover   for   data  processing   purposes,   enabling   the   duplication   of   the   nature   of   water’s   flow   on   different  surfaces.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 25

Page 46: Technical Report: River basin and Flood Modeling and Flood ...

Table  6.  Land  Cover  Roughness  Values  UtilizedLandcover  type Roughness  Value

Unclassi1ied 0.01Clouds 0.01Shadows 0.01Plantation  (shrubland) 0.40Forest 0.80Seawater 0.01Fallowland 0.05Bare  Soil 0.06Grassland 0.25Fresh  Water 0.01Thin  Clouds 0.01Built-­‐up  Area 0.01*Adapted  from  HEC-­‐HMS  Manual  based  on  Barnes  (1967)  in  Brunner  (2010)*Adapted  from  HEC-­‐HMS  Manual  based  on  Barnes  (1967)  in  Brunner  (2010)

3.9  Flood  Inundation  Modeling

3.9.1  Brief  Model  Description

The   flood  models   for   the   four   river   basins  were   developed  with   the   use   of   the   Gerris   Flow  Solver,   a   free   and   continually   updated   programming   language   by   S.   Poppinet   (2009).   Its  development   is   supported   by   the   National   Institute   of   Water   and   Atmospheric   Research  (NIWA)  and  Institut  Jean   le  Rond  d'Alembertthe.  The  0.8.0  version  was  utilized  for  this  study.  Gerris   Flow   Solver   is   a   programming   language   that   was   designed   as   a   solution   of   partial  differential   equations  which   describe   fluid   flow.   It   has   a   number   of   features  which   include:  solving   time-­‐dependent   incompressible   variable-­‐density   Euler,   Stokes   or   Navier-­‐Stokes  equations,   solving   linear  and  non-­‐linear  shallow-­‐water  equations,   adaptive  mesh   refinement,  automatic   mesh   generation   in   complex   geometries,   unlimited   number   of   advected/diffused  passive   tracers,   dynamic   load-­‐balancing,   parallel   offline   visualization,   volume   of   fluid  advection   scheme   for   interfacial   flows,   accurate   surface   tension   models   and   multiphase  electrohydrodynamics.

The   open   source   code   is  usable   for  2D   and  3D   simulations.   An   advantage   of   using   this   is   its  ability  to  fully  utilize  the   quadtree   representation,  which  dynamically  adapts  to  evolving   flow  features.    Modeling  was  used   to  determine   the  maximum   flood   extent  and   inundation   levels  caused  by  rainfall  events.  These  events  were   based  on  both  actual  and  modeled  rainfall  data,  the   latter   being   based   on   the   24-­‐hour   RIDF   curves   provided   by   PAGASA.   Other   datasets  utilized   to   develop   the   model   were   from   the   cross-­‐section   and   profile   surveys,   and   inflow  measurements.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 26

Page 47: Technical Report: River basin and Flood Modeling and Flood ...

3.9.2  Pre-­‐Requisite  Data  Files

The  Gerris  Flow  Solver  (GFS)  system  utilizes  (i)  Digital  Elevation  Model  (DEM),  along  with  the  river  channel  position  specified  within  it,   (ii)  surface   friction  parameter,  Manning’s  roughness  coefficient  n,   to  duplicate  natural  flow  over  various  land  surfaces,   and  (iii)   hydrometric  data,  such  as  discharge   and  rainfall  data,   to  simulate   real  and  predicted  scenario.  Pre-­‐requisite   files  were  utilized  to  define  the  flood  model  of  the  river  basins  as  shown  in  Table  7.    

Digital  Elevation  Model  files  (dem.ascii)    consisted  of    2D   raster  array  of  ground  elevations  of  the   river   basins   and  areas  around   them.   Roughness   files   contained   information   on   spatially  variable   floodplain   friction   or   roughness  (based  on   the   Manning’s   roughness).   The   flow   files  contained   information   on   the   discharge   and   other   data   on   the   flow   of   the   river,   given   the  evolution  of  time.  The  rain  files  defined  the  amount  of  rainfall  over  a  period  of  time  in  the  river  basins.

Table  7.  Input  data  and  parameters  used  in  the  Hlood  modeling  using  Gerris  Flow  Solver

Item  name Description Value  in  the  Project

DEM Digital  Elevation  Model  file.    Not  readily  read  and  must  be  converted  to  Gerris  terrain  database  format  through  the  xyz2kdt  command    and  the  awk  scripting  language  (asc2xyz.awk)

dem.ascii

Roughness Name  of  file  containing  a  grid  of  floodplain  n  values  in  ARC  ascii  raster  format  to  allow  spatially  variable  floodplain  friction.        This  should  have  the  same  dimensions  and  resolution  as  the  DEM  file.  Like  the  DEM  file,  this  is  converted  as  well.

n.ascii.  

Flow File  defining  data  on  the  evolution  in  time  of  the  river  1low  at  a  certain  boundary.  This  is  a  Cartesian  Grid  Data  where  data  is  de1ined  in  a  Cartesian  grid  and  can  be  used  with  1  to  4  space/time  dimensions.  For  the  project  only  1  temporal  dimension.  

flow.cgd

Rain File  de1ining  data  on  the  evolution  in  time  of  rainfall.  This  is  also  a  Cartesian  Grid  Data  type.

rain.cgd

3.9.3  Programming  Code

Simulation   files   and   classes   of   objects   were   incorporated   in   the   programming   code   of   the  Gerris  Flow  Solver  (GFS).    In  general,  the   same  code  was  utilized  for  all  simulations,  with  only  a  few  minor  changes,  such  as  the  name  of  files  and  the  return  period  employed.  In  Table  8  are  the   simulation   files   and   classes   of   objects   utilized   and   the   respective   description   of   the  simulation  files.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 27

Page 48: Technical Report: River basin and Flood Modeling and Flood ...

Table  8.  Code  and  Respective  Descriptions.Code DeHinition

De1ine  DRY  1e-­‐3 “De1ine”  is  used  to  delineate  text  macros  in  parameter  1iles

DRY  value  for  the  water  level  parameter  is  employed  rather  than  zero  to  distinguish  "wet"  from  "dry"  cells.  A  text  macro  is  de1ined  and    used    where  the  depth  of  dry  cells  is  needed.

De1ine  MAXLEVEL  10 MAXLEVEL  10  re1ines  the  initial  mesh  and  creates  a  regular  Cartesian  grid  with  210=1024  cells  in  each  dimension.  A  higher  level  of  re1inement  produces  better  resolution.  This  increases  computation  time  but  produces  a  better  visual  output.

GfsRiver Utilized  to  solve  the  shallow  water  implementation  Saint-­‐Venant  equations.  

GfsBox The  simulation  domain  is  a  single  "GfsBox",  which  by  default  is  a  square  centered  on  (0,0)  and  of  size  unity  i.e.  the  coordinates  of  the  simulation  domain  are  within  [-­‐0.5:0.5]  x  [-­‐0.5:0.5]

GfsGEdge Links  the  boxes  created  by  the  GfsBox  

GModule De1ines  objects  used  to  perform  cartographic  projections  within  Gerris.

OutputSimulation Writes  a  description  of  the  current  state  of  the  simulation  that  contains  both  standard  simulation  parameters,  layout  of  the  cell  hierarchy  and  associated  variable  values.  It  serves  as  checkpoint  for  Gerris  (for  unexpected  shutdown  of  the  machine).  Outputs  here  are  used  to  determine  the  maximum  velocity  and  water  level  at  each  pixel.

GfsEventScript Executes  a  shell-­‐script  at  given  intervals  to  save  memory  space.  In  this  study,  it  creates  a  zip  1ile  for  all  ouputs.  

OutputPPM Writes  a  color  image  of  the  given  scalar  1ield  in  Portable  PixMap  (PPM)  format.  It  then  turns  it  into  an  mpeg  1ile  (animation  of  the  event;  1  for  water  level  and  1  for  velocity).

OutputGRD   Writes  a  raster  (or  gridded)  dataset  using  the  ESRI  grid  ASCII  format.  

Timeorder By  default,  GfsRiver  uses  a  second-­‐order  time  integration  scheme.  In  this  study,  the  timestep  required  for  stability,  with  respect  to  maximum  resolution  used,  is  around  0.2  seconds.  

Boundary De1ines  boundary  conditions  on  boundaries  of  a  GfsBox.

BcDirichlet Imposes  a  Dirichlet  boundary  condition,  i.e.,  the  value  of  the  variable  on  the  boundary  (entry  of  discharge).

BcSubcritical   Imposes  tidal  boundary  condition

BoundaryOut1low   Allows  "free"  out1low  (and  in1low)  on  a  given  boundary.

3.9.4  Cases  Supplied

The  developed  flood  model  was  used  further  to  generate  flood  inundation  maps  corresponding  to  four  rainfall  return  periods  (5-­‐,  25-­‐,  50-­‐  and  100-­‐year)  extracted   from  the  RIDF.  The  actual  flooding   extent   of   Typhoon   Pablo   was   also   generated.   The   impact   of   climate   change   was  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 28

Page 49: Technical Report: River basin and Flood Modeling and Flood ...

considered,   with   projected   rainfall   applied   on   predicted   land   cover   changes  and   respective  rainfall  runoff  for  years  2013,  2020  and  2050.

3.9.5  Model  pre-­‐processing

3.9.5.1  Creation  of  Geometric  Data

Geometric  representations  of   the   Cagayan   de   Oro,   Iponan,   Mandulog   and   Iligan   river   basins  were   produced   from   data   gathered   in   the   field   surveys   and   aerial   LiDAR   surveys.   These  include   cross   sections,   river   banks   and   centerline,   and   the   flood   plain   boundaries.   All   the  model   pre-­‐processing   were     done   in  ArcView  GIS   3.3   and   saved   as   vector   files   in   shapefile  format.  

3.9.5.2  Model  Parameterization

Land   cover   map   information   and   river   bed   cross   section   data   were   utilized   to   assign   flow  resistance   coefficients   (Manning’s  roughness  coefficients,   n)   to   river  cross   section   segments  (or  the  portion  between  cross  section  points).  The  transformation  to  Manning’s,  n,     land-­‐cover  classes  were  from  a  look-­‐up  table  based  on  the  HEC-­‐RAS  Hydraulic  Reference  Manual.

Table  9.    Look-­‐up  table  used  to  convert  the  land-­‐cover  map  to  Manning’s  n  values

Landcover  type Roughness  ValueUnclassi1ied 0.01Clouds 0.01Shadows 0.01Plantation  (shrubland) 0.40Forest 0.80Seawater 0.01Fallowland 0.05Bare  Soil 0.06Grassland 0.25Fresh  Water 0.01Thin  Clouds 0.01Built-­‐up  Area 0.01*Adapted  from  HEC-­‐HMS  Manual  based  on  Barnes  (1967)  in  Brunner  2010;  Values  are  the  same  as  those  in  Table  6.

3.9.5.3  Model  Boundary  Conditions

In  GFS,  boundary  and  initial  conditions  were  set  in  order  to:  (1)  describe  the  volume  of  water  that   flow   to   the   rivers,   at   5-­‐,   25-­‐,   50-­‐   and   100-­‐   year   return   periods,   from   their   respective  upstream   watersheds   and   tributaries;   and   (2)   reflect   the   river’s   initial   conditions   prior   to    flood  simulation.  

The  water  runoff   from  the   rainfall  events  were  generated  in  a  separate  model  with  the  use  of  the   Hydrologic   Engineering   Center-­‐Hydrologic  Modeling   System   (HEC   HMS).    Several   runoff  hydrographs  with  the  same  rainfall  return  periods  (5-­‐,  25-­‐,  50-­‐  and  100-­‐  year)  were  produced,  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 29

Page 50: Technical Report: River basin and Flood Modeling and Flood ...

reflecting  the  change  in  landscape  from  2013  to  2020  and  2050.  

The  locations  of  the  GFS  model  boundary  conditions  (BC)  points  can  be  seen  in  Figures  17-­‐20.  Two   BC   points  were   set   in   each  model   for   the   four   rivers,   consisting   of   one   open  BC   at   the  downstream  portion  and  one  upstream  BC  at  the  upstream  portion.  For  the  open  BC  points  at  the  downstream  portions,  predicted  tidal  data  published  by  NAMRIA  was  utilized.  It  is  at  this  area   that   the   effect   of   the   tide   greatly   affects   water   surface   elevation.   Meanwhile,   for   the  upstream  BC  points,   the  water  discharge   data  was  utilized.   The   lateral  boundary  of   the   flood  models  employed  the  use  of   the  boundary  outflow  condition  where   it  describes  flow  from  the  river   to   the   flood   plains.   The   flow   chart   of   the   flood   modeling   exerc ise   and   its   application   is  shown   in  Figure  21.

Figure  17.    Map  showing  the  location  of  boundary  condition  points  where  time  series  of  water  surface  elevation  and  incoming  Hlow  were  assigned  for  every  model  simulation  in  the  Cagayan  de  Oro  River

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 30

Page 51: Technical Report: River basin and Flood Modeling and Flood ...

Figure  18.  Map  showing  the  location  of  the  boundary  conditions  points  where  time  series  of  water  surface  elevation  and  incoming  Hlow  were  assigned  for  every  model  simulation  in  the  Iponan  River.

Figure  19.  Map  showing  the  location  of  the  boundary  conditions  points  where  time  series  of  water  surface  elevation  and  incoming  Hlow  were  assigned  for  every  model  simulation  in  the  Mandulog  River.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 31

Page 52: Technical Report: River basin and Flood Modeling and Flood ...

Figure  20.  Map  showing  the  location  of  the  boundary  conditions  points  where  time  series  of  water  surface  elevation  and  incoming  Hlow  were  assigned  for  every  model  simulation  in  the  Iligan  River.

Figure  21.  Flow  chart  of  river  Hlood  model  development.

Flood  Model  Geometric  Data  Preparation

(cross-­‐sections,  banks,  river  centerline,  junctions,  1lood  

plains)

Model  Parameterization(land-­‐cover  and  river  bed  roughness  coef1icients)

Flood  Model  Simulation(per  type  of  rainfall  event:  actual  

and  hypothetical)

Setting  of  Boundary  Conditions

(initial  conditions,  water  level/tide,  upstream  in1lows,  lateral  

in1low)

Post-­‐processing  of  Simulation  Results

(Maximum  Flood  Extent  and  Inundation  Level)

Flood  Maps(per  type  of  rainfall  event:  actual  

and  hypothetical)

Gerris  Flow  Solver

Model  Pre-­‐processing  using  Arcview  

Model  Post-­‐processing  using  Arcview  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 32

Page 53: Technical Report: River basin and Flood Modeling and Flood ...

Chapter  4RESULTS  OF  FIELD  SURVEY  DATA  PROCESSING  AND  ANALYSIS

4.1  Gathered  Cross-­‐section  Survey  Points

Figures  22  to  25  show  the  elevation  data  points  gathered  during  the  cross    section  surveys  for  the  four  river  basins.  The  total  number  of  points  collected  in  Cagayan  de  Oro  was  4,393;    3,035  in   Iponan;  2,228   in  Mandulog;     and  1,181   in     Iligan.    The   datasets  were   saved  as  Microsoft®  Excel   files  and  then  exported  into  ArcView™   shapefiles.  The   files  contain   the  elevation  above/below  MSL  of  each  data  point.

The  data  points  consisted  of  points  along  cross  section  lines  and  points  along   the  river  banks.  In  Cagayan  de  Oro,  there  were  12  cross-­‐section  lines;  16  in  Iponan;  15  in    Mandulog;  and  11  in  Iligan.     The   total   length   of   the   cross   section   lines   were   45.87   km,   21.5   km   and   11.75   km,  respectively.

Figure  22.    Map  showing  the  actual  river  proHile,  cross-­‐section,  and  bathymetry  data  gathered  from  the  Hield  survey  in  the  Cagayan  de  Oro  River.    

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 33

Page 54: Technical Report: River basin and Flood Modeling and Flood ...

Figure  23.  Map  showing  the  actual  river  proHile,  cross-­‐section,  and  bathymetry  data  gathered  from  the  Hield  survey  in  the  Iponan  River.

Figure  24.  Map  showing  the  actual  river  proHile,  cross-­‐section,  and  bathymetry  data  gathered  from  the  Hield  survey  in  the  Mandulog  River.  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 34

Page 55: Technical Report: River basin and Flood Modeling and Flood ...

Figure  25.  Map  showing  the  actual  proHile,  cross-­‐section,  and  bathymetry  data  gathered  from  the  Hield  survey  in  the  Iligan  River.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 35

Page 56: Technical Report: River basin and Flood Modeling and Flood ...

4.2  Generated  DEM  of  River  Basins

Figure  26  to  Figure  29  show  the   generated  digital  evelevation  models  (DEM)  of   the  Cagayan  de   Oro,   Iponan,   Mandulog   and   Iligan   River  Basins,   based   on   the   results  of   the   aerial   LiDAR  surveys  and  its  interpolation  to  the  merged  elevation  datasets.      In  generating  the  DEM,  elevation  points  were   used   in  the   interpolation  of  the  river  basins  and  processed   for  validation.  The  spatial   interpolation  was  done  in  ArcGIS  3.3   software.  Based  on  the  validation  data  points,  the  DEM    has    an    accepted    elevation    error    of    +/-­‐0.2    meters    and    a    total    root    mean    square    error  (RMSE)  of  0.05m.  By  the  rule-­‐of-­‐thumb,  the  allowable  RMSE  must  be  less  than  one  half  of  the  DEM’s  spatial  resolution  for  it  to  be  acceptable.    

Figure 26. Map showing the DEMof the Cagayan de Oro River Basin and Flood Plains; and the flood model domain boundary

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 36

Page 57: Technical Report: River basin and Flood Modeling and Flood ...

Figure  27.    Map  showing  the  DEM  of  the  Iponan  River  Basin  and  Flood  Plains;  and  the  Hlood  model  domain  boundary

Figure  28.    Map  showing  the  DEM  of  the  Mandulog  River  Basin  and  Flood  Plains;  and  the  Hlood  model  domain  boundary

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 37

Page 58: Technical Report: River basin and Flood Modeling and Flood ...

Figure  29.  Map  showing  the  DEMof  the  Iligan  River  Basin  and  Flood  Plains;  and  the  Hlood  model  domain  boundary

4.3  Gathered  River  ProHile  Survey  Points  

The   river  bed   data  points   from   the   profile   survey  are   shown   in   Figures  30   to   33.   The   total  length  of  points  collected   for  Cagayan  de  Oro  was  34  km;  34.73  km   for  Iponan;  24.70   km   for  Mandulog;   and   32.08   km   for   Iligan.     These   vector   datasets   were   converted   to   ArcView  shapefiles  and  projected  in  UTM  Zone  51  WGS  84  datum.  The   shapefiles  contain  the  elevation  above/below  MSL  of  each  data  point.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 38

Page 59: Technical Report: River basin and Flood Modeling and Flood ...

Figure  30.  Bed  elevation  proHile  of  Cagayan  de  Oro  River.    The  coordinate  of  the    Hirst  point  is  (940436.917  N,  682364.126  E)    

Figure  31.  Bed  elevation  proHile  of  Iponan  River.    The  coordinate  of  the    Hirst  point  is  (942107.489  N,  677567.738  E)    

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 39

Page 60: Technical Report: River basin and Flood Modeling and Flood ...

Figure  32.  Bed  elevation  proHile  of  Mandulog  River.    The  coordinate  of  the  Hirst  point  is      (912657.717  N,  637105.214  E)

Figure  33.  Bed  elevation  proHile  Iligan  River.    The  proHile  data  was  collected  from  downstream  to  upstream.

4.4  Merged  Elevation  Data  Points  from  Field  Surveys  and  Other  Sources

Detailed  DEM  of  Cagayan  de  Oro,  Iponan,  Manduog  and  Iligan  Rivers  and  their  respective  flood  Plains  were   generated   using     the   elevation   data   points   collected   from   the   field   surveys   and  were  merged  with  the  aerial  LiDAR  survey  data  sets.

