Top Banner
KRAJWI NOSA^I: minLkn2 15.31 = m SREDWI NOSA^I: minLsn2 15.46 = m maxLkn2 16.32 = m maxLsn2 16.17 = m 1. SOPSTVENA TE@INA MONTA@NIH NOSA^A - KRAJWI NOSA^: gkn 0.65 0.75 0.30 0.10 + 0.15 0.20 + ( ) 0.5 0.60 + [ ] 25.0 = gkn 15.56 = kN/m TE@INE KRAJWIH NOSA^A U KRAJWIM POQIMA: minGkn1 gkn minLkn1 = maxGkn1 gkn maxLkn1 = minGkn1 252.89 = kN maxGkn1 268.61 = kN TE@INE KRAJWIH NOSA^A U SREDWIM POQIMA: minGkn2 gkn minLkn2 = maxGkn2 gkn maxLkn2 = minGkn2 238.26 = kN maxGkn2 253.98 = kN STATI^KI PRORA^UN 20 140 770 1090 160 160 20 140 125 95 65 60 65 60 65 60 65 60 65 60 65 60 65 60 65 60 60 940 10 50 60 15 75 10 1. PRORA^UN RASPONSKE KONSTRUKCIJE [IRINA KOLOVOZA: Bk 7.70 = m [IRINA KOLOVOZNE PLO^E: Bpl 9.40 = m DU@INA MOSTA: Lm 82.70 = m 1.1 ANALIZA OPTERE]EWA FAZA MONTA@E - DU@INE MONTA@NIH NOSA^A SU PROMENQIVE U OKVIRU JEDNOG POQA DU@INE MONTA@NIH NOSA^A U KRAJWIM POQIMA: KRAJWI NOSA^I: minLkn1 16.25 = m SREDWI NOSA^I: minLsn1 16.40 = m maxLkn1 17.26 = m maxLsn1 17.11 = m DU@INE MONTA@NIH NOSA^A U SREDWIM POQIMA: 1
87
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Staticki proracun

KRAJWI NOSA^I: minLkn2 15.31= m SREDWI NOSA^I: minLsn2 15.46= m

maxLkn2 16.32= m maxLsn2 16.17= m

1. SOPSTVENA TE@INA MONTA@NIH NOSA^A

- KRAJWI NOSA^:

gkn 0.65 0.75⋅ 0.30 0.10⋅+ 0.15 0.20+( ) 0.5⋅ 0.60⋅+[ ] 25.0⋅=

gkn 15.56= kN/m

TE@INE KRAJWIH NOSA^A U KRAJWIM POQIMA:

minGkn1 gkn minLkn1⋅= maxGkn1 gkn maxLkn1⋅=

minGkn1 252.89= kN maxGkn1 268.61= kN

TE@INE KRAJWIH NOSA^A U SREDWIM POQIMA:

minGkn2 gkn minLkn2⋅= maxGkn2 gkn maxLkn2⋅=

minGkn2 238.26= kN maxGkn2 253.98= kN

STATI^KI PRORA^UN

20 140770

1090160 160

20140

12595

65606560656065606560656065606560 60

94010

50 6015

7510

1. PRORA^UN RASPONSKE KONSTRUKCIJE

[IRINA KOLOVOZA: Bk 7.70= m

[IRINA KOLOVOZNE PLO^E: Bpl 9.40= m

DU@INA MOSTA: Lm 82.70= m

1.1 ANALIZA OPTERE]EWA

FAZA MONTA@E•

- DU@INE MONTA@NIH NOSA^A SU PROMENQIVE U OKVIRU JEDNOG POQA

DU@INE MONTA@NIH NOSA^A U KRAJWIM POQIMA:

KRAJWI NOSA^I: minLkn1 16.25= m SREDWI NOSA^I: minLsn1 16.40= m

maxLkn1 17.26= m maxLsn1 17.11= m

DU@INE MONTA@NIH NOSA^A U SREDWIM POQIMA:

1

Page 2: Staticki proracun

0.10 24.0⋅ 2.40= kN/m2

- KAMENI IVI^WAK 0.15 0.25⋅ 28.0⋅ 1.05= kN/m

- PE[A^KA STAZA: 0.365 1.45⋅ 0.285 0.15⋅+ 2 π⋅ 0.06752⋅−( ) 25.0⋅ 13.58= kN/m

- PE[A^KA OGRADA: 0.30 kN/m

4. POKRETNO OPTERE]EWE

MOST PRIPADA II KATEGORIJI MOSTOVA - RA^UNSKA [EMA OPTERE]EWA V 600

50

160

770

200

50

150

160

150 150 150

x Kd

p2

V 600

600

300

470

p2

p2

p1

P' 100= kN

p' 5.00= kN/m2

p'' 3.00= kN/m2

L4 17.00⋅ 14.00+

5=

L 16.40= m

Kd 1.4 0.008 L⋅−=

Kd 1.269=

P P' Kd⋅= P 126.88= kN

p1 p' Kd⋅= p1 6.34= kN/m2

p2 p''= p2 3.00= kN/m2

- SREDWI NOSA^:

gsn 1.25 0.10⋅ 0.65 0.50⋅+( ) 25.0⋅=

gsn 11.25= kN/m

TE@INE SREDWIH NOSA^A U KRAJWIM POQIMA:

minGkn11 gsn minLsn1⋅= maxGkn1 gsn maxLsn1⋅=

minGkn1 252.89= kN maxGkn1 192.49= kN

TE@INE SREDWIH NOSA^A U SREDWIM POQIMA:

minGkn2 gsn minLsn2⋅= maxGkn2 gsn maxLsn2⋅=

minGkn2 173.93= kN maxGkn2 181.91= kN

2. KOLOVOZNA PLO^A I ISPUNA

- ZA KRAJWI NOSA^: gplk 0.30 0.65⋅ 25.0⋅= gplk 4.88= kN/m

- ZA SREDWI NOSA^: gpls 1.25 0.15⋅ 2 0.30⋅ 0.50⋅+( ) 25.0⋅= gpls 12.19= kN/m

FAZA EKSPLOATACIJE•

3. DODATNO STALNO OPTERE]EWE

- KOLOVOZNI ZASTOR:

2

Page 3: Staticki proracun

kT 0.858=

qmt1012ρ⋅ Vm5010 kt⋅ kT⋅( )2⋅ 10 3−

⋅= qmt10 0.158= kN/m2

- FAKTOR TOPOGRAFIJE TERENA: Sz 1.5=

- VISINA OBJEKTA: z 17.50= m

- FAKTORI HRAPAVOSTI TERENA: b 0.5=( ZA TEREN KLASE "S"): α 0.22=

- FAKTOR EKSPOZICIJE:

Kz bz

10⎛⎜⎝

⎞⎟⎠

α⋅= Kz 0.800=

OSREDWENI AERODINAMI^KI PRITISAK VETRA:•

- ZA NEOPTERE]EN MOST

qmtz' qmt10' Sz2⋅ Kz2

⋅= qmtz' 0.309= kN/m2

- ZA OPTERE]EN MOST

qmtz qmt10 Sz2⋅ Kz2

⋅= qmtz 0.227= kN/m2

OPTERE]EWE VETROM:•

- ZA NEOPTERE]EN MOST

- [IRINA KOLOVOZNE PLO^E: b 10.90= m

- VISINA KONSTRUKCIJE: hk 0.75= m

5. ZAUSTAVQAWE I POKRETAWE VOZILA

Sk1

20Bk⋅ Lm⋅ 3.00⋅= Sk 95.52= kN

Sk 0.3 600⋅= Sk 180.0= kN

6. RAVNOMERNA PROMENA TEMPERATURE

t 25= oC αt 10 5−= 1/oC

7. OPTERE]EWE VETROM

- NADMORSKA VISINA: Hs 385= mnm

- GUSTINA VAZDUHA: ρ 1.1884= kg/m3

- OSNOVNA BRZINA VETRA: Vm5010 19= m/s

- FAKTOR VREMENSKOG OSREDWAVAWA

OSNOVNE BRZINE VETRA ZA TEREN KLASE "S": kt 1.0=

OSNOVNI PRITISAK VETRA:•

- ZA NEOPTERE]EN MOST

- FAKTOR POVRATNOG PERIODA

OSNOVNE BRZINE VETRA: kT' 1.0=

qmt10'12ρ⋅ Vm5010 kt⋅ kT'⋅( )2⋅ 10 3−

⋅= qmt10' 0.215= kN/m2

- ZA OPTERE]EN MOST

- FAKTOR POVRATNOG PERIODA

OSNOVNE BRZINE VETRA:

3

Page 4: Staticki proracun

W1 qmtz Gh⋅ Cf1 hk⋅ Cf2 hs⋅+( )⋅= W1 3.01= kN/m

- ZA STUBOVE: W2 qmtz Gh⋅ Cf1⋅ d⋅= W2 0.61= kN/m

8. SEIZMIKA

PROJEKTNA SEIZMI^NOST - VIII ZONA

ZA SREDWE TLO: Kc 0.05=

G 18532.64= kN

ΔG 1.05 13.58+ 0.30+( ) 2⋅ Lm⋅ 2.40 Bk⋅ Lm⋅+=

ΔG 3997.72=

Q G ΔG+= Q 22530.36= kN

Sz 1.5 Kc⋅ Q⋅= Sz 1689.78= kN

- U PODU@NOM PRAVCU

Sz'SzBpl

= Sz' 179.76= kN/m

- U POPRE^NOM PRAVCU

Sz''SzLm

= Sz'' 20.43= kN/m

UTICAJI U SVIM ELEMENTIMA MOSTA DOBIJENI SU U PROGRAMU SOFiSTiK.

- PRE^NIK STUBA: d 1.00= m

- KOEFICIJENT SILE

MOSTOVSKE KONSTRUKCIJE: Cf 1 1.6hkb

⋅+= Cf 1.11=

- DINAMI^KI KOEFICIJENT: Gh 2.0=

- ZA RASPONSKU KONSTRUKCIJU: W1' qmtz' Gh⋅ Cf⋅ hk⋅= W1' 0.51= kN/m

- ZA STUBOVE: W2' qmtz' Gh⋅ Cf⋅ d⋅= W2' 0.69= kN/m

- ZA OPTERE]EN MOST

- KOEFICIJENT SILE

MOSTOVSKE KONSTRUKCIJE: Cf1 1.35=

- KOEFICIJENT SILE

SAOBRA]AJNE TRAKE: Cf2 1.60=

- VISINA SAOBRA]AJNE TRAKE: hs 3.50= m

- ZA RASPONSKU KONSTRUKCIJU:

4

Page 5: Staticki proracun

Mu 129.38−= kNm

kh

Mu 102⋅

b fb⋅

= k 7.867= ea / eb = 10.0 / 0.650 o/oo

μ' 1.769%=

Aa' μ' b⋅ h⋅fbσv⋅= Aa' 5.09= cm2

minAa' 0.20b d⋅100⋅= minAa' 9.75= cm2

USVOJENA ARMATURA U GORWOJ ZONI: 7 RA ∅ 28 ( Aa' 43.12= cm2 )

KRAJWE POQE - FAZA MONTA@E ( NOSA^I KAO PROSTE GREDE )•

65

95

6510

30 60

75

b 65.0= cm d 75.0= cm a 5.5= cm

h d a−= h 69.5= cm

DU@INA MONTA@NOG NOSA^A: maxL 17.26= m

RASPON MONTA@NOG NOSA^A: maxLo 16.61= m

1.2. PRORA^UN KRAJWIH NOSA^A

MB 40 ⇒ fb 25.50= MPa τr 1.30= MPa Eb 34= GPa

RA 400/500-2 ⇒ σv 400= MPa

KRAJWE POQE - FAZA PODIZAWA NOSA^A•

( NOSA^I KAO GREDE SA PREPUSTIMA )

65

95

6510

30 60

75

b 65.0= cm d 75.0= cm a 5.5= cm

h d a−= h 69.5= cm

DU@INA MONTA@NOG NOSA^A: maxL 17.26= m

RASPON MONTA@NOG NOSA^A: maxLo 10.21= m

- PRESEK NA MESTU HVATAWA

1. SOPSTVENA TE@INA MONTA@NOG NOSA^A: Mkgo' 80.86−= kNm

Mu 1.6 Mkgo'⋅=

5

Page 6: Staticki proracun

Tkgo 129.63= kN Tkpl 40.65= kN

Tu 1.6 Tkgo Tkpl+( )⋅= Tu 272.45= kN

τnTub z⋅

10⋅= τn 0.67= MPa < τr 1.30= MPa

NIJE POTREBNO OSIGURAWE OD TRANSVERZALNIH SILA.

PRORA^UN DEFORMACIJA

Ib 0.0343= m4

SOPSTVENA TE@INA NOSA^A:

gkn 15.56= kN/m

Ug5

384gkn maxLo4

⋅ 102⋅

Eb 106⋅ Ib⋅

⋅= Ug 1.32= cm

TE@INA KOLOVOZNE PLO^E I ISPUNE:

gplk 4.88= kN/m

Upl5

384gplk maxLo4

⋅ 102⋅

Eb 106⋅ Ib⋅

⋅= Upl 0.41= cm

UKUPNI UGIB KRAJWEG NOSA^A U FAZI MONTA@E:

Ukn Ug Upl+= Ukn 1.74= cm

1. SOPSTVENA TE@INA MONTA@NOG NOSA^A: Mkgo 552.02= kNm

2. KOLOVOZNA PLO^A I ISPUNA: Mkpl 164.63= kNm

Mu 1.6 Mkgo Mkpl+( )⋅= Mu 1146.64= kNm

kh

Mu 102⋅

b fb⋅

= k 2.642= ea / eb = 10.0 / 2.725 o/oo

μ' 16.175%=

Aa1 μ' b⋅ h⋅fbσv⋅= Aa1 46.58= cm2

KONTROLA PRESEKA PREMA GRANI^NIM UTICAJIMA TRANSVERZALNIH SILA

PRAVOUGAONI POPRE^NI PRESEK:

b 65.0= cm d 75.0= cm a 5.50= cm

h d a−= h 69.50= cm

z 0.9 h⋅= z 62.55= cm

6

Page 7: Staticki proracun

Aap 0.20 Aa⋅= Aap 17.94= cm2

U MONTA@NOM NOSA^U: 13 RA ∅ 28 ( Aan 80.08= cm2 )

U ISPUNI: 3 RA ∅ 28 ( Aai 18.48= cm2 )

USVOJENO UKUPNO: 16 RA ∅ 28 ( Aan Aai+ 98.56= cm2 )

USVOJENA PODEONA ARMATURA: RA ∅ 14 / 7.5 cm ( Aap 20.53= cm2 )

PRORA^UN PRSLINA U FAZI MONTA@E

MB 40 ⇒ fbzm 2.90= MPa

RA 400/500-2 ⇒ Ea 210= GPa

∅ 2.8= cm k1 0.4= ( RA 400 / 500 - 2 )

eφ 7.8= cm k2 0.125= ( SAVIJAWE )

- ARMATURA U MONTA@NOM NOSA^U: 13 RA ∅ 28 ( Aan 80.08= cm2 )

d 75.0= cm a 6.9= cm ao 3.9= cm

- SREDWE RASTOJAWE PRSLINA:

hbzef min a 7.5 ∅⋅+d2

,⎛⎜⎝

⎞⎟⎠

= hbzef 27.90= cm

FAZA EKSPLOATACIJE - KONTINUALNA PLO^A•

- PRESEK U POQU

95

75

60

155

b 95.0= cm d 75.0= cm a 7.5= cm

h d a−= h 67.5= cm

1. DODATNO STALNO OPTERE]EWE: MkΔg 135.63= kNm

2. POKRETNO OPTERE]EWE: Mkp 478.54= kNm

Mu 1.6 MkΔg⋅ 1.8 Mkp⋅+= Mu 1078.38= kNm

kh

Mu 102⋅

b fb⋅

= k 3.199= ea / eb = 10.0 / 1.925 o/oo

μ' 10.552%=

Aa2 μ' b⋅ h⋅fbσv⋅= Aa2 43.14= cm2

UKUPNA ARMATURA U POQU - FAZA MONTA@E + FAZA EKSPLOATACIJE:

Aa Aa1 Aa2+= Aa 89.72= cm2

7

Page 8: Staticki proracun

apk 0.16= mm < dop apk 0.20= mm

apk 0.016= cmapk 1.7 ξa⋅ εa1⋅ 10 3−⋅ lps⋅=

ξa 0.966=ξa 1 β1 β2⋅MprM

⎛⎜⎝

⎞⎟⎠

2⋅−=

( VI[E PUTA PONOVQENO OPTERE]EWE )β2 0.5=

( RA 400 / 500 - 2 )β1 1.0=

εa1 0.701= o/ooεa1

σa1 10⋅

Ea=

σa1 14.73= kN/cm2σa1M 102⋅

0.9 h⋅ Aan⋅=

M 716.65= kNmM Mkgo Mkpl+=

Mpr 186.19= kNmMpr fbzs Wb1⋅ 10 2−⋅=

Wb1 89062.50= cm3Wb1b d2⋅

6=

fbzs 0.209= kN/cm2fbzs fbz 0.60.4

4d 10 2−⋅

+⎛⎜⎜⎝

⎞⎟⎟⎠

⋅=

fbz 0.203= kN/cm2fbz 0.7 fbzm⋅ 10 1−⋅=

- KARAKTERISTI^NA [IRINA PRSLINA:

lps 13.99= cmlps 2 aoeφ10

+⎛⎜⎝

⎞⎟⎠

⋅ k1 k2⋅∅

μ1ef⋅+=

μ1ef 3.02%=μ1efAan

b hbzef⋅=

8

Page 9: Staticki proracun

Aa' 5.09= cm2

minAa' 0.20b d⋅100⋅= minAa' 9.75= cm2

USVOJENA ARMATURA U GORWOJ ZONI: 7 RA ∅ 28 ( Aa' 43.12= cm2 )

SREDWE POQE - FAZA MONTA@E ( NOSA^I KAO PROSTE GREDE )•

65

95

6510

30 60

75

b 65.0= cm d 75.0= cm a 6.0= cm

h d a−= h 69.0= cm

DU@INA MONTA@NOG NOSA^A: maxL 16.32= m

RASPON MONTA@NOG NOSA^A: maxLo 15.72= m

1. SOPSTVENA TE@INA MONTA@NOG NOSA^A: Mkgo 476.28= kNm

2. KOLOVOZNA PLO^A I ISPUNA: Mkpl 149.35= kNm

Mu 1.6 Mkgo Mkpl+( )⋅= Mu 1001.01= kNm

SREDWE POQE - FAZA PODIZAWA NOSA^A•

( NOSA^I KAO GREDE SA PREPUSTIMA )

65

95

6510

30 6075

b 65.0= cm d 75.0= cm a 5.5= cm

h d a−= h 69.5= cm

DU@INA MONTA@NOG NOSA^A: maxL 16.32= m

RASPON MONTA@NOG NOSA^A: maxLo 9.35= m

- PRESEK NA MESTU HVATAWA

1. SOPSTVENA TE@INA MONTA@NOG NOSA^A: Mkgo' 82.06−= kNm

Mu 1.6 Mkgo'⋅= Mu 131.30−= kNm

kh

Mu 102⋅

b fb⋅

= k 7.809= ea / eb = 10.0 / 0.650 o/oo

μ' 1.769%=

Aa' μ' b⋅ h⋅fbσv⋅=

9

Page 10: Staticki proracun

Tu 257.09= kN

τnTub z⋅

10⋅= τn 0.64= MPa < τr 1.30= MPa

NIJE POTREBNO OSIGURAWE OD TRANSVERZALNIH SILA.

