Top Banner
Systems Modeling Systems Modeling and Analysis and Analysis Edward S. Rubin Department of Engineering and Public Policy Department of Mechanical Engineering Carnegie Mellon University Pittsburgh, Pennsylvania Presentation to the NREL–CMU Meeting Pittsburgh, Pennsylvania June 25, 2009
42

Systems Modeling and Analysis

Jan 08, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Systems Modeling and Analysis

Systems Modeling Systems Modeling and Analysisand Analysis

Edward S. RubinDepartment of Engineering and Public Policy

Department of Mechanical EngineeringCarnegie Mellon University

Pittsburgh, Pennsylvania

Presentation to the

NREL–CMU MeetingPittsburgh, Pennsylvania

June 25, 2009

Page 2: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

A Hierarchy of Models for R&D A Hierarchy of Models for R&D Planning and Policy AnalysisPlanning and Policy Analysis

Options for a single facility

(tech feasibility, efficiency,

emissions, cost)

Multi-facility(or multi-sector)optimization or

simulation (dynamic)

Integrated assessment

models(including measures

of impacts)

Page 3: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Areas of Modeling ResearchAreas of Modeling Research

• Performance, emissions and costs of fossil fuel power plants and environmental control options

Criteria air pollutants and consumptive water useCarbon dioxide capture, transport and sequestrationCoal-to-liquids processes and polygeneration systems

• Energy storage options for solar-thermal power plants

• Environmental technology innovation and learning

Page 4: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

The Research TeamThe Research Team

• Mike Berkenpas

• Chris Frey (NCSU)

• Karen Kietze

• Hari Mantripragada

• Aaron Marks

• Sean McCoy

• Andrew Place

• Ed Rubin

• Sharon Wagner

• Peter Versteeg

• Sonia Yeh (UCD)

• Haibo Zhai

Page 5: Systems Modeling and Analysis

Power plant performance, Power plant performance, emissions and costemissions and cost

E.S. Rubin, Carnegie Mellon

Page 6: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

The IECM Project: The IECM Project: Power Plant Performance, Emissions & CostsPower Plant Performance, Emissions & Costs

• A desktop/laptop computer model developed for DOE/NETL; free and publicly available at: www.iecm-online.com

• Provides systematic estimates of performance, emissions, costs and uncertainties for preliminary design of:

PC, IGCC and NGCC plantsAll flue/fuel gas treatment systemsCO2 capture and storage options (pre- and post-combustion, oxy-combustion; transport, storage)

Page 7: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Modeling ApproachModeling Approach

• Systems Analysis Approach

• Process Performance Models

• Engineering Economic Models

• Advanced Software CapabilitiesProbabilistic analysis capabilityUser-friendly graphical interfaceEasy to add or update models

Page 8: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

IECM Software PackageIECM Software Package

PowerPowerPlantPlant

ModelsModels

GraphicalGraphicalUserUser

InterfaceInterface

Plant andPlant andFuelFuel

DatabasesDatabases

Plant & ProcessPlant & ProcessPerformancePerformance

-- EfficiencyEfficiency-- Resource useResource use

EnvironmentalEnvironmentalEmissionsEmissions

-- Air, water, landAir, water, land

Plant & ProcessPlant & ProcessCosts Costs -- CapitalCapital

-- O&MO&M-- COECOE

Fuel PropertiesFuel Properties-- Heating ValueHeating Value-- CompositionComposition-- Delivered CostDelivered Cost

Plant DesignPlant Design-- Conversion ProcessConversion Process-- Emission ControlsEmission Controls-- Solid Waste MgmtSolid Waste Mgmt-- Chemical InputsChemical Inputs

Cost FactorsCost Factors-- O&M CostsO&M Costs-- Capital CostsCapital Costs-- Financial FactorsFinancial Factors

Page 9: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

IECM Technologies for PC PlantsIECM Technologies for PC Plants(excluding CO(excluding CO22 capture, transport and sequestration)capture, transport and sequestration)

Particulate Removal• Cold-side ESP• Fabric filter

- Reverse Air- Pulse Jet

SO2 Removal• Wet limestone

- Conventional- Forced oxidation- Additives

• Wet lime• Lime spray dryer• Combined SO2/NOx systems

Solids Management• Ash pond• Landfill• Stacking• Co-mixing• Byproducts

Boiler Types• Subcritical• Supercritical• Ultra-supercritical

Furnace Firing Types• Tangential• Wall• Cyclone

Furnace NOx Controls• LNB• SNCR• SNCR + LNB• Gas reburn

NOx Removal• Hot-side SCR• Combined SO2/NOx systems

Mercury Removal• Carbon/sorbent injection

Page 10: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Models Account forModels Account forMultiMulti--Pollutant InteractionsPollutant Interactions

CriteriaAir

Pollutants

HazardousAir

Pollutants

PMSO2

NOx

HgHClH2SO4

GreenhouseGas

EmissionsCO2

CH4

Page 11: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Some Recent IECM UsersSome Recent IECM Users