4.5  River  Bed  Characteristics

Through   the   field   surveys,   basic   geometric   characteristics   of   the   four   river   basins   were  obtained.   These   include   the   river  bed   elevation  profile   and  the   location   of   the  narrowest  and  widest  portion  of  the  rivers  along  the  path  of  the  field  surveys.

Figures   30-­‐33  show  the   bed   elevation  profile   of   the   Cagayan   de  Oro,   Iponan,   Mandulog  and  Iligan   Rivers,   respectively.   The   plot   points   run   from   downstream   to   upstream.   Known  structures  along  the  river  were  marked  in  the  profile  plot  for  better  reference.    Figures  34-­‐37  show   the   location   of   the   narrowest   and   widest   portions   of   the   Cagayan   de   Oro,   Iponan,  Mandulog   and   Iligan   Rivers,   respectively.     Table   10   shows   the   summary   of   these  characteristics.    

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 40

Page 61: Technical Report: River basin and Flood Modeling and Flood ...

Table  10.  Summary  of  river  characteristics  based  on  the  results  of  the  Hield  surveys.

River

Average  Bed  

Elevation  from  Mean  Sea  Level,  

m.

Average  Bed  

(Bottom)  Slope(m/m)

Minimum/  Narrowest  River  

Width,  m.

Maximum/  Widest  River  

Width,  m.

Location  of  Narrowest  Portion

Location  of  Widest  Portion

Cagayan  de  Oro 5.63 -­‐0.006 62.62 689.97 Brgy.  

Macasandig

At  the  outlet,  boundary  of  

Brgy.  Macabalan  and  Brgy.  Bonbon  

Iponan 4.37 0.008 29.68 157.28Boundary  of  Brgy.  Iponan  and  Brgy.  Patag

Brgy.  Baikingon

Mandulog -­‐0.52 -­‐0.0004 58.13 334.73 Brgy.  Hinaplanon

At  the  outlet,  Brgy.  Santa  Filomena  and  Brgy.  Santo  Rosario

Iligan -­‐0.30 -­‐0.0009 22.68 258.19 Brgy.  Ubaldo  Laya

Boundary  between  Brgy.  Palao  and  Brgy.  Mahayhay

It   can   be   seen   from   the   bed   elevation   plots   that   the   rivers   exhibit   varied   bed   and   bank  topography,   from   shallow   to   deep.   The   Cagayan   de   Oro   bed   elevation   graphs   show   great  differences  in  elevation  but  as  the   length  of   the  river  reaches  7,000  m,   the  elevation  gradually  increases,  with  a  few  depressions  in  between.  

The   Iponan   bed   elevation   graphs  show  a  gradual   increase   in   elevation   as   it  heads  upstream.  Much   like   the   Cagayan   de   Oro   graphs,   it  starts  with  plot  points  of   little   elevation  differences  but  as  its  distance  reaches  4,250  m,  there  is  a  noticeable  increase  in  elevation.  

The  Mandulog   graph  is  observed  to  be   irregular,  with  the  presence  of  ridges  and  troughs.  The  bed  increases  in   elevation,   though  there  are   a   number  of   points  with  drastic   elevation  drops  and  rises.  

The  Iligan  graph  generally  shows  an  increase  in  elevation,  with  a  few  drops  in  between.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 41

Page 62: Technical Report: River basin and Flood Modeling and Flood ...

Figure  34.  Map  showing  the  narrowest  and  widest  portions  of  the  Cagayan  de  Oro  River.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 42

Page 63: Technical Report: River basin and Flood Modeling and Flood ...

Figure  35.  Map  showing  the  narrowest  and  widest  portions  of  the  Iponan  River.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 43

Page 64: Technical Report: River basin and Flood Modeling and Flood ...

Figure  36.  Map  showing  the  narrowest  and  widest  portions  of  Mandulog  River.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 44

Page 65: Technical Report: River basin and Flood Modeling and Flood ...

Figure  37.  Map  showing  the  narrowest  and  widest  portions  of  the  Iligan  River.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 45

Page 66: Technical Report: River basin and Flood Modeling and Flood ...

Chapter  5RESULTS  OF  RIVER  BASIN  MODELING

5.1  Modeling  domain

The  computational  domain  of  the  flood  models  are  shown  in  Figures  38  to  41.

Figure  38.  Map  showing  the  Hlood  model  domain  (enclosed  in  red  line)  in  the  Cagayan  de  Oro  River  Basin  while  the  subbasin  divides  are  shown  in  violet  line.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 46

Page 67: Technical Report: River basin and Flood Modeling and Flood ...

Figure  39.  Map  showing  the  Hlood  model  domain  (enclosed  in  red  line)  in  the  Iponan  River  Basin  while  the  subbasin  divides  are  shown  in  violet  line.

Figure  40.  Map  showing  the  Hlood  model  domain  (enclosed  in  red  line)  in  the  Mandulog  River  Basin  while  the  subbasin  divides  are  shown  in  violet  line.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 47

Page 68: Technical Report: River basin and Flood Modeling and Flood ...

Figure  41.  Map  showing  the  Hlood  model  domain  (enclosed  in  red  line)  in  the  Iligan  River  Basin  while  the  subbasin  divides  are  shown  in  violet  line.

5.2  HEC  HMS  Model  Preparation

Figures   42   to   45   show   the   watersheds   and   streams   of   the   Cagayan   de   Oro,   Iponan,  Mandulog  and  Iligan  River  Basins  that  were  subjected  for  rainfall-­‐-­‐-­‐runoff  modeling.

Hydrologic   elements,   such   as   watersheds,   reaches   and   junctions   were   physically  represented   in   the   HEC-­‐HMS,   to   simulate   the   runoff   processes.   A   lumped   parameter  was  employed.   The   direct   runoff,   using   the   SCS-­‐CN   Model,   was   then   computed   for   each  watershed,   routed   and   then   translated   toward   each   watershed   outlet.   The   latter   end  utilized  the  SCS  Unit  Hydrograph  Model.  Computed  direct  runoff  hydrographs,  with  the  use  of   the   Muskingum-­‐Cunge   Method,   were   then   routed   through   channels   toward   the   main  outlet  of  the  watersheds.    

Three  model  components  were  utilized,  namely  the  basin  model,  meteorological  model  and  a   control   specification   sets.   The   Basin  Model   describes   the   physical   representation   of   the  watersheds  and  river  systems  into  hydrological   elements.  Each  element  is  configured  with  their  respective  methods  for  the  proper  simulation  of  hydrologic  processes.  Meanwhile,  the  Meteorological  Model  consists  of   the  time  series  data  of  rainfall  utilized  for  the  simulations.  The  control  specification   sets  were   employed   to  determine  the  time  step  and   the  duration  of  the  simulation.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 48

Page 69: Technical Report: River basin and Flood Modeling and Flood ...

Figure  42.    The  Cagayan  de  Oro  River  Basin  model  generated  thru  HEC-­‐HMS

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 49

Page 70: Technical Report: River basin and Flood Modeling and Flood ...

Figure  43.    The  Iponan  River  Basin  model  generated  thru  HEC-­‐HMS

Figure  44.    The  Mandulog  River  Basin  model  generated  thru  HEC-­‐HMS

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 50

Page 71: Technical Report: River basin and Flood Modeling and Flood ...

Figure  45.    The  Iligan  River  Basin  model  generated  thru  HEC-­‐HMS

5.2.1  Model  Pre-­‐processing

The  Aquaveo™  WMS®  (v.   8.1)  software  was  utilized  in  the   preparation  of   data  in   the   basin  model.   It   is   a   proprietary  watershed  modeling   software,   capable   of   providing   a   variety  of  modeling  data  formats  that  include  HMS-­‐compatible  ones.  

Datasets  required   in  the  basin  model   preparation  were  the   (i)   DEM,   (ii)   river  survey  data,  (iii)   l and   cover   map,   (iv)   soil   map   (from   the   2010   Bureau   of   Soils   and   Water  Management),   and     (v)   river   Manning’s   roughness   index.     These   data   delineated   the  watershed     boundaries     (sub-­‐basins)    and        generated     the     reach    elements    of    the    model.    The   results  were   then   processed   in  HEC-­‐HMS.    The   Cagayan   de   Oro   River   Basin   model  consists  of  56  sub-­‐watersheds  (or  sub-­‐basins),  54  reaches  and  55   junctions.  Its  main  outlet  is  at  901C.  The   Iponan   River   Basin   model   consists   of   26   watersheds,   25  reaches  and   26  junctions.   Its   main   outlet   is   at   62C.   The   Mandulog   River   Basin   model   consists   of   26  watersheds,   24   reaches   and   33   junctions.   Its   main   outlet   is   at   143C.   The   Iligan   River  Basin   model   consists   of   31   watersheds,   29   reaches   and   30   junctions.   Its  main   outlet  is  at  75C.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 51

Page 72: Technical Report: River basin and Flood Modeling and Flood ...

5.2.2  Land  Cover  Change  Projections

Considering   the   impact   of   climate   change   and   land   cover  changes   in   the   watersheds,   the  event  flow  at  different  levels  of  rainfall  conditions  was  analyzed   in  the  study.  Surveys  in  the  areas  of   interests  and   other  means  of  data   gathering  were   done   to   produce   the   2013   land  cover.   The   rate   of   change   of   one   land   cover   type   to   another  was   then   determined   from  primary   data,   including   the   NAMRIA   land   cover   data   (2003),   MSU-­‐Marawi   forestry  department   data   (2004   &   2006   from   the   EcoGov   Project),   classified   Archived   LANDSAT  images   and   the   Bureau   of   Agricultural   Statistics   (BAS)   crop   data   (for   forest/plantation/grassland  change  determination).  

Thresholds,   based   on  previous  studies   and  BAS   data,  were  applied   for  the   derived   change  projections  in  2020,  2030  and  2050.  Each  land  cover  type  was  given  a  (-­‐)  and  (+)  threshold,  depending   on   the   likeliness  of   being   converted   to   other   types   and   the   rate   at   which   this  happens.  These  thresholds  also   ensure   that  unrealistic  rates  of   change   can  be   checked  and  limited   (i.e.   a   calculated   1%   yearly   rate   in   built-­‐up   areas,   if   left   unchecked,   would  mean  covering  the  half  of  the  entire  subwatershed  with  structures  in  fifty  years’  time,  which  is  too  fast  considering  the  expansion  and  reduction  of  other  land  cover  types).

Table  11.  Land  Cover  Threshold  for  Change.Land  Cover  Type ThresholdThreshold

(-­‐) (+)TOTAL    Bare  Soil -­‐10.00% 10.00%Built-­‐up  Area 0.00% 10.00%Forestland -­‐25.00% 5.00%Freshwater -­‐2.00% 2.00%Grassland -­‐10.00% 10.00%Plantation 0.00% 25.00%

Figure  46.    Land  cover  distribution  in  the  Cagayn  de  Oro  River  Basin

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 52

Page 73: Technical Report: River basin and Flood Modeling and Flood ...

Figure  47.    Trends  in  agricultural  area  planted  area  for  Misamis  Oriental  and  Bukidnon  (a)  and  (b),  palay  (c)  and  (d)  corn,  (e)  and  (f)  coconut;  (  g)  and  (h)  coffee;  (i)  and  (j)  banana  and  (m)  and  (n)  trends  in  pineapple

(a) (b)

(c) (d)

(e) (f)

(g) (h)

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 53

Page 74: Technical Report: River basin and Flood Modeling and Flood ...

(i) (j)

(k) (l)

5.2.3  Model  Parameterization

Several   parameters  were   set   in   the   Watershed   Rainfall-­‐Runoff   Model.   The   Curve   Number  (CN)  parameter  of  the  SCS-­‐CN  infiltration  loss  component,  and  the  Watershed  lag  time  of  the  SCS   Unit  Hydrograph   component,   were   both   computed  with   the   use   of   the   land-­‐cover   and  soil  maps.   According   to  NRCS,   the   lag   time,   or  the   amount  of   time  between  the   centroid  of  rainfall  mass   and   the   peak   flow  of   the   produced   hydrograph,   can   be   estimated   by   taking  60%   of   the   time   concentration.   Meanwhile,   the   river   roughness   coefficient   parameter,  utilized   in   the   Muskingum-­‐Cunge  Model,  was   taken   from   the   look-­‐up   table   in   the   Brunner  (2010b).  

The  CN  parameter  has  several  factors,  namely,   the  land  cover  (Figures  48  to  51),  soil   type  and   texture   (Figures   52   to   55)   and   the   hydrologic   condition.     The   CNs   are   assigned   to  hydrologic   soil-­‐cover  complexes,   a   combination   of   hydrologic   soil   group   (soil),   land   cover  and   treatment   class   (cover)     to   indicate   their   specific   runoff   potential.   As   the   CN   value  increases,  the  runoff  potential  also  increases.  

Before  assigning  the  CNs,  the  antecedent  moisture  condition  (AMC)  of  the  watersheds  (Table  12)  were  first  considered.  The  AMC  utilized  in  this  study  is  defined  as  the  total  rainfall  during  the  growing  season,  i.e.,  the   first  five  days  after  the  rainfall  event  of  interest.   It  was  indicated  with   an   index   of   a   minimum   value   of   one   and   a   maximum   value   of   three.   The   AMC   I  represents  a  condition  that  is  unusually  dry;    AMC  II  represents  an   intermediate   condition,  i.e.,   a   “normal”   condition   for   the   watersheds;   and   AMC   III   represents   a   condition   that   is  basically  wet.  The  computation  of   CN   for  AMC  II  was  derived  using   tables  developed  by  the  NRCS   (National  Resources  Conservation  Services,   1972).     The   CNs   for  AMC   I  and   AMC   III,  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 54

Page 75: Technical Report: River basin and Flood Modeling and Flood ...

were  derived  from  the  equations  by  Chow,   et.  Al.  (1988),  provided  that  the  CN   for  AMC  II  is  known:

where  the  CN(I),  CN(II),  and  CN(III)  refer  to  CN  values  under  AMC  I,  II,  and  III,  respectively.  

Table  12.  Classification  of  antecedent  moisture  conditions  (AMC)  for  the  runoff  curve  number  method

AMC  Group Total  5-­‐day  antecedent  rainfall  (inches)AMC  GroupDormant  season     Growing  season

III  III

Less  than  0.5    Less  than  1.40.5  to  1.1    1.4  to  2.1Over  1.1    Over  2.1

Source:  Chow,  et.    al.,  1988Source:  Chow,  et.    al.,  1988

Table   13   shows   the   different   CN(II)   values   adapted   from   the   US   Natural   Resources  Conservation   Service,   formerly  known   as  the   SCS   (NRCS,  1986).   If   the   watershed  area   has  more   than   one   land   cover   class   and   soil   type,   an   area-­‐weighted   averaging   approach   was  used   instead  of  assigning  a  CN(II)  value.  The  area-­‐weighted  CN(II)  maps  for  the   river  basins  are  shown  for  each  watershed  from  Figures  56  to  59.

Table  13.  Curve  Number  (II)values  adapted  for  the  rainfall-­‐-­‐-­‐runoff  model  (Source:  NRCS,  1986).

Land-­‐use/Land-­‐cover AMC  II  Curve  Number  for  Hydrologic  Soil  GroupAMC  II  Curve  Number  for  Hydrologic  Soil  GroupAMC  II  Curve  Number  for  Hydrologic  Soil  GroupAMC  II  Curve  Number  for  Hydrologic  Soil  GroupLand-­‐use/Land-­‐coverA

(sandy)B

(silty)C

(sandy  clayey)D

(clayey)Bare  Soil 77 86 91 94Built-­‐up  Area 59 74 82 86Fallow  Land 77 86 91 94Forestland 30 55 70 79Freshwater 98 98 98 98Grassland 39 61 74 80Plantation/Shrubland 32 58 72 79

      4.2  CN(II)CN(I)=                          10  -­‐  0.058  CN(II)

      23  CN(II)CN(III)=                                          10  +  0.13  CN(II)

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 55

Page 76: Technical Report: River basin and Flood Modeling and Flood ...

Figure  48.    Land  cover  map  of  the  Cagayan  de  Oro  River  Basin  used  for  the  estimation  of  the  CB  and  watershed  lag  parameters  of  the  rainfall-­‐runoff  model.

Figure  49.    Land  cover  map  of  the    Iponan  River  Basin  used  for  the  estimation  of  the  CB  and  watershed  lag  parameters  of  the  rainfall-­‐runoff  model.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 56

Page 77: Technical Report: River basin and Flood Modeling and Flood ...

Figure  50.    Land  cover  map  of  the  Mandulog  River  Basin  used  for  the  estimation  of  the  CB  and  watershed  lag  parameters  of  the  rainfall-­‐runoff  model.

Figure  51.    Land  cover  map  of  the  Iligan    River  Basin  used  for  the  estimation  of  the  CB  and  watershed  lag  parameters  of  the  rainfall-­‐runoff  model.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 57

Page 78: Technical Report: River basin and Flood Modeling and Flood ...

Figure  52.    Soil  map  of  the  Cagayan  de  Oro  River  Basin  Used  for  the  Estimation  of  the  CN  Parameter

Source:  Digital  soil  map  of  the  Philippines  published  in  2004  by  the  Bureau  of  Soils  and  Water  Management,  Department  of  Agriculture

Figure  53.    Soil  map  of  the  Iponan  River  Basin  Used  for  the  Estimation  of  the  CN  Parameter

Source:  Digital  soil  map  of  the  Philippines  published  in  2004  by  the  Bureau  of  Soils  and  Water  Management,  Department  of  Agriculture

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 58

Page 79: Technical Report: River basin and Flood Modeling and Flood ...

Figure  54.    Soil  map  of  the  Mandulog  River  Basin  Used  for  the  Estimation  of  the  CN  Parameter

Source:  Digital  soil  map  of  the  Philippines  published  in  2004  by  the  Bureau  of  Soils  and  Water  Management,  Department  of  Agriculture

Figure  55.    Soil  map  of  the  Iligan  River  Basin  Used  for  the  Estimation  of  the  CN  Parameter

Source:  Digital  soil  map  of  the  Philippines  published  in  2004  by  the  Bureau  of  Soils  and  Water  Management,  Department  of  Agriculture

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 59

Page 80: Technical Report: River basin and Flood Modeling and Flood ...

Figure  56.  Map  showing  the  weighted  CN  values  assigned  to  each  watershed  in  the  Cagayan  de  Oro  River  Basin(also  called  Sub-­‐basin  in  HEC-­‐HMS)

Figure  57.  Map  showing  the  weighted  CN  values  assigned  to  each  watershed  in  the  Iponan  River  Basin(also  called  Sub-­‐basin  in  HEC-­‐HMS)

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 60

Page 81: Technical Report: River basin and Flood Modeling and Flood ...

Figure  58.  Map  showing  the  weighted  CN  values  assigned  to  each  watershed  in  the  Mandulog  River  Basin(also  called  Sub-­‐basin  in  HEC-­‐HMS)

Figure  59.  Map  showing  the  weighted  CN  values  assigned  to  each  watershed  in  the  Iligan  River  Basin(also  called  Sub-­‐basin  in  HEC-­‐HMS)

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 61

Page 82: Technical Report: River basin and Flood Modeling and Flood ...

5.3  Actual  Rainfall  Events

Actual  rainfall  events  were   used   in   calibrating   t h e   f l o o d   models   of   the  river  basins.  For  the  Cagayan  de  Oro  River  Basin,  actual  rainfall  events  were  taken  during  typhoon  Pablo  on  4  December   2012.   Peak   discharge   was   372.9025mm/hr   at   4:30   PM.   For   the   Iponan   River  Basin,    actual  rainfall  events  were    taken  from  15  June    2013  at  7:00  PM  to  16  June  2013  at  6:00   AM.   Peak   discharge   was   at   12.192   mm/hr.    For  the   Mandulog   River  Basin,   this  was  taken  from  December  3,  2012  at  10:00  PM  to  4  December  2012  at  10:00  PM.    Peak  discharge  was  333.80mm/hr  at  3:30  PM.  For  the   Iligan  River  Basin,   this  was  taken  from  26  December    2012  at  4:00  PM  to  29  December  2012  at  11:00  AM  and  27  December  2012  at  5:00  PM  to  29  December  2012  at  11:00  AM.  These  rainfall  events  are  plotted  in  Figures  60  to  63.  

