Top Banner
Structural Analysis of Wind Turbine Blades 2 nd Supergen Wind Educational Seminar Manchester 04 Mar 2009 Paul Bonnet Geoff Dutton Energy Research Unit Rutherford Appleton Laboratory STFC
40

Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Apr 01, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Structural Analysis of Wind

Turbine Blades

2nd Supergen Wind Educational Seminar

Manchester – 04 Mar 2009

Paul Bonnet – Geoff Dutton

Energy Research Unit

Rutherford Appleton Laboratory – STFC

Page 2: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

[1] Approach

[2] Achievements so far

[3] Work underway

[4] Longer term work

Page 3: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

[1] Approach:

Page 4: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

OBJECTIVES

- Finite element analysis models for large wind turbine

blades

- For the analysis of the impact on the blade structure of

different materials, blade construction options,

turbine configurations, aerodynamic features, control

options…

Page 5: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

STRATEGY

parametric processor tool for the creation

& running of the FE model

Better for sensitivity analyses, flexibility,

documenting, re-usability…

Page 6: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

a b

c d

aerofoil shape

Composite materials,

fibre angles, glass

fibre, carbon, layups…

Page 7: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

REALISATION

Python script for the automation of the

Abaqus FE package

- Fully parametric & automated

- Can easily call routines and data files from

outside Abaqus for input or output

Page 8: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

# Rotor & operating conditions variables

B = 3 # Number of blades (-)

upwindrotor = 1 # Rotor location relative to tower (1 = upwind / 0 = downwind)

clockwiserotation = 1 # Rotation direction seen by wind (1 = clockwise / 0 = anti-clockwise)

rotoroverhang = 5.0 # Rotor overhang from tower centreline (m)

rotortilt = 5.0 # Rotor axis tilt angle - positive values increase tower clearance

# (deg)

rotorcone = -2.5 # Rotor cone angle - positive values increase tower clearance (deg)

offsetroot = 1.5 # Offset from hub axis to blade root (m)

azimuth = 0.0 # Blade #1 azimuth position (0 = vertical upwards) (deg)

controlscheme = 1 # Rotor RPM & pitch regulation (0 = none / 1 = regulation) (-)

cyclicscheme = 0 # RPM & pitch regulation type (0 = collective / 1 = cyclic) (-)

setazimuthamplitude = 5.0 # Peak-to-peak set angle change over azimuth for cyclic scheme (deg)

rotorrpm = 12.1 # Rotor angular velocity for unregulated control (rev/min)

setangle = 4.6 # Blade set angle for unregulated control (>0 moves LE upwind) (deg)

# Look-up table data for collective/cyclic pitch control scheme

controlwindrotor = [0.0, 10.5, 25.0] # Hub wind speed table for rotor speed (m/s)

controlrotorspeed = [0.0, 12.13, 12.13] # Rotor speed table (rpm)

controlwindset = [0.0, 11.0, 12.0, 14.0, 16.0, 18.0, 20.0, 22.0, 24.0, 25.0] # Hub wind speed

# table for

# blade set

# angle (m/s)

controlsetangle = [0.0, 0.0, 3.84, 8.59, 12.0, 14.9, 17.8, 20.1, 22.3, 23.5] # Blade set angle

# table (deg)

# Blade sectional data

numbersamesections = 2

distrootsections = [0.0, 1.3667, 4.1, 6.8333, 10.25, 14.35, 18.45, 22.55, 26.65, 30.75, 34.85,

38.95, 43.05, 47.15, 51.25, 54.6667, 57.4, 60.1333, 61.5]

lengthchord = [3.5, 3.6, 3.854, 4.167, 4.557, 4.652, 4.458, 4.249, 4.007, 3.748, 3.502, 3.256, 3.01,

2.764, 2.518, 2.313, 2.086, 1.419, 0.2]

twist = [13.308, 13.308, 13.308, 13.308, 13.0, 11.6, 10.162, 9.011, 7.795, 6.544, 5.361, 4.188, 3.2,

2.319, 1.526, 0.863, 0.4, 0.106, 0.0]

thicknesses = [100.0, 97.0, 80.0, 64.5, 49.7, 40.0, 34.6, 30.0, 26.0, 23.0, 21.0, 19.8, 18.9, 18.2,

18.0, 18.0, 18.0, 18.0, 18.0]

ratiopitchaxis = [0.50, 0.49, 0.46, 0.43, 0.395, 0.375, 0.375, 0.375, 0.375, 0.375, 0.375, 0.375,

0.375, 0.375, 0.375, 0.375, 0.375, 0.375, 0.375]

fileaerofoils = ['DetailedCircle.txt', 'CircleTrans172deg.txt', 'CircleTrans105deg.txt',

'DetCircleTrans71deg.txt', 'DU-00-W2-401.txt', 'DU-00-W2-350.txt', 'DU-00-W2-350.txt',

'DU-91-W2-250.txt', 'DU-91-W2-250.txt', 'DU-91-W2-250.txt', 'DU-93-W-210.txt', 'DU-93-W-210.txt',

'NACA-64-3-618.txt', 'NACA-64-3-618.txt', 'NACA-64-3-618.txt', 'NACA-64-3-618.txt',

'NACA-64-3-618.txt', 'NACA-64-3-618.txt', 'NACA-64-3-618.txt']