Terra Humana Clean Tech. Eng'r Ltd.Ontario Power Gen.Inst. of Applied Energy (IAE)ENSR, Inc.Chinese Academy of Sci.Tennessee Valley Authority (TVA)NTPC LimitedInstitut TeknologiBandung (ITB)Energy Res. Centre of the NetherlandsChalmers University

World BankTampa Electric Co.NTNU/StatoilINERCOEnergy & Env. StrategiesCarnegie Mellon UniversityWolk Integrated Technical ServicesSyncrudeNRDC Natural Res. DefenceCouncilIndustries LimitedEnergy & Env. Res. Corp.Canadian Clean Power CoalitionWisconsin Public Service Corp.Superior Adsorbents, Inc.Nova Scotia Power, Inc.Indian Inst. of Tech.Energy & Env. Res. Center (EERC)Canada Natural ResourcesWisconsin Dept. of Natural Res.Steven Coons ConsultingNorwegian University of Sci. and Tech.Imperial CollegeEnergi E2Canada Env.WheelabratorAir Poll. Control Inc.StatoilNorth Carolina State UniversityIllinois Inst. of Tech.Energetics, Inc.BP SunburyWashington PowerSouthern Co. Services, Inc.Norsk Hydro ASA, Oil & Energy Res.Illinois Dept. of Natural ResourcesAmerenUEBP Power Ltd.W.L. Gore & Associates, Inc.Southern Co. Gen.Norsk Hydro ASAIllinois Clean Coal Inst.EnelBP Int'l LimitedVattenfallUtveckling ABSNC LavalinNorman Plaks ConsultingIFPEmera Inc.BPVattenfallABSintef Energy Res.Niro A/SIEA Greenhouse Gas R&DElectricite de France (EDF)Boiler Systems Eng'r, E.S.O.URS CorpSierra Pacific Power Co.NIPSCOIEA Env. Projects, Ltd.Electric Power Res. Inst. (EPRI)BOC GasesUniversity of WaterlooSiemensNiksa Energy AssociatesIEA Clean Coal CentreElectric Power Gen. Assoc.Black & Veatch Corp.University of TwenteShell Global Solutions Int'lNicholson & Hall Corp.Holland Board of Public WorksElectric Energy, Inc. (EEI)Bechtel Power Corp.University of TorontoShell Chemical Co.New Energy & Ind. Tech. Org. (NEDO)Hatch AcresEdison Mission EnergyBattelle NorthwestUniversity of TexasSFA Pacific, Inc.NESCAUMHarvard UniversityE.ON EnergieAGBattelleUniversity of StuttgartScientechNeill and GunterHamon Res. Cottrell, Inc.E. On UKBasin Electric Power Coop.University of South WalesSci. Applications Int'l. Corp. (SAIC)National Power Plc.H&W Mgmt. Sci. ConsultantsDynegy Midwest Gen.Balcke-Durr GmbHUniversity of Salvador UNIFACSSavvy Eng'r, LLCNational Energy Tech. Lab. (NETL)GyeongsangNational UniversityDoosan Babcock Energy Ltd.ATCO PowerUniversity of ReginaSaskPowerNanyangTechnological UniversityGreat River EnergyDont Inc.Argonne National Lab.University of QueenslandSargent & LundyMinnkotaPower Coop., Inc.GM R&D CenterDONG Energy Gen.ARCADISUniversity of PittsburghSalt River Project (SRP)Midwest Gen. EME, LLCGenerators for Clean Air (GCA)DMCR/Dutch Ministry of Env. (VROM)Apogee Scientific, Inc.University of North CarolinaSalt River ProjectMidAmerican Energy Co.General Electric Co.Detroit Edison Co.APATUniversity of NewcastleSAICMichigan State UniversityGE Infra, EnergyDept. of Env. Services - NH (DES)Ankara UniversityUniversity of New OrleansRWE Power AGMassachusetts Inst. of Tech. (MIT)GE Global Res.Dept. of Env. Quality - VA (DEQ)American Transmission Co.University of Manchester Inst. Sci. Tech.RMB Consulting & Res., Inc.MacQuarieUniversityGassnovaDept. of Env. Protection - PA (DEP)American Electric PowerUniversity of MaineRes. Triangle Inst.Lower Colorado River AuthorityGas Tech. Inst. (GTI)Dept. of Env. Protection - NJ (DEP)Alstom Power Plant Lab.University of LecceRes. Inst. of Innovative Tech. EarthLincoln Electric SystemFuel Tech, Inc.Dept. of Env. and Natural Res. - NCAlstom Power Inc.University of EdinburghReaction Eng'r Int'lLehigh UniversityFriedman, Billings, Ramsey & Co.Dept. of Energy, Instituto de CarboquimicaALSTOM Power CentralesUniversity of CaliforniaReaction Eng'r Inst.LAB SAFoster Wheeler EnergiaOyDept. of Energy (DOE)Alstom Power Boiler GmbHUniversity of CalgaryPrinceton UniversityKorea Western Power Co.Fossil Energy Res. Corp.CSEnergyAlstom (Switzerland)University of BathPraxair Inc.Korea Inst. of Energy Res.Fortum Power and Heat OyCroll-ReynoldsAlliant EnergyUniversity of AberdeenPrairie Adaptation Res. Coll.Korea Electric Power Corp.FordCQ, Inc.Allegheny Energy SupplyTXU ElectricPPL Gen., LLCKinectricsFluor Daniel Canada, Inc.COORETECALCOA Power Gen., Inc.Twenty-First Strategies, LLCPowergenPower Tech.Kennecott EnergyFluent, Inc.Coop. Res. Centre for Greenhouse GasAlberta Res. CouncilTU DresdenPowerGenKEMA Nederland B.V.FLS Miljo A/SConsumers EnergyAlberta Env.TransAltaPIRA Energy GroupKansas City Power & Light Co.Florida Power & Light Co.CONSOL Energy, Inc.Alberta Economic Dev.Toshiba Corp.Pinnacle West EnergyKanazawa UniversityFirstEnergy Corp.Columbia UniversityAkzo Nobel Functional ChemTNO Env., Energy and Process InnovPembina Inst.Japan Petroleum Exploration Co.First Energy Corp.Cogentrix Energy, Inc.Airborne Clean EnergyTMommerConsultantsPacific Northwest National Lab. (PNNL)Jack R. McDonald, Inc.Env. Protection Agency (EPA)Coaltek LLC / Jupiter Oxygen Corp.Air Products plcTexas Municipal Power AgencyPacific Corp.Ishikawajima-Harima Heavy IndustryEnv. Protection Agency - IL (EPA)Coal in Sustainable Dev., Tech TransferAir LiquideTexas A&M UniversityPace Global Energy ServicesIntermountain Power Service Corp.Env. DefenseClean Energy Systems Inc.AEP-SCR Eng'rTetra Tech EM Inc.OREC/Buckeye Power, Inc.Inst. of Energy - EC/JRCEnv. & Renewable Energy SystemsCinergy Power Gen. Services, LLCABB Lummus Global, Inc.