Figure  60.  Rainfall  and  hydrograph  event  recorded  at  Pelaez  Bridge.    These  rainfall  events  were  used  to  generate  runoff  hydrographs  to    calibrate  the  Cagayan  de  Oro  River  Basin  Hlood  model

Figure  61.    Six-­‐hourly  rainfall  event  at  San  Simon  Bridge.    This  rainfall  event  was  used  to  generate    runoff  hydrographs    to  calibrate  the  Iponan  River  Basin  Hlood  model

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 62

Page 83: Technical Report: River basin and Flood Modeling and Flood ...

Figure  62.  Six-­‐hourly  rainfall  event  at  Mandulog  2  Bridge.    This  rainfall  event  was  used  to  generate  runoff  hydrographs  to  calibrate  the  Mandulog  River  Basin  Hlood  model

Figure  63.  Six-­‐hourly  rainfall  event  recorded  at  Mandulog  Bridge.    This  rainfall  event  was  used  to  generate  runoff  hydrographs  to  calibrate  the  Iligan  River  Basin  Hlood  model

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 63

Page 84: Technical Report: River basin and Flood Modeling and Flood ...

5.4  Hypothetical  Rainfall  Events

The   hypothetical   extreme   rainfall   events   were   developed   in   the   flood   model   in   order   to  predict  the  maximum  flood  extent  and   inundation  levels.    Utilizing  the  HEC-­‐HMS,  they  were  generated   from   the   RIDF   curves   of   PAGASA   in   Cagayan   de   Oro   and   Lumbia,   and   the  Mindanao  State  University  (MSU).  The  RIDF  curves  have  a  duration  of  24  hours  in  the  month  of  December.  The   time  specified  was  chosen  under  the   assumption  that  the   rainfall  events  occurred  during  this  period.   It  also  realistically  situates  the   flooding  and  rainfall  conditions  in   Cagayan   de   Oro,   Iponan,   Mandulog   and   Iligan,   since   it   was   also   during   the   month   of  December  that  the  Sendong  and  “low  pressure  area”  rains    preceding  Pablo  events  occurred.  The   data   interval   was   at   10  minutes,   and   the   maximum   rainfall   depths  were   on   the   12th  hour,  located  at  the  middle  of  the  hydrograph.

The  hypothetical  rainfall  events  for  2020  and  2050  are  shown  in  Tables  14,  15  and  16.  The  rainfall   depth   is   distributed   at   10-­‐minute   intervals   in   24-­‐hour   duration,   with   the   peak  manifesting   at   the   middle   (the   12th   hour).   When   all   the   values   of   the   rainfall   depth   per  interval  are  added  up,  this  produces  the  total  rainfall  depth  per  return  period.    

Table  14.  Rainfall  Intensity  Frequency  Duration  (RIDF)  data  generated  by  PAGASA  for  Cagayan  de  Oro.

RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)

CagayanCagayanCagayanCagayanCagayanCagayanCagayanCagayanCagayanCagayanCagayanCagayan

MonthMEANMEAN

BIAS

Projected  Change  (%)Projected  Change  (%)

BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)

MonthMEANMEAN

BIAS

Projected  Change  (%)Projected  Change  (%) RR    (mm/day)RR    (mm/day)RR    (mm/day) RR  Total  (mm)RR  Total  (mm)RR  Total  (mm)Month

Observed  1971-­‐2000

Model          1971-­‐2000

BIAS2020 2050 1971-­‐2000 2020 2050 Obs                          

1971-­‐20002020 2050

Jan 3 3 1 19.7 -­‐8.7 3 3.6 2.8 93.0 111.6 86.8

Feb 2.1 2 1.1 -­‐17 -­‐28.9 2.1 1.7 1.4 58.8 47.6 39.2

Mar 1.7 3.4 0.5 -­‐10.8 -­‐33.6 1.7 1.5 1.1 52.7 46.5 34.1

Apr 1.5 6 0.3 -­‐26.2 -­‐38.1 1.5 1.1 0.9 45.0 33.0 27.0

May 2.7 7.2 0.4 -­‐15.5 -­‐30.9 2.7 2.3 1.9 83.7 71.3 58.9

Jun 6.9 7.4 0.9 -­‐11.5 -­‐26.3 6.9 6.1 5.1 207.0 183.0 153.0

July 6.8 5.9 1.2 -­‐24.3 -­‐33.9 6.8 5.2 4.5 210.8 161.2 139.5

Aug 6.2 5.5 1.1 -­‐17.9 -­‐35.7 6.2 5.1 4.0 192.2 158.1 124.0

Sept 6.7 4.8 1.4 -­‐10.7 -­‐18.7 6.7 6.0 5.4 201.0 180.0 162.0

Oct 6.1 5.8 1.1 10.1 -­‐15 6.1 6.7 5.2 189.1 207.7 161.2

Nov 4.4 7.1 0.6 -­‐14 -­‐29.9 4.4 3.8 3.1 132.0 114.0 93.0

Dec 3.2 6.4 0.5 -­‐2.2 -­‐26.3 3.2 3.2 2.4 99.2 99.2 74.4

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 64

Page 85: Technical Report: River basin and Flood Modeling and Flood ...

Table  15.  Rainfall-­‐-­‐-­‐Intensity  Frequency  Duration  (RIDF)  data  generated  by  PAGASA  for  Lumbia

RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)

LumbiaLumbiaLumbiaLumbiaLumbiaLumbiaLumbiaLumbiaLumbiaLumbiaLumbiaLumbia

MonthMEANMEAN

BIAS

Projected  Change  (%)Projected  Change  (%)

BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)

MonthMEANMEAN

BIAS

Projected  Change  (%)Projected  Change  (%) RR    (mm/day)RR    (mm/day)RR    (mm/day) RR  Total  (mm)RR  Total  (mm)RR  Total  (mm)Month

Observed  1971-­‐2000

Model          1971-­‐2000

BIAS2020 2050 1971-­‐2000 2020 2050

Obs                          1971-­‐2000 2020 2050

Jan 2.7 3.1 0.9 17.2 2.7 2.7 3.1 2.7 83.7 96.1 83.7

Feb 2.3 2.5 0.9 -­‐18.5 -­‐19.7 2.3 1.9 1.8 64.4 53.2 50.4

Mar 1.4 3.2 0.4 -­‐5.4 -­‐19.9 1.4 1.4 1.2 43.4 43.4 37.2

Apr 1.9 4.3 0.4 -­‐16.9 -­‐27.3 1.9 1.6 1.4 57.0 48.0 42.0

May 3.5 3.6 1 4.5 17.2 3.5 3.7 4.2 108.5 114.7 130.2

Jun 6.9 3 2.3 14 16.5 6.9 7.9 8.1 207.0 237.0 243.0

July 7.9 2.7 2.9 -­‐6.8 -­‐12.7 7.9 7.3 6.9 244.9 226.3 213.9

Aug 6.6 2.9 2.3 -­‐0.1 -­‐4.9 6.6 6.6 6.3 204.6 204.6 195.3

Sept 6.8 2.7 2.5 0.3 2.3 6.8 6.8 7 204.0 204.0 210.0

Oct 6.1 3 2 42.5 16.6 6.1 8.6 7.1 189.1 266.6 220.1

Nov 4.6 4 1.2 -­‐13.6 -­‐2.3 4.6 4 4.5 138.0 120.0 135.0

Dec 3.4 4.4 0.8 18.1 10.2 3.4 4 3.8 105.4 124.0 117.8

Table  16.  Rainfall-­‐-­‐-­‐Intensity  Frequency  Duration  (RIDF)  data  generated  by  PAGASA  for  MSU.

RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)RAINFALL  (mm)

MSUMSUMSUMSUMSUMSUMSUMSUMSUMSUMSUMSU

MonthMEANMEAN

BIAS

Projected  Change  (%)Projected  Change  (%)

BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)BIAS  CORRECTED  PROJECTED  CHANGE  (mm)

MonthMEANMEAN

BIAS

Projected  Change  (%)Projected  Change  (%) RR    (mm/day)RR    (mm/day)RR    (mm/day) RR  Total  (mm)RR  Total  (mm)RR  Total  (mm)Month

Observed  1971-­‐2000

Model          1971-­‐2000

BIAS2020 2050 1971-­‐2000 2020 2050

Obs                          1971-­‐2000 2020 2050

Jan 3.8 2.8 1.3 13.3 -­‐0.9 3.8 4.3 3.7 117.8 133.3 114.7

Feb 4.1 2.8 1.5 -­‐1.5 -­‐15.5 4.1 4.1 3.4 114.8 114.8 95.2

Mar 3 3.9 0.8 -­‐3.4 -­‐10.6 3 2.9 2.7 93.0 89.9 83.7

Apr 3.1 5.3 0.6 -­‐15.8 -­‐7.8 3.1 2.6 2.9 93.0 78.0 87.0

May 6 5.7 1 0.9 -­‐0.5 6 6 5.9 186.0 186.0 182.9

Jun 8.2 5 1.6 6.6 -­‐1 8.2 8.7 8.1 246.0 261.0 243.0

July 7 4.3 1.6 -­‐15 -­‐17.1 7 5.9 5.8 217.0 182.9 179.8

Aug 6.1 4.4 1.4 -­‐13.7 -­‐5.4 6.1 5.2 5.7 189.1 161.2 176.7

Sept 6.9 4 1.7 -­‐4.3 5.3 6.9 6.6 7.3 207.0 198.0 219.0

Oct 6.1 4.4 1.4 11.7 1.4 6.1 6.8 6.1 189.1 210.8 189.1

Nov 5 4.2 1.2 -­‐5.9 -­‐11.9 5 4.7 4.4 150.0 141.0 132.0

Dec 4.2 3.9 1.1 8.3 1.5 4.2 4.5 4.2 130.2 139.5 130.2

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 65

Page 86: Technical Report: River basin and Flood Modeling and Flood ...

5.5  Rainfall-­‐Runoff  Simulations  using  HEC-­‐HMS

The   rainfall-­‐runoff   simulations   were   able   to   produce   outflow   hydrographs   (discharge).  These   are   shown   in   Figures   65  to   112.     Figures   65   to  112   depict   the   volume   of   water  passing   along   the  Cagayan  de  Oro,   Iponan,  Mandulog   and  Iligan   rivers,  with   respect  to  the  land   cover   in   2013   and   subsequent   projected   changes   in   2020   and   2050.   The   outflow  hydrographs   provide   information   on   the   expected   amount  of  water  flow   from   the   rivers,  given  the  same  series  of  rainfall  events  (5,  25,  50  and  100  year  return  periods).  

The   total  outflow  volume  and  peak  outflow  for  the  4  rivers  are   shown  in  Tables  17  to   32.  The   former   is   the   amount   of   water  which  passes  through   the   river   during   the   simulation  while  the  latter  is  maximum  rate  of  flow  during  the  simulation  period.  

Two   types   of   simulations   were   done.   First,   those   based   on   actual   rainfall   events,   and  second,   those   based   on   the   hypothetical   rainfall   events.   The   former   was   determined   to  have   an   AMC   of   III  (“wet   condition”)  while   the   latter  had   an  AMC   II  (“normal   condition”).    This  classification  was  based  on  the  rainfall  data  provided  by  PAGASA.  It   is   assumed   that  for   each   simulation,   rainfall   was   distributed   across   all   the   watersheds   within   the  domains  of  the  models.  

The   interface   of   the   HEC-­‐HMS   Model   can  be   seen   in  Figure   64.   It  consists  of   a  main  menu  and  several  smaller  windows  utilized  for  model  set-­‐up,  parameters,  construction  and  editing  of   simulation  scenarios,  visualization  of  results  such  as  graphs  and   tables,  and  exporting  of  the  results.

Figure  64.    Interface  of  the  Cagayan  de  Oro  River  Basin  HEC  HMS  Rainfall-­‐Runoff  Model  developed  in  this  project

There  were  a   total  of  four  HEC-­‐HMS  simulations  produced  for  each  river  basin  to  derive  the  

Graphical Results Window for Junctions (shows runoff hydrographs at river

junctions)

HEC HMS Model Table of Contents (model components and parameters, simulation scenarios, and model results)

Basin Model Schematic Window( contains the arrangement of model elements such as sub-basins, reaches, junctions and outlet)

HEC HMS Main Menu

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 66

Page 87: Technical Report: River basin and Flood Modeling and Flood ...

runoff   hydrographs.  Four  were  produced   for  each  of   the   2013,  2020  and  2050   land   covers.  For  each  land  cover,  one  simulation  was  done  for  the  5-­‐year  rainfall  event  and  the  next  three  for   the   25-­‐,   50-­‐   and   100-­‐year   rainfall   events.   The   simulation   time   step   employed  was   10  minutes.  5.5.1  Simulated  Runoff  from  Cagayan  de  Oro  River

5.5.1  Simulated  Runoff  from  Cagayan  de  Oro  River

The   estimated   discharge   from   the   Cagayan   de   Oro   watershed   for   the   different   rainfall  return  periods  (5,  25,  50-­‐  and  100-­‐year)  of  2013  and  projected  scenarios  of  2020  and  2050  are   found   in  Figures   65  to  76.   In   all  of   the  modeled  scenarios,   the  maximum  discharge   is  found  within  9  hours  after  the  peak  rainfall.  The  peak  outflow  rates  increasingly  vary  from  5-­‐year  (1,598  CMS)  to  100-­‐year  (5,585.10)  return  periods  (See  Table  17  to  Table  20).  The  peak  outflows  however  vary  from  2013,  which  gradually  increased  to  2020  before  lowering  back  to  2050.  

Interestingly,   in   the   100-­‐year  RP,   the   model  results  exhibited   a   double   peak   for   the   100-­‐year  return  period   in  Figure  68.  This  is  due   to  the  presence  of   the   large   subcatchment  in  the  eastern  side  of  the  watershed  which  is  responsible   for  the   first  lower  peak.  The   second  larger  peak  comes  from  the  Kabula  side  of  the  catchment.

Figure  65.    Cagayan  de  Oro  watershed  outHlow  hydrographs  for  the  5-­‐Year  Rain  return  period  in  2013  land  cover  conditions.

Figure  66.    Cagayan  de  Oro  Watershed  simulated  outHlow  hydrographs  for  the  25-­‐Year  rain  return  period  with  2013  land  cover  conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 67

Page 88: Technical Report: River basin and Flood Modeling and Flood ...

Figure  67.  Cagayan  de  Oro  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2013  Land  Cover.

Figure  68.  Cagayan  de  Oro  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2013  Land  Cover.

Figure  69.  Cagayan  de  Oro  Watershed  OutHlow  Hydrograph  for  the  5-­‐  Year  Rainfall  Event  in  2020  land  cover  and  rainfall  pattern  from  climate  change  projection.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 68

Page 89: Technical Report: River basin and Flood Modeling and Flood ...

Figure  70.  Cagayan  de  Oro  Watershed  OutHlow  Hydrograph  for  the  25-­‐  Year  Rainfall  Event  in  2020  land  cover  and  rainfall  pattern  from  climate  change  projection.

Figure  71.  Cagayan  de  Oro  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2020  Land  Cover.

Figure  72.  Cagayan  de  Oro  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2020  Land  Cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 69

Page 90: Technical Report: River basin and Flood Modeling and Flood ...

Figure  73.  Cagayan  de  Oro  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2050  Land  Cover.

Figure  74.  Cagayan  de  Oro  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  25-­‐  Year  Rainfall  Event  in  2050  Land  Cover.

Figure  75.  Cagayan  de  Oro  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2050  Land  Cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 70

Page 91: Technical Report: River basin and Flood Modeling and Flood ...

Figure  76.  Cagayan  de  Oro  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2050  Land  Cover.

Table  17.  Simulated  Outflow  Volume  and  Peak  Outflow  Rate  at  Cagayan  De  Oro  River  for  the  5-­‐  Year  Rainfall  Event.

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 154,557.40 1,598.32020 206,056.20 2,207.82050 186,164.10 1,974.9

Table  18.  Simulated  Outflow  Volume  and  Peak  Outflow  Rate  at  Cagayan  De  Oro  River  for  the  25-­‐  Year  Rainfall  Event

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 270,989.30 2,965.92020 347,249.40 3,870.32050 316,811.40 3,515.4

Table  19.  Simulated  Outflow  Volume  and  Peak  Outflow  Rate  at  Cagayan  De  Oro  River  for  the  50-­‐  Year  Rainfall  Event

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 318,914.20 3,534.302020 407,682.30 4,578.302050 373,080.20 4,174.10

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 71

Page 92: Technical Report: River basin and Flood Modeling and Flood ...

Table  20.  Simulated  Outflow  Volume  and  Peak  Outflow  Rate  at  Cagayan  De  Oro  River  for  the  100-­‐  Year  Rainfall  Event

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 684,862.30 5,585.102020 896,689.50 7,015.402050 834,487.00 6,591.70

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 72

Page 93: Technical Report: River basin and Flood Modeling and Flood ...

5.5.2  Simulated  Runoff  from  Iponan  River

The   estimated   discharge   from   the   Iponan   watershed   for   the   different   rainfall   return  periods  (5-­‐,  25-­‐,  50-­‐  and  100-­‐year)   of   2013  land   cover  and  projected   scenarios  land   cover  scerarios   for   2020   and   2050   are   found   in   Figures   77   to   88.   The   maximum   discharge   is  found  within  12  to  16  hours  after  the  peak  rainfall.  The  more  frequent  return  periods  peaks  much  slower  than  the  more  intense  and  less  frequent  rainfall  events.  

The  peak  outflow  rates  increasingly  vary  from  5-­‐year  (592  cms)  to  100-­‐year  (1,589)  return  periods  (Tables  21  to    24).  The   peak  outflows  maintain  the  same   trend  as  that  of  Cagayan  de  Oro  which  however  increases  from  2013    to  2020  before  lowering  back  to  2050.

Figure  77.  Iponan  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2013  Land  Cover.

Figure  78.  Iponan  watershed  outHlow  hydrographs  for  the  25-­‐year  rainfall  event  in  2013  land  cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 73

Page 94: Technical Report: River basin and Flood Modeling and Flood ...

Figure  79.  Iponan  watershed  outHlow  hydrographs  for  the  50-­‐year  rainfall  event  in  2013  land  cover.

Figure  80.  Iponan  watershed  outHlow  hydrographs  for  the  100-­‐year  rainfall  event  in  2013  land  cover.

Figure  81.  Iponan  watershed  outHlow  hydrographs  for  the  5-­‐year  rainfall  event  in  2020  land  cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 74

Page 95: Technical Report: River basin and Flood Modeling and Flood ...

Figure  82.  Iponan  watershed  outHlow  hydrographs  for  the  25-­‐year  rainfall  event  in  2020  land  cover.

Figure  83.  Iponan  watershed  outHlow  hydrographs  for  the  50-­‐year  rainfall  event  in  2020  land  cover.

Figure  84.  Iponan  watershed  outHlow  hydrographs  for  the  100-­‐year  rainfall  event  in  2020  land  cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 75

Page 96: Technical Report: River basin and Flood Modeling and Flood ...

Figure  85.  Iponan  watershed  outHlow  hydrographs  for  the  5-­‐year  rainfall  event  in  2050  land  cover.

Figure  86.  Iponan  watershed  outHlow  hydrographs  for  the  25-­‐year  rainfall  event  in  2050  land  cover.

Figure  87.  Iponan  watershed  outHlow  hydrographs  for  the  50-­‐year  rainfall  event  in  2050  land  cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 76

Page 97: Technical Report: River basin and Flood Modeling and Flood ...

Figure  88.  Iponan  watershed  outHlow  hydrographs  for  the  100-­‐year  rainfall  event  in  2050  land  cover.