PRORA^UN DEFORMACIJA

Ib 0.0343= m4

SOPSTVENA TE@INA NOSA^A:

gkn 15.56= kN/m

Ug5

384gkn maxLo4

⋅ 102⋅

Eb 106⋅ Ib⋅

⋅= Ug 1.06= cm

TE@INA KOLOVOZNE PLO^E I ISPUNE:

gplk 4.88= kN/m

Upl5

384gplk maxLo4

⋅ 102⋅

Eb 106⋅ Ib⋅

⋅= Upl 0.33= cm

UKUPNI UGIB KRAJWEG NOSA^A U FAZI MONTA@E:

Ukn Ug Upl+= Ukn 1.39= cm

kh

Mu 102⋅

b fb⋅

= k 2.808= ea / eb = 10.0 / 2.375 o/oo

μ' 13.805%=

Aa1 μ' b⋅ h⋅fbσv⋅= Aa1 39.47= cm2

KONTROLA PRESEKA PREMA GRANI^NIM UTICAJIMA TRANSVERZALNIH SILA

PRAVOUGAONI POPRE^NI PRESEK:

b 65.0= cm d 75.0= cm a 6.00= cm

h d a−= h 69.00= cm

z 0.9 h⋅= z 62.10= cm

Tkgo 122.32= kN Tkpl 38.36= kN

Tu 1.6 Tkgo Tkpl+( )⋅=

10

Page 11: Staticki proracun

Aap 0.20 Aa⋅= Aap 13.94= cm2

U MONTA@NOM NOSA^U: 10 RA ∅ 28 ( Aan 61.60= cm2 )

U ISPUNI: 3 RA ∅ 28 ( Aai 18.48= cm2 )

USVOJENO UKUPNO: 13 RA ∅ 28 ( Aan Aai+ 80.08= cm2 )

USVOJENA PODEONA ARMATURA: RA ∅ 14 / 7.5 cm ( Aap 20.53= cm2 )

PRORA^UN PRSLINA U FAZI MONTA@E

MB 40 ⇒ fbzm 2.90= MPa

RA 400/500-2 ⇒ Ea 210= GPa

∅ 2.8= cm k1 0.4= ( RA 400 / 500 - 2 )

eφ 7.8= cm k2 0.125= ( SAVIJAWE )

- ARMATURA U MONTA@NOM NOSA^U: 10 RA ∅ 28 ( Aan 61.60= cm2 )

d 75.0= cm a 6.1= cm ao 3.9= cm

- SREDWE RASTOJAWE PRSLINA:

hbzef min a 7.5 ∅⋅+d2

,⎛⎜⎝

⎞⎟⎠

= hbzef 27.10= cm

FAZA EKSPLOATACIJE - KONTINUALNA PLO^A•

- PRESEK U POQU

95

75

60

155

b 95.0= cm d 75.0= cm a 7.0= cm

h d a−= h 68.0= cm

1. DODATNO STALNO OPTERE]EWE: MkΔg 62.27= kNm

2. POKRETNO OPTERE]EWE: Mkp 377.20= kNm

Mu 1.6 MkΔg⋅ 1.8 Mkp⋅+= Mu 778.59= kNm

kh

Mu 102⋅

b fb⋅

= k 3.793= ea / eb = 10.0 / 1.500 o/oo

μ' 7.337%=

Aa2 μ' b⋅ h⋅fbσv⋅= Aa2 30.22= cm2

UKUPNA ARMATURA U POQU - FAZA MONTA@E + FAZA EKSPLOATACIJE:

Aa Aa1 Aa2+= Aa 69.69= cm2

11

Page 12: Staticki proracun

apk 0.20= mm = dop apk 0.20= mm

apk 0.020= cmapk 1.7 ξa⋅ εa1⋅ 10 3−⋅ lps⋅=

ξa 0.956=ξa 1 β1 β2⋅MprM

⎛⎜⎝

⎞⎟⎠

2⋅−=

( VI[E PUTA PONOVQENO OPTERE]EWE )β2 0.5=

( RA 400 / 500 - 2 )β1 1.0=

εa1 0.790= o/ooεa1

σa1 10⋅

Ea=

σa1 16.60= kN/cm2σa1M 102⋅

0.9 h⋅ Aan⋅=

M 625.63= kNmM Mkgo Mkpl+=

Mpr 186.19= kNmMpr fbzs Wb1⋅ 10 2−⋅=

Wb1 89062.50= cm3Wb1b d2⋅

6=

fbzs 0.209= kN/cm2fbzs fbz 0.60.4

4d 10 2−⋅

+⎛⎜⎜⎝

⎞⎟⎟⎠

⋅=

fbz 0.203= kN/cm2fbz 0.7 fbzm⋅ 10 1−⋅=

- KARAKTERISTI^NA [IRINA PRSLINA:

lps 15.21= cmlps 2 aoeφ10

+⎛⎜⎝

⎞⎟⎠

⋅ k1 k2⋅∅

μ1ef⋅+=

μ1ef 2.39%=μ1efAan

b hbzef⋅=

12

Page 13: Staticki proracun

USVOJENA GLAVNA ARMATURA: RA ∅ 10 / 20 cm ( Aa 3.95= cm2 )

Aa 0.47= cm2Aa μ' b⋅ h⋅fbσv⋅=

ea / eb = 10.0 / 0.475 o/oo

μ' 0.992%=

k 10.308=kh

Mu 102⋅

b fb⋅

=

Mu 1.35= kNmMu 1.6 Mg Mgb+( )⋅=

Mgb 0.73= kNmMgbgb l2⋅

2=

Mg 0.11= kNmMgg l2⋅2

=

gb 16.25= kN/mgb 0.65 25.0⋅=2. TE@INA SVE@EG BETONA:

g 2.50= kN/mg 0.10 25.0⋅=1. SOPSTVENA TE@INA NO@ICE:

l 0.30= mh 7.5= cmh d a−=

a 2.5= cmd 10.0= cmb 100.0= cm

65

95

6510

30 6075

PRORA^UN NO@ICE MONTA@NOG ELEMENTA

13

Page 14: Staticki proracun

Mu 92.00−= kNm

kh

Mu 102⋅

b fb⋅

= k 7.181= ea / eb = 10.0 / 0.700 o/oo

μ' 2.023%=

Aa' μ' b⋅ h⋅fbσv⋅= Aa' 4.48= cm2

minAa' 0.20b d⋅100⋅= minAa' 7.80= cm2

USVOJENA ARMATURA U GORWOJ ZONI: 7 RA ∅ 14 ( Aa' 10.78= cm2 )

KRAJWE POQE - FAZA MONTA@E ( NOSA^I KAO PROSTE GREDE )•

65

125

605010

60 b 65.0= cm d 60.0= cm a 6.5= cm

h d a−= h 53.5= cm

DU@INA MONTA@NOG NOSA^A: maxL 17.11= m

RASPON MONTA@NOG NOSA^A: maxLo 16.46= m

1.3. PRORA^UN SREDWIH NOSA^A

MB 40 ⇒ fb 25.50= MPa τr 1.30= MPa Eb 34= GPa

RA 400/500-2 ⇒ σv 400= MPa

KRAJWE POQE - FAZA PODIZAWA NOSA^A•

( NOSA^I KAO GREDE SA PREPUSTIMA )

65

1256050

1060

b 65.0= cm d 60.0= cm a 6.5= cm

h d a−= h 53.5= cm

DU@INA MONTA@NOG NOSA^A: maxL 17.11= m

RASPON MONTA@NOG NOSA^A: maxLo 9.88= m

- PRESEK NA MESTU HVATAWA

1. SOPSTVENA TE@INA MONTA@NOG NOSA^A: Msgo 57.50−= kNm

Mu 1.6 Msgo⋅=

14

Page 15: Staticki proracun

Tsgo 92.94= kN Tspl 100.71= kN

Tu 1.6 Tsgo Tspl+( )⋅= Tu 309.84= kN

τnTub z⋅

10⋅= τn 0.99= MPa < τr 1.30= MPa

NIJE POTREBNO OSIGURAWE OD TRANSVERZALNIH SILA.

PRORA^UN DEFORMACIJA

Ib 0.0150= m4

SOPSTVENA TE@INA NOSA^A:

gsn 11.25= kN/m

Ug5

384gsn maxLo4

⋅ 102⋅

Eb 106⋅ Ib⋅

⋅= Ug 2.11= cm

TE@INA KOLOVOZNE PLO^E I ISPUNE:

gpls 12.19= kN/m

Upl5

384gpls maxLo4

⋅ 102⋅

Eb 106⋅ Ib⋅

⋅= Upl 2.28= cm

UKUPNI UGIB SREDWEG NOSA^A U FAZI MONTA@E:

Usn Ug Upl+= Usn 4.39= cm

1. SOPSTVENA TE@INA MONTA@NOG NOSA^A: Msgo 373.35= kNm

2. KOLOVOZNA PLO^A I ISPUNA: Mspl 404.54= kNm

Mu 1.6 Msgo Mspl+( )⋅= Mu 1244.62= kNm

kh

Mu 102⋅

b fb⋅

= k 1.952= ea / eb = 5.55 / 3.50 o/oo

μ' 31.307%=

Aa1 μ' b⋅ h⋅fbσv⋅= Aa1 69.40= cm2

KONTROLA PRESEKA PREMA GRANI^NIM UTICAJIMA TRANSVERZALNIH SILA

PRAVOUGAONI POPRE^NI PRESEK:

b 65.0= cm d 60.0= cm a 6.50= cm

h d a−= h 53.50= cm

z 0.9 h⋅= z 48.15= cm

15

Page 16: Staticki proracun

Aap 0.20 Aa⋅= Aap 22.93= cm2

U MONTA@NOM NOSA^U: 14 RA ∅ 28 ( Aan 86.24= cm2 )

U ISPUNI: 6 RA ∅ 28 ( Aai 36.96= cm2 )

USVOJENO UKUPNO: 20 RA ∅ 28 ( Aan Aai+ 123.20= cm2 )

USVOJENA PODEONA ARMATURA: RA ∅ 14 / 7.5 cm ( Aap 20.53= cm2 )

PRORA^UN PRSLINA U FAZI MONTA@E

MB 40 ⇒ fbzm 2.90= MPa

RA 400/500-2 ⇒ Ea 210= GPa

∅ 2.8= cm k1 0.4= ( RA 400 / 500 - 2 )

eφ 7.8= cm k2 0.125= ( SAVIJAWE )

- ARMATURA U MONTA@NOM NOSA^U: 14 RA ∅ 28 ( Aan 86.24= cm2 )

d 60.0= cm a 7.1= cm ao 3.9= cm

- SREDWE RASTOJAWE PRSLINA:

hbzef min a 7.5 ∅⋅+d2

,⎛⎜⎝

⎞⎟⎠

= hbzef 28.10= cm

FAZA EKSPLOATACIJE - KONTINUALNA PLO^A•

- PRESEK U POQU

125

75

b 125.0= cm d 75.0= cm a 8.0= cm

h d a−= h 67.0= cm

1. DODATNO STALNO OPTERE]EWE: MsΔg 130.25= kNm

2. POKRETNO OPTERE]EWE: Msp 514.22= kNm

Mu 1.6 MsΔg⋅ 1.8 Msp⋅+= Mu 1134.00= kNm

kh

Mu 102⋅

b fb⋅

= k 3.552= ea / eb = 10.0 / 1.650 o/oo

μ' 8.471%=

Aa2 μ' b⋅ h⋅fbσv⋅= Aa2 45.23= cm2

UKUPNA ARMATURA U POQU - FAZA MONTA@E + FAZA EKSPLOATACIJE:

Aa Aa1 Aa2+= Aa 114.63= cm2

16

Page 17: Staticki proracun

apk 0.18= mm < dop apk 0.20= mm

apk 0.018= cmapk 1.7 ξa⋅ εa1⋅ 10 3−⋅ lps⋅=

ξa 0.979=ξa 1 β1 β2⋅MprM

⎛⎜⎝

⎞⎟⎠

2⋅−=

( VI[E PUTA PONOVQENO OPTERE]EWE )β2 0.5=

( RA 400 / 500 - 2 )β1 1.0=

εa1 0.712= o/oo

εa1σa1 10⋅

Ea=

σa1 14.96= kN/cm2σa1M 102⋅

0.9 h⋅ Aan⋅=

M 777.89= kNmM Msgo Mspl+=

Mpr 160.55= kNmMpr fbzs Wb1⋅ 10 2−⋅=

Wb1 75000.00= cm3Wb1b d2⋅

6=

fbzs 0.214= kN/cm2fbzs fbz 0.60.4

4d 10 2−⋅

+⎛⎜⎜⎝

⎞⎟⎟⎠

⋅=

fbz 0.203= kN/cm2fbz 0.7 fbzm⋅ 10 1−⋅=

- KARAKTERISTI^NA [IRINA PRSLINA:

lps 15.06= cmlps 2 aoeφ10

+⎛⎜⎝

⎞⎟⎠

⋅ k1 k2⋅∅

μ1ef⋅+=

μ1ef 2.46%=μ1efAan

b hbzef⋅=

17

Page 18: Staticki proracun

Aa' μ' b⋅ h⋅fbσv⋅= Aa' 4.48= cm2

minAa' 0.20b d⋅100⋅= minAa' 7.80= cm2

USVOJENA ARMATURA U GORWOJ ZONI: 7 RA ∅ 14 ( Aa' 10.78= cm2 )

SREDWE POQE - FAZA MONTA@E ( NOSA^I KAO PROSTE GREDE )•

65

125

605010

60

b 65.0= cm d 60.0= cm a 7.0= cm

h d a−= h 53.0= cm

DU@INA MONTA@NOG NOSA^A: maxL 16.17= m

RASPON MONTA@NOG NOSA^A: maxLo 15.57= m

1. SOPSTVENA TE@INA MONTA@NOG NOSA^A: Msgo 338.37= kNm

2. KOLOVOZNA PLO^A I ISPUNA: Mspl 366.64= kNm

SREDWE POQE - FAZA PODIZAWA NOSA^A•

( NOSA^I KAO GREDE SA PREPUSTIMA )

65

125

605010

60 b 65.0= cm d 60.0= cm a 6.5= cm

h d a−= h 53.5= cm

DU@INA MONTA@NOG NOSA^A: maxL 16.17= m

RASPON MONTA@NOG NOSA^A: maxLo 9.30= m

- PRESEK NA MESTU HVATAWA

1. SOPSTVENA TE@INA MONTA@NOG NOSA^A: Msgo 58.30−= kNm

Mu 1.6 Msgo⋅= Mu 93.28−= kNm

kh

Mu 102⋅

b fb⋅

= k 7.132= ea / eb = 10.0 / 0.700 o/oo

μ' 2.023%=

18

Page 19: Staticki proracun

Tu 1.6 Tkgo Tkpl+( )⋅= Tu 257.09= kN

τnTub z⋅

10⋅= τn 0.83= MPa < τr 1.30= MPa

NIJE POTREBNO OSIGURAWE OD TRANSVERZALNIH SILA.

PRORA^UN DEFORMACIJA

Ib 0.0150= m4

SOPSTVENA TE@INA NOSA^A:

gsn 11.25= kN/m

Ug5

384gsn maxLo4

⋅ 102⋅

Eb 106⋅ Ib⋅

⋅= Ug 1.69= cm

TE@INA KOLOVOZNE PLO^E I ISPUNE:

gpls 12.19= kN/m

Upl5

384gpls maxLo4

⋅ 102⋅

Eb 106⋅ Ib⋅

⋅= Upl 1.83= cm

UKUPNI UGIB SREDWEG NOSA^A U FAZI MONTA@E:

Usn Ug Upl+= Usn 3.52= cm

Mu 1.6 Msgo Mspl+( )⋅= Mu 1128.02= kNm

kh

Mu 102⋅

b fb⋅

= k 2.032= ea / eb = 6.50 / 3.50 o/oo

μ' 28.333%=

Aa1 μ' b⋅ h⋅fbσv⋅= Aa1 62.22= cm2

KONTROLA PRESEKA PREMA GRANI^NIM UTICAJIMA TRANSVERZALNIH SILA

PRAVOUGAONI POPRE^NI PRESEK:

b 65.0= cm d 60.0= cm a 7.00= cm

h d a−= h 53.00= cm

z 0.9 h⋅= z 47.70= cm

Tsgo 87.66= kN Tspl 94.99= kN

19

Page 20: Staticki proracun

Aap 0.20 Aa⋅= Aap 18.94= cm2

U MONTA@NOM NOSA^U: 11 RA ∅ 28 ( Aan 67.76= cm2 )

U ISPUNI: 6 RA ∅ 28 ( Aai 36.96= cm2 )

USVOJENO UKUPNO: 17 RA ∅ 28 ( Aan Aai+ 104.72= cm2 )

USVOJENA PODEONA ARMATURA: RA ∅ 14 / 7.5 cm ( Aap 20.53= cm2 )

PRORA^UN PRSLINA U FAZI MONTA@E

MB 40 ⇒ fbzm 2.90= MPa

RA 400/500-2 ⇒ Ea 210= GPa

∅ 2.8= cm k1 0.4= ( RA 400 / 500 - 2 )

eφ 7.8= cm k2 0.125= ( SAVIJAWE )

- ARMATURA U MONTA@NOM NOSA^U: 11 RA ∅ 28 ( Aan 67.76= cm2 )

d 60.0= cm a 6.4= cm ao 3.9= cm

- SREDWE RASTOJAWE PRSLINA:

hbzef min a 7.5 ∅⋅+d2

,⎛⎜⎝

⎞⎟⎠

= hbzef 27.40= cm

FAZA EKSPLOATACIJE - KONTINUALNA PLO^A•

- PRESEK U POQU

125

75

b 125.0= cm d 75.0= cm a 7.5= cm

h d a−= h 67.5= cm

1. DODATNO STALNO OPTERE]EWE: MsΔg 50.83= kNm

2. POKRETNO OPTERE]EWE: Msp 412.61= kNm

Mu 1.6 MsΔg⋅ 1.8 Msp⋅+= Mu 824.03= kNm

kh

Mu 102⋅

b fb⋅

= k 4.198= ea / eb = 10.0 / 1.325 o/oo

μ' 6.039%=

Aa2 μ' b⋅ h⋅fbσv⋅= Aa2 32.48= cm2

UKUPNA ARMATURA U POQU - FAZA MONTA@E + FAZA EKSPLOATACIJE:

Aa Aa1 Aa2+= Aa 94.71= cm2

20

Page 21: Staticki proracun

apk 0.22= mm > dop apk 0.20= mm

apk 0.022= cmapk 1.7 ξa⋅ εa1⋅ 10 3−⋅ lps⋅=

ξa 0.974=ξa 1 β1 β2⋅MprM

⎛⎜⎝

⎞⎟⎠

2⋅−=

( VI[E PUTA PONOVQENO OPTERE]EWE )β2 0.5=

( RA 400 / 500 - 2 )β1 1.0=

εa1 0.816= o/ooεa1

σa1 10⋅

Ea=

σa1 17.13= kN/cm2σa1M 102⋅

0.9 h⋅ Aan⋅=

M 705.01= kNmM Msgo Mspl+=

Mpr 160.55= kNmMpr fbzs Wb1⋅ 10 2−⋅=

Wb1 75000.00= cm3Wb1b d2⋅

6=

fbzs 0.214= kN/cm2fbzs fbz 0.60.4

4d 10 2−⋅

+⎛⎜⎜⎝

⎞⎟⎟⎠

⋅=

fbz 0.203= kN/cm2fbz 0.7 fbzm⋅ 10 1−⋅=

- KARAKTERISTI^NA [IRINA PRSLINA:

lps 16.44= cmlps 2 aoeφ10

+⎛⎜⎝

⎞⎟⎠

⋅ k1 k2⋅∅

μ1ef⋅+=

μ1ef 1.98%=μ1efAan

b hbzef⋅=

21

Page 22: Staticki proracun

USVOJENA GLAVNA ARMATURA: RA ∅ 28 / 10 cm ( Aa 61.60= cm2 )

USVOJENA PODEONA ARMATURA: RA ∅ 12 / 10 cm ( Aap 11.30= cm2 )

NAPOMENA:

SVI PRESECI IZNAD SREDWIH STUBOVA ARMIRAJU SE IDENTI^NO!