Terra Humana Clean Tech. Eng'r Ltd.Ontario Power Gen.Inst. of Applied Energy (IAE)ENSR, Inc.Chinese Academy of Sci.Tennessee Valley Authority (TVA)NTPC LimitedInstitut TeknologiBandung (ITB)Energy Res. Centre of the NetherlandsChalmers University

World BankTampa Electric Co.NTNU/StatoilINERCOEnergy & Env. StrategiesCarnegie Mellon UniversityWolk Integrated Technical ServicesSyncrudeNRDC Natural Res. DefenceCouncilIndustries LimitedEnergy & Env. Res. Corp.Canadian Clean Power CoalitionWisconsin Public Service Corp.Superior Adsorbents, Inc.Nova Scotia Power, Inc.Indian Inst. of Tech.Energy & Env. Res. Center (EERC)Canada Natural ResourcesWisconsin Dept. of Natural Res.Steven Coons ConsultingNorwegian University of Sci. and Tech.Imperial CollegeEnergi E2Canada Env.WheelabratorAir Poll. Control Inc.StatoilNorth Carolina State UniversityIllinois Inst. of Tech.Energetics, Inc.BP SunburyWashington PowerSouthern Co. Services, Inc.Norsk Hydro ASA, Oil & Energy Res.Illinois Dept. of Natural ResourcesAmerenUEBP Power Ltd.W.L. Gore & Associates, Inc.Southern Co. Gen.Norsk Hydro ASAIllinois Clean Coal Inst.EnelBP Int'l LimitedVattenfallUtveckling ABSNC LavalinNorman Plaks ConsultingIFPEmera Inc.BPVattenfallABSintef Energy Res.Niro A/SIEA Greenhouse Gas R&DElectricite de France (EDF)Boiler Systems Eng'r, E.S.O.URS CorpSierra Pacific Power Co.NIPSCOIEA Env. Projects, Ltd.Electric Power Res. Inst. (EPRI)BOC GasesUniversity of WaterlooSiemensNiksa Energy AssociatesIEA Clean Coal CentreElectric Power Gen. Assoc.Black & Veatch Corp.University of TwenteShell Global Solutions Int'lNicholson & Hall Corp.Holland Board of Public WorksElectric Energy, Inc. (EEI)Bechtel Power Corp.University of TorontoShell Chemical Co.New Energy & Ind. Tech. Org. (NEDO)Hatch AcresEdison Mission EnergyBattelle NorthwestUniversity of TexasSFA Pacific, Inc.NESCAUMHarvard UniversityE.ON EnergieAGBattelleUniversity of StuttgartScientechNeill and GunterHamon Res. Cottrell, Inc.E. On UKBasin Electric Power Coop.University of South WalesSci. Applications Int'l. Corp. (SAIC)National Power Plc.H&W Mgmt. Sci. ConsultantsDynegy Midwest Gen.Balcke-Durr GmbHUniversity of Salvador UNIFACSSavvy Eng'r, LLCNational Energy Tech. Lab. (NETL)GyeongsangNational UniversityDoosan Babcock Energy Ltd.ATCO PowerUniversity of ReginaSaskPowerNanyangTechnological UniversityGreat River EnergyDont Inc.Argonne National Lab.University of QueenslandSargent & LundyMinnkotaPower Coop., Inc.GM R&D CenterDONG Energy Gen.ARCADISUniversity of PittsburghSalt River Project (SRP)Midwest Gen. EME, LLCGenerators for Clean Air (GCA)DMCR/Dutch Ministry of Env. (VROM)Apogee Scientific, Inc.University of North CarolinaSalt River ProjectMidAmerican Energy Co.General Electric Co.Detroit Edison Co.APATUniversity of NewcastleSAICMichigan State UniversityGE Infra, EnergyDept. of Env. Services - NH (DES)Ankara UniversityUniversity of New OrleansRWE Power AGMassachusetts Inst. of Tech. (MIT)GE Global Res.Dept. of Env. Quality - VA (DEQ)American Transmission Co.University of Manchester Inst. Sci. Tech.RMB Consulting & Res., Inc.MacQuarieUniversityGassnovaDept. of Env. Protection - PA (DEP)American Electric PowerUniversity of MaineRes. Triangle Inst.Lower Colorado River AuthorityGas Tech. Inst. (GTI)Dept. of Env. Protection - NJ (DEP)Alstom Power Plant Lab.University of LecceRes. Inst. of Innovative Tech. EarthLincoln