Top Banner
Zagreb, May 2008, A. Fert, CNRS/Thales, Palaiseau, and Université Paris-Sud In classical spintronics: new types of MTJ Spin transfer: switching, oscillators, synchronization -1.0 -0.5 0.0 0.5 1.0 -0.1 0.0 0.1 -1.0 -0.5 0.0 0.5 1.0 M z M y M x A P P m single-electron devices semiconductors Spintronics with molecules Spintronics with The present and future of Spintronics Tulapurkar et al Hruska et al
53

Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Aug 09, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Zagreb, May 2008, A. Fert, CNRS/Thales, Palaiseau, and Université Paris-Sud

In classical spintronics: new types of MTJ

Spin transfer: switching, oscillators, synchronization

-1.0-0.5

0.00.5

1.0

-0.1

0.0

0.1

-1.0-0.5

0.00.5

1.0M

z

M yMx

A P P

m

single-electron devicessemiconductors

Spintronics withmolecules

Spintronics with

The present

and future of

Spintronics

Tulapurkar et al

Hruska et al

Page 2: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Introduction :

Spin dependent conduction in

ferromagnetic conductors,

Giant Magnetoresistance (GMR),

Tunnel Magnetoresistance (TMR)

Page 3: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

E

EF

n (E)

n (E)

Spin dependent conduction in ferromagnetic metals (two current model)

Mott, Proc.Roy.Soc A153, 1936

Fert et al, PRL 21, 1190, 1968

Loegel-Gautier, JPCS 32, 1971

Fert et al,J.Phys.F6, 849, 1976

Dorlejin et al, ibid F7, 23, 1977

I

I =

/

or

= (

-

)/ (

+

) = (

- 1)/(

+ 1)

E

EF

n (E)

n (E)

Ni d bandCr d

level

Virtual bound state

0.3

20

Cr d

level

Ni d band

Ti V Cr Mn Fe Co Ni

=

/

Page 4: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Mixing impurities A and B with opposite or similar spin asymmetries: the pre-concept of GMR

Example: Ni + impurities A and B (Fert-Campbell, 1968, 1971)

1st case 2d caseA > 1, B < 1

A and B > 1

High mobility channel low

AB >> A + B AB A + B

spin

spin

spin

spin

J. de Physique 32, 1971

=

/

Page 5: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Fe

Fe

Cr

Cr

• Magnetic multilayers

Fe

Page 6: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Fe

Fe

Cr

Cr

Magnetizations of Fe layers at zero field in Fe/Cr multilayers

• Magnetic multilayers

Fe

P. Grünberg, 1986

antiferromagnetic interlayer coupling

Page 7: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Fe

Fe

Cr

Cr

Magnetizations of Fe layers in an

applied fieldin Fe/Cr multilayers

• Magnetic multilayers

Fe

H

P. Grünberg, 1986

antiferromagnetic interlayer coupling

Page 8: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

~ + 80%

• Giant Magnetoresistance (GMR)(Orsay, 1988, Fe/Cr multilayers, Jülich, 1989, Fe/Cr/Fe trilayers)

Resistance ratio

Magnetic field (kGauss)

AP (AntiParallel) P (Parallel)Current

V=RI

Orsay Jülich

Page 9: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

~ + 80%

• Giant Magnetoresistance (GMR)(Orsay, 1988, Fe/Cr multilayers, Jülich, 1989, Fe/Cr/Fe trilayers)

Resistance ratio

Magnetic field (kGauss)

Anti-parallel magnetizations (zero field, high resistance)

CrFe

Fe

Parallel magnetizations (appl. field, low resist.)

