Top Banner
____________________________________________________ Spintronics --- Half metal and Colossal Magnetoresistance Jauyn Grace Lin Cener for Condensed Matter sciences National Taiwan Univsersity 2008/05/01
101

Spintronics --- Half metal Colossal Magnetoresistancespin/course/97/20080501.pdf · Spintronics --- Half metal and Colossal Magnetoresistance Jauyn Grace Lin Cener for Condensed Matter

Aug 09, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • ____________________________________________________

    Spintronics --- Half metaland

    Colossal Magnetoresistance

    Jauyn Grace Lin

    Cener for Condensed Matter sciencesNational Taiwan Univsersity

    2008/05/01

  • ____________________________________________________

    Chapter One

    Half Metal

  • ____________________________________________________Outline

    1. Definition of half metal2. Material classification3. Polarization measurement4. Applications

  • Half metals are the extreme case of strong ferromagnet, where not only 3d electrons are fully polarized, but also other (sp) down-spin bands do not crossthe Fermi level.(examples: NiMnSb, PtMnSb--- Hesuler phases.)

  • JOURNAL OF APPLIED PHYSICS VOLUME 91 (2002)

    Half-metallic ferromagnetism: Example of CrO2 (invited)J. M. D. Coey and M. Venkatesan

    Physics Department, Trinity College, Dublin 2, Ireland

    A half metal is a solid with an unusual electronic structure. For electrons of

    one spin it is a metal with a Fermi surface, but for the opposite spin there is a

    gap in the spin-polarized density of states, like a semiconductor or insulator.

    This definition presupposes a magnetically ordered state to define the spin

    quantization axis. The responses of a half metal to electric and magnetic field

    at zero temperature are quite different. There is electric conductivity, but no

    high-field magnetic susceptibility.

  • (CrO(CrO22,NiMnSb),NiMnSb)(Sr2FeMoO6)(Sr2FeMoO6)

    (Magnetite)(Magnetite)(La(La0.70.7SrSr0.30.3MnOMnO66))

    ((GaAsMnGaAsMn))

    (Tl(Tl22MnMn22OO77))(Doped (Doped EuOEuO & & EuSEuS))

  • FIG. 1. Schematic density of states for a half metal, (a) Type IA with only ↑ electrons at EF and (b) Type IB with only ↓ electrons at EF . In narrow d bands, the states at EF may be localized (type II).

  • FIG. 2. Schematic density of states for (a) a type IIIA half metal, whereelectrons of one spin direction are itinerant and the others are localized, (b)a semimetal, (c) a type IVA half metal, and (d), (e) two types of ferromagneticsemiconductor.

  • Definition of polarization Definition of polarization

    νν: : fermifermi velocity of electronsvelocity of electrons

    ------ straightforwardstraightforward

    ------ real measurementreal measurement

  • FIG. 3. Comparison of five methods of measuring P: Photoemission, tunneljunction, point contact, Tedrow–Meservey experiment, Andreev reflection.

    1.Photoemission1.Photoemission

    2. 2. MagnMagn. Tunnel . Tunnel JuncJunc..

    3. Point Contact3. Point Contact

    4. 4. TedrowTedrow--MeserveyMeservey

    5. 5. AndreevAndreev

  • FIG. 5. Spin polarization of the density of states of CrO2.

  • ΔΔSfSf : spin: spin--flip gapflip gap

  • FIG. 6. Resistivity of CrO2 thin films.

    ρρoo= 4= 4××1010--88 ohmohm--mm~ 90 nm mean~ 90 nm mean--free pathfree path

    ρρ = = ρρ oo TT22 ee--ΔΔ/T/T

    with with ΔΔ ~ 80K~ 80K

  • FIG. 7. Magnetoresistance of a CrO2–Cr2O3 pressed powder compact, withtemperature dependence shown in the inset.