Table  21.  Simulated  outflow  volume  and  peak  outflow  rate  at  Iponan  River  for  the  5-­‐year  rainfall  event.

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 50,490.90 592.402020 76,193.70 866.902050 67,298.50 760.10

Table  22.  Simulated  outflow  volume  and  peak  outflow  Rate  at  Iponan  River  for  the  25-­‐year  rainfall  event.

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 88,325.70 1,122.202020 122,498.40 1,530.702050 110,417.80 1,373.70

Table  23.  Simulated  Outflow  Volume  and  peak  outflow  rate  at  Iponan  River  for  the  50-­‐  Year  Rainfall  Event

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 103,637.20 1,349.102020 141,908.50 1,818.802050 128,602.50 1,641.90

Table  24.  Simulated  outflow  volume  and  peak  outflow  rate  at  Iponan  River  for  the  100-­‐year  rainfall  event

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 119.892.00 1,589.702020 161,373.10 2,109.902050 146,815.50 1,915.10

 

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 77

Page 98: Technical Report: River basin and Flood Modeling and Flood ...

5.5.3  Simulated  Runoff  from  Mandulog  River

The   estimated   discharge   from   the   Iponan   watershed   for   the   different   rainfall   return  periods  (5-­‐,  25-­‐,  50-­‐  and  100-­‐year)   of  2013   and  projected   scenarios  of   2020  and  2050   are  found  in  Figures  89  to  Figure  100.  The  maximum  discharge  peaks  immediately  (one  hour  or  less)   after   the  peak  rainfall.  The  more   frequent  return   periods  peaks  much  slower  than  the  more  intense  and  less  frequent  rainfall  events.  

The   peak   outflow   rate   increases   vary   from   5-­‐year   (415   cms)   to   100-­‐year   (1,586   cms)  return   periods.   The   peak  outflows   experience   the   same   trend   as   that   of   Cagayan   de   Oro  which  however  increases  from  2013  to  2020  before  lowering  back  to  2050.

Figure  89.  Mandulog  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2013  Land  Cover.

Figure  90.  Mandulog  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  25-­‐  Year  Rainfall  Event  in  2013  Land  Cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 78

Page 99: Technical Report: River basin and Flood Modeling and Flood ...

Figure  91.  Mandulog  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2013  Land  Cover.

Figure  92.  Mandulog  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2013  Land  Cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 79

Page 100: Technical Report: River basin and Flood Modeling and Flood ...

Figure  93.  Mandulog  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2020  Land  Cover.

Figure  94.  Mandulog  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  25-­‐  Year  Rainfall  Event  in  2020  Land  Cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 80

Page 101: Technical Report: River basin and Flood Modeling and Flood ...

Figure  95.  Mandulog  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2020  Land  Cover.

Figure  96.  Mandulog  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2020  Land  Cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 81

Page 102: Technical Report: River basin and Flood Modeling and Flood ...

Figure  97.  Mandulog  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2050  Land  Cover.

Figure  98.  Mandulog  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  25-­‐  Year  Rainfall  Event  in  2050  Land  Cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 82

Page 103: Technical Report: River basin and Flood Modeling and Flood ...

Figure  99.  Mandulog  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2050  Land  Cover.

Figure  100.  Mandulog  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2050  Land  Cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 83

Page 104: Technical Report: River basin and Flood Modeling and Flood ...

Table  25.  Simulated  Outflow  Volume  and  Peak  Outflow  Rate  at  Mandulog  River  for  the  5-­‐  Year  Rainfall  Event.

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 57,285.90 415.102020 74,823.50 611.502050 68,926.30 548.60

Table  26.  Simulated  Outflow  Volume  and  Peak  Outflow  Rate  at  Mandulog  River  for  the  25-­‐  Year  Rainfall  Event

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 111,210.90 1,020.602020 139,384.90 1,366.502050 130,036.40 1,269.10

Table  27.  Simulated  Outflow  Volume  and  Peak  Outflow  Rate  at  Mandulog  River  for  the  50-­‐  Year  Rainfall  Event

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 133,904.40 1,295.402020 167,518.70 1,705.702050 156,693.50 1,592.80

Table  28.  Simulated  Outflow  Volume  and  Peak  Outflow  Rate  at  Mandulog  River  for  the  100-­‐  Year  Rainfall  Event

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 158,208.70 1,586.702020 196,021.30 2,050.802050 183,705.50 1,922.10

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 84

Page 105: Technical Report: River basin and Flood Modeling and Flood ...

5.5.4  Simulated  Runoff  from  Iligan  River

The   estimated   discharge   from   the   Iponan   watershed   for   the   different   rainfall   return  periods   (5,   25,   50-­‐  and   100-­‐year)   of   2013   and   projected   scenarios   of   2020   and   2050   are  found  in  Figures  101  to  112.  The  maximum  discharge  peaks  within  8  hours  after  the  peak  rainfall.   The  more   frequent  return  periods   peaks  much   slower   than   the  more   intense  and  less   frequent   rainfall   events.   For   the   100-­‐year   return   period,   the   peak   discharges   occurs  within  7  hours  after  the  peak  rainfall  in  the  watershed.

The  peak  outflow  rates  increasingly  vary  from  5-­‐year  (592  CMS)   to  100-­‐year  (1589)  return  periods   (See   Table   29   to   Table   32).   The   peak   outflow   has   the   same   trend   as   that   of  Cagayan   de   Oro  which   however   increases   from   2013   d   to   2020   before   lowering   back   to  2050.

Figure  101.  Iligan  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2013  Land  Cover.

Figure  102.  Iligan  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  25-­‐  Year  Rainfall  Event  in  2013  Land  Cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 85

Page 106: Technical Report: River basin and Flood Modeling and Flood ...

Figure  103.  Iligan  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2013  Land  Cover.

Figure  104.  Iligan  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2013  Land  Cover.

Figure  105.  Iligan  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2020  Land  Cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 86

Page 107: Technical Report: River basin and Flood Modeling and Flood ...

Figure  106.  Iligan  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  25-­‐  Year  Rainfall  Event  in  2020  Land  Cover.

Figure  107.  Iligan  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2020  Land  Cover.

Figure  108.  Iligan  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2020  Land  Cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 87

Page 108: Technical Report: River basin and Flood Modeling and Flood ...

Figure  109.  Iligan  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  5-­‐  Year  Rainfall  Event  in  2050  Land  Cover.

Figure  110.  Iligan  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  25-­‐  Year  Rainfall  Event  in  2050  Land  Cover.

Figure  111.  Iligan  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  50-­‐  Year  Rainfall  Event  in  2050  Land  Cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 88

Page 109: Technical Report: River basin and Flood Modeling and Flood ...

Figure  112.  Iligan  Watershed  OutHlow  Hydrographs  Generated  from  the  Runoff  Hydrographs  Produced  by  the  HEC  HMS  Model  for  the  100-­‐  Year  Rainfall  Event  in  2050  Land  Cover.

Table  29.  Simulated  Outflow  Volume  and  Peak  Outflow  Rate  at  Iligan  River  for  the  5-­‐  Year  Rainfall  Event

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 19,776.30 384.90

2020 26,786.10 531.60

2050 25,397.70 491.40

Table  30.  Simulated  Outflow  Volume  and  Peak  Outflow  Rate  at  Iligan  River  for  the  25-­‐  Year  Rainfall  Event

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 33,737.80 704.20

2020 43,410.40 919.90

2050 41,134.70 854.10

Table  31.  Simulated  Outflow  Volume  and  Peak  Outflow  Rate  at  Iligan  River  for  the  50-­‐  Year  Rainfall  Event

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 39,345.80 840.60

2020 50,387.60 1,086.40

2050 47,750.20 1,009.20

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 89

Page 110: Technical Report: River basin and Flood Modeling and Flood ...

Table  32.  Simulated  Outflow  Volume  and  Peak  Outflow  Rate  at  Iligan  for  the  100-­‐  Year  Rainfall  Event

Land  Cover  Year Total  outflow  volume  during  the  period  (mm) Peak  outflow  rate  (cms)

2013 45,295.00 981.30

2020 57,403.80 1,255.00

2050 54,370.80 1,167.00

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 90

Page 111: Technical Report: River basin and Flood Modeling and Flood ...

Chapter  6RESULTS  OF  FLOOD  MODEL  SIMULATIONS

The   flood   model   simulations   were   able   to   produce   flood   inundation   maps   based   on  maximum  flood  depth.   These   are   shown  in  Figures  113  to  161.   The   inundation   levels  are  generalized   in   5   levels   to   relate   to   common   height   references   in   public.   Maximum   flood  water  levels  lower  than  0.2  m  are   intentionally  not  colored.  0.2  to  0.5m  levels  relate   to  foot  to  knee   heights.  1m  refer  to  level  to  waist  level  heights  while  2m  levels  reach   the  ceiling   of  first  floor  of  a  house  or  a  building.  5m  heights  will  cover  two  storeys.

Simulations  were  configured  for  the  5-­‐,  25-­‐,  50-­‐  and  100-­‐  year  events.  Each  event  was  done  for   the   2013,   2020  and   2050   land   covers.   Outflow  hydrographs  (discharge)   from  the   HEC-­‐HMS  model  and  baseflow  measurements  were  utilized  to  generate  the  simulations.  

These  flood  inundation  maps  will  be  utilized  in  the  assessment  of   flood  hazards  in  the  cities  of  Cagayan  de  Oro  and  Iligan.  

6.1  Simulated  Flood  Maps  and  Analysis  

The   GFS   simulated   the   water   level,   at   every   time   step,   for   all   the   models.   The   results  determine  which  areas  in  the  flood  domain  are  affected  by  flood.    The  flood  maps,  reflecting  the  maximum  flood  extent  and  inundation  levels  (flood  depths),  were  then  generated.  For  the  2013  land  cover,   the  cumulative   rainfall   for  all   the  flood  plains  is  129.2  mm  during  the  5-­‐  year  rainfall  event.    It  is  at  189.9  mm,  214.8  mm  and  239.  7  mm   for  the  25-­‐,  50-­‐  and  100-­‐year  rainfall  events,  respectively.    In  the  2020  land  cover,  the  cumulative  rainfall  for  all  the  flood  plains  is  151  mm  during  the  5-­‐year  rainfall  event.    It  is  at  223.3  mm,  252.7  mm  and  282  mm  for  the  25-­‐,  50-­‐  and  100-­‐  year  rainfall  events,  respectively.    Lastly,  for  the  2050  land  cover,  the   cumulative  rainfall  for  all  the   flood  plains  is  144.4  mm  during   the  5-­‐year  rainfall  event.     It   is  at  212.1  mm,  240  mm    and  267.97  mm   for   the   25-­‐,   50-­‐  and  100-­‐year  rainfall  events,  respectively.    

The   cumulative   rainfall   for   all   the   flood   plains   increases   as   the   year   of   the   rainfall   event  increases.   Meanwhile,   comparing   the   results   from   the   different   land   covers,   cumulative  rainfall  increases  from  the  results  of  the  2013  land  cover  to  2020.  This,  however,  decreases  in  the  2050  land  cover  results.

6.1.1  Cagayan  de  Oro  Simulated  Flooding  

6.1.1.1  Cagayan  de  Oro  River  Flooding:  2013  Land  Cover  Condition

The   Cagayan  de   Oro     flood   inundation  maps  simulated   for  the   rainfall   events  in   the   2013  land   cover   scenario   can   be   seen   in   Figures   113,   115,   117  and   119.     Over   44%   of   the  Cagayan   de   Oro   area   will   experience   flooding   during   the   rainfall   events.   Barangays  Macasandig,  Balulang  and  Indahag  will  experience   the  greatest  extent  of   flooding  for  all  the  flood   depths,   while,   Barangays  Macasandig,   Kauswagan   and   Balulang   will   experience   the  greatest  extent  for  flood  depths  of  2.00  m  and  greater.

Figures  114,  116,  118  and  120  summarizes  the   extent  of   flooding   for  barangays  for  each  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 91

Page 112: Technical Report: River basin and Flood Modeling and Flood ...

depth  in  the  5-­‐,  25-­‐,  50-­‐  and  100  year  rainfall  events,  respectively.  Barangays  1  to  40  are  not  shown  in  the  figures  due  to  the  minor  effect  of  flooding  in  the  areas.  

For  the  5-­‐year  rainfall  event,  77%  of   the  total  affected  area  will  experience  a   flood  depth  of  less  than  0.20  meters.    Meanwhile,  10%  will  experience  floods  between  0.20  to  0.50  meters  high.  Areas  that  will  experience   a   flood  depth  of   0.51  to  1.00,  1.01  to  2.00,  2.01   to  5.00  and  greater   than   5.00  meters   amount   to   only   5%,   4%,   3%  and   2%   of   the   total   affected   area,  respectively.   Barangay   Macasandig   will   experience   the   greatest   extent   of   flooding,  contributing   to  over  38%  of   the   affected   area   for   flood   depths  of   2.00  meters  and   above.  This  is  followed  by  Barangays  Kausawagan  and  Balulang,  amounting  to  9%  each.

For  the  25  year  rainfall  event,  68%  of   the   total  affected  area  will  experience  a  flood  depth  of  less   than   0.20  meters.  Over  12%  will   experience   floods  between  0.20   to  0.50  meters  high.  Areas  that  will  experience  a   flood   depth  of  0.51  to  1.00  and   2.01   to   5.00  meters  will  each  amount  to  6%  each.  Flood  depths  of  1.01  to  2.00  and  greater  than  5.00  meters  will  affect  5%  and  3%  of   the   total   affected   area,   respectively.   Barangay  Macasandig  will   still   experience  the   greatest   extent   of   flooding,   contributing   to   over   36%   of   the   affected   area   for   flood  depths  of   2.00  meters   and  above.   This  is   followed   by  Barangays  Kauswagan  and   Balulang,  amounting  10%  and  9%,  respectively.

For  the  50  year  rainfall  event,  65%  of   the   total  affected  area  will  experience  a  flood  depth  of  less  than  0.20  meters.  Meanwhile,  12%  will  experience   floods  between  0.20  to  0.50  meters  high.  Areas  that  will  experience   a   flood  depth  of   0.51  to  1.00,  1.01  to  2.00,  2.01   to  5.00  and  greater   than   5.00  meters   amount   to   only   6%,   5%,   7%  and   3%   of   the   total   affected   area,  respectively.   Barangay  Macasandig   will   contribute   over  35%  of   the   affected  area   for  flood  depths  of   2.00  meters   and  above.   This  is   followed   by  Barangays  Kauswagan  and   Balulang,  amounting  to  10%  each.

For  the  100  year  rainfall  event,   59%  of   the  total  affected  area  will  experience  a   flood  depth  of  less  than  0.20  meters.  Over  12%  will  experience  floods  between  0.20  to  0.50  meters  high.  Flood   depths   of   0.51   to   1.00   and   2.01   to   5.00   meters   will   affect   8%   and   9%   of   the   total  affected   area,   respectively.   Areas   that   will   experience   a   flood   depth   of   1.01   to   2.00   and  greater  than  5.00  meters  will  each  amount  to  6%  each.  Barangay  Macasandig  will  contribute  over  31%  of   the  affected  area   for  flood  depths  of  2.00  meters  and  above.  This  is  followed  by  Barangays  Kauswagan  and  Balulang,  amounting  12%  and  10%,  respectively.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 92

Page 113: Technical Report: River basin and Flood Modeling and Flood ...

Figure  113.  Flood  Map  of  the  Cagayan  de  Oro  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2013  land  cover  overlain  over  the  hillshaded  topography.  The  

roads,  streets  and  the  barangay  names  are  also  superimposed  in  the  inundation  map.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 93

Page 114: Technical Report: River basin and Flood Modeling and Flood ...

Figure  114.  Estimated  Extent  of  Flooding  in  Barangays  in  Cagayan  de  Oro  for  the  5-­‐Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 94

Page 115: Technical Report: River basin and Flood Modeling and Flood ...

Figure  115.  Flood  Map  of  the  Cagayan  de  Oro  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2013  land  cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 95

Page 116: Technical Report: River basin and Flood Modeling and Flood ...

Figure  116.  Estimated  Extent  of  Flooding  in  Barangays  in  Cagayan  de  Oro  for  the  25  Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 96

Page 117: Technical Report: River basin and Flood Modeling and Flood ...

Figure  117.  Flood  Map  of  the  Cagayan  de  Oro  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2013  land  cover  condition.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 97

Page 118: Technical Report: River basin and Flood Modeling and Flood ...

Figure  118.  Estimated  Extent  of  Flooding  in  Barangays  in  Cagayan  de  Oro  for  the  50  Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 98

Page 119: Technical Report: River basin and Flood Modeling and Flood ...

Figure  119.  Flood  Map  of  the  Cagayan  de  Oro  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2013  land  cover  condition.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 99

Page 120: Technical Report: River basin and Flood Modeling and Flood ...

Figure  120.  Estimated  Extent  of  Flooding  in  Barangays  in  Cagayan  de  Oro  for  the  100  Year  Rainfall  Event,  2013  Land  Cover

6.1.1.2  Cagayan  de  Oro  River  Flooding:  2020  Land  Cover  Condition

Figures  121  to  125  show  the   simulated   flood  maps  for  the  2020  land  cover  scenario.  Peak  discharge   is  at  2211.2,  3873,   4578.3   and  7015.4  m3   for  the   5,  25,  50  and   100   year  rainfall  events,   respectively.    While  the   lag  period  between  the  peak  of   rainfall  and  discharge  is  at  9  hours  and  50  minutes  for  the  5  year  rainfall  event,  and  9  hours  and  30  minutes  for  both  the  25   and   50   year   rainfall   events,   it   is   at  24  hours  and   10  minutes   for   the   100   year   rainfall  event.    

The  100  year  return  period  results  show  that  Barangays  6,   7,  10,  13,  15,  17,  18,  22,   24  and  35   will   be   fully   flooded   with   depths   of   2.00   meters   and   greater.   Sixty-­‐nine   percent   of  Barangay  6  will  experience  floods  with  depths  that  are  greater  than  5.00m.  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 100

Page 121: Technical Report: River basin and Flood Modeling and Flood ...

Figure  121.  Flood  inundation  map  of  the  Cagayan  de  Oro  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2020  land  cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 101

Page 122: Technical Report: River basin and Flood Modeling and Flood ...

Figure  122.  Flood  inundation  map  of  the  Cagayan  de  Oro  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2020  land  cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 102

Page 123: Technical Report: River basin and Flood Modeling and Flood ...

Figure  123.  Flood  inundation  map  of  the  Cagayan  de  Oro  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2020  land  cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 103

Page 124: Technical Report: River basin and Flood Modeling and Flood ...

Figure  124.  Flood  inundation  map  of  the  Cagayan  de  Oro  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2020  land  cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 104

Page 125: Technical Report: River basin and Flood Modeling and Flood ...

6.1.1.3  Cagayan  de  Oro  River  Flooding:  2050  Land  Cover  Condition

Figures  125  to  128  show  the   simulated   flood  maps  for  the  2050  land  cover  scenario.  Peak  discharge   is  at  1976.8,  3515.4,  4174.1  and  6591.7  m3  for  the  5,  25,  50  and  100  year  rainfall  events,   respectively.  The   lag  period  between  the  peak  of   rainfall   and  discharge   is   the  same  with  the  results  from  the  2020  land  cover.

The  100  year  return  period  results  show  almost  the  same  with  the   results  in  the  2020  land  cover.  Barangays  6,  7,   10,  13,  15,  17,  18,  24  and  35will  be  fully  flooded  with  depths  of  2.00  meters   and   greater.   Meanwhile,   99%   of   Barangay   22   will   experience   flooding.   Sixty-­‐six  percent  of  Barangay  6  will  experience  floods  with  depths  that  are  greater  than  5.00m.  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 105

Page 126: Technical Report: River basin and Flood Modeling and Flood ...

Figure  125.  Flood  inundation  map  of  the  Cagayan  de  Oro  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2050  land  cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 106

Page 127: Technical Report: River basin and Flood Modeling and Flood ...