CrFe

Fe

Condition for GMR: layer thickness

nm

AP (AntiParallel) P (Parallel)Current

net current

Page 10: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

track

Read head of hard disc drive

GMR sensor 5 nm

Magnetic fields generated by the media

0

1997 (before GMR) : 1 Gbit/in2 , 2007 : GMR heads ~ 600 Gbit/in2

voltage

current

Recent review : « The emergence of spintronics in data storage »

Chappert, AF et al Nat. Mat.(Nov.07)

Page 11: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

~ 100 nm

• Magnetic Tunnel Junctions,Tunneling

Magnetoresistance (TMR)

Low resistance state High resistance state

ferromagneticelectrodes

tunnelingbarrier

(insulator) APP

: density/speed of DRAM/SRAM + nonvolatilty + low energy consumption

Applications: - read heads of Hard Disc Drive

- M-RAM (Magnetic Random Access Memory)

MRAM

Moodera

et al, 1995, Miyasaki

et al,1995,

CoFe/Al2

O3

/Co, MR 30-40%

Jullière, 1975, low T, hardly reproducible

0.1 m

Page 12: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

First examples

on Fe/MgO/Fe(001): CNRS/Thales (Bowen, AF et al, APL2001)

Nancy (Faure-Vincent et al, APL 2003) Tsukuba

(Yuasa

et al, Nature Mat. 2005)

IBM (Parkin et al, Nature Mat. 2005) ….etc

Epitaxial magnetic tunnel junctions (MgO, etc)

Yuasa et al, Fe/MgO/Fe Nature Mat. 2005

ΔR/R = (RAP

-RP

)/ RP

200% at

RT

CoFeB/MgO/CoFeB,

ΔR/R

500% at

RT in several laboratories in 2006-2007

Clearer picture of the physics of TMR:

what is inside the word « spin polarization »?

+2006-2007

Page 13: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Mathon and Umerski, PR B 1999 Mavropoulos et al, PRL 2000 Butler et al , PR B 2001 Zhang and Butler, PR B 2004 [bcc Co/MgO/bcc Co(001)]

P

AP 1

2’

1

5

52’

Page 14: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Zhang and

Butler, PR B 2004

P

AP 1

2’

1

5

52’

MgO, ZnSe (Mavropoulos et al, PRL 2000), etc

1

symmetry

(sp) slowly decaying

tunneling of Co

majority

spin electrons

SrTiO3

and other

d-bonded insulators (Velev et al , PRL 95, 2005; Bowen et al, PR B 2006)

5

symmetry (d) slowly decaying

tunneling of

Co minority spin electrons

in agreement with the negative polarization of Co

found in TMR

with

SrTiO3 ,TiO2

and

Ce1-x

Lax

O2

barriers (de Teresa, A.F. et al, Science 1999)

Beyond MgO

Page 15: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Zhang and

Butler, PR B 2004

P

AP

MgO, ZnSe (Mavropoulos et al, PRL 2000), etc

1

symmetry

(sp) slowly decaying

tunneling of Co

majority

spin electrons

SrTiO3

and other

d-bonded insulators (Velev et al , PRL 95, 2005; Bowen et al, PR B 2006)

5

symmetry (d) slowly decaying

tunneling of

Co minority spin electrons

in agreement with the negative polarization of Co

found in TMR

with

SrTiO3 ,TiO2

and

Ce1-x

Lax

O2

barriers (de Teresa, A.F. et al, Science 1999)

Beyond MgO

1

2’

1

5

52’Physical basis of « spin polarization »(SP)

¤Tunneling: SP of the DOS for the symmetry selected by the barrier

¤Electrical conduction: SP depends on scatterers, impurities,..

Page 16: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Spin Transfer (magnetic switching, microwave generation)

Spintronics with semiconductors

Spintronics with molecules

Page 17: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Common physics:

spin accumulation

spins injected to long distances

by diffusion

Spin Transfer (magnetic switching, microwave generation)

Spintronics with semiconductors

Spintronics with molecules

Page 18: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

0

2

4

6

8

10

0 100 200 300 400 500

Co thickness (nm)M

R ra

tio (%

)

400 nm

Co/Cu: Current to Plane (CPP) -GMR of multilayered nanowires (L.Piraux, AF et al, APL 1994,JMMM 1999)

CIP-GMR

scaling length = mean free path

CPP-GMR

scaling length = spin diffusion length >> mean free path

spin accumulation theory (Valet-Fert, PR B 1993)

