Top Banner
Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL
28

Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Dec 20, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Strong nonresonant amplification of magnetic

fields in particle accelerating

shocks

A. E. Vladimirov, D. C. Ellison, A. M. Bykov

Submitted to ApJL

Page 2: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

In diffusive shock acceleration, the streaming of shock-accelerated particles may induce plasma instabilities.

A fast non-resonant instability (Bell 2004, MNRAS) may efficiently amplify short-wavelength modes in fast shocks.

Page 3: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Shocked flowu(x)

Accelerated particles

f(x,p)

Amplified MHD turbulence

W(x,k)

•We developed a fully nonlinear model* of DSA based on Monte Carlo particle transport

•Magnetic turbulence, bulk flow, superthermal particles derived consistently with each other

* Vladimirov, Ellison & Bykov, 2006. ApJ, v. 652, p.1246;

Vladimirov, Bykov & Ellison, 2008. ApJ, v. 688, p. 1084

Page 4: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

~p2

~lcor

~(Wres)-1

Wavenumber, k

Tu

rbu

len

ce s

pectr

um

, k·W

(k)

Momentum, p

Part

icle

mean

fre

e p

ath

, (

p)

Turbulence Particles

Our model for particle propagation in strong turbulence interpolates between different scattering regimes in different particle energy ranges.

Page 5: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

k – wavenumber of turbulent harmonics

W(x,k) – spectrum of turbulent fluctuations, (energy per unit volume per unit ∆k).

Wux

W L

dukW

x dx

duWdx

k

Amplification

( corresponds to Bell’s

instability)

Dissipation

Compression (amplitude)

Compression (wavelength)

Cascading

In this work we ignored compression for clarity

(does not affect the qualitatively new results)

Page 6: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

We study the consequences of two hypotheses:

A. No spectral energy transfer (i.e., suppressed

cascading),

= 0

B. Fast Kolmogorov

cascade,

= W5/2k3/2ρ-1/2

Page 7: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Shock-generated turbulence with NO CASCADING

Effective magnetic field B = 1.1·10-3 G

Shocked plasma temperature T = 2.2·107 K

~p2

Trapping

Page 8: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

•Without cascading, Bell’s instability forms a turbulence spectrum with several distinct peaks.

•The peaks occur due to the nonlinear connection between particle transport and magnetic field amplification.

•Without a cascade-induced dissipation, the plasma in the precursor remains cold.

Page 9: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Shock-generated turbulence with KOLMOGOROV CASCADE

Effective magnetic field B = 1.5·10-4 G

Shocked plasma temperature T = 4.4·107 K

~p2

Resonant scattering

Page 10: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

•With fast cascading, Bell’s instability forms a smooth, hard power law turbulence spectrum

•The effective downstream magnetic field turns out lower with cascading, as well as the maximum particle energy

•Viscous dissipation of small-scale fluctuations in the process of cascading induces a strong heating of the backround plasma upstream.

Page 11: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Summary• We studied magnetic field amplification in a nonlinear

particle accelerating shock dominated by Bell’s nonresonant short-wavelength instability

• If spectral energy transfer (cascading) is suppressed, turbulence energy spectrum has several distinct peaks

• If cascading is efficient, the spectrum is smoothed out, and significant heating increases the precursor temperature

Without Cascading

With Cascading

Page 12: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Discussion• With better information about spectral energy transfer

(in a strongly magnetized plasma with ongoing nonresonant magnetic field amplification, accounting for the interactions with streaming accelerated

particles) we can refine our predictions regarding the amount of MFA, maximum particle energy Emax, heating and compression in particle accelerating shocks (plasma simulations needed)

• If peaks do occur, they define a potentially observable spatial scale and an indirect measurement of Emax

• Peaks in the spectrum may help explain the rapid variability of synchrotron X-ray emission*

• Observations of precursor heating may provide information about the character of spectral energy transfer in the process of MFA

* Bykov, Uvarov & Ellison, 2008 (ApJ)

Page 13: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Q? A!

Page 14: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Plots from the paper (just in case)

Page 15: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

The following sequence of slides shows how the peaks are formed one

by one in the shock precursor.

(model A, no cascading)

Page 16: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Very far upstream…

Solution with NO CASCADING

Page 17: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Far upstream…

Turbulence

amplification

Resonance

w/particles

Solution with NO CASCADING

Page 18: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Upstream…

Solution with NO CASCADING

Page 19: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Particle trapping occured…

Solution with NO CASCADING

Page 20: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Second peak formed…

Solution with NO CASCADING

Page 21: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

The story repeated…

Solution with NO CASCADING

Page 22: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

And here is the result (downstream)…

Solution with NO CASCADING

Page 23: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

The following sequence of slides shows how the peaks are formed one

by one in the shock precursor.

(model B, Kolmogorov cascade)

Page 24: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Far upstream…

Solution with KOLMOGOROV CASCADE

Page 25: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Amplification…

Solution with KOLMOGOROV CASCADE

Page 26: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Cascading forms a k-5/3 power law…

Solution with KOLMOGOROV CASCADE

Page 27: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

Amplification continues in greater k…

Solution with KOLMOGOROV CASCADE

Page 28: Strong nonresonant amplification of magnetic fields in particle accelerating shocks A. E. Vladimirov, D. C. Ellison, A. M. Bykov Submitted to ApJL.

And a hard spectrum is formed downstream…

Solution with KOLMOGOROV CASCADE