    MRMR= [R(H)= [R(H)--R(0)]/R(0)R(0)]/R(0)= P= P22/(1+P/(1+P22))

  • a. Magneto-optical effectsLarge Kerr rotation in PtMnSb.

    b. GMR applicationsSpin-valve system --- pick-up head, MRAM

    c. Spin electronics--- Injection of polarized carriersi) The spin injection in a normal metal can give information on

    the spin diffusion length in this metal.ii) Spin injection may act as a pair-breaking agent in a super-

    conductor.iii) Half metals can also be used to build a spin transistoriv) Another possible application is as polarized tips in STM,

    in order to visualize the orientation of magnetic domains.

    Applications of Half metals

  • ____________________________________________________

    Chapter Two

    Colossal Magnetoresistance

  • ____________________________________________________Outline

    1. Introduction2. Material3. Physical Properties4. Experiments

    a. bulkb. film, bilayers

  • 1. Introduction ---何謂電阻(率)

    電阻 Rρ = R*A/w

    ρ ρ ρ

    T金屬 半導體 超導體

    e-

    ____________________________________________________

  • Introduction ---物質的基本磁性

    順磁

    鐵磁

    斜磁

    反鐵磁

    亞鐵磁

    ____________________________________________________

  • Introduction ---何謂磁阻

    H = Ha

    H = 0 大電阻

    小電阻

    ____________________________________________________

  • ____________________________________________________Introduction --- 何謂龐磁阻(CMR)

    1) Very high magnetoresistance(99% at Tp)

    2) Polarization 100% (half metal)

    3) M- I (F/AF) transition4) Phase separation5) Charge ordering6) Orbital ordering

    S. Jin et al. Science 265 (1994)

    MR =[ρ(H)-ρ(0)]/ρ(H=6 tesla )

  • Type MR Field Temp. Sample

    OMR 0.01% ~Tesla RT Cu,Al

    AMR 2 ﹪ 10 Oe RT Fe,Co,Ni

    GMR 10 ﹪ 2 Oe RT Fe/Cr/Fe

    CMR 10 (99)% ~Tesla RT(LT) La-Sr-Mn-O

    TMR 40 ﹪ 10 Oe RT Co/AlO/Co

    ____________________________________________________MR ratio of MR ratio of spintronicspintronic materialsmaterials

  • c=7.77ÅLa,Sr

    La, Sr

    Mn+3

    b=5.5Å

    a=5.471Å

    2. Material PerovskitePerovskite layered structurelayered structure

    LaMnO3: Cubic (insulator,Antiferromagnetic)

    (La,Sr)MnO3: orthorhombic

    (Metal, Ferromagnetic)

    (0.70 (0.70 Å))(1.32 (1.32 Å))(1.216 (1.216 Å))

  • ____________________________________________________X X –– ray diffraction patternray diffraction pattern

    Bragg condition:Bragg condition:

    nnλλ = 2dsin= 2dsinθθ

    20 30 40 50 60

    x=0.3

    x=0.25

    x=0.2

    x=0.15

    x=0.1

    x=0.05

    x=0

    (312

    )

    (114

    )(1

    31)

    (040

    )(2

    20)

    (202

    )(0

    22)

    (021

    )

    (112

    )

    (111

    )

    (110

    )

    Inte

    nsity

    (a.u

    .)dd

  • ____________________________________________________Phase diagrams of R1-xAxMnO3

    degrees of freedom: charge, spin, orbital

  • What’s the new physics

    ____________________________________________________

    3. Physical properties & mechanism

  • SP

    O-2 t2g

    eg

    Mn+4: 3d3 (t2g3 eg0)Mn+3: 3d4 (t2g3 eg1)

    t2g

    ege- h+

    ____________________________________________________Double exchange (1951, Zener)

    (La,Sr,)MnO3

  • Mechanism vs. degree of freedomMechanism vs. degree of freedom_______________________________________________________________________________________________

    _

    ♣ FM/AFM superexchange♣ Charge/orbital ordering♣ double exchange♣ Lattice distortion