Figure  126.  Flood  inundation  map  of  the  Cagayan  de  Oro  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2050  land  cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 107

Page 128: Technical Report: River basin and Flood Modeling and Flood ...

Figure  127.  Flood  inundation  map  of  the  Cagayan  de  Oro  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2050  land  cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 108

Page 129: Technical Report: River basin and Flood Modeling and Flood ...

Figure  128.  Flood  inundation  map  of  the  Cagayan  de  Oro  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2050  land  cover.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 109

Page 130: Technical Report: River basin and Flood Modeling and Flood ...

6.1.2  Iponan  Simulated  Flooding

6.1.2.1  Iponan  River  Flooding:  2013  Land  Cover  Condition

The  Iponan  flood  maps  simulated  for  the   rainfall  events  in  the  2013  land  cover  scenario  can  be   seen  in  Figures  129,  131,  133  and  135.    About  10110  hectares  in   the  Iponan  area  will  experience  flooding   during   the  rainfall  events,  a  majority  of  which  with  a  depth  of   less  than  2.00  meters.  Of   the   total   affected  area,  3185  hectares  will   experience  depths  of  more   than  2.00  meters.  Barangays  Malanang,  Patag  and   Canito-­‐An  will   experience   the  greatest  extent  of   flooding   for   all   the   flood   depths.   Meanwhile,   Barangays   Canito-­‐An,   Pagatpag   and   San  Simon  will   experience   the   greatest  extent  of   flooding   for  flood   depths   of   2.00  meters  and  greater.

Figures   130,  132,  134  and  136   summarize   the  extent  of   flooding   for  barangays   for  each  depth  in  the  5,  25,  50  and  100  year  rainfall  events,  respectively.  

For  the  5  year  rainfall  event,  68%  of  the   total  affected  area  will  experience   a   flood  depth  of  less   than  0.20  meters.   Over  9%  will   experience   floods  between  0.20   to  0.50   meters   high.  Flood   depths  of   0.51   to   1.00,   1.01   to  2.00,   2.01   to  5.00   and   greater   than   5.00  meters  will  affect   8%,   7%,   6%   and   1%   of   the   total   affected   area,   respectively.  When   taking   all   flood  depths   into  consideration,  Barangay  Malanang,  Patag   and   Canito-­‐An  will  most  extensively  experience   flooding.  However,  when   taking   into   consideration  flood  depths  of  2.00  meters  and   above,   Barangay  Canito-­‐An  will   experience   flood   most   extensively,   contributing   over  15%  of  the  affected  area.  This  is  followed  by  Barangays  Pagatpat  and  San  Simon,  amounting  10%  and  9%,  respectively.

For  the  25  year  rainfall  event,  64%  of   the   total  affected  area  will  experience  a  flood  depth  of  less   than  0.20  meters.   Floods  between   0.20   to   0.50,   0.51   to  1.00  and   1.01   to   2.00  meters  high  will   each   be   experienced   by  9%.   Flood   depths   of   2.01   to   5.00   and  greater   than   5.00  meters  will   affect  7%  and   2%  of   the   total   affected   area,   respectively.   Barangay  Canito-­‐An  will  experience   flood  most  extensively  for  depths  of  2.00  meters  and  greater,   contributing  over   15%   of   the   affected   area.   This   is   followed   by   Barangays   Pagatpat   and   San   Simon,  amounting  10%  and  9%,  respectively.For  the  50  year  rainfall  event,  63%  of   the   total  affected  area  will  experience  a  flood  depth  of  less  than  0.20  meters.  Floods  between  0.20  to  0.50  and  0.51  to  1.00  meters  high  will  each  be  experienced  by  9%.  Flood  depths  of  1.01  to  2.00,  2.01  to  5.00  and  greater  than  5.00  meters  will  affect  10%,  7%  and  2%  of  the   total  affected  area,   respectively.  Barangay  Canito-­‐An  will  experience   flood  most  extensively  for  depths  of   2.00  meters  and  greater,   contributing  over  15%  of  the  affected  area.  This  is  followed  by  Barangays  Pagatpat  and  San  Simon,  amounting  11%  and  9%,  respectively.

For  the  100  year  rainfall  event,   62%  of   the  total  affected  area  will  experience  a   flood  depth  of  less  than  0.20  meters.  Floods  between  0.20  to  0.50  and  2.01  to  5.00  meters  high  will  each  be   experienced   by  8%.   Flood   depths   of   0.51   to  1.00,   1.01   to   2.00,   and   greater   than   5.00  meters  will  affect  9%,  11%  and  3%  of   the  total  affected  area,  respectively.  Barangay  Canito-­‐An   will   experience   flood   with   depths   of   2.00   meters   or   greater   most   extensively,  contributing  over  15%  of  the  affected  area.  This  is  followed  by  Barangays  Pagatpat  and  San  Simon,  amounting  11%  and  9%,  respectively.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 110

Page 131: Technical Report: River basin and Flood Modeling and Flood ...

Figure  129.  Flood  Map  of  the  Iponan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2013  land  cover  condition.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 111

Page 132: Technical Report: River basin and Flood Modeling and Flood ...

Figure  130.  Estimated  Extent  of  Flooding  of    Iponan  River  for  the  5  Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 112

Page 133: Technical Report: River basin and Flood Modeling and Flood ...

Figure  131.  Flood  Map  of  the  Iponan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2013  land  cover  condition.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 113

Page 134: Technical Report: River basin and Flood Modeling and Flood ...

Figure  132.  Estimated  Extent  of  Flooding  of    Iponan  River  for  the  25  Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 114

Page 135: Technical Report: River basin and Flood Modeling and Flood ...

Figure  133.  Flood  Map  of  the  Iponan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2013  land  cover  condition.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 115

Page 136: Technical Report: River basin and Flood Modeling and Flood ...

Figure  134.  Estimated  Extent  of  Flooding  of    Iponan  River  for  the  50  Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 116

Page 137: Technical Report: River basin and Flood Modeling and Flood ...

Figure  135.  Flood  Map  of  the  Iponan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2013  land  cover  condition.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 117

Page 138: Technical Report: River basin and Flood Modeling and Flood ...

Figure  136.  Estimated  Extent  of  Flooding  of    Iponan  River  for  the  100  Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 118

Page 139: Technical Report: River basin and Flood Modeling and Flood ...

6.1.2.2  Iponan  River  Flooding:  2020  Land  Cover  Condition

Figures  137  to  140   show   the   simulated   1lood  maps  for   the   2020   land   cover  scenario.  Peak  discharge  is  at  866.9,  1530.7,  1818.8  and  2109.9  m3  for  the  5,  25,  50  and  100  year  rainfall  events,  respectively.    The  lag  period  between  the  peak  of  rainfall  and  discharge   is  at   15  hours  and  30  minutes  for   the  5   year   rainfall  event   and   13   hours   and   30  minutes  for   the   25   year   rainfall   event.   It   is   at   13  hours  for   the  50  year   rainfall  event   and  12hours  and  30  minutes  for   the   100  year  rainfall  event.    

The   100   year   return   period   results   show   that   Barangay   Barrra   will   be   fully  1looded  while  98%  of  Barangay  Igpit  will  experience  1loods  with  depths  of  2.00  meters   and   greater.   Sixteen   percent   of   Barangay   Taglimao   and   14%   of  Barangay  Pagalungan  will  experience   1loods  with  depths  that   are   greater   than  5.00m.  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 119

Page 140: Technical Report: River basin and Flood Modeling and Flood ...

Figure  137.  Flood  Map  of  the  Iponan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2020  land  cover  condition.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 120

Page 141: Technical Report: River basin and Flood Modeling and Flood ...

Figure  138.  Flood  Map  of  the  Iponan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2020  land  cover  condition.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 121

Page 142: Technical Report: River basin and Flood Modeling and Flood ...

Figure  139.  Flood  Map  of  the  Iponan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2020  land  cover  condition.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 122

Page 143: Technical Report: River basin and Flood Modeling and Flood ...

Figure  140.  Flood  Map  of  the  Iponan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2020  land  cover  condition.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 123

Page 144: Technical Report: River basin and Flood Modeling and Flood ...

6.1.2.3  Iponan  River  Flooding:  2050  Land  Cover  Condition

Figures  141  to  144   show   the   simulated   1lood  maps  for   the   2050   land   cover  scenario.  Peak  discharge  is  at  760.1,  1373.7,  1641.9  and  1915.1  m3  for  the  5,  25,  50  and  100  year  rainfall  events,  respectively.    The  lag  period  between  the  peak  of   rainfall   and   discharge   is   at   16   hours   for   the   5   year   rainfall   event   and   14  hours  for   the  25  year  rainfall  event.  It   is  at  13  hours  and  20  minutes  for  the  50  year  rainfall  event  and  12hours  and  50  minutes  for  the  100  year  rainfall  event.  

The  100  year   return   period   results  show   lower   1lood  extent   than  those   in   the  2020  land  cover.  Ninety-­‐nine  percent  of  Barangay  Barrra’s  area  will  experience  1loods  with  depths  of  2.00  meters  and  greater  while  it  will  be  97%  of  Barangay  Igpit.  Fifteen   percent  of  Barangay  Taglimao  and  13%  of  Barangay  Pagalungan  will  experience  1loods  with  depths  that  are  greater  than  5.00m.  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 124

Page 145: Technical Report: River basin and Flood Modeling and Flood ...

Figure  141.  Flood  Map  of  the  Iponan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2050  land  cover  condition.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 125

Page 146: Technical Report: River basin and Flood Modeling and Flood ...

Figure  142.  Flood  Map  of  the  Iponan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2050  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 126

Page 147: Technical Report: River basin and Flood Modeling and Flood ...

Figure  143.  Flood  Map  of  the  Iponan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2050  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 127

Page 148: Technical Report: River basin and Flood Modeling and Flood ...

Figure  144.  Flood  Map  of  the  Iponan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2050  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 128

Page 149: Technical Report: River basin and Flood Modeling and Flood ...

6.1.3  Mandulog  River  Simulated  Flooding

6.1.3.1  Mandulog  River  Flooding:  2013  Land  Cover  Condition

The  Mandulog  flood  maps  simulated   for  the  rainfall  events  in  the  2013   land  cover  scenario  can  be  seen  in  Figures  145,  147,  149  and  151.    Thirteen  percent  of  the  Mandulog  area  will  experience  flooding  during   the  5  year  rainfall  event.  Barangays  Hinaplanon,  San  Miguel  and  Santiago  will  have   the  largest  flooded  areas  of  52%,  35%  and  35%,  respectively.  For  the  25  year  rainfall   event,   the   flooded  areas  will   increase   to   about  20%  of  Mandulog.  The   largest  areas  that  will  experience   flooding   are  Barangays  Hinaplanon,   Santiago  and  Santo  Rosario.  They  will   be   flooded   by  around   74%,   71%  and  85%,   respectively.  For  the   50   year  rainfall  event,   around   21%   will   experience   floods.   Barangays   Hinaplanon,   Santiago   and   Santo  Rosario  will  still  have  the   largest  flooded  areas  of  77%,  73%  and  87%,  respectively.  For  the  100  year  rainfall  event,  about  22%  will  be  flooded.  The  same  barangays  will  experience  the  most  flooding,  reaching  over  79%,  75%  and  88%  of  their  areas.

Figures   146,  148,  150  and  152   summarize   the  extent  of   flooding   for  barangays   for  each  depth  in  the  5,  25,  50  and  100  year  rainfall  events,  respectively.  

For  the  5  year  rainfall  event,   the  peak  discharge  is  415.1  m3.  There  will  be   a  1  hour  and  10  minute   lag   period   between   it  and   the   peak   of   rainfall.  Over  72%  of   the   total  affected   area  will   experience   a   flood   depth   of   less   than   0.20  meters.   Over   12%   will   experience   floods  between  0.20   to  0.50  meters  high.  Flood  depths  of   0.51  to  1.00,  1.01   to  2.00,  2.01   to  5  and  greater  than  5  meters  will  affect  8%,  4%,  3%  and  1%  of  the   total  affected  area,  respectively.  Barangay  Santa   Filomena  will  experience  the   greatest  extent  of   flooding  for  flood  depths  of  2.00   meters   and   greater,   contributing   35%   of   the   affected   area   for   flood   depths   of   2.00  meters  and   above.   This   is   followed   by  Barangays  Hinaplanon   and   San   Roque,   amounting  19%  and  15%,  respectively.

For  the  25  year  rainfall   event,  the   peak  discharge   is  1020.6  m3.   There  will  be   a  1  hour  and  10  minute  lag  period  between  it  and  the  peak  of   rainfall.  Over  57%  of  the  total  affected  area  will  experience  a  flood  depth  of   less  than  0.20  meters.   Floods  depths  between  0.20  to  0.50,  1.01  to  2.00  and  2.01   to  5  meters  high  will   each  affect  11%.  Meanwhile,  7%  and   3%  of   the  total   affected  area   will   experience   flood   depths  of  0.51   to  1.00   and  greater  than  5  meters,  respectively.   Barangay  Santa   Filomena   will   experience   the   greatest   extent   of   flooding   for  flood   depths   of   2.00   meters   and   greater,   contributing   32%   of   the   affected   area   for   flood  depths  of  2.00  meters  and  above.  This  is  followed  by  Barangays  Hinaplanon  and  San  Roque,  amounting  to  18%  each.

For  the   50   year  rainfall   event,   the   peak  discharge   is  1295.4  m3.  There  will   be   a   1   hour  lag  period   between   it   and   the   peak   of   rainfall.   Over   55%   of   the   total   affected   area   will  experience  a   flood  depth  of  less  than  0.20  meters.  Floods  depths  between   0.20  to  0.50  and  1.01   to   2.00  meters   high  will   each   affect   11%.  Meanwhile,   8%,   12%  and   3%   of   the   total  affected   area   will   experience   flood   depths   of   0.51   to   1.00,   2.01   to   5   and   greater   than   5  meters,   respectively.   Barangay   Santa   Filomena   will   experience   the   greatest   extent   of  flooding   for  flood  depths  of  2.00  meters  and  greater,   contributing   31%  of  the   affected  area  for   flood   depths  of   2.00  meters  and  above.   This   is   followed  by  Barangays  Hinaplanon  and  San  Roque,  amounting  to  18%  and  17%,  respectively.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 129

Page 150: Technical Report: River basin and Flood Modeling and Flood ...

For  the  100  year  rainfall  event,   the  peak  discharge   is  1586.7  m3.  There  will  be  a  1  hour  lag  period   between   it   and   the   peak   of   rainfall.   Over   54%   of   the   total   affected   area   will  experience  a   flood  depth  of  less  than  0.20  meters.  Floods  depths  between   0.20  to  0.50  and  1.01   to   2.00  meters   high  will   each   affect   11%.  Meanwhile,   9%,   13%  and   4%   of   the   total  affected   area   will   experience   flood   depths   of   0.51   to   1.00,   2.01   to   5   and   greater   than   5  meters,   respectively.   Barangay   Santa   Filomena   will   experience   the   greatest   extent   of  flooding   for  flood  depths  of  2.00  meters  and  greater,   contributing   30%  of  the   affected  area  for   flood   depths  of   2.00  meters  and  above.   This   is   followed  by  Barangays  Hinaplanon  and  San  Roque,  amounting  to  18%  and  17%,  respectively.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 130

Page 151: Technical Report: River basin and Flood Modeling and Flood ...

Figure  145.  Flood  Map  of  the  Mandulog  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2013  land  cover  condition

Figure  146.  Estimated  Extent  of  Flooding  in  Barangays  in  Mandulog  for  the  5  Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 131

Page 152: Technical Report: River basin and Flood Modeling and Flood ...

Figure  147.  Flood  Map  of  the  Mandulog  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2013  land  cover  condition

Figure  148.  Estimated  Extent  of  Flooding  in  Barangays  in  Mandulog  for  the  25  Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 132

Page 153: Technical Report: River basin and Flood Modeling and Flood ...

Figure  149.  Flood  Map  of  the  Mandulog  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2013  land  cover  condition

Figure  150.  Estimated  Extent  of  Flooding  in  Barangays  in  Mandulog  for  the  50  Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 133

Page 154: Technical Report: River basin and Flood Modeling and Flood ...

Figure  151.  Flood  Map  of  the  Mandulog  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2013  land  cover  condition

Figure  152.  Estimated  Extent  of  Flooding  in  Barangays  in  Mandulog  for  the  100  Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 134

Page 155: Technical Report: River basin and Flood Modeling and Flood ...

6.1.3.2  Mandulog  River  Flooding:  2020  Land  Cover  Condition

Figures  153  to  156  show  the   simulated   flood  maps  for  the  2020  land  cover  scenario.  Peak  discharge   is  at  611.5,  1366.5,  1705.7  and  2050.8  m3  for  the   5,   25,  50   and  100  year  rainfall  events,   respectively.    While  the   lag  period  between  the  peak  of   rainfall  and  discharge  is  at  1  hour  and  10  minutes  for  the  5  year  rainfall  event,   it  is  at  1  hour  for  the  25,  50  and  100  year  rainfall  events.    

The   100   year  return   period   results  show   that   92%  of   Barangay  Santo   Rosaio  and   85%   of  Barangay   Hinaplanon   will   experience   floods   with   depths   of   2.00   meters   and   greater.  However,   flood   depths   greater   than   5.00m   will   be   experienced   by   17%   of   Barangay   San  Roque  and  5%  of  Barangay  Santa  Filomena.  

Figure  153.  Flood  Map  of  the  Mandulog  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2020  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 135

Page 156: Technical Report: River basin and Flood Modeling and Flood ...

Figure  154.  Flood  Map  of  the  Mandulog  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2020  land  cover  condition

Figure  155.  Flood  Map  of  the  Mandulog  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2020  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 136

Page 157: Technical Report: River basin and Flood Modeling and Flood ...

Figure  156.  Flood  Map  of  the  Mandulog  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2020  land  cover  condition

6.1.3.3  Mandulog  River  Flooding:  2050  Land  Cover  Condition

Figures  157  to  160  show  the   simulated   flood  maps  for  the  2050  land  cover  scenario.  Peak  discharge   is  at  548.6,  1269.1,  1592.8  and   1922.1m3  for  the   5,   25,  50  and  100   year  rainfall  events,   respectively.    While  the   lag  period  between  the  peak  of   rainfall  and  discharge  is  at  1  hour  and  10  minutes  for  the  5  year  rainfall  event,  it  is  at  1  hour  for  the  25,  50  and  100    year  rainfall  events.    

The  100  year  return  period  results  show  slightly  lower  flood  extent  than  those   in  the  2020  land  cover.  Ninety-­‐two  percent  of  Barangay  Santo  Rosario  and  84%  of  Barangay  Hinaplanon  will   experience   floods  with   depths   of   2.00  meters  and   greater.   Flood   depths  greater   than  5.00m  will   still  be  experienced  by  Barangays  San  Roque  and  Santa  Filomena,  amounting   to  16%  and  5%,  respectively.  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 137

Page 158: Technical Report: River basin and Flood Modeling and Flood ...

Figure  157.  Flood  Map  of  the  Mandulog  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2050  land  cover  condition

Figure  158.  Flood  Map  of  the  Mandulog  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2050  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 138

Page 159: Technical Report: River basin and Flood Modeling and Flood ...

Figure  159.  Flood  Map  of  the  Mandulog  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2050  land  cover  condition

Figure  160.  Flood  Map  of  the  Mandulog  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2050  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 139

Page 160: Technical Report: River basin and Flood Modeling and Flood ...

6.1.4  ligan  River:  Simulated  Hlooding

6.1.4.1  Iligan  River  2013  Land  Cover  Scenario

The  Iligan   flood  maps  simulated  for  the   rainfall  events  in  the  2013   land  cover  scenario  can  be   seen   in  Figures  161,  163,  165  and  167.    Over  27%  of   the   Iligan  area   will   experience  flooding   during   the   rainfall   events.   Barangays   Tubod,   Villa   Verde   and   Tambacan   will  experience   the   greatest   extent   of   flooding   for   all   the   flood   depths.   However,   when  considering   flood   depths   of   2.00  meters  and   greater,   Barangays  Tubod,   Ubaldo  Laya   and  Villaverde  will  be  the  ones  to  experience  the  greatest  extent.