100 nm

Other results: MSU group, PRL 1991, JMMM 1999

CPP-GMR subsists at almost 1m

Page 19: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

F Ms fl = spin diffusion

length

in FM

= spin diffusion

length

in NMN Ms fl

Spin injection/extraction at a NM/FM interface (beyond ballistic range)

NM FM

zone of spin accumulation

NMsfl FM

sfl

EF

EF

= spin

chemical potential

Spin accumulation = EF

-EF

Spin current = J

-J

z

z

EF

-EF

~ exp(z/ ) in FMF Ms fl

EF

-EF

~ exp(-z/ ) in NMN Ms fl

N Ms fl FM

sfl

EF

= spin

chemical potential

E

J

-JJ

+J= current spin polarization

(illustration in the simplest case = flat band, low current,

no interface resistance, single polarity)

(example: 0.5 m in Cu, >10m in

carbon

nanotube)

Page 20: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

F Ms fl = spin diffusion

length

in FM

= spin diffusion

length

in NMN Ms fl

Spin injection/extraction at a NM/FM interface (beyond ballistic range)

NM FM

zone of spin accumulation

NMsfl FM

sfl

EF

EF

Spin accumulation = EF

-EF

Spin current = J

-J

z

z

N Ms fl

EF

E

J

-JJ

+J

(illustration in the simplest case = flat band, low current,

no interface resistance, single polarity)

(example: 0.5 m in Cu, >10m in

carbon

nanotube)

Extension to more complex situations

-CPP-GMR: typical multi-interface problem (spin accumulation overlaps)

-Spin transfer: multi-interface problem with non-colinear magnetic

configurations

-Spintronics with semiconductors: spin inject. from metals complicated by « density of states mismatch »,

band bending, etc

Page 21: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

NM

= metal or semiconductor

FM

zone of spin accumulation

NMsfl FM

sfl

EF

EF

Spin accumulation = EF

-EF

Spin current = J

-J

z

z

N Ms fl FM

sfl

EF

E

NM= metal

Semiconductor/ F metal

If similar

spin spliting on both sides but much larger density

of states in F

metal

much

larger

spin accumulation density

and much

more spin flips

on magnetic metal side

almost complete depolarization of

the

current

before

it

enters

the

SC

NM = semiconductor

1) situation without interface resistance

(« conductivity mismatch »)

(Schmidt et al, PR B 2000)

Spin injection/extraction at a Semiconductor/FM interface

Page 22: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

NM

= semiconductor

EF

Rasbah, PR B 2000

A.F-Jaffrès, PR B 2001

Spin accumulation = EF

-EF

N Msfl FM

sflz

EF

Current Spin Polarization

(J

-J

)/(J

+J

)

FM spin dependent. interf. resist. (ex:tunnel barrier)

EF

EF

Spin dependent drop of the electro-chemical potential

Discontinuity increases the spin accumulation in NM

re-balanced spin relaxations in F and NM

extension of the spin- polarized current into the

semiconductor

e-

NsfNNb lrr *

Spin injection/extraction at a Semiconductor/FM interface

Page 23: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Spin transfer (J. Slonczewski, JMMM 1996, L. Berger, PR B 1996)

S

Ex:Cobalt/Copper/ Cobalt

Page 24: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Spin transfer (J. Slonczewski, JMMM 1996, L. Berger, PR B 1996)

S

S

Torque on S

Mx(MxM0 )

Ex:Cobalt/Copper/ Cobalt

The transverse component of the spin current is absorbed and transferred

to the total spin of the layer

j M x (M x M0

)

Page 25: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Metallic pillar

50x150 nm²

Au

CuI - V -

4 nm10 nm

Free ferro

Fixe d

ferro

Cu

Tunnel junction

Au

CuI - V -

4 nm10 nm

Free ferro

Fixe d

ferro

barrier

Experiments on pillars

a)

First regime

(low

H): irreversible switching

(CIMS)

b)

Second regime

(high

H): steady precession

(microwave generation)

E-beam lithography + etching

Page 26: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Regime of irreversible magnetic switching

AP

P

H=7 Oe RT

typical switching current

107A/cm2

switching time can be as short as 0.1 ns (Chappert et al)

-2 014,4

14,5

14,6

dV/d

I (

)