    (John-Teller effect)

    --- spin--- charge/orbital--- charge/spin--- lattice

  • Physical Review B, Volume 58, Number 17 1 November 1998-I Phase diagram of manganese oxide

    Ryo Maezono, Surnio Ishihara, and Naoto NagaosaDepartment of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

    __________________________________________________________________________________________

    SonHundK HHHHH +++= site

    ddtH jiij

    ijK ')('

    'σγσγ

    σγγ

    γγ +∑=

    ∑ ⋅−=i

    ieitHHund gg SSJH 2

    )~~( 2i

    2site on iei gSTH αβ +−= ∑

    jtij

    itSS gg SSJH 22)(

    ⋅= ∑

    (Kinetic energy of eg electrons)

    (Hund coupling between eg & t2g spins)

    (Coulomb interaction between eg-electrons)

    (Super exchange t2g spins)

  • G

    2D-F

    A

    1D-F

  • Charge Ordering (Mn+4/Mn+3 = n/8)

    Chen et al., J. Appl. Phys. 81 (1997)

    (0.67~5/8)

    (0.5=4/8)

    Mn+3 Mn+4 Mn+4 Mn+3

  • Spin/orbital structure

    Neutron diffractionNeutron diffractionMagnetic Magnetic DichroismDichroism

  • Nd1-xSrxMnO3

    Kajimoto et al., PRB 30, 9506 (1999)

  • Tobe, PRB 67, 140402 (2003)

    Orbital switching in A-type spin state

    Spin A-Type :

    from d3z2-r2 to dx2-y2

    at TN ~ 220 K

    Spin C-type :

    remains d3z2-r2

    with TN ~ 270 K

  • FMFM AFMAFM

    Origin of CMR: Phase separationOrigin of CMR: Phase separation

    M. Uehara, et all, Nature 399 (1999)M. Uehara, et all, Nature 399 (1999)

    Metallic ClusterMetallic Cluster

    AFM Melting as HAFM Melting as H≧≧1 Tesla (insulator)1 Tesla (insulator)

    Spin line up (metal)Spin line up (metal)

  • 4-a. Experiment --- bulk

    Phase separation--- fine tuning the MR value by

    Ionic radius size

    ____________________________________________________

  • Key parametersKey parameters_______________________________________________________________________________________________

    _

    • hole concentration(charge/orbital/spin)

    • radius of A-site(lattice/ spin)

    Mn3+ Mn4+

    Mn3+

    O2-

    Mn4+

  • ____________________________________________________Bulk MakingBulk Making

    Step 1 Pre-heating R2O3: 900℃/ 3 h .

    Step 2 Mix R2O3 ,CaCO3, SrCO3, MnCO3

    Step 3 Reaction: 1200℃/ 24 h

    Step 4 Pellet :d = 1 cm, Thickness =3 mm, 3 tons/ cm-2

    Step 5 Anneal: 1400℃ /16 h

    ⇒⇒

  • ____________________________________________________

    0 – 7 Tesla1.4 – 400 KHall effectresisitivityAC susceptibility

    Physical Property measurement System (PPMS)

  • T (K)T (K)M

    (M

    ( em

    uem

    u ))

    ____________________________________________________Basic M Basic M –– T curveT curve

    ParaPara-- to to antiferromagneticantiferromagnetic

    TTcc

    ParaPara-- to ferromagneticto ferromagneticM

    (M

    ( em

    uem

    u ))

    T (K)T (K)

    TTNN

    M ~ C/T , C/(T+TM ~ C/T , C/(T+TN N ), C/(T), C/(T--TcTc) )

  • T (K)T (K)

    ρρ(o

    hm(o

    hm-- c

    m)

    cm)

    T (K)T (K)ρρ

    (ohm

    (ohm

    -- cm

    )cm

    )