Figures   162,  164,  166  and  168   summarize   the  extent  of   flooding   for  barangays   for  each  depth  in  the  5,  25,  50  and  100  year  rainfall  events,  respectively.  

For  the  5  year  rainfall  event,  81%  of  the   total  affected  area  will  experience   a   flood  depth  of  less   than   0.20   meters.   Floods   depths   between   0.20   to   0.50   meters   high  will   affect   11%.  Meanwhile,  5%,  2%,  2%  and  0.1%  of  the   total  affected  area  will  experience  flood  depths  of  0.51   to   1.00,   1.01   to   2.00,   2.01   to   5   and   greater   than   5   meters,   respectively.   Barangay  Ubaldo  Laya  will  contribute   to  17%  of  the  affected  area   for  flood  depths  of  2.00  meters  and  above.   This   is   followed   by   Barangays   Tubod   and   Villa   Verde,   amounting   16%   and   12%,  respectively.

For  the  25  year  rainfall  event,  72%  of   the   total  affected  area  will  experience  a  flood  depth  of  less   than   0.20   meters.   Floods   depths   between   0.20   to   0.50   meters   high  will   affect   14%.  Meanwhile,  7%,  4%,  2%  and  0.5%  of  the   total  affected  area  will  experience  flood  depths  of  0.51  to  1.00,  1.01  to  2.00,  2.01  to  5  and  greater  than  5  meters,  respectively.  Barangay  Tubod  will  contribute  to  16%  of  the  affected  area  for  flood  depths  of  2.00  meters  and  above.  This  is  followed  by  Barangays  Ubaldo  Laya  and  Villa  Verde,  both  amounting  to  15%.

For  the  50-­‐year  rainfall  event,  69%  of  the  total  affected  area  will  experience  a  flood  depth  of  less   than   0.20   meters.   Floods   depths   between   0.20   to   0.50   meters   high  will   affect   15%.  Meanwhile,   8%,   6%,   3%   and  1%  of   the   total  affected  area   will   experience   flood  depths  of  0.51  to  1.00,  1.01  to  2.00,  2.01   to  5  and  greater  than  5  meters,  respectively.  Barangay  Villa  Verde   will   experience   the   greatest  extent  of   flooding,   contributing   to   16%  of   the   affected  area   for  flood  depths  of   2.00  meters   and  above.   This   is  followed  by  Barangays  Tubod  and  Ubaldo  Laya,  amounting  15%  and  14%,  respectively.

For  the  100  year  rainfall  event,   66%  of   the  total  affected  area  will  experience  a   flood  depth  of   less   than   0.20  meters.   Floods  depths  between  0.20  to  0.50  meters  high  will  affect   15%.  Meanwhile,   8%,   7%,   3%   and  1%  of   the   total  affected  area   will   experience   flood  depths  of  0.51  to  1.00,  1.01  to  2.00,  2.01   to  5  and  greater  than  5  meters,  respectively.  Barangay  Villa  Verde   will   experience   the   greatest  extent  of   flooding,   contributing   to   16%  of   the   affected  area   for  flood  depths  of   2.00  meters   and  above.   This   is  followed  by  Barangays  Tubod  and  Ubaldo  Laya,  amounting  15%  and  14%,  respectively.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 140

Page 161: Technical Report: River basin and Flood Modeling and Flood ...

Figure  161.  Flood  Map  of  the  Iligan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2013  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 141

Page 162: Technical Report: River basin and Flood Modeling and Flood ...

Figure  162.  Estimated  Extent  of  Flooding  in  Barangays  in  Iligan  for  the  5  Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 142

Page 163: Technical Report: River basin and Flood Modeling and Flood ...

Figure  163.  Flood  Map  of  the  Iligan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2013  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 143

Page 164: Technical Report: River basin and Flood Modeling and Flood ...

Figure  164.  Estimated  Extent  of  Flooding  in  Barangays  in  Iligan  for  the  25  Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 144

Page 165: Technical Report: River basin and Flood Modeling and Flood ...

Figure  165.  Flood  Map  of  the  Iligan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2013  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 145

Page 166: Technical Report: River basin and Flood Modeling and Flood ...

Figure  166.  Estimated  Extent  of  Flooding  in  Barangays  in  Iligan  for  the  50  Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 146

Page 167: Technical Report: River basin and Flood Modeling and Flood ...

Figure  167.  Flood  Map  of  the  Iligan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2013  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 147

Page 168: Technical Report: River basin and Flood Modeling and Flood ...

Figure  168.  Estimated  Extent  of  Flooding  in  Barangays  in  Iligan  for  the  100  Year  Rainfall  Event,  2013  Land  Cover

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 148

Page 169: Technical Report: River basin and Flood Modeling and Flood ...

6.1.4.2  Iligan  River  2020  Land  Cover  Scenario

Figures  169  to  172   show   the   simulated   1lood  maps  for   the   2050   land   cover  scenario.  Peak  discharge  is  at  531.6,  919.9,  1086.4  and  1255  m3  for  the  5,  25,  50  and  100  year  rainfall  events,  respectively.    The  lag  period  between  the  peak  of  rainfall  and  discharge   is  7   hours  and  40  minutes  for   the   5  year   rainfall  event  and  6   hours  and  50  minutes  for   the   25   year   rainfall  event.  Meanwhile,   it   is  6  hours  and  30  minutes  for  the  50  year  rainfall  event  and  6  hours  and  20  minutes  for  the  100  year  rainfall  event.    

The   100   year   return   period   results   show   that   75%   of   Barangay  Mahayhay’s  area  will  experience  1loods  with  depths  of  2.00  meters  and  greater  while  it  will  be   71%  of   Barangay  Ubaldo   Laya.  Six   percent   of   former   and   4%  of   the   latter  will  experience  1loods  with  depths  that  are  greater  than  5.00m.  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 149

Page 170: Technical Report: River basin and Flood Modeling and Flood ...

Figure  169.  Flood  Map  of  the  Iligan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2020  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 150

Page 171: Technical Report: River basin and Flood Modeling and Flood ...

Figure  170.  Flood  Map  of  the  Iligan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2020  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 151

Page 172: Technical Report: River basin and Flood Modeling and Flood ...

Figure  171.  Flood  Map  of  the  Iligan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2020  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 152

Page 173: Technical Report: River basin and Flood Modeling and Flood ...

Figure  172.  Flood  Map  of  the  Iligan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2020  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 153

Page 174: Technical Report: River basin and Flood Modeling and Flood ...

6.1.4.3  Iligan  River  2050  Land  Cover  Scenario

Figures  173  to  176   show   the   simulated   1lood  maps  for   the   2050   land   cover  scenario.  Peak  discharge  is  at  491.4,  854.1,  1009.2  and  1167  m3  for  the  5,  25,  50  and  100  year   rainfall  events,   respectively.    While   the   lag   period   between   the  peak  of  rainfall  and  discharge   is  7  hours  and  50  minutes  for  the  5  year   rainfall  event   and  6  hours  and  50  minutes  for  the  25  year  rainfall  event.  Meanwhile,  it  is  6  hours  and   40  minutes   for   the   50   year   rainfall  event   and   6   hours   and   30  minutes  for  the  100  year  rainfall  event.    

The  100  year   return   period   results  show   lower   1lood  extent   than  those   in   the  2020   land   cover.     Seventy-­‐three   percent   of   Barangay   Mahayhay’s   area   will  experience  1loods  with  depths  of  2.00  meters  and  greater  while  it  will  be  70%  of   Barangay   Ubaldo   Laya.   Five   percent   of   former   and   3%   of   the   latter   will  experience  1loods  with  depths  that  are  greater  than  5.00m.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 154

Page 175: Technical Report: River basin and Flood Modeling and Flood ...

Figure  173.  Flood  Map  of  the  Iligan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2050  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 155

Page 176: Technical Report: River basin and Flood Modeling and Flood ...

Figure  174.  Flood  Map  of  the  Iligan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2050  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 156

Page 177: Technical Report: River basin and Flood Modeling and Flood ...

Figure  175.  Flood  Map  of  the  Iligan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  50  year  rainfall  event  for  the  2050  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 157

Page 178: Technical Report: River basin and Flood Modeling and Flood ...

Figure  176.  Flood  Map  of  the  Iligan  Hlood  plain  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2050  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 158

Page 179: Technical Report: River basin and Flood Modeling and Flood ...

6.2  Combined  Flood  Hazard  Map

Combined   maps  were   prepared   for   the   Cagayan   de   Oro  and   Iligan   Cities.   The   Cagayan  de  Oro  flood   inundation  map  combines  the   flood  simulation   results  of  the  Cagayan  de  Oro  and  Iponan  river  systems  while  the  Mandulog  and  Iligan  River  systems  for  the  City  of  Iligan.

6.2.1  Cagayan  de  Oro  City  (Cagayan  and  Iponan  Rivers)

Figure  177.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2013  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 159

Page 180: Technical Report: River basin and Flood Modeling and Flood ...

Figure  178.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2013  land  cover  condition

Figure  179.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2013  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 160

Page 181: Technical Report: River basin and Flood Modeling and Flood ...

Figure  180.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2020  land  cover  condition

Figure  181.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2020  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 161

Page 182: Technical Report: River basin and Flood Modeling and Flood ...

Figure  182.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2020  land  cover  condition

Figure  183.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2020  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 162

Page 183: Technical Report: River basin and Flood Modeling and Flood ...

Figure  184.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2020  land  cover  condition

Figure  185.  Flood  Map  of  the  Cagayan  de  Oro  and  Iponan  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2020  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 163

Page 184: Technical Report: River basin and Flood Modeling and Flood ...

6.2.2  Iligan  City(Iligan  and  Mandulog  River)  

Figure  186.  Flood  Map  of  the  Iligan  and  Mandulog  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2013  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 164

Page 185: Technical Report: River basin and Flood Modeling and Flood ...

Figure  187.  Flood  Map  of  the  Iligan  and  Mandulog  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2013  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 165

Page 186: Technical Report: River basin and Flood Modeling and Flood ...

Figure  188  Flood  Map  of  the  Iligan  and  Mandulog  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2013  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 166

Page 187: Technical Report: River basin and Flood Modeling and Flood ...

Figure  189.  Flood  Map  of  the  Iligan  and  Mandulog  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2020  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 167

Page 188: Technical Report: River basin and Flood Modeling and Flood ...

Figure  190.  Flood  Map  of  the  Iligan  and  Mandulog  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2020  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 168

Page 189: Technical Report: River basin and Flood Modeling and Flood ...

Figure  191.  Flood  Map  of  the  Iligan  and  Mandulog  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2020  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 169

Page 190: Technical Report: River basin and Flood Modeling and Flood ...

Figure  192.  Flood  Map  of  the  Iligan  and  Mandulog  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  5  year  rainfall  event  for  the  2050  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 170

Page 191: Technical Report: River basin and Flood Modeling and Flood ...

Figure  193.  Flood  Map  of  the  Iligan  and  Mandulog  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  25  year  rainfall  event  for  the  2050  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 171

Page 192: Technical Report: River basin and Flood Modeling and Flood ...

Figure  194.  Flood  Map  of  the  Iligan  and  Mandulog  Hlood  plains  showing  the  maximum  Hlood  extent  and  depths  resulting  from  the  100  year  rainfall  event  for  the  2050  land  cover  condition

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 172

Page 193: Technical Report: River basin and Flood Modeling and Flood ...

6.3  Comparison  of  Flood  Depths

A   comparison   of   flood   depths   subjected   to  various  rainfall   return   periods  for  the   present  (2013)  condition  are  shown  from  Figure  195  to  Figure  200.  Of   interest  in  these  graphs  are  the  trends  in  the  distribution  of  inundation  with  decreasing  recurrence  intervals  (i.e.   longer  return  periods).  In  general,  it  can  be  seen  that  areas  with  shallow  inundations  experiencing  worsened  flooding.  

The   graphs  basically  show   increasing   area   inundated  with  higher   flood   depths   from  5-­‐   to  100-­‐year  rain  return  period  for  ranges  2  to  5  and  >5m  for  Cagayan  de  Oro  while   areas  with  shallower   floods   depths   generally   decrease   with   depth.   For   Iponan,   the   trend   is   similar  except  that  the  increasing  inundation  with  return  period  starts  to  occur  at  1  to  2m  level.

The  flooded  areas  in  Mandulog  River  follow  a  similar  trend  as  Cagayan  de  Oro  River  where  increase   in   inundated   areas   starts   to   occur   at   2   to   5m.   For   Iligan   River   however,   the  increasing   trend   starts   even   with   0.2   to   0.5m   level.   This   indicates   smooth   terrain   in   the  flooded  areas  inundated  by  the  river.  

Peculiar  to  Cagayan  de   Oro  River  is   its   pronounced  secondary  peak  of   flooding   in   the   2   to  5m   levels.   This   is   due   to   prominence   of   a   deep   gorge   incising   the   River   immediately  downstream  of  the  watersheds  which  will  be  flooded  when  a  strong  rainfall  occurs.      

Figure  195.    Distribution  of  Hlood  depths  for  various  return  periods  for  Cagayan  de  Oro  River    for  present  (2013).

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 173

Page 194: Technical Report: River basin and Flood Modeling and Flood ...

Figure  196.    Distribution  of  Hlood  depths  for  various  return  periods  for  Iponan  River  for  present  (2013).

Figure  197.    Distribution  of  Hlood  depths  from  combined  effects  of  Cagayan  de  Oro  River  and  Iponan  River  for  various  return  periods  for  Cagayan  de  Oro  City  in  present  condition  (2013).

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 174

Page 195: Technical Report: River basin and Flood Modeling and Flood ...

Figure  198.    Distribution  of  Hlood  depths  for  various  return  periods  for  Mandulog  River  for  present  (2013).

Figure  199.    Distribution  of  Hlood  depths  for  various  return  periods  for  Iligan  River  for  present  (2013).

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 175

Page 196: Technical Report: River basin and Flood Modeling and Flood ...

Figure  200.    Distribution  of  Hlood  depths  from  combined  effects  of  Mandulog  River  and  Iligan  River  for  various  return  periods  for  Iligan  City  in  present  condition  (2013).

The  series  of  figures  below  shows  the  comparison  of  flood  depths  through  the  different  time  scenarios  at   5   (Figures  201  &   204),   25   (Figures  202  &  205)   and   100-­‐  (Figures   203  &  206)   year   rainfall   return   period.   The   areas   flooded  with   less   than   0.2m   inundation   have  been  removed  for  clarity.

In  general,  areas  affected  by  5-­‐year  return  period,  regardless  of  scenario  considered  remain  unchanged  expect  for  the  deeper  interval  (2  to  5m).  This  portion  typically  characterizes  the  river  bank  portion  of   the   flood  plain.   For  the  25-­‐  and   100-­‐year  rainfall  return  periods,   the  area  affected  by  deeper  floods  increase  with  longer  return  period.

Figure  201.    Comparison  of  of  Hlood  depth  distribution  from  combined  effects  of  Cagayan  de  Oro  and  Iponan  Rivers  for  5-­‐year  rainfall  return  period  for  2013,  2020  and  2050

Figure  202.    Comparison  of  Hlood  depth  distribution  from  the  combined  effects  of  Cagayan  de  Oro  and  Iponan  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 176

Page 197: Technical Report: River basin and Flood Modeling and Flood ...

Rivers  for  25-­‐year  rainfall  return  periods  for  Cagayan  de  Oro  City  for    present  condition  (2013)  and  from  future  scenario  (2020  and  2050).

Figure  203.    Comparison  of  Hlood  depth  distribution  from  combined  effects  of  Cagayan  de  Oro  and  Iponan  Rivers  for  100-­‐year  rainfall  return  periods  for  Cagayan  de  Oro  City  for    2013,  2020,  2050

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 177

Page 198: Technical Report: River basin and Flood Modeling and Flood ...

The  trend  is  similar  for  Mandulog  River,   though   the  signs  less  pronounced.  The   5-­‐year  RRP  follows   a   decreasing   area   in   flood   depth   for   all   scenarios.   The   25-­‐year   and  100-­‐year  RRP  effectively  shows  the  transition  of  formerly  shallow  flooded  areas  into  a  higher  flood  level  in  the   future   scenario.     The   small   number   of   areas   inundated   with   0.5   to   1m   flood   levels  eventually  gets  redistributed  to  the  1  to  2m  levels.

Figure  204.    Comparison  of  Hlood  depth  distribution  from  combined  effects  of  Mandulog  and  Iligan  Rivers  for  5-­‐year  rainfall  return  periods  for  Iligan  City  for    2013,  2020,  and  2050

Figure  205.    Comparison  of  Hlood  depth  distribution  from  combined  effects  of  Mandulog  and  Iligan  Rivers  for  25-­‐year  rainfall  return  periods  for  Iligan  City  for    2013,  2020,  and  2050

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 178

Page 199: Technical Report: River basin and Flood Modeling and Flood ...

Figure  206.    Comparison  of  of  Hlood  depth  distribution  from  combined  effects  of  Mandulog  and  Iligan  Rivers  for  100-­‐year  rainfall  return  periods  for  Iligan  City  for    2013,  2020,  2050

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 179

Page 200: Technical Report: River basin and Flood Modeling and Flood ...

6.5  Results  of  Flood  Inundation  Height  Validation

The   simulated   flood   models  are   validated   using   the   most   recent   flood   event,   the   tropical  storm  Sendong   (international  name:  “Washi”)  which  passed  through  Cagayan  de  Oro  about  midnight  of  December  17,  2011.  The  recorded  total  one-­‐day  total  rainfall  for  the  period  was  180mm.   Observed   flood   heights  were   taken   from  surveys   of   residents  which  experienced  the  flooding.  These  observed  flood  heights  were  compared  with  the  maximum  flood  heights  that  were  culled  out  of  the  simulations  for  100-­‐year  return  period.      

Correlation   plots   are   shown   in   Figures   207   -­‐   210.   Correspondence   for  Cagayan   de   Oro,  Iponan   and   Mandulog   Rivers   appear   to   be   in   acceptable   agreement   with   that   of   the  

observed   flood   height   values   where   the   coefficient   coefficients   ( )   range   from   0.32  (Iligan)   to  0.63  (Iponan).  Biases  (+0.56,  +0.90,  +0.29,  and  +0.56)  were  all  positive   in  all  four  locations  indicating  underestimation  of  the  flood  heights  compared  to  the  model  values.    

In   the   case   of   Cagayan   de   Oro   River,   for   the   most   part,   flood   levels   tend   to   have   been  underestimated,   but  where  overestimates  occurred,   these   were   located   in   floods   no   lower  than   1m   in   height   difference.   In   Iponan,   more   overestimates   are   found   but   the   average  differences  were   only  0.03m.     For  Mandulog  River,   the   average   estimation   error   is  0.77m  most  of  which  are  due  to  overestimation.  The  worst  results  were  found  in  Iligan  where  flood  heights  were  mostly  underestimated.

The   flood   inundation   errors   analyzed   should  not  be   interpreted   as   fallibility  of   the   model  results  especially  since   there  were  a   few  cases  where   true  negatives  exist.    True  negatives  refer  to  areas  where  flooding  occurred  but  appeared  in  the  model  result  to  be  absent  or  too  shallow  (less  0.2m)   to  be  mapped.    On  the  other  hand,   there  were   far  fewer  false  positives  (where   flooding  resulted   in  simulation  model  but  was  not  in  reality)  which  while   indicating  unrealistic  results  will  keep  occupants  safe   by  at  least  “erring   in  the   side   of   caution”.  Thus,  the   generated   flood   inundation  maps   appear   to   be   reliable   indicators   of   flood   extent  and  heights.  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 180

Page 201: Technical Report: River basin and Flood Modeling and Flood ...