I (m A)

-1.0x105 -5.0x104 0.0 5.0x104 1.0x105

400000

450000

500000

550000

Res

ista

nce

()

Current density (A.cm-2 )

30 K

1 x 105 A/cm2

Py/Cu/Py 50nmX150nm (Boulle, AF et al)GaMnAs/InGaAs/GaMnAs tunnel junction (MR=150%)

(Elsen, AF et al, PR B 2006)

First experiments on pillars:

Cornell

(Katine

et al, PRL 2000)

CNRS/Thales (Grollier

et al, APL 2001)

IBM (Sun et al, APL 2002) -1.0

-0.50.0

0.51.0

-0.1

0.0

0.1

-1.0-0.5

0.00.5

1.0

Mz

M yMx

APP

m

P state of m

M

AP state of m

Py = permalloy

Page 27: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Regime of steady precession (microwave frequency range)

-1.0-0.5

0.00.5

1.0

-0.5

0.0

0.5

-1.0

-0.5

0.0

0.51.0

mH

Mz

M y

Mx

-1.0-0.5

0.00.5

1.0

-0.5

0.0

0.5

-1.0

-0.5

0.00.5

1.0mH

Mz

M y

Mx

bHd

Hd

-1.0-0.5

0.00.5

1.0

-0.5

0.0

0.5

-1.0

-0.5

0.0

0.51.0M

z

M y

Mx

m

H

Increasing current

Hd

CNRS/Thales, Py/Cu/PY (Grollier et al)(Py

= permalloy)

3,5 4,00

1

2

3

Pow

er (p

W/G

Hz)

Frequency (GHz)

-4 014,4

15,0

15,6

dV/d

I (

)

I (mA)

5600G

9G

P

AP

m

HM

Page 28: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Frequency (MHz)

PSDmax = 50 nW/GHz width=8MHZ

Regime of steady precession or vortex motion(microwave frequency range)

CoFeB/MgO/CoFeB junction (J.Grollier, AF et al 2008, collaboration S. Yuasa et al, AIST)

4.5 5.0 5.50

30

60

90

PS

D (n

W/G

Hz)

Frequency (GHz)

1.40mALorentzian fit

H = -303G

PSDmax = 90 nW/GHz

width=62MHZ

P

AP

m

HM

MgO

PSD

(nW

/mA

2 GH

z)

Low frequency vortex excitation in Py/Au/Co nanocontacts (M.Darques, AF et al, 2008)

~ 20 – 30 nm

Page 29: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Frequency (MHz)

PSDmax = 50 nW/GHz width=8MHZ

Regime of steady precession or vortex motion(microwave frequency range)

CoFeB/MgO/CoFeB junction (J.Grollier, AF et al 2008, collaboration S. Yuasa et al, AIST)

Low frequency vortex excitation in Py/Au/Co nanocontacts (M.Darques, AF et al, 2008)

4.5 5.0 5.50

30

60

90

PS

D (n

W/G

Hz)

Frequency (GHz)

1.40mALorentzian fit

H = -303G

PSDmax = 90 nW/GHz

width=62MHZ

PSD

(nW

/mA

2 GH

z)

Spin Transfer mixes very different (and interacting) problems:

transport (in metallic pillars, tunnel junctions, point contacts)

problems of non-linear dynamics

micromagnetism (non-uniform excitations, vortex motion..)

Page 30: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Au Py (8nm, free)Cu ( 8nm)

Co (8nm, fixed)IrMn (15nm) or CoO or Cu

100x170nm²

Co/Cu/Py (« wavy » angular variation calculated by

Barnas, AF et al, PR B 2005)

-4 014,4

15,0

15,6

dV/d

I (

)

I (mA)

5600G

9G

Negative I (mA)

Py/Cu/Py (standard)

Positive I

1.5 2.0 2.5 3.0 3.50

10

20

30

9,5 mA9 mA8,5 mA8 mA7,5mA7 mA6,5 mA

Powe

r (pW

/GHz

)

Frequency (GHz)

6 mA

H = 2 OeH

0 (2 Oe)