PRORA^UN PRSLINA

MB 40 ⇒ fbzm 2.90= MPa

RA 400/500-2 ⇒ Ea 210= GPa

b' 100.0= cm d 75.0= cm

- SREDWE RASTOJAWE PRSLINA:

∅ 2.8= cm k1 0.4= ( RA 400 / 500 - 2 )

eφ 10.0= cm k2 0.125= ( SAVIJAWE )

a 5.3= cm ao 3.9= cm

hbzef min a 7.5 ∅⋅+d2

,⎛⎜⎝

⎞⎟⎠

= hbzef 26.30= cm

μ1efAa

b' hbzef⋅= μ1ef 2.34%=

lps 2 aoeφ10

+⎛⎜⎝

⎞⎟⎠

⋅ k1 k2⋅∅

μ1ef⋅+= lps 15.78= cm

- PRESEK IZNAD SREDWIH STUBOVA

b 95.0= cm d 75.0= cm a 5.5= cm

h d a−= h 69.5= cm

1. DODATNO STALNO OPTERE]EWE: MkΔg 235.95−= kNm

2. POKRETNO OPTERE]EWE: Mkp 451.08−= kNm

Mu 1.6 MkΔg⋅ 1.8 Mkp⋅+= Mu 1189.46−= kNm

kh

Mu 102⋅

b fb⋅

= k 3.136= ea / eb = 10.0 / 1.975 o/oo

μ' 10.926%=

Aa μ' b⋅ h⋅fbσv⋅= Aa 45.99= cm2

SVEDENO NA 1 m. [IRINE KOLOVOZNE PLO^E:

AaAa

b 10 2−⋅

= Aa 48.41= cm2/m

Aap 0.20 Aa⋅= Aap 9.68= cm2/m

22

Page 23: Staticki proracun

apk 0.22= mm > dop apk 0.20= mm

apk 0.022= cmapk 1.7 ξa⋅ εa1⋅ 10 3−⋅ lps⋅=

ξa 0.959=ξa 1 β1 β2⋅MprM

⎛⎜⎝

⎞⎟⎠

2⋅−=

( VI[E PUTA PONOVQENO OPTERE]EWE )β2 0.5=

( RA 400 / 500 - 2 )β1 1.0=

εa1 0.849= o/ooεa1

σa1 10⋅

Ea=

σa1 17.83= kN/cm2σa1M 102⋅

0.9 h⋅ Aa⋅=

M 687.03−= kNmM MkΔg Mkp+=

Mpr 195.99= kNmMpr fbzs Wb1⋅ 10 2−⋅=

Wb1 93750.00= cm3Wb1b' d2⋅

6=

fbzs 0.209= kN/cm2fbzs fbz 0.60.4

4d 10 2−⋅

+⎛⎜⎜⎝

⎞⎟⎟⎠

⋅=

fbz 0.203= kN/cm2fbz 0.7 fbzm⋅ 10 1−⋅=

- KARAKTERISTI^NA [IRINA PRSLINA:

23

Page 24: Staticki proracun

MΔg2 Δg2 0.595⋅= MΔg2 0.18= kNm/m__________________________________________________________________

Δg Δg1 Δg2+= Δg 8.35= kN/m

MΔg MΔg1 MΔg2+= MΔg 3.57= kNm/m

3. POKRETNO OPTERE]EWE

PE[A^KA NAVALA p' 5.00= kN/m2

L 0.60= m

Kd 1.4 0.008 L⋅−= Kd 1.395=

p p' Kd⋅= p 6.98= kN/m2

Mp p0.502

2⋅= Mp 0.87= kNm/m

2. PRORA^UN KONZOLE

6095125 15

2842

70

3120

20140160

1520

2.1. ANALIZA OPTERE]EWA

NA 1m [IRINE KONZOLE:

1. SOPSTVENA TE@INA g 0.15 0.20+( ) 0.5⋅ 0.60⋅ 25.0⋅= g 2.63= kN/m

Mg g 0.2975⋅= Mg 0.78= kNm/m

2. DODATNO STALNO OPTERE]EWE

- PE[A^KA STAZA:Δg1 0.3365 π 0.06752

⋅−( ) 25.0⋅= Δg1 8.05= kN/m

MΔg1 Δg1 0.4208⋅= MΔg1 3.39= kNm/m

- ODBOJNA OGRADA: Δg2 0.30= kN/m

24

Page 25: Staticki proracun

USVOJENA PODEONA ARMATURA: RA ∅ 10 / 20 cm ( Aap 3.95= cm2 )

USVOJENA GLAVNA ARMATURA: RA ∅ 12 / 20 cm ( Aa 5.65= cm2 )

minAap 1.70= cm2/mminAap 0.085b d⋅100⋅=

Aap 0.26= cm2/mAap 0.20 Aa⋅=

minAa 2.00= cm2/mminAa 0.10b d⋅100⋅=

Aa 1.30= cm2/mAa μ' b⋅ h⋅fbσv⋅=

ea / eb = 10.0 / 0.525 o/oo

μ' 1.195%=

k 9.296=kh

Mu 102⋅

b fb⋅

=

Mu 8.53= kNm

Mu 1.6 Mg MΔg+( )⋅ 1.8 Mp⋅+=

h 17.0= cmh d a−=

a 3.0= cmd 20.0= cmb 100.0= cm

RA 400/500-2 ⇒ σv 400= MPa

MB 40 ⇒ fb 25.50= MPa

2.2. DIMENZIONISAWE KONZOLE

25

Page 26: Staticki proracun

maxMn2 94.25−= kNm Tn2 821.91= kNm

minMn2 767.85−= kNm Mtn2 19.90= kNm

- PRESEK U POQU

b 240.0= cm d 120.0= cm a 5.0= cm

h d a−= h 115.00= cm

Mu 1.6 maxMg maxMn2+( )⋅= Mu 141.66−= kNm

kh

Mu 102⋅

b fb⋅

= k 23.903=

Fb 240.0 70.0⋅ 240.0 140.0+( ) 0.5⋅ 50.0⋅+= Fb 26300.00= cm2

minAa 0.20Fb100⋅= minAa 52.60= cm2

3. PRORA^UN SREDWIH STUBOVA

3.1. PRORA^UN LE@I[NE GREDE IZNAD SREDWIH STUBOVA

5070

160 770 1601090

100100100185185100100100250235235250

970

240

140

5070

75

MB 40 ⇒ fb 25.50= MPa τr 1.30= MPa

RA 400/500-2 ⇒ σv 400= MPa

FAZA MONTA@E NOSA^A•

1. SOPSTVENA TE@INA LE@I[NE GREDE:

maxMg 5.71= kNm Tg1 131.42= kNm Mtg 0.00= kNm

minMg 131.79−= kNm Tg2 133.58= kNm

2. MONTA@NI NOSA^I MONTIRANI SAMO U JEDNOM POQU

maxMn1 108.74−= kNm Tn1 230.54= kNm

minMn1 256.82−= kNm Mtn1 207.49= kNm

3. MONTA@NI NOSA^I + KOLOVOZNA PLO^A + POPRE^NI NOSA^:

26

Page 27: Staticki proracun

do d 2 a⋅−= do 110.0= cm dm do=

δodm8

= δo 13.8= cm

Obo 2 bo do+( )⋅= Obo 640.0= cm

Abo bo do⋅= Abo 23100.0= cm2

- NOSA^I MONTIRANI SAMO U JEDNOM POQU:

maxMtu 1.6 Mtg Mtn1+( )⋅= maxMtu 331.98= kNm

odgTu 1.6 Tg1 Tn1+( )⋅= odgTu 579.14= kN

τntodgTu

b z⋅10⋅= τnt 0.25= MPa

τnmtmaxMtu 103

2 Abo⋅ δo⋅= τnmt 0.52= MPa

τn τnt τnmt+=

τn 0.78= MPa < τr 1.30= MPa

- MONTA@NI NOSA^I + KOLOVOZNA PLO^A + POPRE^NI NOSA^:

maxTu1 1.6 Tg2 Tn2+( )⋅= maxTu1 1528.78= kN

odgMtu1 1.6 Mtg Mtn2+( )⋅= odgMtu1 31.84= kNm

τn1maxTu1

b z⋅10⋅= τn1 0.67= MPa

τn1 0.67= MPa < τr 1.30= MPa

- PRESEK IZNAD OSLONCA

b 140.0= cm d 120.0= cm a 5.0= cm

h d a−= h 115.00= cm

Mu 1.6− minMg minMn2+( )⋅= Mu 1439.42= kNm

kh

Mu 102⋅

b fb⋅

= k 5.727= ea / eb = 10.0 / 0.900 o/oo

μ' 3.158%=

Aa1 μ' b⋅ h⋅fbσv⋅= Aa1 32.41= cm2

minAa1 0.20Fb100⋅= minAa1 52.60= cm2

ARMATURA ]E BITI USVOJENA POSLE KONTROLE TRANSVERZALNIH SILA I

MOMENATA TORZIJE

KONTROLA PRESEKA PREMA GRANI^NIM UTICAJIMA

TRANSVERZALNIH SILA I MOMENATA TORZIJE

ZAMEWUJU]I PRAVOUGAONI PRESEK:

b 220.0= cm d 120.0= cm a 5.00= cm

h d a−= h 115.00= cm bo b 2 a⋅−= bo 210.0= cm

z 0.9 h⋅= z 103.50= cm

27

Page 28: Staticki proracun

5. RAVNOMERNA PROMENA TEMPERATURE:

maxMt 28.08= kNm

minMt 1.77−= kNm minMt1 29.71−= kNm

6. VETAR - OPTERE]EN MOST:

maxMw 245.64= kNm

minMw 263.87−= kNm

7. SEIZMIKA - POPRE^NO:

maxMs 1552.73= kNm

minMs 1647.83−= kNm

1. STALNO + POKRETNO

maxMu1 1.6 maxMg maxMΔg+( )⋅ 1.8 maxMp⋅+=

maxMu1 2251.09−= kNm

minMu1 1.6 minMg minMΔg+( )⋅ 1.8 minMp⋅+=

minMu1 3503.13−= kNm

2. STALNO + POKRETNO + KO^EWE + TEMPERATURA

maxMu2 1.3 maxMg maxMΔg+( )⋅ 1.5 maxMp⋅+ 1.3 maxMk maxMt+( )⋅+=

maxMu2 1772.29−= kNm

minMu2 1.3 minMg minMΔg+( )⋅ 1.5 minMp⋅+ 1.3 minMk minMt+( )⋅+=

minMu2 2872.86−= kNm

ARMATURA IZNAD OSLONCA:

ZA MOMENTE SAVIJAWA POTREBNO Aa 52.60= cm2

USVOJENO: 12 RA ∅ 25 ( Aa 58.92= cm2 )

FAZA EKSPLOATACIJE•

1. SOPSTVENA TE@INA:

maxMg 850.41−= kNm

minMg 1012.43−= kNm minMg1 969.45−= kNm

2. DODATNO STALNO OPTERE]EWE:

maxMΔg 579.93−= kNm

minMΔg 565.26−= kNm minMΔg1 599.04−= kNm

3. POKRETNO OPTERE]EWE:

maxMp 20.81= kNm

minMp 543.79−= kNm minMp1 500.88−= kNm

4. ZAUSTAVQAWE I POKRETAWE VOZILA:

maxMk 14.95= kNm

minMk 2.98−= kNm minMk1 15.71−= kNm

28

Page 29: Staticki proracun

Aa1 6.03= cm2

Fb 120.0 75.0⋅ 240.0 70.0⋅+ 240.0 140.0+( ) 0.5⋅ 50.0⋅+=

Fb 35300.00= cm2

minAa 0.20Fb100⋅= minAa 70.60= cm2

- PRESEK IZNAD OSLONCA

b 160.0= cm d 195.0= cm a 5.0= cm

h d a−= h 190.00= cm

Mu minMu4−= Mu 4181.22= kNm

kh

Mu 102⋅

b fb⋅

= k 5.935= ea / eb = 10.0 / 0.875 o/oo

μ' 3.007%=

Aa1 μ' b⋅ h⋅fbσv⋅= Aa1 58.28= cm2

minAa 0.20Fb100⋅= minAa 70.60= cm2

ARMATURA ]E BITI USVOJENA POSLE KONTROLE TRANSVERZALNIH SILA I

MOMENATA TORZIJE

3. STALNO + POKRETNO + KO^EWE + TEMPERATURA + VETAR

maxMu3 1.3 maxMg maxMΔg+( )⋅ 1.5 maxMp⋅+ 1.3 maxMk maxMt+ maxMw+( )⋅+=

maxMu3 1452.96−= kNm

minMu3 1.3 minMg1 minMΔg1+( )⋅ 1.5 minMp1⋅+ 1.3 minMk1 minMt1+ minMw+( )⋅+=

minMu3 3192.43−= kNm

4. STALNO + SEIZMIKA

maxMu4 1.3 maxMg maxMΔg+( )⋅ 1.3 maxMs⋅+=

maxMu4 159.11= kNm

minMu4 1.3 minMg1 minMΔg1+( )⋅ 1.3 minMs⋅+=

minMu4 4181.22−= kNm

- PRESEK U POQU

b 120.0= cm d 195.0= cm a 5.0= cm

h d a−= h 190.00= cm

Mu maxMu4= Mu 159.11= kNm

kh

Mu 102⋅

b fb⋅

= k 26.349= ea / eb = 10.0 / 0.300 o/oo

μ' 0.415%=

Aa1 μ' b⋅ h⋅fbσv⋅=

29

Page 30: Staticki proracun

odgMtt1 136.80= kNm

5. VETAR - OPTERE]EN MOST:

maxTw 155.15= kN

odgMtw 40.54−= kNm

6. SEIZMIKA - POPRE^NO:

maxTz 811.31= kN

odgMtz 239.97−= kNm

1. STALNO + POKRETNO

Tu1 1.6 maxTΔg⋅ 1.8 maxTp⋅+=

Tu1 1606.26= kN

Mtu1 1.6 odgMtΔg⋅ 1.8 odgMtp⋅+( )−=

Mtu1 250.48= kNm

2. STALNO + POKRETNO + KO^EWE + TEMPERATURA

Tu2 1.3 maxTΔg⋅ 1.5 maxTp⋅+ 1.3 maxTk maxTt+( )⋅+=

Tu2 1336.61= kN

Mtu2 1.3 odgMtΔg⋅ 1.5 odgMtp⋅+ 1.3 odgMtk odgMtt+( )⋅+=

Mtu2 49.53= kNm

3. STALNO + POKRETNO + KO^EWE + TEMPERATURA + VETAR

Tu3 1.3 maxTΔg1⋅ 1.5 maxTp1⋅+ 1.3 maxTk1 maxTt1+ maxTw+( )⋅+=

Tu3 1467.86= kN

Mtu3 1.3 odgMtΔg1⋅ 1.5 odgMtp1⋅+ 1.3 odgMtk1 odgMtt1+ odgMtw+( )⋅+=

Mtu3 34.98= kNm

KONTROLA PRESEKA PREMA GRANI^NIM UTICAJIMA

TRANSVERZALNIH SILA I MOMENATA TORZIJE

- MAKSIMALNA TRANSVERZALNA SILA I ODGOVARAJU]I MOMENATAT TORZIJE

1. DODATNO STALNO OPTERE]EWE:

maxTΔg 322.76= kN maxTΔg1 165.16= kN

odgMtΔg 41.15−= kNm odgMtΔg1 16.84−= kNm

2. POKRETNO OPTERE]EWE:

maxTp 605.47= kN maxTp1 683.24= kN

odgMtp 102.58−= kNm odgMtp1 2.86−= kNm

3. ZAUSTAVQAWE I POKRETAWE VOZILA:

maxTk 3.42= kN maxTk1 6.56= kN

odgMtk 104.12= kNm odgMtk1 49.21−= kNm

4. RAVNOMERNA PROMENA TEMPERATURE:

maxTt 3.36= kN maxTt1 13.90= kN

odgMtt 93.49= kNm

30

Page 31: Staticki proracun

maxMtΔg1 39.49= kNm maxMtΔg2 17.25= kNm

odgTΔg 322.76= kN odgTΔg1 321.85= kN odgTΔg2 167.53= kN

2. POKRETNO OPTERE]EWE:

maxMtp 597.56= kNm maxMtp1 598.08= kNm

odgTp 394.07= kN odgTp1 400.04= kN

3. ZAUSTAVQAWE I POKRETAWE VOZILA:

maxMtk 104.12= kNm maxMtk1 38.77= kNm

odgTk 3.42−= kN odgTk1 2.10−= kN

4. RAVNOMERNA PROMENA TEMPERATURE:

maxMtt 93.49= kNm maxMtt1 112.04= kNm

odgTt 3.36−= kN odgTt1 5.66−= kN

5. VETAR - OPTERE]EN MOST:

maxMtw 18.25= kNm

odgTw 3.19−= kN

6. SEIZMIKA - PODU@NO:

maxMtz 1330.60= kNm

odgTz 138.55−= kN

4. STALNO + SEIZMIKA

Tu4 1.3 maxTΔg1⋅ 1.3 maxTz⋅+=

Tu4 1269.41= kN

Mtu4 1.3 odgMtΔg1⋅ 1.3 odgMtz⋅+( )−=

Mtu4 333.85= kNm

b 120.0= cm d 195.0= cm a 5.00= cm

h d a−= h 190.00= cm

z 0.9 h⋅= z 171.00= cm δo 13.75= cm

Obo 640.00= cm maxTu Tu1=

Abo 23100.00= cm2 odgMtu Mtu1=

τntmaxTu

b z⋅10⋅= τnt 0.78= MPa

τnmtodgMtu 103

2 Abo⋅ δo⋅= τnmt 0.39= MPa

τn τn1 τnt+ τnmt+=

τr 1.30= MPa < τn 1.85= MPa < 3 τr⋅ 3.90= MPa

- MAKSIMALNI MOMENATAT TORZIJE I ODGOVARAJU]A TRANSVERZALNA SILA

1. DODATNO STALNO OPTERE]EWE:

maxMtΔg 41.15= kNm

31

Page 32: Staticki proracun

h d a−= h 190.00= cm

z 0.9 h⋅= z 171.00= cm δo 13.75= cm

Obo 640.00= cm maxMtu Mtu4=

Abo 23100.00= cm2 odgTu Tu4=

τnmtmaxMtu 103

2 Abo⋅ δo⋅= τnmt 2.76= MPa

τntodgTu

b z⋅10⋅= τnt 0.02= MPa

τn τn1 τnt+ τnmt+=

τr 1.30= MPa < τn 3.45= MPa < 3 τr⋅ 3.90= MPa

DEO KOJI SE POVERAVA BETONU:

Tbuτn1 τnt+

τn12⋅ 3 τr⋅ τn−( )⋅ b⋅ z⋅ 10 1−

⋅= Tbu 92.76= kN

Mtbuτnmtτn

3 τr⋅ τn−( )⋅ Abo⋅ δo⋅ 10 3−⋅= Mtbu 114.83= kNm

Tru maxTu1 odgTu+ Tbu−= Tru 1473.70= kN

1. STALNO + POKRETNO

Mtu1 1.6 maxMtΔg⋅ 1.8 maxMtp⋅+=

Mtu1 1141.45= kNm

Tu1 1.6 odgTΔg⋅ 1.8 odgTp⋅+=

Tu1 1225.74= kN

2. STALNO + POKRETNO + KO^EWE + TEMPERATURA

Mtu2 1.3 maxMtΔg⋅ 1.5 maxMtp⋅+ 1.3 maxMtk maxMtt+( )⋅+=

Mtu2 1206.73= kNm

Tu2 1.3 odgTΔg⋅ 1.5 odgTp⋅+ 1.3 odgTk odgTt+( )⋅+=

Tu2 1001.88= kN

3. STALNO + POKRETNO + KO^EWE + TEMPERATURA + VETAR

Mtu3 1.3 maxMtΔg1⋅ 1.5 maxMtp1⋅+ 1.3 maxMtk1 maxMtt1+ maxMtw+( )⋅+=

Mtu3 1168.24= kNm

Tu3 1.3 odgTΔg1⋅ 1.5 odgTp1⋅+ 1.3 odgTk1 odgTt1+ odgTw+( )⋅+=

Tu3 1004.23= kN

4. STALNO + SEIZMIKA

Mtu4 1.3 maxMtΔg2⋅ 1.3 maxMtz⋅+=

Mtu4 1752.20= kNm

Tu4 1.3 odgTΔg2⋅ 1.3 odgTz⋅+=

Tu4 37.67= kN

b 120.0= cm d 195.0= cm a 5.00= cm

32

Page 33: Staticki proracun

au1Mtru 102

2 Abo⋅ σv⋅eu⋅ tan θ( )⋅= au1 1.77= cm2

USVOJENE UZENGIJE: RA U∅ 16 / 20 cm ( au1 2.01= cm2 )

UKUPNA PODU@NA ARMATURA ZA PRIJEM TORZIJE, RAVNOMERNO

RASPORE\ENA PO OBIMU PRESEKA:

AatmaxMtu 102

2 Abo⋅ σv⋅Obo⋅ cot θ( )⋅= Aat 60.68= cm2

USVOJENO: 10+2 RA ∅ 25 ( Aa 58.92= cm2 )

UKUPNA ZATEGNUTA ARMATURA IZNAD OSLONCA:

ZA MOMENTE SAVIJAWA POTREBNO Aa 70.60= cm2

Aa Aa ΔAa+= Aa 90.18= cm2

USVOJENO: 22 RA ∅ 25 ( Aa 108.02= cm2 )

UKUPNA ZATEGNUTA ARMATURA U POQU:

ZA MOMENTE SAVIJAWA POTREBNO Aa 70.60= cm2

Aa Aa 2 4.91⋅+= Aa 80.42= cm2

USVOJENO: 20 RA ∅ 25 ( Aa 98.20= cm2 )

τruTrub z⋅

10⋅= τru 0.72= MPa

Mtru maxMtu Mtbu−= Mtru 1637.37= kNm

POTREBNA POVR[INA POPRE^NOG PRESEKA UZENGIJA ZA PRIHVATAWE UTICAJA

TRANSVERZALNIH SILA:

m 4= eu 20.0= cm θπ

4= α

π

2=

au1b τru⋅ 10 1−

m σv⋅ cos α( ) sin α( ) cot θ( )⋅+( )⋅eu⋅= au1 1.08= cm2

USVOJENE ^ETVOROSE^NE UZENGIJE: RA U∅ 14 / 20 cm ( au1 1.54= cm2 )

DODATNA ZATEGNUTA PODU@NA ARMATURA:

ΔAamaxTu1 odgTu+

2 σv⋅cot θ( ) cot α( )−( )⋅= ΔAa 19.58= cm2

POTREBNA POVR[INA POPRE^NOG PRESEKA UZENGIJA ZA PRIHVATAWE UTICAJA

MOMENTA TORZIJE:

eu 20.0= cm θπ

4=

33

Page 34: Staticki proracun

maxMgz 222.72= kNm Mgy 6.33= kNm Ng 2063.15= kN

2. DODATNO STALNO OPTERE]EWE:

maxMΔgz 63.30= kNm MΔgy 16.38−= kNm NΔg 489.92= kN

3. POKRETNO OPTERE]EWE:

maxMpz 371.61= kNm Mpy 31.76= kNm Np 781.06= kN

4. ZAUSTAVQAWE I POKRETAWE VOZILA:

maxMkz 268.05= kNm Mky 36.40= kNm Nk 11.47−= kN

5. RAVNOMERNA PROMENA TEMPERATURE:

maxMtz 246.87= kNm Mty 14.53= kNm Nt 14.05−= kN

6. VETAR - OPTERE]EN MOST:

maxMwz 35.03= kNm Mwy 228.01−= kNm Nw 102.97−= kN

7. SEIZMIKA - PODU@NO:

maxMsz 2291.96= kNm Msy 108.67= kNm Ns 165.03−= kN

3.2. PRORA^UN SREDWIH STUBOVA

MB 30 ⇒ fb 20.50= MPa

RA 400/500-2 ⇒ σv 400= MPa

a 5.0= cm D 100.0= cmaD

0.05=

rD2

= r 50.0= cm

Ab π r2⋅= Ab 7853.98= cm2 Ibπ r4⋅

4=

Ob 2 π⋅ r⋅= Ob 314.16= cm Ib 4908738.52= cm4

dm 2AbOb⋅= dm 50.0= cm ρ 2.5=

DU@INA IZVIJAWA STUBA: hi 2 3.75⋅= hi 7.50= m

iIbAb

= i 25.00= cm

λihi 102⋅

i= 25 < λi 30= < 75

- PRESEK U GLAVI STUBA

1. STALNO OPTERE]EWE:

34

Page 35: Staticki proracun

e1gMg1Ng1

= e1g 0.11= m

NE Eb Ib⋅π

2

hi2⋅ 10 2−

⋅= NE 292837.06= kN

αENg1NE

= αE 8.7184 10 3−×=

eρ e1g eo+( ) e

αE ρ⋅

1 αE− 1−

⎛⎜⎝

⎞⎟⎠⋅= eρ 0.003= m

- DODATNI EKSCENTRICITET II REDA:

0 < e1D

102⋅ 0.20= < 0.30

e2 D 10 2−⋅

λi 25−

100⋅ 0.1

e1D

+⋅= e2 0.02= m

- UKUPNI EKSCENTRICITET:

maxe1 e1 eo+ eρ+ e2+= maxe1 0.24= m

Nu1 1.0 Ng⋅ 1.8 Np⋅+= Nu1 3469.06= kN

Mu1 1.6 Ng⋅ 1.8 Np⋅+( ) maxe1⋅= Mu1 1136.09= kNm

nuNu1

π r2⋅ fb⋅= nu 0.22=

μ1 0.00=

muMu1 102

π r2⋅ D⋅ fb⋅= mu 0.07=

1. STALNO + POKRETNO

Mz1 maxMgz maxMΔgz+ maxMpz+= Mz1 657.63= kNm

My1 Mgy MΔgy+ Mpy+= My1 21.71= kNm

M1 Mz12 My12+( )= M1 657.99= kNm

N1 Ng NΔg+ Np+= N1 3334.13= kN

- EKSCENTRICITET USLED UTICAJA I REDA:

e1M1N1

= e1 0.20= m

- EKSCENTRICITET USLED NETA^NOSTI PRI IZVO\EWU:

eohi

300= 0.02 m < eo 0.03= m < 0.10 m

- DODATNI EKSCENTRICITET USLED TE^EWA BETONA:

Mgz1 maxMgz maxMΔgz+= Mgz1 286.02= kNm

Mgy1 Mgy MΔgy+= Mgy1 10.05−= kNm

Mg1 Mgz12 Mgy12+( )= Mg1 286.20= kNm

Ng1 Ng NΔg+= Ng1 2553.07= kN

35

Page 36: Staticki proracun

e1g 0.11= m

NE Eb Ib⋅π

2

hi2⋅ 10 2−

⋅= NE 292837.06= kN

αENg2NE

= αE 8.7184 10 3−×=

eρ e1g eo+( ) e

αE ρ⋅

1 αE− 1−

⎛⎜⎝

⎞⎟⎠⋅= eρ 0.003= m

- DODATNI EKSCENTRICITET II REDA:

0.30 < e1D

102⋅ 0.36= < 2.50

e2 D 10 2−⋅

λi 25−

160⋅= e2 0.03= m

- UKUPNI EKSCENTRICITET:

maxe2 e1 eo+ eρ+ e2+= maxe2 0.41= m

Nu2 1.0 Ng2⋅ 1.5 Np⋅+ 1.3 Nk Nt+( )⋅+= Nu2 3691.48= kN

Mu2 1.3 Ng2⋅ 1.5 Np⋅+ 1.3 Nk Nt+( )⋅+[ ] maxe2⋅= Mu2 1847.02= kNm

nuNu2

π r2⋅ fb⋅= nu 0.23=

μ2 0.11=

muMu2 102

π r2⋅ D⋅ fb⋅= mu 0.11=

2. STALNO + POKRETNO + KO^EWE + TEMPERATURA

Mz2 maxMgz maxMΔgz+ maxMpz+ maxMkz+ maxMtz+= Mz2 1172.55= kNm

My2 Mgy MΔgy+ Mpy+ Mky+ Mty+= My2 72.64= kNm

M2 Mz22 My22+( )= M2 1174.80= kNm

N2 Ng NΔg+ Np+ Nk+ Nt+= N2 3308.61= kN

- EKSCENTRICITET USLED UTICAJA I REDA:

e1M2N2

= e1 0.36= m

- EKSCENTRICITET USLED NETA^NOSTI PRI IZVO\EWU:

eo 0.03= m

- DODATNI EKSCENTRICITET USLED TE^EWA BETONA:

Mgz2 maxMgz maxMΔgz+= Mgz2 286.02= kNm

Mgy2 Mgy MΔgy+= Mgy2 10.05−= kNm

Mg2 Mgz22 Mgy22+( )= Mg2 286.20= kNm

Ng2 Ng NΔg+= Ng2 2553.07= kN

e1gMg2Ng2

=

36

Page 37: Staticki proracun

e1g 0.11= m

NE Eb Ib⋅π

2

hi2⋅ 10 2−

⋅= NE 292837.06= kN

αENg3NE

= αE 8.7184 10 3−×=

eρ e1g eo+( ) e

αE ρ⋅

1 αE− 1−

⎛⎜⎝

⎞⎟⎠⋅= eρ 0.003= m

- DODATNI EKSCENTRICITET II REDA:

0.30 < e1D

102⋅ 0.38= < 2.50

e2 D 10 2−⋅

λi 25−

160⋅= e2 0.03= m

- UKUPNI EKSCENTRICITET:

maxe3 e1 eo+ eρ+ e2+= maxe3 0.44= m

Nu3 1.0 Ng3⋅ 1.5 Np⋅+ 1.3 Nk Nt+ Nw+( )⋅+= Nu3 3557.62= kN

Mu3 1.3 Ng3⋅ 1.5 Np⋅+ 1.3 Nk Nt+ Nw+( )⋅+[ ] maxe3⋅= Mu3 1898.50= kNm

nuNu3

π r2⋅ fb⋅= nu 0.22=

μ3 0.13=

muMu3 102

π r2⋅ D⋅ fb⋅= mu 0.12=

3. STALNO + POKRETNO + KO^EWE + TEMPERATURA + VETAR

Mz3 maxMgz maxMΔgz+ maxMpz+ maxMkz+ maxMtz+ maxMwz+= Mz3 1207.58= kNm

My3 Mgy MΔgy+ Mpy+ Mky+ Mty+ Mwy+= My3 155.37−= kNm

M3 Mz32 My32+( )= M3 1217.53= kNm

N3 Ng NΔg+ Np+ Nk+ Nt+ Nw+= N3 3205.64= kN

- EKSCENTRICITET USLED UTICAJA I REDA:

e1M3N3

= e1 0.38= m

- EKSCENTRICITET USLED NETA^NOSTI PRI IZVO\EWU:

eo 0.03= m

- DODATNI EKSCENTRICITET USLED TE^EWA BETONA:

Mgz3 maxMgz maxMΔgz+= Mgz3 286.02= kNm

Mgy3 Mgy MΔgy+= Mgy3 10.05−= kNm

Mg3 Mgz32 Mgy32+( )= Mg3 286.20= kNm

Ng3 Ng NΔg+= Ng3 2553.07= kN

e1gMg3Ng3

=

37

Page 38: Staticki proracun

e1g 0.11= m

NE Eb Ib⋅π

2

hi2⋅ 10 2−

⋅= NE 292837.06= kN

αENg4NE

= αE 8.7184 10 3−×=

eρ e1g eo+( ) e

αE ρ⋅

1 αE− 1−

⎛⎜⎝

⎞⎟⎠⋅= eρ 0.003= m

- DODATNI EKSCENTRICITET II REDA:

0.30 < e1D

102⋅ 1.08= < 2.50

e2 D 10 2−⋅

λi 25−

160⋅= e2 0.03= m

- UKUPNI EKSCENTRICITET:

maxe4 e1 eo+ eρ+ e2+= maxe4 1.14= m

Nu4 1.0 Ng4⋅ 1.3 Ns⋅+= Nu4 2338.53= kN

Mu4 1.3 Ng4⋅ 1.3 Ns⋅+( ) maxe3⋅= Mu4 1363.19= kNm

nuNu4

π r2⋅ fb⋅= nu 0.15=

μ4 0.10=

muMu4 102

π r2⋅ D⋅ fb⋅= mu 0.08=

4. STALNO + SEIZMIKA

Mz4 maxMgz maxMΔgz+ maxMsz+= Mz4 2577.98= kNm

My4 Mgy MΔgy+ Msy+= My4 98.62= kNm

M4 Mz42 My42+( )= M4 2579.87= kNm

N4 Ng NΔg+ Ns+= N4 2388.04= kN

- EKSCENTRICITET USLED UTICAJA I REDA:

e1M4N4

= e1 1.08= m

- EKSCENTRICITET USLED NETA^NOSTI PRI IZVO\EWU:

eo 0.03= m

- DODATNI EKSCENTRICITET USLED TE^EWA BETONA:

Mgz4 maxMgz maxMΔgz+= Mgz4 286.02= kNm

Mgy4 Mgy MΔgy+= Mgy4 10.05−= kNm

Mg4 Mgz42 Mgy42+( )= Mg4 286.20= kNm

Ng4 Ng NΔg+= Ng4 2553.07= kN

e1gMg4Ng4

=

38

Page 39: Staticki proracun

maxMtz 279.86= kNm Mty 19.56−= kNm Nt 14.05−= kN

6. VETAR - OPTERE]EN MOST:

maxMwz 31.80= kNm Mwy 241.61= kNm Nw 102.97−= kN

7. SEIZMIKA - PODU@NO:

maxMsz 2566.62= kNm Msy 149.68−= kNm Ns 165.03−= kN

1. STALNO + POKRETNO

Muz 1.6 maxMgz1 maxMΔgz1+( )⋅ 1.8 maxMpz1⋅+= Muz 574.46= kNm

Muy 1.6 Mgy1 MΔgy1+( )⋅ 1.8 Mpy1⋅+= Muy 12.98= kNm

Mu Muz2 Muy2+( )= Mu 574.60= kNm

Nu 1.0 Ng1 NΔg1+( )⋅ 1.8 Np1⋅+= Nu 4184.06= kN

nuNu

D2 π

4⋅ fb⋅

= nu 0.26=

μ 0.00=

muMu 102

D2 π

4⋅ D⋅ fb⋅

= mu 0.04=

2. STALNO + POKRETNO + KO^EWE + TEMPERATURA

Muz 1.3 maxMgz maxMΔgz+( )⋅ 1.5 maxMpz⋅+ 1.3 maxMkz maxMtz+( )⋅+= Muz 1007.79= kNm

Muy 1.3 Mgy MΔgy+( )⋅ 1.5 Mpy⋅+ 1.3 Mky Mty+( )⋅+= Muy 39.79−= kNm

Aa μ3 π⋅ r2⋅fbσv⋅= Aa 52.33= cm2

minμ 0.8%=

minAa minμ π⋅ r2⋅= minAa 62.83= cm2

- PRESEK U NO@ICI STUBA

1. STALNO OPTERE]EWE:

maxMgz 56.40= kNm Mgy 23.11= kNm Ng 2210.41= kN

maxMgz1 122.19= kNm Mgy1 6.52= kNm Ng1 2326.93= kN

2. DODATNO STALNO OPTERE]EWE:

maxMΔgz 16.50= kNm MΔgy 12.27= kNm NΔg 489.92= kN

maxMΔgz1 34.11= kNm MΔgy1 7.04= kNm NΔg1 486.61= kN

3. POKRETNO OPTERE]EWE:

maxMpz 105.96= kNm Mpy 3.94−= kNm Np 39.81−= kN

maxMpz1 180.21= kNm Mpy1 4.84−= kNm Np1 761.40= kN

4. ZAUSTAVQAWE I POKRETAWE VOZILA:

maxMkz 300.20= kNm Mky 41.88−= kNm Nk 11.47−= kN

5. RAVNOMERNA PROMENA TEMPERATURE:

39

Page 40: Staticki proracun

mu 0.07=

4. STALNO + SEIZMIKA

Muz 1.3 maxMgz maxMΔgz+( )⋅ 1.3 maxMsz⋅+= Muz 3431.38= kNmMuy 1.3 Mgy MΔgy+( )⋅ 1.3 Msy⋅+= Muy 148.59−= kNm

Mu Muz2 Muy2+( )= Mu 3434.59= kNm

Nu 1.0 Ng NΔg+( )⋅ 1.3 Ns⋅+= Nu 2485.79= kN

nuNu

D2 π

4⋅ fb⋅

= nu 0.15=

μ4 0.26=

muMu 102

D2 π

4⋅ D⋅ fb⋅

= mu 0.21=

Aa μ4 π⋅ r2⋅fbσv⋅= Aa 104.65= cm2

minμ 0.8%=

Aa minμ π⋅ r2⋅= Aa 62.83= cm2

USVOJENO: 24 RA ∅ 25 ( Aa 117.60= cm2 )

Mu Muz2 Muy2+( )= Mu 1008.57= kNm

Nu 1.0 Ng NΔg+( )⋅ 1.5 Np⋅+ 1.3 Nk Nt+( )⋅+= Nu 2607.44= kN

nuNu

D2 π

4⋅ fb⋅

= nu 0.16=

μ2 0.00=

muMu 102

D2 π

4⋅ D⋅ fb⋅

= mu 0.06=

3. STALNO + POKRETNO + KO^EWE + TEMPERATURA + VETAR

Muz 1.3 maxMgz maxMΔgz+( )⋅ 1.5 maxMpz⋅+ 1.3 maxMkz maxMtz+ maxMwz+( )⋅+=

Muz 1049.13= kNm

Muy 1.3 Mgy MΔgy+( )⋅ 1.5 Mpy⋅+ 1.3 Mky Mty+ Mwy+( )⋅+=

Muy 274.31= kNm

Mu Muz2 Muy2+( )= Mu 1084.40= kNm

Nu 1.0 Ng NΔg+( )⋅ 1.5 Np⋅+ 1.3 Nk Nt+ Nw+( )⋅+= Nu 2473.58= kN

nuNu

D2 π

4⋅ fb⋅

= nu 0.15=

μ3 0.04=

muMu 102

D2 π

4⋅ D⋅ fb⋅

=

40

Page 41: Staticki proracun

Rkz1 11.47= kN

Rkx 12.47= kN Rkx1 75.87= kN

Mky 90.20= kNm Mky1 300.60= kNm

5. RAVNOMERNA PROMENA TEMPERATURE:

Rtz 19.54= kN Rtz1 14.05= kN

Rtx 37.61−= kN Rtx1 70.27= kN

Mty 272.66−= kNm Mty1 280.04= kNm

6. VETAR - OPTERE]EN MOST:

Rwz1 102.97= kNRwz 151.87= kNRwx1 8.28= kNRwx 0.60= kNMwy1 29.38= kNmMwy 5.36= kNm