# Glue & shear-webs geometry

longlimitsshwbyindices = 0 # Shear-web limits definition (1 = by section index / 0 = by radius)

thresholdratioshw = 0.05 # ratio of sizeelementlongitudinal as length definition threshold

shwLEsections = range(1,16) # Indices of distrootsections between which LE shear-web is present

shwTEsections = range(1,16) # Indices of distrootsections between which TE shear-web is present

shwLEstart = 1.3667 # (m)

shwLEend = 58.0 # (m)

Page 9: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

[2] Achievements so far:

Page 10: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Script can create meshes of different densities

by the push of a button

Page 11: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Can create model geometries for different

internal configurations…

Page 12: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

… and external configurations (list of aerofoil

names along the span is 1 parameter)

Page 13: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

For different layups

Page 14: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Script can calculate and apply fully distributed

aero load

Page 15: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Can run a stiffness analysis to produce e.g. the

blade stiffness distribution along the span…

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

0 10 20 30 40 50 60 70

Flap Bending EI (Nm2)

Edge Bending EI (Nm2)

Torsion GI (Nm2)

Page 16: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

… or a non-linear operational load analysis of a

36m blade for gravity + centrifugal + aero load,

at e.g. 18rpm and +23deg pitch angle

Root moments (Nm) against blade azimuth angle (deg)

[azimuth = 0deg is vertical upwards]

-1000000

-500000

0

500000

1000000

1500000

2000000

0 30 60 90 120 150 180 210 240 270 300 330 360

flap moment

edge moment

S

T

A

T

I

C

!

Page 17: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Validation of TSA measurements of blade

construction defects on a 4.5m blade

Page 18: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Development of a 2MW 36m blade model

Practically no layup information…

…but mass & stiffness info available from 2MW

Exemplar GH Bladed Model

Page 19: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Development of a 2MW 36m blade model

Flapwise Bending (N.m2)

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

0 5 10 15 20 25 30 35 40

Flapwise stiffness exemplar

FEA Model

Page 20: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Edgewise Bending (N.m2)

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

0 5 10 15 20 25 30 35 40

Edgewise stiffness exemplar

FEA Model

Development of a 2MW 36m blade model

Page 21: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Linear Mass (kg/m)

1

10

100

1000

0 5 10 15 20 25 30 35 40

Mass/unit length exemplar

FEA Model

Development of a 2MW 36m blade model

Page 22: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

X(CoG) (% chord from LE)

10

15

20

25

30

35

40

45

50

55

0 5 10 15 20 25 30 35 40

Centre of mass exemplar

FEA Model

Development of a 2MW 36m blade model

Page 23: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Development of a 5MW 61m blade model

Here we had some layup information available as well as mass

& stiffness targets

limitations of the layup info in terms of overall mass & 3D

spar cap stress profile

this was improved by modifying the layup

Page 24: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton
Page 25: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton
Page 26: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Layup grids:

Page 27: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Development of a 5MW 61m blade model

Distribution of edgewise stiffness along blade

Page 28: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Development of a 5MW 61m blade model

Distribution of flapwise stiffness along blade

Page 29: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Development of a 5MW 61m blade model

Distribution of torsional stiffness along blade

Page 30: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Development of a 5MW 61m blade model

Distribution of linear mass along blade

Page 31: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Development of a 5MW 61m blade model

Distribution of chordwise centre of gravity location along blade

Page 32: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

[3] Work underway:

Page 33: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Modelling of the dual-axis fatigue test loading

developed by NaREC – using constant

resonant masses (CRM)

Page 34: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Modelling of the dual-axis fatigue test loading

developed by NaREC – using constant

resonant masses (CRM)

Page 35: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

L E tip dis plac ements flapwis e (m) as func tion of edg ewis e (m)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Modelling of the dual-axis fatigue test loading

developed by NaREC – using constant

resonant masses (CRM)

Page 36: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Modelling of the dual-axis fatigue test loading

developed by NaREC – using constant

resonant masses (CRM)

> Strain animation…

Page 37: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Comparison of different materials

(collaboration with U. Manchester)

application of material data from baseline

glass/epoxy material, HiperTex glass fibre with

baseline epoxy, baseline glass with nano-

particles reinforced epoxyIsotropic materials

Foam Steel Glue_Hysol_EA_9309_2NA

Nominal thickness (m) 0.02 0.01 1

Density (kg/m3) 45 7850 1100

Young's Modulus E (N/m2) 2.600E+09 2.100E+11 2.343E+09

Poisson's Ratio (-) 0.3 0.28 0.385

Anisotropic composites

GFRP_UD GFRP_pm45

Nominal thickness (m) 0.0026 0.001

Density (kg/m3) 1950 1950

Longitudinal Young's Modulus E1 (N/m2) 3.807E+10 1.190E+10

Transverse Young's Modulus E2 (N/m2) 1.053E+10 1.190E+10

In-plane Poisson's Ratio (-) 0.18 0.55

In-plane shear modulus G12 (N/m2) 3.840E+09 1.129E+10

Out-of-plane longitudinal shear modulus G13 (N/m2) 3.840E+09 1.129E+10

Out-of-plane transverse shear modulus G23 (N/m2) 3.840E+09 1.129E+10

Page 38: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

[4] Longer term work:

Page 39: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Look at smart blade concepts:

e.g. static structural analysis of blade with

aerodynamic flaps, deformable trailing edge,

flap/twist coupling, active or passive devices

Barlas & van Kuik 2007

Page 40: Structural Analysis of Wind Turbine Blades · Structural Analysis of Wind Turbine Blades 2nd Supergen Wind Educational Seminar Manchester –04 Mar 2009 Paul Bonnet –Geoff Dutton

Thanks !

Discussion