Figure  207.    Correlation  of  Hlood  heights  during  Sendong  event    for  Cagayan  de  Oro  River  (n=37).

Figure  208.    Correlation  of  Hlood  heights  during  Sendong  event  for  Iponan  River  (n=35).

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 181

Page 202: Technical Report: River basin and Flood Modeling and Flood ...

Figure  209.    Correlation  of  Hlood  heights  during  Sendong  event  for  Mandulog  River  (n=143).

Figure  210.    Correlation  of  Hlood  heights  during  Sendong  event  for  Iligan  River  (n=35).

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 182

Page 203: Technical Report: River basin and Flood Modeling and Flood ...

6.5  Simulated  Velocity  Maps

Velocity  maps  were   also   simulated   by   the   Gerris  Flow  Solver   to   illustrate   the   speed   and  direction  of  flood  water  during  the  occurrence  of   rainfall  events.  Flow  velocities  are  shown  as   vectors   in   the   maps,   with   their   lengths   increasing   as   the   speed   increases.   The   results  from   the   simulations   can   be   utilized   for   flood   emergency   response   plans   and   flood  deference  measure.  These  velocity  maps  are  shown  in  Figures  211  to  258.  

6.5.1  Cagayan  de  Oro

The  velocity  maps  for  the  2013  land  cover  of  Cagayan  de  Oro  can  be  seen  in  Figures  211  to  214.  In  all  of  the  rainfall  events,  Barangay  6  experiences  the  greatest  velocities  of  water  due  to   the   fact   that   it   lies   directly   on   the   river’s   path.   In   the   5   year  rainfall   event,   the   flow  of  water   is   fastest   in   Barangay   6,   where   the   depth   of   water   is   greater   than   2.00  meters.   A  greater   amount   of   areas   in   Barangays   7,   10,   13,   15   ,   17   and   Consolacion   will   experience  faster  velocities  of  water  in  the  25,  50  and  100  year  rainfall  events.  

Figures  215  to  218  show  the   velocity  maps  for  the  2020   land  cover  while  Figures  219  to  222   show   those   of   the   2050   land   cover.   Barangays   6,   7,   10   and   13   still   experience   the  fastest  water  during   the   5   year  rainfall   event  of   both   land   covers.   The  water  velocity  and  depth  drastically  increase  during  the  25,  50  and  100  year  rainfall  events,   affecting  a  greater  extent  of  Barangays  15,  17  and  Consolacion.

Water  velocity  increases   with   depth  of   the   flood.   It   also   increases   from   the   results   in   the  2013  land  cover  scenario  to  2020.   Its  extent,   however,  decreases  from  the  2020   land   cover  scenario  to  2050.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 183

Page 204: Technical Report: River basin and Flood Modeling and Flood ...

Figure 211. Simulated flood inundation and velocity map of Cagayan de Oro River for a 5-year rainfall return period under 2013 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 184

Page 205: Technical Report: River basin and Flood Modeling and Flood ...

Figure 212. Simulated flood inundation and velocity map of Cagayan de Oro River for a 25-year rainfall return period under 2013 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 185

Page 206: Technical Report: River basin and Flood Modeling and Flood ...

Figure 213. Simulated flood inundation and velocity map of Cagayan de Oro River for a 50-year rainfall return period under 2013 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 186

Page 207: Technical Report: River basin and Flood Modeling and Flood ...

Figure 214. Simulated flood inundation and velocity map of Cagayan de Oro River for a 100-year rainfall return period under 2013 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 187

Page 208: Technical Report: River basin and Flood Modeling and Flood ...

Figure 215. Simulated flood inundation and velocity map of Cagayan de Oro River for a 5-year rainfall return period under 2020 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 188

Page 209: Technical Report: River basin and Flood Modeling and Flood ...

Figure 216. Simulated flood inundation and velocity map of Cagayan de Oro River for a 25-year rainfall return period under 2020 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 189

Page 210: Technical Report: River basin and Flood Modeling and Flood ...

Figure 217. Simulated flood inundation and velocity map of Cagayan de Oro River for a 50-year rainfall return period under 2020 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 190

Page 211: Technical Report: River basin and Flood Modeling and Flood ...

Figure 218. Simulated flood inundation and velocity map of Cagayan de Oro River for a 100-year rainfall return period under 2020 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 191

Page 212: Technical Report: River basin and Flood Modeling and Flood ...

Figure 219. Simulated flood inundation and velocity map of Cagayan de Oro River for a 5-year rainfall return period under 2050 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 192

Page 213: Technical Report: River basin and Flood Modeling and Flood ...

Figure 220. Simulated flood inundation and velocity map of Cagayan de Oro River for a 25-year rainfall return period under 2050 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 193

Page 214: Technical Report: River basin and Flood Modeling and Flood ...

Figure 221. Simulated flood inundation and velocity map of Cagayan de Oro River for a 50-year rainfall return period under 2050 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 194

Page 215: Technical Report: River basin and Flood Modeling and Flood ...

Figure 222. Simulated flood inundation and velocity map of Cagayan de Oro River for a 100-year rainfall return period under 2050 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 195

Page 216: Technical Report: River basin and Flood Modeling and Flood ...

6.5.2  Iponan  Simulated  Flooding

The  velocity  maps  for  the  2013  land  cover  of  Iponan  can  be  seen  in  Figures  223  to  226.   In  all  of   the   rainfall   events,   Barangays  Canito-­‐An   and  Patag  experience  the  greatest  velocities  of  water  due  to  the  fact  that  it  lies  on  the  river’s  path.  In  the  5  year  rainfall  event,  the  flow  of  water  is  fastest  in  Barangays  Canito-­‐An  and  Patag,  where  the  depth  of  water  is  greater  than  2.00   meters.   A   greater   amount   of   areas   in   Barangays   Barra,   Igpit,   Bulua,   Taboc   and  Baikingon   will   experience   faster   velocities   of   water   in   the   25,   50   and   100   year   rainfall  events.  

Figures  227  to  230  show  the   velocity  maps  for  the  2020   land  cover  while  Figures  231  to  234  show  those  of  the   2050  land  cover.  Barangay  Canito-­‐An  and  Patag   still  experience   the  fastest  water  during   the   5   year  rainfall   event  of   both   land   covers.   The  water  velocity  and  depth  drastically  increase  during  the  25,  50  and  100  year  rainfall  events,   affecting  a  greater  extent  of  the  northern  part  of  the  Iponan  flood  plain.  

Water  velocity  increases   with   depth  of   the   flood.   It   also   increases   from   the   results   in   the  2013  land  cover  scenario  to  2020.   Its  extent,   however,  decreases  from  the  2020   land   cover  scenario  to  2050.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 196

Page 217: Technical Report: River basin and Flood Modeling and Flood ...

Figure 223. Simulated flood inundation and velocity map of Iponan River for a 5-year rainfall return period under 2013 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 197

Page 218: Technical Report: River basin and Flood Modeling and Flood ...

Figure 224. Simulated flood inundation and velocity map of Iponan River for a 25-year rainfall return period under 2013 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 198

Page 219: Technical Report: River basin and Flood Modeling and Flood ...

Figure 225. Simulated flood inundation and velocity map of Iponan River for a 50-year rainfall return period under 2013 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 199

Page 220: Technical Report: River basin and Flood Modeling and Flood ...

Figure 226. Simulated flood inundation and velocity map of Iponan River for a 100-year rainfall return period under 2013 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 200

Page 221: Technical Report: River basin and Flood Modeling and Flood ...

Figure 227. Simulated flood inundation and velocity map of Iponan River for a 5-year rainfall return period under 2020 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 201

Page 222: Technical Report: River basin and Flood Modeling and Flood ...

Figure 228. Simulated flood inundation and velocity map of Iponan River for a 25-year rainfall return period under 2020 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 202

Page 223: Technical Report: River basin and Flood Modeling and Flood ...

Figure 229. Simulated flood inundation and velocity map of Iponan River for a 50-year rainfall return period under 2020 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 203

Page 224: Technical Report: River basin and Flood Modeling and Flood ...

Figure 230. Simulated flood inundation and velocity map of Iponan River for a 100-year rainfall return period under 2020 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 204

Page 225: Technical Report: River basin and Flood Modeling and Flood ...

Figure 231. Simulated flood inundation and velocity map of Iponan River for a 5-year rainfall return period under 2050 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 205

Page 226: Technical Report: River basin and Flood Modeling and Flood ...

Figure 232. Simulated flood inundation and velocity map of Iponan River for a 25-year rainfall return period under 2050 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 206

Page 227: Technical Report: River basin and Flood Modeling and Flood ...

Figure 233. Simulated flood inundation and velocity map of Iponan River for a 50-year rainfall return period under 2050 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 207

Page 228: Technical Report: River basin and Flood Modeling and Flood ...

Figure 234. Simulated flood inundation and velocity map of Iponan River for a 100-year rainfall return period under 2050 land cover conditions

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 208

Page 229: Technical Report: River basin and Flood Modeling and Flood ...

6.5.3  Mandulog  Velocity  Maps

The  velocity  maps  for  the  2013  land  cover  of  Mandulog  can  be  seen  in  Figures  235  to  238.  In  all  of  the  rainfall  events,  Barangay  San  Roque  experiences  the  greatest  velocities  of  water  due  to  the  fact  that  it  lies  on  the  river’s  path.  In  the  5  year  rainfall  event,  the  flow  of  water  is  fastest   in   Barangays   San   Roque   and   Santa   Filomena,  where   the   depth  of   water  is  greater  than   2.00  meters.  A  greater  amount  of   areas  in  Barangays  Santa   Filomena  and  Hinaplanon  will   experience   faster   velocities   of   water   in   the   25,   50   and   100   year   rainfall   events.  Barangay  Santo   Rosario  will   also  experience   faster  velocities   of   water  by  the   50   and  100  year  rainfall  events.  

Figures  239  to  242  show  the   velocity  maps  for  the  2020   land  cover  while  Figures  243  to  246   show   those   of   the   2050   land   cover.   Barangay   San   Roque   and   Santa   Filomena   still  experience  the   fastest  water  during   the  5  year  rainfall  event  of  both  land  covers.  The  water  velocity   and   depth   drastically   increase   during   the   25,   50   and   100   year   rainfall   events,  affecting   a   greater  extent  of   the   southern   part  of   Santa   Filomena   ,   and   the   upper  parts   of  Santo  Rosario  and  Hinaplanon.  

Water  velocity  increases   with   depth  of   the   flood.   It   also   increases   from   the   results   in   the  2013  land  cover  scenario  to  2020.   Its  extent,   however,  decreases  from  the  2020   land   cover  scenario  to  2050.

Figure 235. Simulated flood inundation and velocity map of Mandulog River for a 5-year rainfall return period under 2013 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 209

Page 230: Technical Report: River basin and Flood Modeling and Flood ...

Figure 236. Simulated flood inundation and velocity map of Mandulog River for a 25-year rainfall return period under 2013 land cover conditions.

Figure 237. Simulated flood inundation and velocity map of Mandulog River for a 50-year rainfall return period under 2013 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 210

Page 231: Technical Report: River basin and Flood Modeling and Flood ...

Figure 238. Simulated flood inundation and velocity map of Iponan River for a 100-year rainfall return period under 2013 land cover conditions.

Figure 239. Simulated flood inundation and velocity map of Mandulog River for a 5-year rainfall return period under 2020 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 211

Page 232: Technical Report: River basin and Flood Modeling and Flood ...

Figure 240. Simulated flood inundation and velocity map of Mandulog River for a 25-year rainfall return period under 2020 land cover conditions.

Figure 241. Simulated flood inundation and velocity map of Mandulog River for a 50-year rainfall return period under 2020 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 212

Page 233: Technical Report: River basin and Flood Modeling and Flood ...

Figure 242. Simulated flood inundation and velocity map of Mandulog River for a 100-year rainfall return period under 2020 land cover conditions.

Figure 243. Simulated flood inundation and velocity map of Mandulog River for a 5-year rainfall return period under 2050 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 213

Page 234: Technical Report: River basin and Flood Modeling and Flood ...

Figure 244. Simulated flood inundation and velocity map of Mandulog River for a 25-year rainfall return period under 2050 land cover conditions.

Figure 245. Simulated flood inundation and velocity map of Mandulog River for a 50-year rainfall return period under 2050 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 214

Page 235: Technical Report: River basin and Flood Modeling and Flood ...

Figure 246. Simulated flood inundation and velocity map of Mandulog River for a 100-year rainfall return period under 2050 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 215

Page 236: Technical Report: River basin and Flood Modeling and Flood ...

6.5.4  Iligan  Velocity  Maps

The  velocity  maps  for  the  2013  land  cover  of  Iligan  can  be  seen  in  Figures  247  to  250.   In  all  of   the   rainfall   events,   areas   near   the   river’s   path   experience   the   greatest   velocities.  Barangay  Mahayhay   experiences   the   fastest   flow  of   water.   A   greater   amount   of   areas   in  Barangays  Ubaldo  Laya,   Villa   Verde   and   Palao  will   experience   faster  velocities  of   water  in  the  25,  50  and  100  year  rainfall  events.  

Figures  251  to  254  show  the   velocity  maps  for  the  2020   land  cover  while  Figures  255  to  258  show  those  of   the  2050  land  cover.  Barangays  Mahayhay,  Ubaldo  Laya,  Villa  Verde  and  Palao   will   still   experience   the   fastest  water   during   the   5   year   rainfall   event  of   both   land  covers.   The  water   velocity  and   depth   drastically   increase   during   the   25,   50   and  100   year  rainfall  events,  affecting  a  greater  extent  of  the  same  areas.  

Water  velocity  increases   with   depth  of   the   flood.   It   also   increases   from   the   results   in   the  2013  land  cover  scenario  to  2020.   Its  extent,   however,  decreases  from  the  2020   land   cover  scenario  to  2050.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 216

Page 237: Technical Report: River basin and Flood Modeling and Flood ...

Figure 247. Simulated flood inundation and velocity map of Iligan River for a 5-year rainfall return period under 2013 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 217

Page 238: Technical Report: River basin and Flood Modeling and Flood ...

Figure 248. Simulated flood inundation and velocity map of Iligan River for a 25-year rainfall return period under 2013 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 218

Page 239: Technical Report: River basin and Flood Modeling and Flood ...

Figure 249. Simulated flood inundation and velocity map of Iligan River for a 50-year rainfall return period under 2013 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 219

Page 240: Technical Report: River basin and Flood Modeling and Flood ...

Figure 250. Simulated flood inundation and velocity map of Iligan River for a 100-year rainfall return period under 2013 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 220

Page 241: Technical Report: River basin and Flood Modeling and Flood ...

Figure 251. Simulated flood inundation and velocity map of Iligan River for a 5-year rainfall return period under 2020 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 221

Page 242: Technical Report: River basin and Flood Modeling and Flood ...

Figure 252. Simulated flood inundation and velocity map of Iligan River for a 25-year rainfall return period under 2020 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 222

Page 243: Technical Report: River basin and Flood Modeling and Flood ...

Figure 253. Simulated flood inundation and velocity map of Iligan River for a 50-year rainfall return period under 2020 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 223

Page 244: Technical Report: River basin and Flood Modeling and Flood ...

Figure 254. Simulated flood inundation and velocity map of Iligan River for a 100-year rainfall return period under 2020 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 224

Page 245: Technical Report: River basin and Flood Modeling and Flood ...

Figure 255. Simulated flood inundation and velocity map of Iligan River for a 5-year rainfall return period under 2050 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 225

Page 246: Technical Report: River basin and Flood Modeling and Flood ...

Figure 256. Simulated flood inundation and velocity map of Iligan River for a 25-year rainfall return period under 2050 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 226

Page 247: Technical Report: River basin and Flood Modeling and Flood ...

Figure 257. Simulated flood inundation and velocity map of Iligan River for a 50-year rainfall return period under 2050 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 227

Page 248: Technical Report: River basin and Flood Modeling and Flood ...

Figure 258. Simulated flood inundation and velocity map of Iligan River for a 100-year rainfall return period under 2050 land cover conditions.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 228

Page 249: Technical Report: River basin and Flood Modeling and Flood ...

Chapter  7DISCUSSIONS

7.1  Enhancements  introduced  in  the  Flood  Hazard  Maps

The  flood  modelling  exercise  resulted   in  differentiation  in  flood  susceptibility  levels  in  both  inundation   level  and  velocity  flow.  As  can  be  gleaned  from  the  summary  statistics,   the  area  inundated   by   different   flood   depth   levels   vary   according   to   the   scenario   generated   from  various  rainfall  return  periods  (5-­‐year,  10-­‐year,  25-­‐year,  50-­‐year  and  100-­‐year)  for  24-­‐hour  duration.  These  have  been  generalized  to  five   level  types  (less  than  0.1m,  >0.1  to  0.2m,  >0.2  to  0.5m,  0.5m  to    1.0m,  >1.0  to  2.0,  >2.0  to  5.0m  and  >5.0)  are  clearly  indicated  in  the  maps  and   graphs.   This   is   a   stark   departure   from   the   current   flood   hazard   maps   only   indicate  different  degrees  of  susceptibility.  

The   fine-­‐scale   flood  hazard  maps   can   also  be   used   as   a   guide   in   improving   local   drainage.  Areas  that  are   often  flooded  due   to  heavy  rainfall  events  which  are  not  within  the   reach  of  river  can   now   be   identified.   Ordinary   flood  models   show   the   expansion   or   contraction   of  river  carriage   according   to   discharge   from  the  watershed   and  not   those  caused   by  surface  flooding.  Because  2D  models  were   used   in  this  study,   it  was  able   to  show  areas  flooded  not  only   by   overflowing   rivers,   but   also   from   storms   assuming   an   overwhelmed   drainage  system.   Provision   for   urban   storm   drainage   is   the   responsibility   of   the   city   government.  Faced   with   budget   constraints   and   other   priorities,   urban   drainages   such   as   culverts,  designed  to  drain  10-­‐year  storms.  The   city  government  can  use   the  flood  hazard  maps  with  lower  frequency  storms  to  design  and  implement  drainage  systems  with  higher  capacity.

Probabilities   of   occurrence   can   now  be   inferred  based  on   the   rainfall  scenarios  simulated.  The   generation   of   probability-­‐based   hazards  will   be   useful   in   the   different   facets  of   flood  mitigation   ranging   from   preparation   to   long-­‐term   mitigation   of   its   effects.   Based   on  probabilities,  planners  can  recommend  plans  and   identify  flood  zones  that  will  be  off-­‐limits  to  settlements  but  may  be   used  for  select  agricultural   land  uses  or  for  recreation.  Property  developers  and  investors  can  then  follow  the  zoning  regulations  by  developing  real  estate  in  areas  in  areas  supine  to  flood  or  may  opt  to  develop  in  flood-­‐prone  areas  provided  adequate  flood   defenses   are   properly   implemented.   Engineers   can   present   designs   of   intervention  measures  such   as  dikes,   levees  and  dams  or  to   fortify  bridge  and   roads  that  can  withstand  floods  according   to   the   level   of   protection   they   need   or   can   afford.   Those   living   in   high-­‐hazard  areas  may  choose   to   stay  with   compulsory  retroffiting   such   as  stilting   or  non-­‐wall  ground  levels  of  their  buildings  or  avail  of  risk  transfer  commodities  such  as  insurance.

The   different  maps  depicting   the   flood   inundation   and   velocity   determine   the   courses   of  action  that  can  be  used  by  decision-­‐makers,  planners  and  engineers  can  take  to  prepare  and  respond   to   flooding   disaster.   spatial   planning/zoning   and   infrastructure.   Ultimately,   the  spectrum  of  decisions  in  flood  management  can   range  from  which  areas  to  protect,  what  to  adapt  to  and  what  to  give  up.