7. SEIZMIKA - POPRE^NO:

Rzz1 500.69= kNRzz 789.86= kNRzx1 48.32= kNRzx 3.13= kNMzy1 170.39= kNmMzy 29.43= kNm

3.3. TEMEQ SREDWEG STUBA

- PRESEK U NO@ICI STUBA - max REAKCIJA Rz

1. SOPSTVENA TE@INA:

Rgz 2326.93= kN Rgz1 2210.41= kN

Rgx 23.95= kN Rgx1 37.19−= kN

Mgy 122.25= kNm Mgy1 56.17−= kNm

2. DODATNO STALNO OPTERE]EWE:

RΔgz 486.61= kN RΔgz1 489.92= kN

RΔgx 6.71= kN RΔgx1 10.60−= kN

MΔgy 34.18= kNm MΔgy1 16.38−= kNm

3. POKRETNO OPTERE]EWE:

maxRpz 1181.44= kN maxRpz1 1203.93= kN

Rpx 2.15= kN Rpx1 2.39= kN

Mpy 0.54−= kNm Mpy1 36.52= kNm

4. ZAUSTAVQAWE I POKRETAWE VOZILA:

Rkz 4.51= kN

41

Page 42: Staticki proracun

1. STALNO OPTERE]EWE

Ng Rgz RΔgz+ Gj+ Gt+ Gz+= Ng 4492.00= kN

Hg Rgx RΔgx+= Hg 30.66= kN

Mg Mgy MΔgy+ Hg ht⋅+= Mg 233.08= kNm

σ1NgF

MgW

+= σ1 278.25= kN/m2

σ2NgF

MgW

−= σ2 238.07= kN/m2

2. STALNO + POKRETNO

N Ng maxRpz+= N 5673.44= kN

H Hg Rpx+= H 32.81= kN

M Mgy MΔgy+ Mpy+ H ht⋅+= M 237.92= kNm

σ1NF

MW

+= σ1 346.57= kN/m2

σ2NF

MW

−= σ2 305.55= kN/m2

KONTROLA NAPONA U TEMEQNOJ SPOJNICI

- ZA STUB S2

4001 2

MyRx

Rz 212

100

150

250

300

b 4.00= m d 4.35= m

ht 2.50= m

F b d⋅= F 17.40= m2

Wb2 d⋅

6= W 11.60= m3

- TE@INA JASTUKA

Gj 3.00 3.75⋅ 1.00⋅ 25.00⋅= Gj 281.25= kN

- TE@INA TEMEQNE STOPE

Gt 4.00 4.35⋅ 1.50⋅ 25.00⋅= Gt 652.50= kN

- TE@INA ZEMQE

Gz1 3.00 3.75⋅ π 0.502⋅−( ) 2.12⋅ 18.00⋅= Gz1 399.33= kN

Gz2 4.00 4.35⋅ 3.00 3.75⋅−( ) 3.12⋅ 18.00⋅= Gz2 345.38= kN

Gz Gz1 Gz2+= Gz 744.71= kN

42

Page 43: Staticki proracun

- ZA STUB S5

4501 2

MyRx

Rz

335

100

150

250

300

b 4.50= m d 3.10= m

ht 2.50= m

F b d⋅= F 13.95= m2

Wb2 d⋅

6= W 10.46= m3

- TE@INA JASTUKA

Gj 3.00 2.00⋅ 1.00⋅ 25.00⋅= Gj 150.00= kN

- TE@INA TEMEQNE STOPE

Gt 4.50 3.10⋅ 1.50⋅ 25.00⋅= Gt 523.13= kN

- TE@INA ZEMQE

Gz1 3.00 2.00⋅ π 0.502⋅−( ) 3.35⋅ 18.00⋅= Gz1 314.44= kN

Gz2 4.50 3.10⋅ 3.00 2.00⋅−( ) 4.35⋅ 18.00⋅= Gz2 622.49= kN

Gz Gz1 Gz2+= Gz 936.93= kN

3. STALNO + POKRETNO + KO^EWE + TEMPERATURA + VETAR

N Ng maxRpz+ Rkz+ Rtz+ Rwz+= N 5849.36= kN

H Hg Rpx+ Rkx+ Rtx+ Rwx+= H 8.27= kN

M Mgy MΔgy+ Mpy+ Mky+ Mty+ Mwy+ H ht⋅+= M 0.53−= kNm

σ1NF

MW

+= σ1 336.12= kN/m2

σ2NF

MW

−= σ2 336.22= kN/m2

4. STALNO + SEIZMIKA

N Ng Rzz+= N 5281.86= kN

H Hg Rzx+= H 33.79= kN

M Mgy MΔgy+ Mzy+ H ht⋅+= M 270.34= kNm

σ1NF

MW

+= σ1 326.86= kN/m2

σ2NF

MW

−= σ2 280.25= kN/m2

43

Page 44: Staticki proracun

N Ng maxRpz1+ Rkz1+ Rtz1+ Rwz1+= N 5642.80= kN

H Hg Rpx1+ Rkx1+ Rtx1+ Rwx1+= H 109.02= kN

M Mgy1 MΔgy1+ Mpy1+ Mky1+ Mty1+ Mwy1+ H ht⋅+= M 846.54= kNm

σ1NF

MW

+= σ1 485.41= kN/m2

σ2NF

MW

−= σ2 323.59= kN/m2

4. STALNO + SEIZMIKA

N Ng Rzz1+= N 4811.07= kN

H Hg Rzx1+= H 0.53= kN

M Mgy1 MΔgy1+ Mzy1+ H ht⋅+= M 99.16= kNm

σ1NF

MW

+= σ1 354.36= kN/m2

σ2NF

MW

−= σ2 335.40= kN/m2

1. STALNO OPTERE]EWE

Ng Rgz1 RΔgz1+ Gj+ Gt+ Gz+= Ng 4310.38= kN

Hg Rgx1 RΔgx1+= Hg 47.79−= kN

Mg Mgy1 MΔgy1+ Hg ht⋅+= Mg 192.02−= kNm

σ1NgF

MgW

+= σ1 290.63= kN/m2

σ2NgF

MgW

−= σ2 327.34= kN/m2

2. STALNO + POKRETNO

N Ng maxRpz1+= N 5514.31= kN

H Hg Rpx1+= H 45.40−= kN

M Mgy1 MΔgy1+ Mpy1+ H ht⋅+= M 149.53−= kNm

σ1NF

MW

+= σ1 381.00= kN/m2

σ2NF

MW

−= σ2 409.58= kN/m2

3. STALNO + POKRETNO + KO^EWE + TEMPERATURA + VETAR

44

Page 45: Staticki proracun

maxMpy1 105.99−= kNm

maxMpy2 184.87= kNm

4. ZAUSTAVQAWE I POKRETAWE VOZILA:

Rkz 4.51= kN Rkz1 11.47= kN

Rkx 12.47= kN Rkx1 75.87= kN

Mky 90.20= kNm Mky1 300.60= kNm

5. RAVNOMERNA PROMENA TEMPERATURE:

Rtz 19.54= kN Rtz1 14.05= kN

Rtx 37.61−= kN Rtx1 70.27= kN

Mty 272.66−= kNm Mty1 280.04= kNm

6. VETAR - OPTERE]EN MOST:

Rwz1 102.97= kNRwz 151.87= kNRwx1 8.28= kNRwx 0.60= kNMwy1 29.38= kNmMwy 5.36= kNm

7. SEIZMIKA - PODU@NO:

Rzz1 500.69= kNRzz 789.86= kNRzx1 48.32= kNRzx 3.13= kNMzy1 170.39= kNmMzy 29.43= kNm

- PRESEK U NO@ICI STUBA - max MOMENAT My1. SOPSTVENA TE@INA:

Rgz 2326.93= kN Rgz1 2210.41= kN Rgz2 2055.98= kN

Rgx 23.95= kN Rgx1 37.19−= kN Rgx2 13.36= kN

Mgy 122.25= kNm Mgy1 56.17−= kNm Mgy2 71.43= kNm

2. DODATNO STALNO OPTERE]EWE:

RΔgz 486.61= kN RΔgz1 489.92= kN RΔgz2 415.31= kN

RΔgx 6.71= kN RΔgx1 10.60−= kN RΔgx2 3.41= kN

MΔgy 34.18= kNm MΔgy1 16.38−= kNm MΔgy2 18.47= kNm

3. POKRETNO OPTERE]EWE:

Rpz 761.40= kN Rpz1 39.81−= kN Rpz2 673.18= kN

Rpx 38.02= kN Rpx1 30.67−= kN Rpx2 37.99= kN

maxMpy 180.15= kNm

45

Page 46: Staticki proracun

1. STALNO OPTERE]EWE

Ng Rgz RΔgz+ Gj+ Gt+ Gz+= Ng 4492.00= kN

Hg Rgx RΔgx+= Hg 30.66= kN

Mg Mgy MΔgy+ Hg ht⋅+= Mg 233.08= kNm

σ1NgF

MgW

+= σ1 278.25= kN/m2

σ2NgF

MgW

−= σ2 238.07= kN/m2

2. STALNO + POKRETNO

N Ng Rpz+= N 5253.40= kN

H Hg Rpx+= H 68.68= kN

M Mgy MΔgy+ maxMpy+ H ht⋅+= M 508.28= kNm

σ1NF

MW

+= σ1 345.74= kN/m2

σ2NF

MW

−= σ2 258.10= kN/m2

KONTROLA NAPONA U TEMEQNOJ SPOJNICI

- ZA STUB S2

4001 2

MyRx

Rz 212

100

150

250

300

b 4.00= m d 4.35= m

ht 2.50= m

F b d⋅= F 17.40= m2

Wb2 d⋅

6= W 11.60= m3

- TE@INA JASTUKA

Gj 3.00 3.75⋅ 1.00⋅ 25.00⋅= Gj 281.25= kN

- TE@INA TEMEQNE STOPE

Gt 4.00 4.35⋅ 1.50⋅ 25.00⋅= Gt 652.50= kN

- TE@INA ZEMQE

Gz1 3.00 3.75⋅ π 0.502⋅−( ) 2.12⋅ 18.00⋅= Gz1 399.33= kN

Gz2 4.00 4.35⋅ 3.00 3.75⋅−( ) 3.12⋅ 18.00⋅= Gz2 345.38= kN

Gz Gz1 Gz2+= Gz 744.71= kN

46

Page 47: Staticki proracun

Gj 150.00= kN

- TE@INA TEMEQNE STOPE

Gt 4.00 3.10⋅ 1.50⋅ 25.00⋅= Gt 465.00= kN

- TE@INA ZEMQE

Gz1 3.00 2.00⋅ π 0.502⋅−( ) 3.35⋅ 18.00⋅= Gz1 314.44= kN

Gz2 4.00 3.10⋅ 3.00 2.00⋅−( ) 4.35⋅ 18.00⋅= Gz2 501.12= kN

Gz Gz1 Gz2+= Gz 815.56= kN

1. STALNO OPTERE]EWE

Ng Rgz1 RΔgz1+ Gj+ Gt+ Gz+= Ng 4130.89= kN

Hg Rgx1 RΔgx1+= Hg 47.79−= kN

Mg Mgy1 MΔgy1+ Hg ht⋅+= Mg 192.02−= kNm

σ1NgF

MgW

+= σ1 309.91= kN/m2

σ2NgF

MgW

−= σ2 356.37= kN/m2

3. STALNO + POKRETNO + KO^EWE + TEMPERATURA + VETAR

N Ng Rpz+ Rkz+ Rtz+ Rwz+= N 5429.32= kN

H Hg Rpx+ Rkx+ Rtx+ Rwx+= H 44.14= kN

M Mgy MΔgy+ maxMpy+ Mky+ Mty+ Mwy+ H ht⋅+= M 269.83= kNm

σ1NF

MW

+= σ1 335.29= kN/m2

σ2NF

MW

−= σ2 288.77= kN/m2

- ZA STUB S5

4501 2

MyRx

Rz

335

100

150

250

300

b 4.00= m d 3.10= m

ht 2.50= m

F b d⋅= F 12.40= m2

Wb2 d⋅

6= W 8.27= m3

- TE@INA JASTUKA

Gj 3.00 2.00⋅ 1.00⋅ 25.00⋅=

47

Page 48: Staticki proracun

σ2 348.18= kN/m2σ2NF

MW

−=

σ1 533.00= kN/m2σ1NF

MW

+=

M 763.89= kNmM Mgy1 MΔgy1+ Mpy1+ Mky1+ Mty1+ Mwy1+ H ht⋅+=

H 75.96= kNH Hg Rpx1+ Rkx1+ Rtx1+ Rwx1+=

N 5463.31= kNN Ng maxRpz1+ Rkz1+ Rtz1+ Rwz1+=

3. STALNO + POKRETNO + KO^EWE + TEMPERATURA + VETAR

σ2 458.31= kN/m2σ2NF

MW

−=

σ1 402.14= kN/m2σ1NF

MW

+=

M 232.18−= kNmM Mgy1 MΔgy1+ Mpy1+ H ht⋅+=

H 78.46−= kNH Hg Rpx1+=

N 5334.82= kNN Ng maxRpz1+=

2. STALNO + POKRETNO

48

Page 49: Staticki proracun

minM 515.00−= kNm

kh

minM 102⋅

b fb⋅

= k 10.381= ea / eb = 10.0 / 0.475 o/oo

μ' 0.992%=

Aa μ' b⋅ h⋅fbσv⋅= Aa 14.49= cm2

minAa 0.20b d⋅100⋅= minAa 60.00= cm2

USVOJENA GLAVNA ARMATURA: 30 RA ∅ 16 ( Aa 60.30= cm2 )

- PRESEK U POQU

maxM 1.7g2⋅

L2

4L12

−⎛⎜⎝

⎞⎟⎠

⋅= maxM 936.06= kNm

kh

maxM 102⋅

b fb⋅

= k 7.700= ea / eb = 10.0 / 0.650 o/oo

μ' 1.769%=

Aa μ' b⋅ h⋅fbσv⋅= Aa 25.84= cm2

minAa 0.20b d⋅100⋅= minAa 60.00= cm2

USVOJENA GLAVNA ARMATURA: 30 RA ∅ 16 ( Aa 60.30= cm2 )