    ____________________________________________________Basic R Basic R –– T curveT curve

    metalmetal insulatorinsulator

    ρρ = = ρρoo ++ρρ11TTαα ρρ = = ρρoo exp(C/Texp(C/Tββ))

  • PHYSICAL REVIEW B, VOLUME 65, 024422 (2001)Thermal and magnetic instability near the percolation threshold of

    Nd0.5Ca0.5-ySryMnO3C. W. Chang,* A. K. Debnath,† and J. G. Lin‡

    Center for Condensed Matter Science, National Taiwan University, Taipei, Taiwan

    0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

    0

    4

    8

    1 2

    1 6

    y = 0 .1

    8 th ru n

    1 s t ru n

    ρ (o

    hm-c

    m)

    T (K )

    0

    2

    4

    6

    y = 0 .0 9

    8 th ru n

    1 s t ru n

  • PHYSICAL REVIEW B, VOLUME 65, 024422 (2001)Thermal and magnetic instability near the percolation threshold of

    Nd0.5Ca0.5-ySryMnO3C. W. Chang,* A. K. Debnath,† and J. G. Lin‡

    Center for Condensed Matter Science, National Taiwan University, Taipei, Taiwan

    0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

    0

    4

    8

    1 2

    1 6

    y = 0 .1

    8 th ru n

    1 s t ru n

    ρ (o

    hm-c

    m)

    T (K )

    0

    2

    4

    6

    y = 0 .0 9

    8 th ru n

    1 s t ru n

    0 50 100 150 200 250 300

    0.0

    0.2

    0.4

    0.6

    H = 100Oe

    T (K)

    0.0

    0.1

    0.2

    0.3

    0.4

    H = 100Oe

    y = 0.08

    y = 0.1

  • 25 50 75 100 125102

    103

    104

    105

    106

    y = 0.08 1st 2nd 3rd 4th 5th 6th

    ρ (o

    hm-c

    m)

    T (K)

    0 50 100 150 200 250 30010 -110 010 110 210 310 410 510 6

    y = 0 .08

    H = 0

    H = 0 .5T

    H = 1 .3Tρ (o

    hm-c

    m)

    T (K )

    PHYSICAL REVIEW B, VOLUME 65, 024422 (2001)Termal and magnetic instability near the percolation threshold of

    Nd0.5Ca0.5-ySryMnO3C. W. Chang,* A. K. Debnath,† and J. G. Lin‡

    Center for Condensed Matter Science, National Taiwan University, Taipei, Taiwan

  • PHYSICAL REVIEW B, VOLUME 65, 024422 (2001)Thermal and magnetic instability near the percolation threshold of

    Nd0.5Ca0.5-ySryMnO3C. W. Chang,* A. K. Debnath,† and J. G. Lin‡

    Center for Condensed Matter Science, National Taiwan University, Taipei, Taiwan

    0 50 100 150 200101

    102

    103

    104

    105

    106

    107

    108170K

    150K

    130K120K100K65K11K

    ρ (o

    hm-c

    m)

    T (K)

    1. 3 Tesla1. 3 Tesla

  • PHYSICAL REVIEW B, VOLUME 65, 024422 (2001)Thermal and magnetic instability near the percolation threshold of

    Nd0.5Ca0.5-ySryMnO3C. W. Chang,* A. K. Debnath,† and J. G. Lin‡

    Center for Condensed Matter Science, National Taiwan University, Taipei, Taiwan

    1 10 100 1000

    0

    20

    40

    60

    80

    100

    120

    A

    T (K)

    50K

    11K150K

    130K80K

    120K

    100K

    110K

    Δρ/

    ρ (%

    )

    Time (min)

    0 100 200 300

    Δρ/ρ = Α lnt+const.