Boulle, AF et al, Nature Phys. 2007 oscillations at H=0

free Py:fast spin relaxation

fixed Co: slower spin relaxation

H

0

Page 31: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Switching of reprogrammable devices (example: MRAM)

1) By external magnetic field (present generation of MRAM, nonlocal, risk of « cross-talk »

limits integration)

Current pulse

2) «Electronic» reversal by spin transfer from current

(ST-MRAM: next generation of MRAM, with demonstrations by Sony, Hitachi, NEC, etc)

Page 32: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Rippart

et al, PR B70, 100406, 2004

Spin Transfer Oscillators (STO) (communications, microwave pilot)

Advantages:

-direct

oscillation in the microwave range (5-40 GHz)

-agility: control of frequency by dc current amplitude, (frequency

modulation ,

fast

switching)

- high quality factor

- small size (

0.1m) (on-chip

integration)

-oscillations without applied field

-Needed improvements

- - increase

of power by synchronization of a large of number N of STO ( x N2 )

f/ff

18000

Page 33: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

trilayer 1

1.0 1.1 1.2 1.30.0

0.1

0.2

0.3

0.4

0.5

0.6

pow

er (p

W/G

Hz/

mA

2 )frequency (GHz)

- 9 mA

-12.4 mA

increasing

I

1.0 1.1 1.2 1.3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

po

wer

(pW

/GH

z/m

A2 )

frequency (GHz)

-11.00mA -9.80mA

Idc Ihf

1+trilayer 2

Ihf

2+

hf circuit

Ihf

1+ Ihf

2

Idc

Experiments of STO synchronization by electrical connection (B.Georges, AF et al, CNRS/Thales and LPN-CNRS, preliminary results)

Page 34: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Spintronics with semiconductors

and molecules

Page 35: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

GaMnAs (Tc 170K) and R.T. FS

Electrical control of ferromagnetism

TMR, TAMR, spin transfer (GaMnAs)

Field-induced metal/insulator transition

Spintronics with semiconductors

Magnetic metal/semiconductor hybrid structures

Example: spin injection from Fe into LED

(Mostnyi et al, PR. B 68, 2003)

Ferromagnetic semiconductors (FS)

Page 36: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

GaMnAs (Tc 170K) and R.T. FS

Electrical control of ferromagnetism

TMR, TAMR, spin transfer (GaMnAs)

Field-induced metal/insulator transition

Spintronics with semiconductors

Magnetic metal/semiconductor hybrid structures

Example: spin injection from Fe into LED

(Mostnyi et al, PR. B 68, 2003)

Ferromagnetic semiconductors (FS)

F1 F2Semiconductor

channel

V

Spin Field Effect Transistor ?

Semiconductor lateral channel between spin-polarized source and drain

transforming spin information into large(?) and tunable (by gate voltage)

electrical signal

Page 37: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Nonmagnetic lateral channel between spin-polarized source and drain

Semiconductor channel:

« Measured effects of the order of 0.1-1% have been reported for the change in

voltage or resistance (between P and AP)…. », from the review article

« Electrical Spin Injection and Transport in Semiconductors » by BT Jonker

and ME Flatté in Nanomagnetism (ed.: DL Mills and JAC Bland, Elsevier 2006)

F1 F2Semiconductor channel

PAP

Page 38: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Nonmagnetic lateral channel between spin-polarized source and drain

Semiconductor channel:

« Measured effects of the order of 0.1-1% have been reported for the change in

voltage or resistance (between P and AP)…. », from the review article

« Electrical Spin Injection and Transport in Semiconductors » by BT Jonker

and ME Flatté in Nanomagnetism (ed.: DL Mills and JAC Bland, Elsevier 2006)

Carbon nanotubes:

R/R

60-70%, VAP -VP

20-60 mV

LSMO LSMO

LSMO = La2/3 Sr1/3 O3

nanotube 1.5 m

L.Hueso, N.D. Mathur,A.F. et al, Nature 445, 410, 2007

F1 F2Semiconductor channel

PAP

MR

72%

Page 39: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Nonmagnetic lateral channel between spin-polarized source and drain