PRORA^UN JASTUKA

MB 30 ⇒ fb 20.50= MPa τr 1.10= MPa

RA 400/500-2 ⇒ σv 400= MPa

b 300.0= cm d 100.0= cm a 5.0= cm

h d a−= h 95.0= cm

L 4.70= m L1 1.40= m

σ1 336.12= kN/m2 bt 4.00= m

σ2 336.22= kN/m2 dt 4.35= m

gσ1 σ2+

2 dt⋅bt⋅= g 309.12= kN/m

- PRESEK IZNAD OSLONCA

minM 1.7− g⋅L12

2⋅=

49

Page 50: Staticki proracun

KONTROLA PRESEKA PREMA GRANI^NIM UTICAJIMA

TRANSVERZALNIH SILA

b 300.0= cm d 100.0= cm h 95.00= cm

z 0.9 h⋅= z 85.50= cm

Tl g L1⋅= Tl 432.77= kN

Td g L1L2

+⎛⎜⎝

⎞⎟⎠

⋅ Tl−= Td 726.44= kN

τn11.7 Td⋅

b z⋅10⋅= τn1 0.48= MPa

τn1 0.48= MPa < τr 1.10= MPa

USVAJAJU SE KONSTRUKTIVNE UZENGIJE: RA ∅ 12 / 20 cm

50

Page 51: Staticki proracun

4. PRORA^UN KRAJWEG STUBA S1

51

Page 52: Staticki proracun

g12 53.2163 0.50⋅ 25.0⋅=

- ^EONO PLATNO

e11 0.46−= mg11 561.24= kNg11 1.20 1.20⋅ 8.31 7.28+( )⋅ 25.0⋅=

- STUBOVI

e10 0.32−= mg10 25.90= kNg10 0.40 0.70⋅ 0.5⋅ 7.40⋅ 25.0⋅=

e9 0.45−= mg9 133.20= kNg9 0.60 1.20⋅ 7.40⋅ 25.0⋅=

- LE@I[NA GREDA

e8 0.06−= mg8 88.20= kNg8 0.40 0.90⋅ 9.80⋅ 25.0⋅=

- PARAPET

eΔg2 3.05= mΔg2 86.59= kNΔg2 14.93 5.80⋅=

eΔg1 4.32= mΔg1 124.67= kNΔg1 14.93 8.35⋅=

3. PE[A^KA STAZA NA KRILU

est 0.56= mgst 1452.03= kNgst 40.3341 1.50⋅ 24.0⋅=

- STOPA TEMEQA

ej 0.51−= mgj 600.81= kNgj 24.0325 1.00⋅ 25.0⋅=

- JASTUK

e12 0.81−= mg12 665.20= kN

e2 5.26= mg2 70.14= kNg2 3.35 3.35⋅ 0.5⋅ 0.50⋅ 25.0⋅=

e1 6.32= mg1 54.37= kNg1 1.00 4.35⋅ 0.50⋅ 25.0⋅=

- VISE]E KRILO

2. SOPSTVENA TE@INA STUBA

e 0.66−= mRp 865.02= kN

Rp 16.68 50.45+ 23.92− 292.51+ 403.19+ 126.11+=

RΔg 309.640= kN

RΔg 131.67 6.37− 22.19+ 22.61+ 12.66− 152.20+=

Rg 1520.520= kN

Rg 166.06 192.19+ 193.83+ 195.47+ 197.23+ 198.87+ 200.50+ 176.37+=

1. REAKCIJE SA KONSTRUKCIJE

4.1 PRORA^UN NAPONA U PRESECIMA

e7 3.05= mg7 29.51= kNg7 0.165 0.40⋅ 0.25 0.55⋅+( ) 5.80⋅ 25.0⋅=

e6 4.32= mg6 42.48= kNg6 0.165 0.40⋅ 0.25 0.55⋅+( ) 8.35⋅ 25.0⋅=

- KONZOLA PE[A^KE STAZE

e5 2.15= mg5 457.50= kNg5 4.00 9.15⋅ 0.50⋅ 25.0⋅=

- STOJE]E KRILO

e4 1.75= mg4 144.00= kNg4 4.80 4.80⋅ 0.5⋅ 0.50⋅ 25.0⋅=

e3 3.05= mg3 72.50= kNg3 1.00 5.80⋅ 0.50⋅ 25.0⋅=

52

Page 53: Staticki proracun

PRESEK II - II PRESEK I - I

- KARAKTERISTIKE PRESEKA

Epv 78.53= kNEpv Ep sin ρ( )⋅=

ev 0.56−= mEzv 489.13= kNEzv Ez sin ρ( )⋅=

ephl 3.57−= mEph 249.07= kNEph Ep cos ρ( )⋅=

ephd 5.07−= mEzh 1551.32= kNEzh Ez cos ρ( )⋅=

ezhl 2.11−= mEp 261.15= kNEp ep F⋅=

ezhd 3.61−= mEz 1626.61= kNEz ezt F⋅=

ep 3.41= kN/m2

WII5 563.29= m3WII5I2

x25=WI5 105.66= m3WI5

I1x15

=

WII4 20.28= m3WII4I2

x24=WI4 3.69= m3WI4

I1x14

=

WII2 28.32= m3WII2I2

x22=WI3 14.49= m3WI3

I1x13

=

x25 0.1307= mx15 0.1447= m

x24 3.6307= mI2 73.6217= m4x14 4.1447= mI1 15.2895= m4

x22 2.60= mF2 24.0325= m2x13 1.0553= mF1 8.5805= m2

ez7 1.79= mz7 157.25= kNz7 2.40 3.64⋅ 18.0⋅=

ez6 2.23−= mz6 572.42= kNz6 4.90 1.90 4.59+( )⋅ 18.0⋅=

ez5 0.37−= mz5 179.10= kNz5 1.2516 7.95⋅ 18.0⋅=

ez4 1.44= mz4 1065.54= kNz4 6.3042 9.39⋅ 18.0⋅=

ez3 0.52−= mz3 75.82= kNz3 0.9728 4.33⋅ 18.0⋅=

ez2 1.23= mz2 171.12= kNz2 3.6010 2.64⋅ 18.0⋅=

ez1 2.00−= mz1 274.86= kNz1 3.00 1.24 3.85+( )⋅ 18.0⋅=

4. TE@INA ZEMQE

ep h1 γ⋅ tan β( )( )2⋅=

ezt 21.27= kN/m2ezt ht γ⋅ tan β( )( )2⋅=

ez 42.53= kN/m2ez h2 γ⋅ tan β( )( )2⋅=

ht 4.36= mF 76.4839= m2

h2 8.72= mh1 0.70= m

cos ρ( ) 0.954=sin ρ( ) 0.301=

γ 18.00= kN/m3,

φ 35= o,

ρ 17.5= o, β 45

φ

2−=

5. ZEMQANI PRITISAK

ez10 0.09= mz10 96.01= kNz10 0.60 8.89⋅ 18.0⋅=

ez9 1.84= mz9 439.92= kNz9 2.35 10.40⋅ 18.0⋅=

ez8 0.04= mz8 62.36= kNz8 0.65 5.33⋅ 18.0⋅=

53

Page 54: Staticki proracun

M1 M' M''+= M1 2375.02= kNm

σ13N1F1

M1WI3

−= σ13 133.90= kN/m2

σ14N1F1

M1WI4

+= σ14 941.65= kN/m2

σ15N1F1

M1WI5

+= σ15 320.30= kN/m2

PRESEK II - II

N2 N1 gj+= N2 3156.32= kN

M2 M1 N1 ej⋅+= M2 1071.71= kNm

σ22N2F2

M2WII2

−= σ22 93.49= kN/m2

σ24N2F2

M2WII4

+= σ24 184.19= kN/m2

σ25N2F2

M2WII5

+= σ25 133.24= kN/m2

PRESEK III - III

F3 40.3341= m2 x31 3.0062= m

I3 158.4332= m4 x34 4.1938= m

x35 0.6938= m

WIII1I3

x31= WIII1 52.70= m3

WIII4I3

x34= WIII4 37.78= m3

WIII5I3

x35= WIII5 228.36= m3

1. SOPSTVENA TE@INA STUBA

PRESEK I - I

N1 g1 g2+ g3+ g4+ g5+ g6+ g7+ g8+ g9+ g10+ g11+ g12+ Δg1+ Δg2+=

N1 2555.51= kN

M' g1 e1⋅ g2 e2⋅+ g3 e3⋅+ g4 e4⋅+ g5 e5⋅+ g6 e6⋅+ g7 e7⋅+ g8 e8⋅+= M' 2437.56= kNm

M'' g9 e9⋅ g10 e10⋅+ g11 e11⋅+ g12 e12⋅+ Δg1 eΔg1⋅+ Δg2 eΔg2⋅+= M'' 62.55−= kNm

54

Page 55: Staticki proracun

N2 N1 z1+ z2+ z3+ z4+ z5+= N2 4889.61= kN

M2d M1d N1 ej⋅+ z1 ez1⋅+ z2 ez2⋅+ z3 ez3⋅+ z4 ez4⋅+ z5 ez5⋅+= M2d 5309.29−= kNm

M2l M1l N1 ej⋅+ z1 ez1⋅+ z2 ez2⋅+ z3 ez3⋅+ z4 ez4⋅+ z5 ez5⋅+= M2l 2608.71−= kNm

σ22N2F2

M2dWII2

−= σ22 390.96= kN/m2

σ24N2F2

M2dWII4

+= σ24 58.37−= kN/m2

σ25N2F2

M2lWII5

+= σ25 198.83= kN/m2

PRESEK III - III

N3 N2 z6+ z7+ z8+ z9+ z10+= N3 6217.57= kN

M3d M2d N2 est⋅+ z6 ez6⋅+ z7 ez7⋅+ z8 ez8⋅+ z9 ez9⋅+ z10 ez10⋅+= M3d 2745.54−= kNm

M3l M2l N2 est⋅+ z6 ez6⋅+ z7 ez7⋅+ z8 ez8⋅+ z9 ez9⋅+ z10 ez10⋅+= M3l 44.96−= kNm

σ31N3F3

M3dWIII1

−= σ31 206.25= kN/m2

σ34N3F3

M3dWIII4

+= σ34 81.48= kN/m2

σ35N3F3

M3lWIII5

+= σ35 153.95= kN/m2

PRESEK III - III

N3 N2 gst+= N3 4608.35= kN

M3 M2 N2 est⋅+= M3 2839.25= kNm

σ31N3F3

M3WIII1

−= σ31 60.38= kN/m2

σ34N3F3

M3WIII4

+= σ34 189.41= kN/m2

σ35N3F3

M3WIII5

+= σ35 126.69= kN/m2

2. SOPSTVENA TE@INA STUBA, TE@INA ZEMQE I ZEMQANI PRITISAK

PRESEK I - I

N1 N1 Ezv+ Epv+= N1 3123.17= kN

M1d M1 Ezv Epv+( ) ev⋅+ Ezh ezhd⋅+ Eph ephd⋅+= M1d 4805.91−= kNm

M1l M1 Ezv Epv+( ) ev⋅+ Ezh ezhl⋅+ Eph ephl⋅+= M1l 2105.33−= kNm

σ13N1F1

M1dWI3

−= σ13 695.69= kN/m2

σ14N1F1

M1dWI4

+= σ14 938.81−= kN/m2

σ15N1F1

M1lWI5

+= σ15 344.06= kN/m2

PRESEK II - II

55

Page 56: Staticki proracun

σ25 271.18= kN/m2

PRESEK III - III

N3 N3 Rg+ RΔg+= N3 8047.73= kN

M3d M3d Rg RΔg+( ) e ej+ est+( )⋅+= M3d 3861.94−= kNm

M3l M3l Rg RΔg+( ) e ej+ est+( )⋅+= M3l 1161.36−= kNm

σ31N3F3

M3dWIII1

−= σ31 272.81= kN/m2

σ34N3F3

M3dWIII4

+= σ34 97.30= kN/m2

σ35N3F3

M3lWIII5

+= σ35 194.44= kN/m2

4. SOPSTVENA TE@INA STUBA, TE@INA ZEMQE, ZEMQANI PRITISAK, REAKCIJASA KONSTRUKCIJE I POKRETNO OPTERE]EWE ( OSNOVNO )

PRESEK I - I

N1 N1 Rp+= N1 5818.35= kN

M1d M1d Rp e⋅+= M1d 6584.73−= kNm

M1l M1l Rp e⋅+= M1l 3884.15−= kNm

σ13N1F1

M1dWI3

−= σ13 1132.58= kN/m2

3. SOPSTVENA TE@INA STUBA, TE@INA ZEMQE, ZEMQANI PRITISAK IREAKCIJA SA KONSTRUKCIJE

PRESEK I - I

N1 N1 Rg+ RΔg+= N1 4953.33= kN

M1d M1d Rg RΔg+( ) e⋅+= M1d 6013.81−= kNm

M1l M1l Rg RΔg+( ) e⋅+= M1l 3313.23−= kNm

σ13N1F1

M1dWI3

−= σ13 992.36= kN/m2

σ14N1F1

M1dWI4

+= σ14 1052.96−= kN/m2

σ15N1F1

M1lWI5

+= σ15 545.92= kN/m2

PRESEK II - II

N2 N2 Rg+ RΔg+= N2 6719.77= kNM2d M2d Rg RΔg+( ) e ej+( )⋅+= M2d 7450.58−= kNmM2l M2l Rg RΔg+( ) e ej+( )⋅+= M2l 4750.00−= kNm

σ22N2F2

M2dWII2

−= σ22 542.73= kN/m2

σ24N2F2

M2dWII4

+= σ24 87.82−= kN/m2

σ25N2F2

M2lWII5

+=

56

Page 57: Staticki proracun

σ31 304.26= kN/m2

σ34N3F3

M3dWIII4

+= σ34 104.78= kN/m2

σ35N3F3

M3lWIII5

+= σ35 213.58= kN/m2

5. SOPSTVENA TE@INA STUBA, TE@INA ZEMQE, ZEMQANI PRITISAK, REAKCIJASA KONSTRUKCIJE I POKRETNO OPTERE]EWE ( OSNOVNO I DOPUNSKO )

- HORIZONTALNA REAKCIJA KOJU PRIMAJU LE@I[TA

H 30.96 6⋅= H 185.76= kN

PRESEK I - I

N1 N1= N1 5818.35= kN

M1d M1d H 8.55⋅−= M1d 8172.97−= kNm

M1l M1l H 7.05⋅−= M1l 5193.75−= kNm

σ13N1F1

M1dWI3

−= σ13 1242.20= kN/m2

σ14N1F1

M1dWI4

+= σ14 1537.45−= kN/m2

σ15N1F1

M1lWI5

+= σ15 628.94= kN/m2

σ14N1F1

M1dWI4

+= σ14 1106.91−= kN/m2

σ15N1F1

M1lWI5

+= σ15 641.33= kN/m2

PRESEK II - II

N2 N2 Rp+= N2 7584.79= kN

M2d M2d Rp e ej+( )⋅+= M2d 8462.65−= kNm

M2l M2l Rp e ej+( )⋅+= M2l 5762.07−= kNm

σ22N2F2

M2dWII2

−= σ22 614.47= kN/m2

σ24N2F2

M2dWII4

+= σ24 101.74−= kN/m2

σ25N2F2

M2lWII5

+= σ25 305.38= kN/m2

PRESEK III - III

N3 N3 Rp+= N3 8912.75= kN

M3d M3d Rp e ej+ est+( )⋅+= M3d 4389.60−= kNm

M3l M3l Rp e ej+ est+( )⋅+= M3l 1689.02−= kNm

σ31N3F3

M3dWIII1

−=

57

Page 58: Staticki proracun

PRESEK III III

USVOJENA ARMATURA: 3 RA ∅ 25 ( Aa 14.73= cm2 )

Aa 3.55= cm2AaZ 10⋅

dopσv=

- DOPU[TEN NAPON U ARMATURI RA 400 / 500 - 2: dopσv 240= MPa

Z 85.23= kNZ 225.77 1.51⋅ 0.5⋅ 0.50⋅=

σ25 302.72= kN/m2σ25N2F2

M2lWII5

+=

σ24 189.22−= kN/m2σ24N2F2

M2dWII4

+=

σ22 677.12= kN/m2σ22N2F2

M2dWII2

−=

M2l 7257.44−= kNmM2l M2l H 8.05⋅−=

M2d 10236.66−= kNmM2d M2d H 9.55⋅−=

N2 7584.79= kNN2 N2= PRESEK II - II

USVOJENA ARMATURA: 10 RA ∅ 25 ( Aa 49.10= cm2 )

Aa 46.12= cm2AaZ 10⋅

dopσv=

- DOPU[TEN NAPON U ARMATURI RA 400 / 500 - 2: dopσv 240= MPa

Z 1106.96= kNZ 1537.45 2.88⋅ 0.5⋅ 0.50⋅=

58

Page 59: Staticki proracun

PRESEK III - III

N3 N3= N3 8912.75= kN

M3d M3d H 11.05⋅−= M3d 6442.25−= kNm

M3l M3l H 9.55⋅−= M3l 3463.03−= kNm

σ31N3F3

M3dWIII1

−= σ31 343.21= kN/m2

σ34N3F3

M3dWIII4

+= σ34 50.44= kN/m2

σ35N3F3

M3lWIII5

+= σ35 205.81= kN/m2

59

Page 60: Staticki proracun

SA SPOQA[WE STRANE KRILA: RA ∅ 12 / 20 cm ( Aa 5.65= cm2/m )

USVOJENA ARMATURASA UNUTRA[WE STRANE KRILA: RA ∅ 16 / 20 cm

RA ∅ 14 / 20 cm ( Aa 17.22= cm2/m )

Aa 17.22= cm2/mAa μ' b⋅ h⋅fbσv⋅=

ea / eb = 10.0 / 1.475 o/oo

μ' 7.149%=

k 3.847=kh

Mu 102⋅

b fb⋅

=

Mu 306.02= kNm/mMu 1.6 Mg⋅ 1.8 Mp⋅+=

Mp 55.92= kNm/m

Mg 128.35= kNm/m

h 47.0= cmh d a−=

a 3.0= cmd 50.0= cmb 100.0= cm

HORIZONTALNA ARMATURA SA UNUTRA[WE STRANE KRILA•

4.2.1. KRILO NA DESNOJ STRANI MOSTA

RA 400/500-2 ⇒ σv 400= MPa

MB 30 ⇒ fb 20.50= MPa τr 1.10= MPa

4.2. PRORA^UN KRILA

60

Page 61: Staticki proracun

g3 0.165 0.40⋅ 0.25 0.35⋅+( ) 4.35⋅ 25.0⋅= g3 16.69= kN

- PE[A^KA STAZA NA KRILU

Δg 1.05 13.58+ 0.30+( ) 4.35⋅= Δg 64.95= kN

- POKRETNO OPTERE]EWE

P 50.0= kN

Mg g1 g3+( ) 2.175⋅ g2 1.117⋅+= Mg 232.92= kNm

MΔg Δg 2.175⋅= MΔg 141.26= kNm

Mp P 4.35⋅= Mp 217.50= kNm

Mu 1.6 Mg MΔg+( )⋅ 1.8 Mp⋅+=

Mu 990.18= kNm

kh

Mu 102⋅

b fb⋅

= k 9.491= ea / eb = 10.0 / 0.325 o/oo

μ' 0.484%=

Aa μ' b⋅ h⋅fbσv⋅= Aa 3.66= cm2

USVOJENA ARMATURA: 3 RA ∅ 22 ( Aa 11.40= cm2 )

VERTIKALNA ARMATURA SA UNUTRA[WE STRANE KRILA•

Mg 151.98= kNm/m

Mp 31.73= kNm/m

Mu 1.6 Mg⋅ 1.8 Mp⋅+= Mu 300.28= kNm/m

kh

Mu 102⋅

b fb⋅

= k 3.883= ea / eb = 10.0 / 1.450 o/oo

μ' 6.962%=

Aa μ' b⋅ h⋅fbσv⋅= Aa 16.77= cm2/m

USVOJENA ARMATURASA UNUTRA[WE STRANE KRILA: RA ∅ 16 / 20 cm

RA ∅ 14 / 20 cm ( Aa 16.77= cm2/m )

SA SPOQA[WE STRANE KRILA: RA ∅ 12 / 20 cm ( Aa 5.65= cm2/m )

VEZA VISE]EG I STOJE]EG KRILA•

b 50.0= cm d 442.0= cm h 295.0= cm

- SOPSTVENA TE@INA KRILA

g1 1.00 4.35⋅ 0.50⋅ 25.0⋅= g1 54.37= kN

g2 3.35 3.35⋅ 0.5⋅ 0.50⋅ 25.0⋅= g2 70.14= kN

61

Page 62: Staticki proracun

ea / eb = 10.0 / 1.050 o/oo

μ' 4.116%=

k 5.064=kh

Mu 102⋅

b fb⋅

=

Mu 176.57= kNmMu 1.7 MII⋅=

LAMELA II

Aa 6.53= cm2Aa μ' b⋅ h⋅fbσv⋅=

ea / eb = 10.0 / 0.825 o/oo

μ' 2.712%=

k 6.159=kh

Mu 102⋅

b fb⋅

=

Mu 119.39= kNmMu 1.7 MI⋅=

LAMELA I

MIV 59.01= kNm/mMIV 20.492.402

2⋅=

MIII 90.23= kNm/mMIII 15.613.402

2⋅=

MII 103.87= kNm/mMII 10.734.402

2⋅=

MI 70.23= kNm/mMI 5.854.902

2⋅=

h 47.0= cmh d a−=

a 3.0= cmd 50.0= cmb 100.0= cm

HORIZONTALNA ARMATURA SA UNUTRA[WE STRANE KRILA•

4.2.2. KRILO NA LEVOJ STRANI MOSTA

62

Page 63: Staticki proracun

SA UNUTRA[WE STRANE KRILA: RA ∅ 12 / 20 cm ( Aa 5.65= cm2/m )

SA SPOQA[WE STRANE KRILA: RA ∅ 12 / 20 cm ( Aa 5.65= cm2/m )

VEZA VISE]EG I STOJE]EG KRILA•

b 50.0= cm d 590.0= cm h 384.0= cm

- SOPSTVENA TE@INA KRILA

g1 1.00 4.90⋅ 0.50⋅ 25.0⋅= g1 61.25= kN

g2 4.80 4.80⋅ 0.5⋅ 0.50⋅ 25.0⋅= g2 144.00= kN

g3 0.165 0.40⋅ 0.25 0.35⋅+( ) 4.90⋅ 25.0⋅= g3 18.80= kN

- PE[A^KA STAZA NA KRILU

Δg 1.05 13.58+ 0.30+( ) 4.90⋅= Δg 73.16= kN

- POKRETNO OPTERE]EWE

P 50.0= kN

Aa μ' b⋅ h⋅fbσv⋅= Aa 9.91= cm2

USVOJENA ARMATURASA UNUTRA[WE STRANE KRILA: RA ∅ 14 / 20 cm

RA ∅ 12 / 20 cm ( Aa 13.35= cm2/m )

LAMELA III

Mu 1.7 MIII⋅= Mu 153.38= kNm

kh

Mu 102⋅

b fb⋅

= k 5.434= ea / eb = 10.0 / 0.975 o/oo

μ' 3.627%=

Aa μ' b⋅ h⋅fbσv⋅= Aa 8.74= cm2

USVOJENA ARMATURASA UNUTRA[WE STRANE KRILA: RA ∅ 14 / 20 cm

RA ∅ 12 / 20 cm ( Aa 13.35= cm2/m )