Electric SystemFuel Tech, Inc.Dept. of Env. and Natural Res. - NCAlstom Power Inc.University of EdinburghReaction Eng'r Int'lLehigh UniversityFriedman, Billings, Ramsey & Co.Dept. of Energy, Instituto de CarboquimicaALSTOM Power CentralesUniversity of CaliforniaReaction Eng'r Inst.LAB SAFoster Wheeler EnergiaOyDept. of Energy (DOE)Alstom Power Boiler GmbHUniversity of CalgaryPrinceton UniversityKorea Western Power Co.Fossil Energy Res. Corp.CSEnergyAlstom (Switzerland)University of BathPraxair Inc.Korea Inst. of Energy Res.Fortum Power and Heat OyCroll-ReynoldsAlliant EnergyUniversity of AberdeenPrairie Adaptation Res. Coll.Korea Electric Power Corp.FordCQ, Inc.Allegheny Energy SupplyTXU ElectricPPL Gen., LLCKinectricsFluor Daniel Canada, Inc.COORETECALCOA Power Gen., Inc.Twenty-First Strategies, LLCPowergenPower Tech.Kennecott EnergyFluent, Inc.Coop. Res. Centre for Greenhouse GasAlberta Res. CouncilTU DresdenPowerGenKEMA Nederland B.V.FLS Miljo A/SConsumers EnergyAlberta Env.TransAltaPIRA Energy GroupKansas City Power & Light Co.Florida Power & Light Co.CONSOL Energy, Inc.Alberta Economic Dev.Toshiba Corp.Pinnacle West EnergyKanazawa UniversityFirstEnergy Corp.Columbia UniversityAkzo Nobel Functional ChemTNO Env., Energy and Process InnovPembina Inst.Japan Petroleum Exploration Co.First Energy Corp.Cogentrix Energy, Inc.Airborne Clean EnergyTMommerConsultantsPacific Northwest National Lab. (PNNL)Jack R. McDonald, Inc.Env. Protection Agency (EPA)Coaltek LLC / Jupiter Oxygen Corp.Air Products plcTexas Municipal Power AgencyPacific Corp.Ishikawajima-Harima Heavy IndustryEnv. Protection Agency - IL (EPA)Coal in Sustainable Dev., Tech TransferAir LiquideTexas A&M UniversityPace Global Energy ServicesIntermountain Power Service Corp.Env. DefenseClean Energy Systems Inc.AEP-SCR Eng'rTetra Tech EM Inc.OREC/Buckeye Power, Inc.Inst. of Energy - EC/JRCEnv. & Renewable Energy SystemsCinergy Power Gen. Services, LLCABB Lummus Global, Inc.

Page 12: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Profile of Recent IECM UsersProfile of Recent IECM UsersType of Organization

Geographic Region

Utility28%

Company44%

Education17%

Government11%

Asia4%

South America<1% Australia

2%

North America71%

Europe23%

~ 500 organizations

Page 13: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Positive Feedback from Industry, Positive Feedback from Industry, Academia & GovernmentAcademia & Government

We've recently started using your IECM website to guide us in developing preliminary cost estimates for our operations. Refinery carbon capture has its own issues, but the information on the IECM website is extremely helpful. I just wanted to send along a note of thanks to you and Carnegie-Mellon for making this model available and the technical support behind it. We appreciate your work very much. - George Schuette, Hydrogen - Carbon Dioxide Group, ConocoPhillips Technology Center

I'll be co-teaching a course … on carbon capture and sequestration. We're really eager to use your IECM software package throughout our course this fall. I'm hoping to use examples from both industry and research …It would be wonderful to get together in person sometime to share ideas and to share with you our experience for using your program directly in our new course.- Jen Wilcox, Stanford University, Department of Energy Resources Engineering