Semiconductor channel:

« Measured effects of the order of 0.1-1% have been reported for the change in

voltage or resistance (between P and AP)…. », from the review article

« Electrical Spin Injection and Transport in Semiconductors » by BT Jonker

and ME Flatté in Nanomagnetism (ed.: DL Mills and JAC Bland, Elsevier 2006)

Carbon nanotubes:

R/R

60-70%, VAP -VP

20-60 mV

AP

P PLSMO LSMO

LSMO = La2/3 Sr1/3 O3

nanotube 1.5 m

L.Hueso, N.D. Mathur,A.F. et al, Nature 445, 410, 2007

F1 F2Semiconductor channel

PAP

60%

Page 40: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

AF and Jaffrès PR B 2001* +cond-mat 0612495, +

IEEE Tr.El.Dev*. 54,5,921,2007

*calculation. for Co and GaAs

at RT

10-4 10-2 100 102 1040.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

NlSF

=2µmtN=20nm

tN=2µm

tN=200nm

rb

*rN

R

/RP

10-4 10-2 100 102 1040.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

NlSF

=2µmtN=20nm

tN=2µm

tN=200nm

rb

*rN

R

/RP

sfbn

b

sfnP

rfor

raszerotodrops

RR

*

*

22

/1

/1)1/(

Condition

dwell time n < spin lifetime sf

Condition for

spin injection

Nb rr /*

vrL

vt

L

timedwell

b

rn

*

*2

R

/RP

1L

lwindow sf

1.6

1.2

0.8

0.4

0.0

L=20nmL

L

NsfNN

b

lr

r

resistance interface theofasymmetry spin

teff1/trans.coresist.interfaceareaunit **r

10-4 10-2 100 102 1040.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

NlSF

=2µmtN=20nm

tN=2µm

tN=200nm

rb

*rN

R

/RP

10-4 10-2 100 102 1040.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

NlSF

=2µmtN=20nm

tN=2µm

tN=200nm

rb

*rN

R

/RP

Condition

dwell time n < spin lifetime sf

Condition for

spin injection

Nb rr /*

F1 F2Semiconductor

channel

V

L

F1 F2Semiconductor

channel

V

L

R

/RP

1L

lwindow sf

1.6

1.2

0.8

0.4

0.0

L=20nmL

LInterface resistance rb *

in most experiments

Two interface spin transport

problem (diffusive regime)

sfn NsflL / Ll N

sf /

Window only for lsf (N) > L

Page 41: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Nanotubes

(also graphene, other molecules) :

Semiconductors :

sfnsfnP if

RRP

P

largeis,/1

)1/(),off(Aand(on)Pbetweencontrastthe:

Sinjectionγlifetime,spinτtime,dwellτ:drainandsourceSPbetweenTransport22

sfn

sfrtvL

nlongsmallerisvbut

cmelnforCNTinaslongasbecansf

2

)3/1710(

)60(2

)50ns5(long

*sf

rn

sf

nsshortrelativelybecantvLvvelocityhigh

islifetimespinorbitspinsmall

resistanceinterfacefromderivedtandCNTofvL,from60nsτ:CNT rn*

Page 42: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Nanotubes

(also graphene, other molecules) :

Semiconductors :

Solution for semiconductors:

shorter L ?, larger transmission tr ?

sfnsfnP if

RRP

P

largeis,/1

)1/(),off(Aand(on)Pbetweencontrastthe:

Sinjectionγlifetime,spinτtime,dwellτ:drainandsourceSPbetweenTransport22

sfn

)60(2

)50ns5(long

*sf

rn

sf

nsshortrelativelybecantvLvvelocityhigh

islifetimespinorbitspinsmall

sfrtvL

nlongsmallerisvbut

cmelnforCNTinaslongasbecansf

2

)3/1710(

Page 43: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Nanotubes

(also graphene, other molecules) :

Semiconductors :

Solution for semiconductors:

shorter L ?, larger transmission tr ?