LAMELA IV

Mu 1.7 MIV⋅= Mu 100.32= kNm

kh

Mu 102⋅

b fb⋅

= k 6.719= ea / eb = 10.0 / 0.750 o/oo

μ' 2.289%=

Aa μ' b⋅ h⋅fbσv⋅= Aa 5.51= cm2

USVOJENA ARMATURA

63

Page 64: Staticki proracun

Mg g1 g3+( ) 2.45⋅ g2 1.60⋅+= Mg 426.53= kNm

MΔg Δg 2.45⋅= MΔg 179.23= kNm

Mp P 4.90⋅= Mp 245.00= kNm

Mu 1.6 Mg MΔg+( )⋅ 1.8 Mp⋅+=

Mu 1410.23= kNm

kh

Mu 102⋅

b fb⋅

= k 10.353= ea / eb = 10.0 / 0.475 o/oo

μ' 0.992%=

Aa μ' b⋅ h⋅fbσv⋅= Aa 9.76= cm2

USVOJENA ARMATURA: 3 RA ∅ 22 ( Aa 11.40= cm2 )

64

Page 65: Staticki proracun

USVOJENA ARMATURASA UNUTRA[WE STRANE PLATNA: RA ∅ 16 / 20 cm

RA ∅ 12 / 20 cm ( Aa 15.70= cm2/m )

Aa 14.55= cm2/mAa μ' b⋅ h⋅fbσv⋅=

ea / eb = 10.0 / 1.325 o/oo

μ' 6.039%=

k 4.185=kh

Mu 102⋅

b fb⋅

=

Mu 258.57= kNm/mMu 1.6 Mg⋅ 1.8 Mp⋅+=

Mp 15.08= kNm/m

Mg 144.64= kNm/m

h 47.0= cmh d a−=

a 3.0= cmd 50.0= cmb 100.0= cm

HORIZONTALNA ARMATURA SA UNUTRA[WE STRANE PLATNA•

qp 3.41= kN/m

qg3 45.09= kN/mqg2 39.77= kN/mqg1 9.27= kN/m

- PLO^A JE UKQE[TENA SA TRI STRANE

h 47.0= cmh d a−=

a 3.0= cmd 50.0= cmb 100.0= cm

RA 400/500-2 ⇒ σv 400= MPa

MB 30 ⇒ fb 20.50= MPa

4.3. PRORA^UN ZIDNOG PLATNA

65

Page 66: Staticki proracun

USVOJENA ARMATURA

SA SPOQA[WE STRANE PLATNA: RA ∅ 12 / 20 cm ( Aa 5.65= cm2/m )

USVOJENA ARMATURA

SA UNUTRA[WE STRANE PLATNA: RA ∅ 12 / 20 cm ( Aa 5.65= cm2/m )

Aa 5.51= cm2/mAa μ' b⋅ h⋅fbσv⋅=

ea / eb = 10.0 / 0.750 o/oo

μ' 2.289%=

k 6.726=kh

Mu 102⋅

b fb⋅

=

Mu 100.10= kNm/mMu 1.6 Mg⋅ 1.8 Mp⋅+=

Mp 7.84= kNm/m

Mg 53.74= kNm/m

VERTIKALNA ARMATURA SA UNUTRA[WE STRANE PLATNA•

USVOJENA ARMATURA

SA SPOQA[WE STRANE PLATNA: RA ∅ 14 / 20 cm ( Aa 7.70= cm2/m )

Aa 7.61= cm2/mAa μ' b⋅ h⋅fbσv⋅=

ea / eb = 10.0 / 0.900 o/oo

μ' 3.158%=

k 5.788=kh

Mu 102⋅

b fb⋅

=

Mu 135.17= kNm/mMu 1.6 Mg⋅ 1.8 Mp⋅+=

Mp 7.60= kNm/m

Mg 75.93= kNm/m

HORIZONTALNA ARMATURA SA SPOQA[WE STRANE PLATNA•

66

Page 67: Staticki proracun

Ep 3.07= kN/m

U PRESEKU 1 - 1

Mg Ezhp3

⋅= Mg 0.59= kNm/m

Mp Ephp2

⋅= Mp 1.38= kNm/m

VERTIKALNA ARMATURA•

MB 30 ⇒ fb 20.50= MPa

RA 400/500-2 ⇒ σv 400= MPa

Mu 1.6 Mg⋅ 1.8 Mp⋅+= Mu 3.44= kNm/m

kh

Mu 102⋅

b fb⋅

= k 28.574= ea / eb = 10.0 / 0.175 o/oo

μ' 0.146%=

Aa μ' b⋅ h⋅fbσv⋅= Aa 0.28= cm2/m

minAa 0.20b d⋅100⋅= minAa 8.00= cm2/m

4.4. PRORA^UN PARAPETA

b 100.0= cm d 40.0= cm a 3.0= cm

h d a−= h 37.0= cm

hp 0.90= m lk 8.35= m

- STALNO OPTERE]EWE - ZEMQANI PRITISAK

γ 18.00= kN/m3,

φ 35= o,

β 45φ

2−=

ez hp γ⋅ tan β( )( )2⋅= ez 4.39= kN/m2

Ez ez hp⋅ 0.5⋅= Ez 1.98= kN/m

- POKRETNO OPTERE]EWE

ep 3.41= kN/m2

Ep ep hp⋅=

67

Page 68: Staticki proracun

USVOJENA ARMATURA

PREMA NASIPU: RA ∅ 19 / 10 cm ( Aa1 28.40= cm2/m )

PREMA KONSTRUKCIJI: RA ∅ 12 / 20 cm ( Aa2 5.65= cm2/m )

Aa 25.58= cm2Aa μ' b⋅ h⋅fbσv⋅

Nuσv

−=

ea / eb = 10.0 / 2.375 o/oo

μ' 13.805%=

k 2.796=kh

Mau 102⋅

b fb⋅

=

Mau 322.98= kNm/m

Mau Mu Nud2

a−⎛⎜⎝

⎞⎟⎠

⋅ 10 2−⋅+=

Nu 80.65−= kNNu 1.6 Ng⋅ 1.8 Np⋅+=

Mu 336.69= kNmMu 1.6 Mg⋅ 1.8 Mp⋅+=

Np 28.51−= kNNp ep− lk⋅=

Ng 18.33−= kNNg ez− lk⋅ 0.5⋅=

- SILA ZATEZAWA OD ZEMQE

Mp 119.03= kNmMp eplk2

2⋅=

Mg 76.52= kNmMg ezlk2

2 2⋅⋅=

- UTICAJI SA VISE]EG KRILA DO PRESEKA 1 - 1

h 37.0= cmh d a−=

a 3.0= cmd 40.0= cmb 90.0= cm

HORIZONTALNA ARMATURA•

USVOJENA ARMATURA

PREMA NASIPU: RA ∅ 14 / 15 cm ( Aa1 10.27= cm2/m )

PREMA KONSTRUKCIJI: RA ∅ 12 / 15 cm ( Aa2 7.53= cm2/m )

68

Page 69: Staticki proracun

5. PRORA^UN KRAJWEG STUBA S6

69

Page 70: Staticki proracun

Δg 14.93 3.00⋅ 2⋅=

3. PE[A^KA STAZA NA KRILU

est 0.54= mgst 1319.54= kNgst 36.6538 1.50⋅ 24.0⋅=

- STOPA TEMEQA

ej 0.35−= mgj 533.67= kNgj 21.3469 1.00⋅ 25.0⋅=

- JASTUK

e9 0.58−= mg9 388.56= kNg9 31.0844 0.50⋅ 25.0⋅=

- ^EONO PLATNO

e8 0.23−= mg8 345.96= kNg8 1.20 1.20⋅ 5.82 3.79+( )⋅ 25.0⋅=

- STUBOVI

ez5 0.02= mz5 122.78= kNz5 1.2516 5.45⋅ 18.0⋅=

ez4 1.34= mz4 615.75= kNz4 4.8939 6.99⋅ 18.0⋅=

ez3 0.13−= mz3 97.53= kNz3 0.9728 5.57⋅ 18.0⋅=

ez2 1.12= mz2 113.29= kNz2 2.8351 2.22⋅ 18.0⋅=

ez1 1.61−= mz1 346.68= kNz1 3.00 1.47 4.95+( )⋅ 18.0⋅=

4. TE@INA ZEMQE

eΔg 1.87= mΔg 89.58= kN

- STOJE]E KRILO

e2 1.04= mg2 25.00= kNg2 2.00 2.00⋅ 0.5⋅ 0.50⋅ 25.0⋅=

e1 1.87= mg1 37.50= kNg1 1.00 3.00⋅ 0.50⋅ 25.0⋅=

- VISE]E KRILO

2. SOPSTVENA TE@INA STUBA

e 0.43−= mRp 899.70= kN

Rp 121.02 431.07+ 306.20+ 28.51− 50.47+ 19.45+=

RΔg 308.670= kN

RΔg 132.07 6.53− 22.15+ 22.38+ 12.75− 151.35+=

Rg 1520.520= kN

Rg 166.06 192.19+ 193.83+ 195.47+ 197.23+ 198.87+ 200.50+ 176.37+=

1. REAKCIJE SA KONSTRUKCIJE

5.1 PRORA^UN NAPONA U PRESECIMA

e7 0.10−= mg7 25.90= kNg7 0.40 0.70⋅ 0.5⋅ 7.40⋅ 25.0⋅=

e6 0.23−= mg6 133.20= kNg6 0.60 1.20⋅ 7.40⋅ 25.0⋅=

- LE@I[NA GREDA

e5 0.17= mg5 88.20= kNg5 0.40 0.90⋅ 9.80⋅ 25.0⋅=

- PARAPET

e4 1.87= mg4 30.53= kNg4 0.165 0.40⋅ 0.25 0.55⋅+( ) 3.00⋅ 25.0⋅ 2⋅=

- KONZOLA PE[A^KE STAZE

e3 1.87= mg3 251.63= kNg3 3.00 6.71⋅ 0.50⋅ 25.0⋅=

70

Page 71: Staticki proracun

Ez 712.05= kN ezhd 3.08−= m

Ep ep F⋅= Ep 171.28= kN ezhl 0.58−= m

Ezh Ez cos ρ( )⋅= Ezh 679.09= kN ephd 4.05−= m

Eph Ep cos ρ( )⋅= Eph 163.36= kN ephl 1.55−= m

Ezv Ez sin ρ( )⋅= Ezv 214.12= kN ev 0.33−= m

Epv Ep sin ρ( )⋅= Epv 51.51= kN

- KARAKTERISTIKE PRESEKA

PRESEK I - I

F1 8.0785= m2 x13 0.8289= m

I1 8.1721= m4 x14 3.8330= m

x15 0.3711= m

WI3I1

x13= WI3 9.86= m3

WI4I1

x14= WI4 2.13= m3

WI5I1

x15= WI5 22.02= m3

z6 4.90 2.26 5.95+( )⋅ 18.0⋅= z6 724.12= kN ez6 1.86−= m

z7 1.8818 3.22⋅ 18.0⋅= z7 109.07= kN ez7 1.65= m

z8 0.65 6.37⋅ 18.0⋅= z8 74.53= kN ez8 0.42= m

z9 1.8739 7.99⋅ 18.0⋅= z9 269.50= kN ez9 1.74= m

z10 0.60 6.40⋅ 18.0⋅= z10 69.12= kN ez10 0.46= m

5. ZEMQANI PRITISAK

γ 18.00= kN/m3,

φ 35= o,

ρ 17.5= o, β 45

φ

2−=

sin ρ( ) 0.301= cos ρ( ) 0.954=

h1 0.70= m h2 5.83= m

F 50.1637= m2 ht 2.91= m

ez h2 γ⋅ tan β( )( )2⋅= ez 28.44= kN/m2

ezt ht γ⋅ tan β( )( )2⋅= ezt 14.19= kN/m2

ep h1 γ⋅ tan β( )( )2⋅= ep 3.41= kN/m2

Ez ezt F⋅=

71

Page 72: Staticki proracun

M'' 170.64−= kNm

M1 M' M''+= M1 468.10= kNm

σ13N1F1

M1WI3

−= σ13 127.81= kN/m2

σ14N1F1

M1WI4

+= σ14 394.84= kN/m2

σ15N1F1

M1WI5

+= σ15 196.54= kN/m2

PRESEK II - II

N2 N1 gj+= N2 1949.72= kN

M2 M1 N1 ej⋅+= M2 27.52−= kNm

σ22N2F2

M2WII2

−= σ22 92.70= kN/m2

σ24N2F2

M2WII4

+= σ24 89.43= kN/m2

σ25N2F2

M2WII5

+= σ25 91.00= kN/m2

PRESEK III - III

N3 N2 gst+= N3 3269.25= kN

M3 M2 N2 est⋅+= M3 1025.33= kNm

σ31N3F3

M3WIII1

−= σ31 62.91= kN/m2

σ34N3F3

M3WIII4

+= σ34 124.81= kN/m2

σ35N3F3

M3WIII5

+= σ35 99.82= kN/m2

PRESEK III - III PRESEK II - II

F3 36.6538= m2 x31 2.6350= m F2 21.3469= m2 x22 2.1751= m

I3 102.7971= m4 x34 3.5708= m I2 43.7160= m4 x24 3.0307= m

x35 1.0650= m x25 0.5249= m

WIII1I3

x31= WIII1 39.01= m3 WII2

I2x22

= WII2 20.10= m3

WIII4I3

x34= WIII4 28.79= m3 WII4

I2x24

= WII4 14.42= m3

WIII5I3

x35= WIII5 96.52= m3 WII5

I2x25

= WII5 83.28= m3

1. SOPSTVENA TE@INA STUBA

PRESEK I - I

N1 g1 g2+ g3+ g4+ g5+ g6+ g7+ g8+ g9+ Δg+= N1 1416.05= kN

M' g1 e1⋅ g2 e2⋅+ g3 e3⋅+ g4 e4⋅+ g5 e5⋅+= M' 638.74= kNm

M'' g6 e6⋅ g7 e7⋅+ g8 e8⋅+ g9 e9⋅+ Δg eΔg⋅+=

72

Page 73: Staticki proracun

σ25N2F2

M2lWII5

+= σ25 133.83= kN/m2

PRESEK III - III

N3 N2 z6+ z7+ z8+ z9+ z10+= N3 4224.05= kN

M3d M2d N2 est⋅+ z6 ez6⋅+ z7 ez7⋅+ z8 ez8⋅+ z9 ez9⋅+ z10 ez10⋅+= M3d 1604.63−= kNm

M3l M2l N2 est⋅+ z6 ez6⋅+ z7 ez7⋅+ z8 ez8⋅+ z9 ez9⋅+ z10 ez10⋅+= M3l 501.49= kNm

σ31N3F3

M3dWIII1

−= σ31 156.37= kN/m2

σ34N3F3

M3dWIII4

+= σ34 59.50= kN/m2

σ35N3F3

M3lWIII5

+= σ35 120.44= kN/m2

3. SOPSTVENA TE@INA STUBA, TE@INA ZEMQE, ZEMQANI PRITISAK IREAKCIJA SA KONSTRUKCIJE

PRESEK I - I

N1 N1 Rg+ RΔg+= N1 3510.86= kN

M1d M1d Rg RΔg+( ) e⋅+= M1d 3159.30−= kNm

M1l M1l Rg RΔg+( ) e⋅+= M1l 1053.18−= kNm

2. SOPSTVENA TE@INA STUBA, TE@INA ZEMQE I ZEMQANI PRITISAK

PRESEK I - I

N1 N1 Ezv+ Epv+= N1 1681.67= kN

M1d M1 Ezv Epv+( ) ev⋅+ Ezh ezhd⋅+ Eph ephd⋅+= M1d 2372.75−= kNm

M1l M1 Ezv Epv+( ) ev⋅+ Ezh ezhl⋅+ Eph ephl⋅+= M1l 266.63−= kNm

σ13N1F1

M1dWI3

−= σ13 448.83= kN/m2

σ14N1F1

M1dWI4

+= σ14 904.74−= kN/m2

σ15N1F1

M1lWI5

+= σ15 196.06= kN/m2

PRESEK II - II

N2 N1 z1+ z2+ z3+ z4+ z5+= N2 2977.70= kN

M2d M1d N1 ej⋅+ z1 ez1⋅+ z2 ez2⋅+ z3 ez3⋅+ z4 ez4⋅+ z5 ez5⋅+= M2d 2577.72−= kNm

M2l M1l N1 ej⋅+ z1 ez1⋅+ z2 ez2⋅+ z3 ez3⋅+ z4 ez4⋅+ z5 ez5⋅+= M2l 471.60−= kNm

σ22N2F2

M2dWII2

−= σ22 267.75= kN/m2

σ24N2F2

M2dWII4

+= σ24 39.21−= kN/m2

73

Page 74: Staticki proracun

M3l M3l Rg RΔg+( ) e ej+ est+( )⋅+= M3l 62.48= kNm

σ31N3F3

M3dWIII1

−= σ31 217.53= kN/m2

σ34N3F3

M3dWIII4

+= σ34 94.16= kN/m2

σ35N3F3

M3lWIII5

+= σ35 165.79= kN/m2

4. SOPSTVENA TE@INA STUBA, TE@INA ZEMQE, ZEMQANI PRITISAK, REAKCIJASA KONSTRUKCIJE I POKRETNO OPTERE]EWE ( OSNOVNO )

PRESEK I - I

N1 N1 Rp+= N1 4410.56= kN

M1d M1d Rp e⋅+= M1d 3546.17−= kNm

M1l M1l Rp e⋅+= M1l 1440.06−= kNm

σ13N1F1

M1dWI3

−= σ13 905.65= kN/m2

σ14N1F1

M1dWI4

+= σ14 1117.32−= kN/m2

σ15N1F1

M1lWI5

+= σ15 480.57= kN/m2

σ13N1F1

M1dWI3

−= σ13 755.04= kN/m2

σ14N1F1

M1dWI4

+= σ14 1047.23−= kN/m2

σ15N1F1

M1lWI5

+= σ15 386.77= kN/m2

PRESEK II - II

N2 N2 Rg+ RΔg+= N2 4806.89= kNM2d M2d Rg RΔg+( ) e ej+( )⋅+= M2d 4004.49−= kNmM2l M2l Rg RΔg+( ) e ej+( )⋅+= M2l 1898.37−= kNm

σ22N2F2

M2dWII2

−= σ22 424.42= kN/m2

σ24N2F2

M2dWII4

+= σ24 52.44−= kN/m2

σ25N2F2

M2lWII5

+= σ25 202.39= kN/m2

PRESEK III - III

N3 N3 Rg+ RΔg+= N3 6053.24= kN

M3d M3d Rg RΔg+( ) e ej+ est+( )⋅+= M3d 2043.63−= kNm

74

Page 75: Staticki proracun

σ34 111.20= kN/m2

σ35N3F3

M3lWIII5

+= σ35 188.10= kN/m2

5. SOPSTVENA TE@INA STUBA, TE@INA ZEMQE, ZEMQANI PRITISAK, REAKCIJASA KONSTRUKCIJE I POKRETNO OPTERE]EWE ( OSNOVNO I DOPUNSKO )

- HORIZONTALNA REAKCIJA KOJU PRIMAJU LE@I[TA

H 30.96 6⋅= H 185.76= kN

PRESEK I - I

N1 N1= N1 4410.56= kN

M1d M1d H 6.05⋅−= M1d 4670.02−= kNm

M1l M1l H 3.55⋅−= M1l 2099.50−= kNm

σ13N1F1

M1dWI3

−= σ13 1019.64= kN/m2

σ14N1F1

M1dWI4

+= σ14 1644.44−= kN/m2

σ15N1F1

M1lWI5

+= σ15 450.62= kN/m2

PRESEK II - II

N2 N2 Rp+= N2 5706.59= kN

M2d M2d Rp e ej+( )⋅+= M2d 4706.25−= kNm

M2l M2l Rp e ej+( )⋅+= M2l 2600.14−= kNm

σ22N2F2

M2dWII2

−= σ22 501.49= kN/m2

σ24N2F2

M2dWII4

+= σ24 58.94−= kN/m2

σ25N2F2

M2lWII5

+= σ25 236.11= kN/m2

PRESEK III - III

N3 N3 Rp+= N3 6952.94= kN

M3d M3d Rp e ej+ est+( )⋅+= M3d 2259.56−= kNm

M3l M3l Rp e ej+ est+( )⋅+= M3l 153.45−= kNm

σ31N3F3

M3dWIII1

−= σ31 247.61= kN/m2

σ34N3F3

M3dWIII4

+=

75

Page 76: Staticki proracun

USVOJENA ARMATURA: 4 RA ∅ 25 ( Aa 19.64= cm2 )