“reviewers felt this contribution was …the ‘highlight’ of this year’s review meeting.”- Final Report Carbon Sequestration Project Review Meeting, September 26-29, 2005. Meeting Summary and Recommendations, National Energy Technology Lab

Page 14: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

IECM User InterfaceIECM User Interface

Select Plant Type

Page 15: Systems Modeling and Analysis

PC Plant with PostPC Plant with Post--Comb. CCSComb. CCS

E.S. Rubin, Carnegie Mellon

Page 16: Systems Modeling and Analysis

NGCC Plant with CCSNGCC Plant with CCS

E.S. Rubin, Carnegie Mellon

Page 17: Systems Modeling and Analysis

IGCC Plant with CCSIGCC Plant with CCS

E.S. Rubin, Carnegie Mellon

GE-quench O2-blown

Page 18: Systems Modeling and Analysis

Specify Fuel Parameters

E.S. Rubin, Carnegie Mellon

Page 19: Systems Modeling and Analysis

Specify Technology Parameters

E.S. Rubin, Carnegie Mellon

Page 20: Systems Modeling and Analysis

Set Financial Parameters

E.S. Rubin, Carnegie Mellon

Page 21: Systems Modeling and Analysis

Get Results for the Overall Plant

E.S. Rubin, Carnegie Mellon

Plant Mass Flows

Total Plant Costs

Page 22: Systems Modeling and Analysis

Get Results for Specific Plant Components

E.S. Rubin, Carnegie Mellon

Page 23: Systems Modeling and Analysis

Example of Probabilistic ResultsC

umul

ativ

e Pr

obab

ility

CO2 Mitigation Cost (2004 $/tonne CO2 avoided)

1.00.90.80.70.60.50.40.30.20.10.0

0 10 20 30 40 50 60 70 80 90 100

DETERMINISTIC

Uncertainty or Variability in:- CO2 capture efficiency- steam-electric penalty- compressor efficiency- lean sorbent loading- process facilities cost- CO2 storage cost- variable operating costs- gross plant heat rate- plant capacity factor- fixed charge factor

Probabilistic Resultsfor a PC Plant with

Amine-Based Capture

Cum

ulat

ive

Prob

abili

ty

CO2 Mitigation Cost (2004 $/tonne CO2 avoided)

1.00.90.80.70.60.50.40.30.20.10.0

0 10 20 30 40 50 60 70 80 90 100

DETERMINISTICDETERMINISTIC

Uncertainty or Variability in:- CO2 capture efficiency- steam-electric penalty- compressor efficiency- lean sorbent loading- process facilities cost- CO2 storage cost- variable operating costs- gross plant heat rate- plant capacity factor- fixed charge factor

Probabilistic Resultsfor a PC Plant with

Amine-Based Capture

Uncertainty or Variability in:- CO2 capture efficiency- steam-electric penalty- compressor efficiency- lean sorbent loading- process facilities cost- CO2 storage cost- variable operating costs- gross plant heat rate- plant capacity factor- fixed charge factor

Uncertainty or Variability in:- CO2 capture efficiency- steam-electric penalty- compressor efficiency- lean sorbent loading- process facilities cost- CO2 storage cost- variable operating costs- gross plant heat rate- plant capacity factor- fixed charge factor

Probabilistic Resultsfor a PC Plant with

Amine-Based Capture

E.S. Rubin, Carnegie Mellon

Page 24: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Model ApplicationsModel Applications

• Process design

• Technology evaluation

• Cost estimation

• R&D management

• Risk analysis

• Environmental compliance

• Marketing studies

• Strategic planning

Page 25: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Recent IECM Applications:Recent IECM Applications:Potential Cost Reductions from R&DPotential Cost Reductions from R&D

0

10

20

30

40

50

60

70

57

31

52

29

34

49

PlantDerate

SameOutput

CheaperBoiler

FutureAmines

HeatIntegr.

AmineCapex

Cost of COCost of CO22 Avoided ($/tonne COAvoided ($/tonne CO22))

0

10

20

30

40

50

60

70

57

31

52

29

34

49

PlantDerate

SameOutput

CheaperBoiler

FutureAmines

HeatIntegr.

AmineCapex

PlantDerate

SameOutput

CheaperBoiler

FutureAmines

HeatIntegr.