Based   on   the   projected   changes   in   rainfall   pattern   from   the   simulation   by   PAGASA,   the  flooding   scenarios   in   the   future  were   also   generated,   particularly   for  2020   and   for  2050.  The   effect   of   changes   in   rainfall   amount   within   24-­‐hour   period  was   incorporated   in   the  runoff  models.  The  results  of  the  models  that  the  water  levels  in  the   rivers  will   increase  by  2020.   However,   in   2050,   when   the   24-­‐hour   duration   nears   the   present   (but   still   higher  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 229

Page 250: Technical Report: River basin and Flood Modeling and Flood ...

than)  the  present  levels.  

The   rainfall   dumped   by   typhoon   Sendong   levels   was   recorded   at   165mm   in   24   hours  (Talakag).   Frequency  analysis  against  historical  rainfall  data   place   Sendong   between  a   35-­‐year  (log-­‐normal  distribution)  to  75-­‐year  (exponential  distribution)  return  period.  With  the  projected  increase   in  daily  rainfall  as  a  result  of   the  climate  change  projection,   the  Sendong  event  is  considered   to  now  occur  more   frequently  in   the  area.  Plans  and   designs   for  storm  frequencies  attuned  Sendong-­‐type  events  should  now  be  a  norm.

The  modelling   exercises   for  the   four  watersheds  also  resulted   in   the   determination   of   the  possible  lead  time  for  local  disaster  managers  to  take  action  provided  rainfall  amount  in  the  upper  part  of   the  catchment  is  known.  Table  17  to  Table  32  indicate  peak  runoff  and   the  lag   time  between   the  peak  rainfall  and   runoff   for  the   four  rivers  (Cagayan  de  Oro,   Iponan,  Iligan   and   Mandulog)   .   These   can   be   used   as   guide   in   evacuating   citizens   to   safe   areas.  Specific   rainfall   amounts   translate   to   approximate   flooding   scenarios,   the   local   disaster  managers   can   prioritize   whom,   where   and   how   to   evacuate   since   the   flood   hazard   maps  indicate  the  rainfall.  

7.2  Factors  Aggravating  the  Flooding  Problem

During   the   course   of   the   flooding   study,   various   aspects  of   the   Cagayan   de   Oro  watershed  pointed  out  the  factors  that  may  influence  flooding   and  provide  keys  to  proper  approach  to  manage  the  flooding   issue.  The  different  aspects  and  insights  are  discussed  below.  Although  the   floodings   are   mainly   triggered   by   intense   and   prolonged   rainfall   through   a   fixed  catchment  size  and  geometry,  the   degree  of   flooding  may  be  modified  by  the   conditions  in  the   watershed.   The   land   cover   changes   in   the   watershed   land   cover   conditions   in   the  watershed  lead  to  worse  flooding  either  directly  or  indirectly.

7.2.1  Changes  in  land  use/land  cover  conditions

Changing   the   land   cover   from   forest,   idle   or   grassland   to   agricultural   plantations   was  observed   from   the   BAS   statistics   (See   Figure  47)   directly  increases   runoff   because  of   the  watersheds   decrease   in   the   ability   to   retain   water.   The   ability   to   retain   water   by   the  watershed  depends  on  the  quality  and  quantity  of  vegetative   cover  and  the   type  of  soil.  The  water-­‐retention   of   vegetation   is  possible   through   interception   of   rainfall  by  the   canopies.  The   thicker   and   higher   the   vegetation   type,   the   larger   the   volume   retained   which   flows  down   the   canopy   at  a   later  time.   Direct   raindrops  or   flowing   water   below  the   vegetation  flow  through   the  soil  as  infiltration  until  such   time  that  soil  is  saturated  with  water.  On  the  other   hand,   compaction   of   bare   soil   surface   material   by   direct   exposure   to   sunlight  decreases   ability   of   water   to   directly   penetrate   canopy   and   hence   induces   immediate  overland  flow.  The  presence  of  vegetative  cover  therefore  causes    delay  in  the  flow  of  water  through  the  underlying  soil  cover  and  hence  reduce  and  prolong  the  arrival  of  peak  runoff.  

Shifting  the  vegetative  cover  from  forests  to  agriculture  significantly  decreases  interception  capacity   and   accelerates  water   infiltration   by   soil.   By   converting   idle   grasslands   to   tilled  agricultural   lands   also   reduce   interception   to   a   lesser   extent   and   accelerates   infiltration  rates   due   to  tillage.   There   is  almost   zero   interception   and  no   infiltration  on   impermeable  built  surfaces  such  as  concrete  or  asphalt.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 230

Page 251: Technical Report: River basin and Flood Modeling and Flood ...

7.2.2  Sedimentation  and  Flooding

Changes   in   vegetative   cover   may   also   aggravate   flooding   by   way   of   erosional   and  sedimentation  processes.  Eroded  materials  from   the   soil  surface  within   the  watershed   are  transported   and   eventually  deposited   along   the   channels.   It  was  shown   in   the   Chapter   of  this  report  that  the  land  use  in   the  upper  part  of   the   catchment  has  been  actively  changing  possibly   due   to   shifting   to   a)   intensive   agricultural   land   uses;   b)   land   slides   and   bank  erosion  which  remove   topsoil  and  deposit  along  the   channels;  and  c)  mass  movements  and  debris  flows  from   slope   failure   resulting   from   other   induced/man-­‐made   or  natural  causes.  The  soils  eroded  from  agricultural  areas  are  transported  in  the  streams  and  river  tributaries  (Figure  259-­‐260)   especially   during   the   rainy   season  when   heavy   rainfall   events   actively  remove  on   rain  impact  and  eventually  deposit  and  remobilize   the  sediments  from  overland  flow  into  the  channels.  

One   of   the   immediately   identified   solutions   to   the   flooding   problem   in   the   PCTP   sites   is  dredging   which   entails   the   physical   removal   of   sediments   along   the   river   channel   to  increase   its  flow  capacity.  Removal  of  sediments  on  strategic  parts  of   the   river  aims  either  widen   and/or   deepen   the   river   or   make   the   channel   flow   more   efficiently.   Before   any  dredging   activity   is   pursued,   it   is   important   to   understand   the   characteristics   of  sedimentation  in  the  upper  part  of  the  Cagayan  de  Oro  watershed.  

Figure  259.    Photo  of  Cagayan  de  Oro  River  merging  (foreground)  tributary  taken  from  Bubunawan  station,  Bubunawan.  Bukidnon  upstream.  

Left  tributary  shows  turbid  waters  coming  from  an  area  dominated  by  agricultural  and  uses,  particularly  pineapple  (upper  left)  planted  in  an  extensive  plateau  in  nearby  town  of  Bukidnon.  This  is  in  contrast  to  the  right  side  which  show  relatively  pristine  waters  (left).

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 231

Page 252: Technical Report: River basin and Flood Modeling and Flood ...

Figure  260.    View  of  San  Simon  Bridge  along  Iponan  River.  

Notice   the  turbid  waters  1lowing   in  the   river  (photo  taken  09  June   2013).  A  water  level  and  rain  gauge  (top)   is  installed  on  the  bridge.

As  the  channels  deepen  and  widen  downstream,  the  stream  power  of  the  river  waters  allow  sediments   to   settle   along   the   channels   as   wash   loads   or   bed   loads.   The   deposition   of  sediments  in  main  channels,   in  turn,  makes  it  more  shallow  and  narrower,  thereby  reducing  the  overall  capacity  of  the  river  to  flush  out  water  and  also  clog  some  of  the  waterways.  

To   counter   the   decreasing   river   capacity   due   to   sedimentation,   dredging   is   one   of   the  immediate   interventions  proposed.  But  since   there  will  be   continuous  supply  of   sediments  one   rainy  season  after  the  other,  dredging   activities  must  also  be   done   seasonally  in  order  to  remove   them.  Dredging   is  not  a  one-­‐time   solution  -­‐  it  entails  much  resource   in   terms  of  heavy   equipment   to   remove,   logistics   transport   the   materials,   and   proper   planning   to  strategically  place  dredge  materials.  

Although  the  amount  of  soils  that  has  been  removed  is  not  quantified   in  this  study,   several  inferences  may  be   devised  to  estimate  the   sediment  load.  Based  on  the   DENR-­‐EMB  Region  10   regular  monitoring   from   2011   to   2012,   the   sediment   concentration   in   terms  of   Total  Suspended   Solids   (TSS),   range   from   <1   to   206mg/L.   The   River   Basin   Control   office  estimates  the  annual  runoff  from  Cagayan  de  Oro  River  at  3,883  Million  Cubic  Meters  (MCM)  per  year.  Using  the  TSS  ranges,  the  sediment  load  could  be  as  much  as  to  800,000  tonnes  per  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 232

Page 253: Technical Report: River basin and Flood Modeling and Flood ...

year1.   At   bulk   density   of   about   2.7g/CM   this   weight   will   translate   to   296.296   MCM   of  sediment  volume.  Assuming   that  that  a  massive   dredging   activity   is  undertaken  similar   to  the   magnitude   of   the   Pasig   River   dredging   project,   where   the   daily   dredging   capacity   is  14,000  CM/day,  it  will  take  more   than  100  years  to  dredge.  This  Pasig  River  Project  entailed  Php4.5  Billion.  The  dredging  materials  out  of  the  main  river  channel  will  only  be  effective  on  the  shorter  term.  

Figure  261.    Paseo  de  Oro  high-­‐end  shopping  and  hotel  complex  in  front  of  Cagayan  de  Oro  River.

Note  the  very  turbid  water  gently  running  through  the  river.

7.2.3  Urban  Development    Aspects  of  Flooding  

Development  of  urban  spaces  should  carefully  consider  the  magnitude  of  flooding   that  may  occur  based  on  the  different  scenarios  depicted  in  the   flood  hazard  maps.  Unplanned  urban  development  does  not  only  increase   risks  to  those  dwelling  on  them,   they  also  worsen   the  flooding   condition   about   their   surroundings.   Although   structural   measures   such   as   dikes  Figure   261  are   often   proposed   to  control   the   flood,   they  may   also   be   proven   inadequate  and  neglected   through   time.   Since  concentration   of   people  will  put  them   in   higher  level   of  risk  than  necessary,  real  estate  development  should  there  be  veered  away  from  the  rivers  as  much  as  possible  (Figure  262).

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 233

1  In  the  latest  MGB  sediment  analysis  performed  in  Iponan  River  (MGB  2014),  the  sediment  concentration  range  from  31  to    872  mg/L.

Page 254: Technical Report: River basin and Flood Modeling and Flood ...

Figure  262.    Sky  view  of  Paseo  del  Rio  right  beside  Cagayan  de  Oro  River

Sitting  on  what  ought  to  be  a  natural  1loodplain,  the  building-­‐complex,  though  claimed  to  be  adaptive  to  1lood-­‐prone  conditions  by  being  supported  on  stilts,  will  have  fencs  impede  incoming  1lood  waters  and  eventually  defeat  the  purpose  of  having  pier  piles  in  the    approach  Cagayanon  Bridge  from  the  rotunda  (foreground,  right).  Notice  the  concrete  fences  built  on  the  left  side  of  the  complex.  (Photo  courtesy  of  CdoDev.com).

The   flood   hazards   are   also   useful   in   diagnosing   vulnerabilities   of   the   transportation  network  to  flooding.    Roads  that  have   elevations  are  below  the   highest   flood   levels  will   be  cut  off  during  flooding  events.  Flooding   in  roads  will  not  only  affect  those   living  nearby,  but  also   those   located   upstream   in   the   watersheds  because   it  will   cut  off   the   supply  of   goods  and  service  to  those   in  the   floodplain.  Therefore,   economic  activities  even  by  those   outside  the  flood-­‐prone  areas  may  be  also  be  affected.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 234

Page 255: Technical Report: River basin and Flood Modeling and Flood ...

Chapter  8CONCLUDING  REMARKS

8.1  Summary

Flood   modeling   and   hazard   mapping   has   been   undertaken   for   four   major   river   systems  found   in   the   Cagayan   de   Oro   and   Iligan,   namely   Cagayan   de   Oro   River,   Iponan   River,  Mandulog   River   and   Iligan   River.   The   flood   model   employed   a   2-­‐dimensional   numerical  simulation  of  shallow  water  flow.  The  inflows  used  in  the  flood  models  were  based  on  flows  estimated   from  each  of   the  equivalent  watersheds  for  scenarios  of  5-­‐,  25-­‐,  50   and  100-­‐year  return  periods.   The   flood  model  was  routed  over  a   high-­‐resolution   topographic  data   from  recent   fine-­‐scale   LIDAR   surveys.   The   flood   models   and   maps   were   validated   using   flood  levels   observed   by   local   folks.   The   flood   model   results   were   processed   to   extract   the  maximum   inundation   depth   and   used   as   a   basis   for   producing   the   flood   hazard   map.  Estimates   of   flooding   extent  and   inundation   level  were   generated.   Results   show  the   flood  maps   against   local   observations   indicate   valid   and   reasonable   levels   of   accuracy   with  minimal  cases  of  spurious  results  (false  positive  or  true  negative  results).  

8.2  Recommendations

The  problems  of   flooding   in  cities  of  Cagayan  de  Oro  and   Iligan  should  not  be  dealt  with  in  isolation.  Those  concerned  LGUS  may  not  be  able  to  address  the  river  flooding   issues  alone  since   the   watersheds   where   most   of   the   floodwaters   come   from   are   found   in   other  municipalities,  cities  and  provinces.The   source   of   excessive   waters   does  not  originate   within   these   areas   alone.   The   rivers   of  Cagayan  de   Oro   and   Iponan  watersheds  not  only   transverse   Cagayan  de  Oro  City  but  also  the   municipalities   of   Talakag,   Baungon,   Libona   and   Pangantucan   found   the   province   of  Bukidnon.  

In   the   case   of   Iligan   City,   the  Mandulog   and   Iligan  watersheds  also   include   parts  of  Kapai,  Bubong   Tagoloan   II,   Pantar   and   Baloi.   Clearly,   the   solution   of   the   flooding   woes,   it   is  imperative  to  involve  those  beyond  one’s  administrative  area  of  responsibility.  A  basin-­‐wide  approach  to  planning  the  land  use  and  development  strategies  must  therefore  be  adapted.  

Much   is   also   at   stake   for   LGUs   located   within   these   watersheds.   Many   of   the   watershed  residents  depend  on   the   cities   of   Cagayan  de   Oro  and   Iligan   for  trade   of   their  agricultural  produces,   services   and   supply  of   their   basic   needs   and   commodities.   If   the   flow   of   these  goods   and   services   are   interrupted   by   increasing   flooding   events   and   magnitudes,   they  would   also   be   economically  affected.   The   symbiotic   relationship   between   watershed   and  flood  plain  communities  must  be   therefore  be   recognized  and  addressed  when  attempts  to  address  the  flooding  issue.  

The   increased   and   accelerated   watershed   runoff   is   also   symptoms   of   alarming   rates  environmental  degradation   taking   place   slowly   in   the  upland   areas.   Increased  runoff   does  not   only   cause   sedimentation,   shallowed   rivers  and   consequently  flooding   in   the   lowland  areas  but  also  leads  to  badlands.  

Intense  agricultural  activities,  deforestation  and  unregulated  mining  are  possible  culprits  to  the  increased  erosion  rates.  Continuously  cultivated  upland  areas  are  susceptible  to  erosion.  

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 235

Page 256: Technical Report: River basin and Flood Modeling and Flood ...

The   eroded   topsoils  supply  sediments  to   the   streams  and  unto  the   rivers.   Sediment-­‐laden  rivers  decrease   their   depth   and   reduce   flow   efficiency.   Since   the   rivers   become   shallow,  excess  runoff  could  easily  overtop  river  channel  and  therefore  exacerbate  flooding.

On   the   flood   plain   areas,   urban   development   along   riverbanks   should   be   discouraged  because  it  impedes  flow  of  water  through  the  floodplain  and  aggravates  flooding  around  the  river.   Large   urban   development   projects   fronting   or   located   just   beside   the   river   can  constrict  river  flows.  The   constriction  in   turn  makes   it  difficult  for  water  to   flush  out  from  the  upper  adjacent  part  of  the  floodplain  or  across  the  river  making   these  areas  more  prone  to  higher   and  prolonged   levels   of   inundation.   In   general   flood  plains   and   river  banks   are  better   left   in   their   natural   state   to   perform   its   function   of   serving   as   impoundment   or  carries  of  excess  waters  overflowing  from  the  channels  during  flooding  episodes.  During  the  dry  season,   they  may   be   enjoyed   for  recreational  uses   as   parks   and   open   fields.   To   some  extent,  agricultural  uses  may  be  allowed  but  may  be  planted  with  produces  of   greater  flood  resistance  like  mango  orchards  or  coconut  trees.    

Therefore,   aside   from   examining   the   climate   change,   anthropogenic   events  and   activities  must  be   taken   fully  into  account  in  understanding   the  complex  hydrologic  processes  taking  places   in   the   basins   being   studied.   An   integrated   analysis   of   climatic   and   land   cover  conditions  in  future  studies  is  recommended.    

8.3  Concluding  Remarks

The   flood   hazard   mapping   exercise   was   able   to   define   in   greater   detail   the   flooding  susceptibility  of  the  four  river  systems.    The  newly  generated  spatial  information  serves  as  a  valuable   input   for   land   use   planning   and   zoning   since   it   identifies  decision   zones  where  settlement  and  development  activities  must  be  regulated.    

The   flood   scenarios   also   guides   investment   decisions   such   as   what   flood   and   drainage  control   facilities  must  be   put   in   place,   and   how  will   they  be   designed   to  withstand   future  impacts   of   climate   change.     It   will   also   guide   priorities   for   watershed   management   by  influencing   policies   on  managed   production   while   and   protecting   the   upland   areas.     The  flood   inundation   model   which   simulates   the   velocity   of   water   flow   will   also   guide   the  integrated   flood   monitoring   and   early  warning   system   that   government   intends   to  put   in  place.   By  being   able   to   pinpoint   areas  that  are  of   highest   risk   to   future   flood   events,   local  governments   will   be  more   equipped   in   prioritizing   their   programs  and   projects   that   will  address   the   vulnerability   of   communities   therein,   come   up   with   better   preparedness  programs,  and  ensure  the  safety  of  everyone.

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 236

Page 257: Technical Report: River basin and Flood Modeling and Flood ...

REFERENCES

Mines  and  Geosciences  Bureau  (2014),  Decreasing  sediments  in  Iponan  River,  accessed:  24   March  2014,  URL:  http://www.mgb10.com/mgb10/wp-­‐content/uploads/2014/03/Decreasing-­‐Sediments-­‐in-­‐Iponan-­‐River.pdf

Paringit,  E.  C.  (2012),  High-­‐resolution  digital  elevation  dataset  derived  from  airborne  lidar   for  flood  hazard  assessment  and  mapping  applications.  Proceedings  of  the   33rd     Asian  Conference  on  Remote  Sensing  (ACRS),  Phuket,  Thailand  (in  DVD).

Popinet,  Stéphane    (2003),  Gerris:  a  tree-­‐based  adaptive  solver  for  the   incompressible  Euler     equations   in  complex   geometries,   Journal   of  Computational  Physics,  190(2),  pp.     572-­‐600.

Popinet,   S.   (2012)   Adaptive   modelling   of   long-­‐distance   wave   propagation   and   fine-­‐scale     flooding  during  the  Tohoku  tsunami,  Natural  Hazards  and  Earth  System  Sciences     (12)1213–1227.    

Hydrologic  Engineering  Center  (2010)  HEC-­‐RAS  (Version  4.1)  River  Analysis  System,  User’s     Manual,  U.S.  Army  Corps  of  Engineers,  Davis,  CA.

Kelman,  Ilan,  Spence,  Robin  (2004),   An  overview  of   flood  actions  on  buildings,  Engineering     Geology  73,  297–309)

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 237

Page 258: Technical Report: River basin and Flood Modeling and Flood ...

RIVER BASIN AND FLOOD MODELING AND FLOOD HAZARD ASSESSMENT OF RIVERS IN THE CITIES OF CAGAYAN DE ORO AND ILIGAN

CCC-UNDP-Australian Government I PROJECT CLIMATE TWIN PHOENIX 238