Potential of molecular spintronics (nanotubes, graphene and others)

sfnsfnP if

RRP

P

largeis,/1

)1/(),off(Aand(on)Pbetweencontrastthe:

Sinjectionγlifetime,spinτtime,dwellτ:drainandsourceSPbetweenTransport22

sfn

)60(2

)50ns5(long

*sf

rn

sf

nsshortrelativelybecantvLvvelocityhigh

islifetimespinorbitspinsmall

sfrtvL

nlongsmallerisvbut

cmelnforCNTinaslongasbecansf

2

)3/1710(

Page 44: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

Nanotubes

(also graphene, other molecules) :

Semiconductors :

Solution for semiconductors:

shorter L ?, larger transmission tr ?

Potential of molecular spintronics (nanotubes, graphene and others)

Next challenge for molecules:

spin control by gate

sfnsfnP if

RRP

P

largeis,/1

)1/(),off(Aand(on)Pbetweencontrastthe:

Sinjectionγlifetime,spinτtime,dwellτ:drainandsourceSPbetweenTransport22

sfn

)60(2

)50ns5(long

*sf

rn

sf

nsshortrelativelybecantvLvvelocityhigh

islifetimespinorbitspinsmall

sfrtvL

nlongsmallerisvbut

cmelnforCNTinaslongasbecansf

2

)3/1710(

Page 45: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

SILICON ELECTRONICS

SPINTRONICS

Summary¤Already important aplications of GMR/TMR (HDD, MRAM..) and now promising new fields

-Spin transfer for magnetic switching and microwave generation

-Spintronics with semiconductors, molecules or nanoparticles

Page 46: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

M. Anane, C. Barraud, A. Barthélémy, H. Bea, A. Bernand- Mantel, M. Bibes, O. Boulle, K.Bouzehouane, O. Copi, V.Cros, C. Deranlot, B. Georges, J-M. George, J.Grollier, H. Jaffrès, S.

Laribi, J-L. Maurice, R. Mattana, F. Petroff, P. Seneor, M. Tran F. Van Dau, A. Vaurès

Université

Paris-Sud

and Unité

Mixte

de Physique CNRS-Thales, Orsay, France

P.M. Levy, New York Un., A.Hamzic, M. Basletic Zagreb University

B. Lépine, A. Guivarch and G. JezequelUnité

PALMS, Université

de Rennes , Rennes, France

G. Faini, R. Giraud, A. Lemaître: CNRS-LPN, Marcoussis, France

L. Hueso, N.Mathur, Cambridge

J. Barnas, M. Gimtra, I. Weymann,

Poznan University

Acknowledgements to

Page 47: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

10-4 10-2 100 102 1040.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

NlSF

=2µmtN=20nm

tN=2µm

tN=200nm

rb

*rN

R

/RP

10-4 10-2 100 102 1040.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

NlSF

=2µmtN=20nm

tN=2µm

tN=200nm

rb

*rN

R

/RP

al)etAF(Mattana,examplethisinas

raszerotodrops

RR

b

sfnP

*

22

/1

/1)1/(

Condition

dwell time n < spin lifetime sf

Condition for

spin injection

Nb rr /*

R

/RP

1L

lwindow sf

1.6

1.2

0.8

0.4

0.0

L=20nmL

L10-4 10-2 100 102 104

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

NlSF

=2µmtN=20nm

tN=2µm

tN=200nm

rb

*rN

R

/RP

10-4 10-2 100 102 1040.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

NlSF

=2µmtN=20nm

tN=2µm

tN=200nm

rb

*rN

R

/RP

Condition

dwell time n < spin lifetime sf

Condition for

spin injection

Nb rr /*

F1 F2Semiconductor

channel

V

L

F1 F2Semiconductor

channel

V

L

R

/RP

1L

lwindow sf

1.6

1.2

0.8

0.4

0.0

L=20nmL

L

Two interface spin transport

problem (diffusive regime)

b

g ( )

1E-3 0.01 0.10

10

20

30

40

50

T=4K

GaAs QW=6nm

1.95nm1.45nm1.7nm

MR

( %

)

b

g ( )

1E-3 0.01 0.10

10

20

30

40

50

T=4K

GaAs QW=6nm

1.95nm1.45nm1.7nm

MR

( %

)