AmineCapex

Cost of COCost of CO22 Avoided ($/tonne COAvoided ($/tonne CO22))

Page 26: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Recent IECM Applications:Recent IECM Applications:Coal Quality Impacts on Technology ChoiceCoal Quality Impacts on Technology Choice

(2005 $/MWh; dashed lines based on constant $/GJ for all coals)(2005 $/MWh; dashed lines based on constant $/GJ for all coals)

0

20

40

60

80

100

120

140

Pittsburgh #8 Illinois #6 Wyoming PRB ND Lignite

Coal Type

Cos

t of E

lect

rici

ty ($

/MW

h)

IGCC-CCS PC-CCS

0

20

40

60

80

100

120

140

Pittsburgh #8 Illinois #6 Wyoming PRB ND Lignite

Coal Type

Cos

t of E

lect

rici

ty ($

/MW

h)

IGCC-CCS PC-CCS

0

20

40

60

80

100

120

140

Pittsburgh #8 Illinois #6 Wyoming PRB ND Lignite

Coal Type

Cos

t of E

lect

rici

ty ($

/MW

h)

IGCC-CCS PC-CCS

All plants ~500 MW(net); 75% CF; Aquifer storage;IGCC based on GE quench; PC=supercritical

Page 27: Systems Modeling and Analysis

Thermal storage options Thermal storage options for solar power plantsfor solar power plants

E.S. Rubin, Carnegie Mellon

Page 28: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Research QuestionsResearch Questions

• What are the costs and benefits of adding a thermal storage system to a parabolic trough concentrated solar power plant?

FinancialEnvironmental

• How do life cycle impact with thermal storage compare to a PT system without storage?

Page 29: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Sharon Wagner and Plant Manager Sharon Wagner and Plant Manager at SEGS at SEGS -- Kramer JunctionKramer Junction

Solar Field

Hourly DNR TES System

Power Cycle

Hourly electricity output

Thermal energy Therm

al en

ergy

Thermal energySolar Field

Hourly DNR TES System

Power Cycle

Hourly electricity output

Thermal energy Therm

al en

ergy

Thermal energy

PT-CSP Model structure

Page 30: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

PTPT--CSP PerformanceCSP Performance--Cost ModelCost Model

Builds on basics of NREL Solar Advisor Model (SAM) for solar field and power cycle performanceMore detailed representation of thermal storage:

• Incorporates effect of storage heat exchanger area on plant performance and cost (indirect storage)

• Calculates solar field area increase based on increased storage capacity

• Calculates storage system cost based on component costs obtained from Kelly and Kearney (2006)

Compares the cost of parabolic trough plants with and without storage

Page 31: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

TES Performance ModelTES Performance Model

Cold

No TES

HotTwo-Tank

Two-Tank

Direct

Indirect

1.

2.

3.

SolarField

Power Cycle

SolarField

Power Cycle

Power Cycle

Cold

HotHot HTF

Cold HTF

Hot Salt

Cold Salt

Hot H

TF

Co ld

HT F

SolarField

Page 32: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Preliminary ResultsPreliminary Results

Compared to PT-CSP with no thermal storage:

• Benefits:Higher capacity factor, greater annual outputLower LCOE

• Costs: Higher capital costsCarbon tax necessary to compete with fossil fuelsHigher life cycle emissions, energy use and water use

$0.00

$0.05

$0.10

$0.15

$0.20

0 3 6 9 12Hours of Storage

LC

OE (

$/kW

h)

IndirectDirect

Page 33: Systems Modeling and Analysis

Technology innovationTechnology innovationand learning ratesand learning rates

E.S. Rubin, Carnegie Mellon

Page 34: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Two Approaches to Estimating Two Approaches to Estimating Future Technology CostsFuture Technology Costs

• Method 1: Engineering-Economic AnalysisA “bottom up” approach based on engineering process models, informed by judgments regarding potential improvements in key process parameters

• Method 2: Use of Historical Experience CurvesA “top down” approach based on applications of mathematical “learning curves” or “experience curves” that reflect historical trends for analogous technologies or systems

Page 35: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Case Study TechnologiesCase Study Technologies

• Flue gas desulfurization systems (FGD)

• Selective catalytic reduction systems (SCR)

• Gas turbine combined cycle system (GTCC)

• Pulverized coal-fired boilers (PC)

• Liquefied natural gas plants (LNG)

• Oxygen production plants (ASU)

• Hydrogen production plants (SMR)

Page 36: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Some Historical Cost TrendsSome Historical Cost Trends

1 9 6 81 9 7 2

1 9 7 4

1 9 7 5

1 9 7 61 9 8 0

1 9 8 2

1 9 9 0

1 9 9 5

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0C u m u lative W or l d W e t FGD In s tal l e d

C apac i ty (GW )

Cap

ital C

osts

($/k

W) i

n 19

97$

( 1 0 0 0 M W , e f f = 8 0 - 9 0 % )

( 2 0 0 M W , e f f = 8 7 % )

y = 515.00x-0.08

PR = 0.95

100

1000

0 1 10 100 1000Cumulative World Pulverized-Coal Plant Installed Capacity (GW)

Subc

ritic

al P

C U

nit C

ost (

1994

$/

kW)

1942, EF=29.9%

19651999, US DOEF=37.6%Pulverized

Coal-Fired Boilers

y = 94254x-0.157

R2 = 0.43

10000

100000

1000 10000 100000

Cumulative Oxygen Production since 1980(Billion cubic feet)

Rea

l cap

ital c

ost

(US

$200

3/tp

d)

Oxygen Production

y = 269x-0.22

R2 = 0.52

10.0

100.0

1000.0

0.1 1 10 100

Cumulative LNG produced (Mta)