Aa 2.03= cm2AaZ 10⋅

dopσv=

- DOPU[TEN NAPON U ARMATURI RA 400 / 500 - 2: dopσv 240= MPa

Z 48.67= kNZ 149.74 1.30⋅ 0.5⋅ 0.50⋅=

σ25 225.96= kN/m2σ25N2F2

M2lWII5

+=

σ24 149.74−= kN/m2σ24N2F2

M2dWII4

+=

σ22 566.65= kN/m2σ22N2F2

M2dWII2

−=

M2l 3445.35−= kNmM2l M2l H 4.55⋅−=

M2d 6015.86−= kNmM2d M2d H 7.05⋅−=

N2 5706.59= kNN2 N2= PRESEK II - II

USVOJENA ARMATURA: 12 RA ∅ 25 ( Aa 58.92= cm2 )

Aa 54.99= cm2AaZ 10⋅

dopσv=

- DOPU[TEN NAPON U ARMATURI RA 400 / 500 - 2: dopσv 240= MPa

Z 1319.66= kNZ 1644.44 3.21⋅ 0.5⋅ 0.50⋅=

76

Page 77: Staticki proracun

PRESEK III - III

N3 N3= N3 6952.94= kN

M3d M3d H 8.55⋅−= M3d 3847.81−= kNm

M3l M3l H 6.05⋅−= M3l 1277.29−= kNm

σ31N3F3

M3dWIII1

−= σ31 288.32= kN/m2

σ34N3F3

M3dWIII4

+= σ34 56.03= kN/m2

σ35N3F3

M3lWIII5

+= σ35 176.46= kN/m2

77

Page 78: Staticki proracun

SA SPOQA[WE STRANE KRILA: RA ∅ 12 / 20 cm ( Aa 5.65= cm2/m )

USVOJENA ARMATURA

SA UNUTRA[WE STRANE KRILA: RA ∅ 12 / 20 cm ( Aa 5.65= cm2/m )

minAa 5.00= cm2/mminAa 0.10b d⋅100⋅=

Aa 4.56= cm2/mAa μ' b⋅ h⋅fbσv⋅=

ea / eb = 10.0 / 0.675 o/oo

μ' 1.894%=

k 7.573=kh

Mu 102⋅

b fb⋅

=

Mu 78.97= kNm/mMu 1.6 Mg⋅ 1.8 Mp⋅+=

Mp 10.21= kNm/m

Mg 37.87= kNm/m

h 47.0= cmh d a−=

a 3.0= cmd 50.0= cmb 100.0= cm

HORIZONTALNA ARMATURA SA UNUTRA[WE STRANE KRILA•

RA 400/500-2 ⇒ σv 400= MPa

MB 30 ⇒ fb 20.50= MPa τr 1.10= MPa

5.2. PRORA^UN KRILA

78

Page 79: Staticki proracun

VERTIKALNA ARMATURA SA UNUTRA[WE STRANE KRILA•

Mg 46.28= kNm/m

Mp 8.45= kNm/m

Mu 1.6 Mg⋅ 1.8 Mp⋅+= Mu 89.26= kNm/m

kh

Mu 102⋅

b fb⋅

= k 7.123= ea / eb = 10.0 / 0.700 o/oo

μ' 2.023%=

Aa μ' b⋅ h⋅fbσv⋅= Aa 4.87= cm2/m

minAa 0.10b d⋅100⋅= minAa 5.00= cm2/m

USVOJENA ARMATURA

SA UNUTRA[WE STRANE KRILA: RA ∅ 12 / 20 cm ( Aa 5.65= cm2/m )

SA SPOQA[WE STRANE KRILA: RA ∅ 12 / 20 cm ( Aa 5.65= cm2/m )

79

Page 80: Staticki proracun

USVOJENA ARMATURASA UNUTRA[WE STRANE PLATNA: RA ∅ 14 / 20 cm

RA ∅ 12 / 20 cm ( Aa 13.35= cm2/m )

Aa 5.85= cm2/mAa μ' b⋅ h⋅fbσv⋅=

ea / eb = 10.0 / 0.775 o/oo

μ' 2.427%=

k 6.631=kh

Mu 102⋅

b fb⋅

=

Mu 102.99= kNm/mMu 1.6 Mg⋅ 1.8 Mp⋅+=

Mp 0.93= kNm/m

Mg 63.32= kNm/m

h 47.0= cmh d a−=

a 3.0= cmd 50.0= cmb 100.0= cm

HORIZONTALNA ARMATURA SA UNUTRA[WE STRANE PLATNA•

qp 3.41= kN/m

qg3 32.93= kN/mqg2 20.25= kN/mqg1 9.27= kN/m

- PLO^A JE UKQE[TENA SA TRI STRANE

h 47.0= cmh d a−=

a 3.0= cmd 50.0= cmb 100.0= cm

RA 400/500-2 ⇒ σv 400= MPa

MB 30 ⇒ fb 20.50= MPa

5.3. PRORA^UN ZIDNOG PLATNA

80

Page 81: Staticki proracun

USVOJENA ARMATURA

SA SPOQA[WE STRANE PLATNA: RA ∅ 12 / 20 cm ( Aa 5.65= cm2/m )

USVOJENA ARMATURA

SA UNUTRA[WE STRANE PLATNA: RA ∅ 12 / 20 cm ( Aa 5.65= cm2/m )

minAa 5.00= cm2/mminAa 0.10b d⋅100⋅=

Aa 4.26= cm2/mAa μ' b⋅ h⋅fbσv⋅=

ea / eb = 10.0 / 0.650 o/oo

μ' 1.769%=

k 7.715=kh

Mu 102⋅

b fb⋅

=

Mu 76.07= kNm/mMu 1.6 Mg⋅ 1.8 Mp⋅+=

Mp 0.77= kNm/m

Mg 46.68= kNm/m

VERTIKALNA ARMATURA SA UNUTRA[WE STRANE PLATNA•

USVOJENA ARMATURA

SA SPOQA[WE STRANE PLATNA: RA ∅ 12 / 20 cm ( Aa 5.65= cm2/m )

minAa 5.00= cm2/mminAa 0.10b d⋅100⋅=

Aa 2.39= cm2/mAa μ' b⋅ h⋅fbσv⋅=

ea / eb = 10.0 / 0.475 o/oo

μ' 0.992%=

k 10.364=kh

Mu 102⋅

b fb⋅

=

Mu 42.16= kNm/mMu 1.6 Mg⋅ 1.8 Mp⋅+=

Mp 0.40= kNm/m

Mg 25.90= kNm/m

HORIZONTALNA ARMATURA SA SPOQA[WE STRANE PLATNA•

81

Page 82: Staticki proracun

Ep ep hp⋅= Ep 3.07= kN/m

U PRESEKU 1 - 1

Mg Ezhp3

⋅= Mg 0.59= kNm/m

Mp Ephp2

⋅= Mp 1.38= kNm/m

VERTIKALNA ARMATURA•

MB 30 ⇒ fb 20.50= MPa

RA 400/500-2 ⇒ σv 400= MPa

Mu 1.6 Mg⋅ 1.8 Mp⋅+= Mu 3.44= kNm/m

kh

Mu 102⋅

b fb⋅

= k 28.574= ea / eb = 10.0 / 0.175 o/oo

μ' 0.146%=

Aa μ' b⋅ h⋅fbσv⋅= Aa 0.28= cm2/m

5.4. PRORA^UN PARAPETA

b 100.0= cm d 40.0= cm a 3.0= cm

h d a−= h 37.0= cm

hp 0.90= m lk 3.00= m

- STALNO OPTERE]EWE - ZEMQANI PRITISAK

γ 18.00= kN/m3,

φ 35= o,

β 45φ

2−=

ez hp γ⋅ tan β( )( )2⋅= ez 4.39= kN/m2

Ez ez hp⋅ 0.5⋅= Ez 1.98= kN/m

- POKRETNO OPTERE]EWE

ep 3.41= kN/m2

82

Page 83: Staticki proracun

Np 10.24−= kN

Mu 1.6 Mg⋅ 1.8 Mp⋅+= Mu 43.46= kNm

Nu 1.6 Ng⋅ 1.8 Np⋅+= Nu 28.97−= kN

Mau Mu Nud2

a−⎛⎜⎝

⎞⎟⎠

⋅ 10 2−⋅+=

Mau 38.54= kNm/m

kh

Mau 102⋅

b fb⋅

= k 8.096= ea / eb = 10.0 / 0.650 o/oo

μ' 1.769%=

Aa μ' b⋅ h⋅fbσv⋅

Nuσv

−= Aa 3.74= cm2

minAa 0.20b d⋅100⋅= minAa 7.20= cm2/m

USVOJENA ARMATURA

PREMA NASIPU: RA ∅ 12 / 10 cm ( Aa 11.30= cm2/m )

PREMA KONSTRUKCIJI: RA ∅ 12 / 20 cm ( Aa 5.65= cm2/m )

minAa 0.20b d⋅100⋅= minAa 8.00= cm2/m

USVOJENA ARMATURA

PREMA NASIPU: RA ∅ 14 / 15 cm ( Aa1 10.27= cm2/m )

PREMA KONSTRUKCIJI: RA ∅ 12 / 15 cm ( Aa2 7.53= cm2/m )

HORIZONTALNA ARMATURA•

b 90.0= cm d 40.0= cm a 3.0= cm

h d a−= h 37.0= cm

- UTICAJI SA VISE]EG KRILA DO PRESEKA 1 - 1

Mg ezlk2

2 2⋅⋅= Mg 9.88= kNm

Mp eplk2

2⋅= Mp 15.37= kNm

- SILA ZATEZAWA OD ZEMQE

Ng ez− lk⋅ 0.5⋅= Ng 6.59−= kN

Np ep− lk⋅=

83

Page 84: Staticki proracun

maxRt 2.28= kN Utx 8.83= mm αtx 0.03= o/oo

minRt 2.18−= kN Uty 1.89= mm αty 0.01−= o/oo

6. VETAR - OPTERE]EN MOST:

maxRw 41.77= kN Uwx 1.08= mm αwx 0.03= o/oo

minRw 2.18−= kN Uwy 9.79= mm αwy 0.01−= o/oo

7. SEIZMIKA - PODU@NO:

maxRs 19.13= kN Usx 17.19= mm αsx 0.12= o/oo

minRs 19.13−= kN Usy 3.58= mm αsy 0.04−= o/oo

max REAKCIJA NA LE@I[TU

maxR maxRg maxRΔg+ maxRp+ maxRk+ maxRt+ maxRw+=

maxR 713.38= kN

min REAKCIJA NA LE@I[TU

minR minRg minRΔg+ minRp+ minRk+ minRt+ minRw+=

minR 182.26= kN

DIMENZIONISAWE•

NAJMAWA POTREBNA POVR[INA LE@I[TA

PRETPOSTAVQA SE LE@I[TE: NAL ∅ 350 ( A 706.86= cm2, Vd 883= kN )

σdVdA

10⋅= σd 12.5= MPa

minσd 5.0= MPa

6. PRORA^UN LE@I[TA

STATI^KI UTICAJI•

- VERTIKALNO OPTERE]EWE

1. SOPSTVENA TE@INA:

maxRg 248.71= kN Ugx 0.66= mm αgx 1.72= o/oo

minRg 233.79= kN Ugy 0.28−= mm αgy 0.52−= o/oo

2. DODATNO STALNO OPTERE]EWE:

maxRΔg 12.75−= kN UΔgx 0.18= mm αΔgx 0.52= o/oo

minRΔg 22.15= kN

5. RAVNOMERNA PROMENA TEMPERATURE:

αky 0.00= o/ooUky 1.18= mmminRk 1.86−= kN

αkx 0.01= o/ooUkx 1.99= mmmaxRk 2.30= kN

4. ZAUSTAVQAWE I POKRETAWE VOZILA:

αpy 0.47−= o/ooUpy 0.45= mmminRp 67.46−= kN

αpx 1.58= o/ooUpx 1.87= mmmaxRp 431.07= kN

3. POKRETNO OPTERE]EWE:

αΔgy 0.17−= o/ooUΔgy 0.06−= mm

84

Page 85: Staticki proracun

maxUx3 Ugx UΔgx+ Upx+ Ukx+ Utx+ Uwx+= maxUx3 14.61= mm

maxUy3 Ugy UΔgy+ Upy+ Uky+ Uty+ Uwy+= maxUy3 12.97= mm

maxU3 maxUx32 maxUy32+( )= maxU3 19.54= mm

4. STALNO + SEIZMIKA

maxUx4 Ugx UΔgx+ Usx+= maxUx4 18.03= mm

maxUy4 Ugy UΔgy+ Usy+= maxUy4 3.24= mm

maxU4 maxUx42 maxUy42+( )= maxU4 18.32= mm

e 1.20 max maxU1 maxU2, maxU3, maxU4,( )⋅=

e 23.44= mm

minTe

0.7=

minT 33.49= mm

- KAO FUNKCIJA ROTACIJE:

1. STALNO + POKRETNO

maxα1x αgx αΔgx+ αpx+= maxα1x 3.82= o/oo

maxα1y αgy αΔgy+ αpy+= maxα1y 1.16−= o/oo

maxα1 maxα1x2 maxα1y2+( )= maxα1 3.99= o/oo

maxR 713.38= kN

minR 182.26= kN

maxσmaxR

A10⋅= maxσ 10.1= MPa < σd 12.5= MPa

minσminR

A10⋅= minσ 2.6= MPa < minσd 5.0= MPa

USVAJAJU SE ANKEROVANA LE@I[TA NAL-p-3 ∅ 300

NAJMAWA POTREBNA VISINA LE@I[TA

- KAO FUNKCIJA POMERAWA:

1. STALNO + POKRETNO

maxUx1 Ugx UΔgx+ Upx+= maxUx1 2.71= mm

maxUy1 Ugy UΔgy+ Upy+= maxUy1 0.11= mm

maxU1 maxUx12 maxUy12+( )= maxU1 2.71= mm

2. STALNO + POKRETNO + KO^EWE + TEMPERATURA

maxUx2 Ugx UΔgx+ Upx+ Ukx+ Utx+= maxUx2 13.53= mm

maxUy2 Ugy UΔgy+ Upy+ Uky+ Uty+= maxUy2 3.18= mm

maxU2 maxUx22 maxUy22+( )= maxU2 13.90= mm

3. STALNO + POKRETNO + KO^EWE + TEMPERATURA + VETAR

85

Page 86: Staticki proracun

ZAUSTAVQAWE I POKRETAWE VOZILA:

Ukx Ukx= Uky Uky=

Ukx 1.99= mm Uky 1.18= mm

Hkx0.1 A⋅ Ukx⋅ 10 1−

T= Hky

0.1 A⋅ Uky⋅ 10 1−⋅

T=

Hkx 3.52= kN Hky 2.09= kN

RAVNOMERNA PROMENA TEMPERATURE:

Utx Utx= Uty Uty=

Utx 8.83= mm Uty 1.89= mm

Htx0.1 A⋅ Utx⋅ 10 1−

T= Hty

0.1 A⋅ Uty⋅ 10 1−⋅

T=

Htx 15.60= kN Hty 3.34= kN

VETAR - OPTERE]EN MOST:

Uwx 1.08= mm Uwy 9.79= mm

Hwx0.1 A⋅ Uwx⋅ 10 1−

T= Hwy

0.1 A⋅ Uwy⋅ 10 1−⋅

T=

Hwx 1.91= kN Hwy 17.30= kN

2. STALNO + POKRETNO + KO^EWE + TEMPERATURA

maxα2x αgx αΔgx+ αpx+ αkx+ αtx+= maxα2x 3.86= o/oo

maxα2y αgy αΔgy+ αpy+ αky+ αty+= maxα2y 1.17−= o/oo

maxα2 maxα2x2 maxα2y2+( )= maxα2 4.03= o/oo

3. STALNO + POKRETNO + KO^EWE + TEMPERATURA + VETAR

maxα3x αgx αΔgx+ αpx+ αkx+ αtx+ αwx+= maxα3x 3.89= o/oo

maxα3y αgy αΔgy+ αpy+ αky+ αty+ αwy+= maxα3y 1.18−= o/oo

maxα3 maxα3x2 maxα3y2+( )= maxα3 4.07= o/oo

4. STALNO + SEIZMIKA

maxα4x αgx αΔgx+ αsx+= maxα4x 2.36= o/oo

maxα4y αgy αΔgy+ αsy+= maxα4y 0.73−= o/oo

maxα4 maxα4x2 maxα4y2+( )= maxα4 2.47= o/oo

α 1.20 max maxα1 maxα2, maxα3, maxα4,( )⋅=

α 4.88= o/oo

USVOJENA LE@I[TA: 2x6 NAL-p-3 ∅ 300, d = 72 mm, T = 40 mm

UKUPNA HORIZONTALNA SILA KOJA SE PRENOSI PREKO LE@I[TA

86

Page 87: Staticki proracun

maxHx3 Hsx1= maxHy3 Hsy1=

maxHx3 30.38= kN maxHy3 6.33= kN

maxH3 maxHx32 maxHy32+( )= maxH3 31.03= kN

maxH max maxH1 maxH2, maxH3,( )=

maxH 31.03= kN

HORIZONTALNA SILA KOJU MO@E DA PRIMI LE@I[TE

T 4.0= cm < D5

6.0= cm ⇒ tanγ 0.7=

dopH A G⋅ tanγ⋅= dopH 49.48= kN

maxH 31.03= kN < dopH 49.48= kN

UKUPNA POMERAWA NA LE@I[TU

DOZVOQENO POMERAWE: dopU 28.0= mm

maxU 1.20 max maxU1 maxU2, maxU3, maxU4,( )⋅=

maxU 23.44= mm < dopU 28.00= mm

maxUx 1.20 max maxUx1 maxUx2, maxUx3, maxUx4,( )⋅=

maxUx 21.64= mm

USVOJENE DILATACIONE SPRAVE: MT(T) - 50

SRA^UNAO:

SEIZMIKA:

Usx 17.19= mm Usy 3.58= mm

Hsx10.1 A⋅ Usx⋅ 10 1−

T= Hsy1

0.1 A⋅ Usy⋅ 10 1−⋅

T=

Hsx1 30.38= kN Hsy1 6.33= kN

1. KO^EWE + TEMPERATURA

maxHx1 Hkx Htx+= maxHy1 Hky Hty+=

maxHx1 19.12= kN maxHy1 5.43= kN

maxH1 maxHx12 maxHy12+( )= maxH1 19.88= kN

2. KO^EWE + TEMPERATURA + VETAR

maxHx2 Hkx Htx+ Hwx+= maxHy2 Hky Hty+ Hwy+=

maxHx2 21.03= kN maxHy2 22.73= kN

maxH2 maxHx22 maxHy22+( )= maxH2 30.96= kN

3. SEIZMIKA - PODU@NO

87