)( 2* cmr b

GaMnAs/AlAs/GaAs/AlAs/GaMnAs vertical structure

vrL

vt

L

timedwell

b

rn

*

*2

AF and Jaffrès

PR B 2001* +cond-mat 0612495, +

IEEE Tr.El.Dev*. 54,5,921,2007

*calculation. for Co and GaAs

at RT

NsflL / Ll N

sf /

Window only for lsf (N) > L

Page 48: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

VSD

VG

eV = 25-500 meV >> Coulomb energy,

level spacing, spin-orbit

spliting,

4.2 K< T <120 K

drainsourcenanotube

Quasi-continuous DOS, same conditions as for semiconductor or metallic channel

drainsourcenanotube

Uc =e2/2CE+Uc

eV

1 meV

Usual conditions: small bias

voltage experiments

LSMO/CNT/LSMO: higher

voltage

experiments thanks to large interface

resistances and small V2/R heating at

large V

Oscillatory variation of the conductance, different signs of theMR depending on the bias voltage and from sample to sample

Page 49: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

J

-JJ

+J *

*

bNF

bFrrr

rr

Deviations from at large current density (drift effect)

= low current limit

current density

= deviations from the low current limit

(nondegenerate semiconductor)

from Jaffrès and A.F.

(see also Yu and Flatté)

Page 50: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

10-4 10-2 100 102 1040.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

NlSF

=2µmtN=20nm

tN=2µm

tN=200nm

rb

*rN

R

/RP

10-4 10-2 100 102 1040.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

NlSF

=2µmtN=20nm

tN=2µm

tN=200nm

rb

*rN

R

/RP

Condition

dwell time n < spin lifetime sf

Condition for

spin injection

Nb rr /*

*)/(2 brn rtvL

timedwell

R

/RP

1L

lwindow sf

1.6

1.2

0.8

0.4

0.0

L=20nmL

L

R r

r R

V/2R R

r rV/2

RR

rr

R

Rr

r

P

I

II

IIIII

III

IUnpolarized current in

the semiconductor (depolarization in the

source and repolarization in the drain)

R/R = 0Optimal R/R R/R = 0

P

AP

sfbrnfor

*b/rastodrops

sfnPR

R

*10

/1)21/(2

R ()

, r ()

= interface

resistance (equal for source

and drain)

Page 51: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

10-4 10-3 10-2 10-1 100 101 102 103 1040.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0N

tN=100 nm

lSF

=10 µm

V

/VP

rb

*/rN Non-local

V/Vbias for local (2 types) and non-local geometries

Page 52: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

10-4 10-2 100 102 1040.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

NlSF

=2µmtN=20nm

tN=2µm

tN=200nm

rb

*rN

R

/RP

10-4 10-2 100 102 1040.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

NlSF

=2µmtN=20nm

tN=2µm

tN=200nm

rb

*rN

R

/RP

Nb rr /*

R

/RP

1.6

1.2

0.8

0.4

0.0

L=20nmL

L0.0

0.5

1.0

1.5

2.010-1 100 101 102 103 104

10-3 10-2 10-1 100 101 102

N

/SF

NlSF

=2µm

tN=20nm

R

/RP

rb*/r

2'

*/ bsfn r

Diffusive transport Ballistic transport

+ additional geometrical parameters when the number of conduction channels is different for the injection and in the channel (W

w in the example)

W/w

wW

NtNbr**

wW

Nt

Nsfl

Nbr2)(

**

Page 53: Spintronics - unizg.hr · Spintronics. Tulapurkar et al. Hruska et al. Introduction : Spin dependent conduction in . ferromagnetic conductors, Giant Magnetoresistance (GMR), Tunnel

MR of LSMO/Alq3/Co structures (preliminary results)

Collaboration CNRS/Thales [C. Barraud, P. Seneor et al) and CNR Bologna (Dediu et al)]

Alq3 (50nm)LSMO

Co

resist

1- 4 nmCo nanocontact

10 nm

LSMO Co

Alq3

LUMO

HOMOAlq3 =

-

conjugated 8-hydroxy-quinoline aluminium