Liqu

efac

tion

capi

tal c

ost (

$/tp

a)

Actual liquefaction unit costTheoretical liquefaction unit costLNG Production

Flue Gas Desulfurization

Systems

Page 37: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Case Study Learning RatesCase Study Learning Rates“Best Estimate”Learning Rates

Technology Capital Cost

O&M Cost

Flue gas desulfurization (FGD) 0.11 0.22

Selective catalytic reduction (SCR) 0.12 0.13

Gas turbine combined cycle (GTCC) 0.10 0.06

Pulverized coal (PC) boilers 0.05 0.18

LNG production 0.14 0.12

Oxygen production (ASU) 0.10 0.05

Hydrogen production (SMR) 0.27 0.27

Page 38: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Apply to CCS Plant DesignsApply to CCS Plant Designs

PC Plant

Oxyfuel Plant

Coal

Air

Steam

Sta

ck

Amine/CO2

CO2

Steam Turbine

Generator

Electricity

Air PollutionControls

(SCR, ESP, FGD)

CO2 CaptureSystem

PC Boiler

Amine/CO2 Separation

MostlyN2

CO2Compression

Amine

CO2 tostorage

to atmosphere

Coal

Air

Steam

Sta

ck

Amine/CO2

CO2

Steam Turbine

Generator

Electricity

Air PollutionControls

(SCR, ESP, FGD)

CO2 CaptureSystem

PC Boiler

Amine/CO2 Separation

MostlyN2

CO2Compression

Amine

CO2 tostorage

to atmosphere

CoalDistillation

water

CO2

Air

H2O

O2

SteamTurbine

Generator

Electricity

Steam

PC Boiler CO2compression

Air Separation

Unit

CO2 to recycle

to atmosphere

Air PollutionControls

(ESP, FGD)

CO2CO2CoalDistillation

water

CO2

Air

H2O

O2

SteamTurbine

Generator

Electricity

Steam

PC Boiler CO2compression

Air Separation

Unit

CO2 to recycle

to atmosphere

Air PollutionControls

(ESP, FGD)

CO2CO2 to storage

to atmosphere

PC Plant

Oxyfuel Plant

Coal

Air

Steam

Sta

ck

Amine/CO2

CO2

Steam Turbine

Generator

Electricity

Air PollutionControls

(SCR, ESP, FGD)

CO2 CaptureSystem

PC Boiler

Amine/CO2 Separation

MostlyN2

CO2Compression

Amine

CO2 tostorage

to atmosphere

Coal

Air

Steam

Sta

ck

Amine/CO2

CO2

Steam Turbine

Generator

Electricity

Air PollutionControls

(SCR, ESP, FGD)

CO2 CaptureSystem

PC Boiler

Amine/CO2 Separation

MostlyN2

CO2Compression

Amine

CO2 tostorage

to atmosphere

CoalDistillation

water

CO2

Air

H2O

O2

SteamTurbine

Generator

Electricity

Steam

PC Boiler CO2compression

Air Separation

Unit

CO2 to recycle

to atmosphere

Air PollutionControls

(ESP, FGD)

CO2CO2CoalDistillation

water

CO2

Air

H2O

O2

SteamTurbine

Generator

Electricity

Steam

PC Boiler CO2compression

Air Separation

Unit

CO2 to recycle

to atmosphere

Air PollutionControls

(ESP, FGD)

CO2CO2 to storageCoalDistillation

water

CO2

Air

H2O

O2

SteamTurbine

Generator

Electricity

Steam

PC Boiler CO2compression

Air Separation

Unit

CO2 to recycle

to atmosphere

Air PollutionControls

(ESP, FGD)

CO2CO2CoalDistillation

water

CO2

Air

H2O

O2

SteamTurbine

Generator

Electricity

Steam

PC Boiler CO2compression

Air Separation

Unit

CO2 to recycle

to atmosphere

Air PollutionControls

(ESP, FGD)

CO2CO2 to storage

to atmosphere

Gas TurbineCombined

Cycle SystemH2O St

ack

O2

Air

Coal

Gasifier

Stac

k

Air Separation

Unit

ShiftReactor CO2

Selexol/CO2Separation

Selexol Selexol/CO2

H2CO2

CaptureSystem

CO2compression

CO2 tostorage

Quench System

H2Sulfur

Removal System

to atmosphere

H2O

Electricity

Air

Gas TurbineCombined

Cycle SystemH2O St

ack

O2

Air

Coal

Gasifier

Stac

k

Air Separation

Unit

ShiftReactor CO2

Selexol/CO2Separation

Selexol Selexol/CO2

H2CO2

CaptureSystem

CO2compression

CO2 tostorage

Quench System

H2Sulfur

Removal System

to atmosphere

H2O

Electricity

Air

NaturalGas S

tack

Amine Amine/CO2

CO2 tostorage

Electricity SteamTurbine

Generator

CO2 CaptureSystem

Steam

GasTurbine

Amine/CO2Separation

MostlyN2

CO2Compression

CO2

SteamGenerator

AirCompressor

Combustor

Air

to atmosphere

NaturalGas S

tack

Amine Amine/CO2

CO2 tostorage

Electricity SteamTurbine

Generator

CO2 CaptureSystem

Steam

GasTurbine

Amine/CO2Separation

MostlyN2

CO2Compression

CO2

SteamGenerator

AirCompressor

Combustor

Air

to atmosphereNGCC Plant

IGCC Plant

Gas TurbineCombined

Cycle SystemH2O St

ack

O2

Air

Coal

Gasifier

Stac

k

Air Separation

Unit

ShiftReactor CO2

Selexol/CO2Separation

Selexol Selexol/CO2

H2CO2

CaptureSystem

CO2compression

CO2 tostorage

Quench System

H2Sulfur

Removal System

to atmosphere

H2O

Electricity

Air

Gas TurbineCombined

Cycle SystemH2O St

ack

O2

Air

Coal

Gasifier

Stac

k

Air Separation

Unit

ShiftReactor CO2

Selexol/CO2Separation

Selexol Selexol/CO2

H2CO2

CaptureSystem

CO2compression

CO2 tostorage

Quench System

H2Sulfur

Removal System

to atmosphere

H2O

Electricity

Air

NaturalGas S

tack

Amine Amine/CO2

CO2 tostorage

Electricity SteamTurbine

Generator

CO2 CaptureSystem

Steam

GasTurbine

Amine/CO2Separation

MostlyN2

CO2Compression

CO2

SteamGenerator

AirCompressor

Combustor

Air

to atmosphere

NaturalGas S

tack

Amine Amine/CO2

CO2 tostorage

Electricity SteamTurbine

Generator

CO2 CaptureSystem

Steam

GasTurbine

Amine/CO2Separation

MostlyN2

CO2Compression

CO2

SteamGenerator

AirCompressor

Combustor

Air

to atmosphere

Gas TurbineCombined

Cycle SystemH2O St

ack

O2

Air

Coal

Gasifier

Stac

k

Air Separation

Unit

ShiftReactor CO2

Selexol/CO2Separation

Selexol Selexol/CO2

H2CO2

CaptureSystem

CO2compression

CO2 tostorage

Quench System

H2Sulfur

Removal System

to atmosphere

H2O

Electricity

Air

Gas TurbineCombined

Cycle SystemH2O St

ack

O2

Air

Coal

Gasifier

Stac

k

Air Separation

Unit

ShiftReactor CO2

Selexol/CO2Separation

Selexol Selexol/CO2

H2CO2

CaptureSystem

CO2compression

CO2 tostorage

Quench System

H2Sulfur

Removal System

to atmosphere

H2O

Electricity

Air

NaturalGas S

tack

Amine Amine/CO2

CO2 tostorage

Electricity SteamTurbine

Generator

CO2 CaptureSystem

Steam

GasTurbine

Amine/CO2Separation

MostlyN2

CO2Compression

CO2

SteamGenerator

AirCompressor

Combustor

Air

to atmosphere

NaturalGas S

tack

Amine Amine/CO2

CO2 tostorage

Electricity SteamTurbine

Generator

CO2 CaptureSystem

Steam

GasTurbine

Amine/CO2Separation

MostlyN2

CO2Compression

CO2

SteamGenerator

AirCompressor

Combustor

Air

to atmosphereNGCC Plant

IGCC Plant

Page 39: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Select learning rate analogues Select learning rate analogues for each plant componentfor each plant component

Plant Type & Technology FGD SCR GTCC PC

boilerLNG prod

O2prod

IGCC PlantAir separation unit XGasifier area XSulfur removal/recovery X XCO2 capture system X XCO2 compressionGTCC (power block) X

Page 40: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Summary of COE ResultsSummary of COE Results(Based on 100 GW of cumulative CCS capacity)(Based on 100 GW of cumulative CCS capacity)

0

5

10

15

20

25

30

Perc

ent R

educ

tion

in C

OE

NGCC PC IGCC Oxyfuel

% REDUCTION

0

2

4

6

8

10

Pow

er P

lant

Lea

rnin

g R

ate

(%)

NGCC PC IGCC Oxyfuel

COST OF ELECTRICITY

(excluding T&S costs)

Page 41: Systems Modeling and Analysis

E.S. Rubin, Carnegie Mellon

Work in Progress:Work in Progress: Characterizing Characterizing Radical Technological InnovationRadical Technological Innovation

Literature Review

of “radical innovation”

MotivationR&D programs and

policies are targeting “radical” change

InterviewsWith experts from fossil-energy R&D

community

Implications for R&D planning and

evaluation to accomplish “radical”

change in fossil-energy

Case Studiesof instances of “radical”change in fossil-energy

Literature Review

of “radical innovation”

MotivationR&D programs and

policies are targeting “radical” change

InterviewsWith experts from fossil-energy R&D

community

Implications for R&D planning and

evaluation to accomplish “radical”

change in fossil-energy

Case Studiesof instances of “radical”change in fossil-energy

Page 42: Systems Modeling and Analysis

Thank You

[email protected]

E.S. Rubin, Carnegie Mellon