  • J OF APPLIED PHYSICS VOLUME 90 (2001)Enhancement of magnetoresistance in the intermediate state

    of Pr0.5Sr0.3Ca0.2MnO3C. W. Chang and J. G. Lin

    Center for Condensed Matter Science, National Taiwan University, Taipei, Taiwan 10764

    FIG. 2. I –V curves for Pr0.5Sr0.3Ca0.2MnO3 at 120, 100, and 80 K, respectively.The arrows denote the jumps of voltage. The inset shows the temperaturedependence of the onset voltage of the jump with the forward scan(increasing ) and the backward scan (decreasing).

  • J OF APPLIED PHYSICS VOLUME 90 (2001)Enhancement of magnetoresistance in the intermediate state

    of Pr0.5Sr0.3Ca0.2MnO3C. W. Chang and J. G. Lin

    Center for Condensed Matter Science, National Taiwan University, Taipei, Taiwan 10764

  • J OF APPLIED PHYSICS VOLUME 90 (2001)Enhancement of magnetoresistance in the intermediate state

    of Pr0.5Sr0.3Ca0.2MnO3C. W. Chang and J. G. Lin

    Center for Condensed Matter Science, National Taiwan University, Taipei, Taiwan 10764

    FIG. 2. I –V curves for Pr0.5Sr0.3Ca0.2MnO3 at 120, 100, and 80 K, respectively.The arrows denote the jumps of voltage. The inset shows the temperaturedependence of the onset voltage of the jump with the forward scan(increasing ) and the backward scan (decreasing).

  • 4-b. Experiment : films & bilayers

    ____________________________________________________

  • Subject (1): Nanocrystalline LSMO films--- High electroresistance

    & low field MR effects

    ____________________________________________________

  • Experiment Flow ChartExperiment Flow Chart

    Target preparation (Solid State ReactionSolid State Reaction)

    Structure Analysis (XRDXRD)

    Resistance

    MorphologyMagnetism

    Composition

    EDSEDS

    PPMS & SQUIDPPMS & SQUID

    PPMSPPMS TEMTEM

    Thin Film Deposition (Sputtering,PLDPLD)

    Thin Film Charaterization

  • Nd0.7Ca0.3MnO3 (NCMO):

    Nd2O3, CaCO3, MnCO3 Powder100°C (3 hrs.) in air 1100°C (24 hrs.) in air

    YBaYBa22CuCu33OO77 (YBCO)

    Y2O3, BaCO3, CuO2 Powder100°C (3 hrs.) in air 1050°C (36 hrs.) in oxygen400°C (12 hrs.) in oxygen

    ____________________________________________________

    Solid state reaction

    Target preparationTarget preparation

    Powders

  • ____________________________________________________RF sputter system (Millton CVT, 13.6 MHz)

    10-8 torrfour guns1000 °C

  • Ar

    LaAlO3 substrate

    Reactive co-sputtering process

    O2

    LSMOYBCO

    Film making

  • • Substrate ⇒ Si (100) , LaAlO3(100)

    • Target ⇒

    • Base pressure ⇒ 3 × 10-7 torr

    • Mixed gas ⇒ Ar:O2=98:2

    • Sputtering pressure 70 mtorr

    • Base temperature ⇒ Room temperature

    • pre-sputtering ⇒ 3 minutes

    • Working distance ⇒ 10 cm

    • Annealing tempert.

    Annealing time ⇒

    800 – 920 ℃ (700 ℃)

    • 1 hrs

    • RF power ⇒ 80 Watt

    YBCO, LSMO

  • NonNon--uniform strain in Launiform strain in La0.670.67CaCa0.330.33MnOMnO33 filmfilm

    InterfaceLow strainHigh strain

    PRB 61, 9665 (2000)

    ____________________________________________________

    Lattice parameter a

    LCMO=3.86Å

    NGO(110)=3.86 Å (no strain)

    LAO(100)=3.79 Å (Compressive)

    STO(100)=3.91 Å (Tensile)

  • AFM - granular

    50 -100 nm

    Rrms = 3 nm

    ____________________________________________________20 30 40 50 60 70

    *LaAlO3

    (001

    )*

    (002

    )*

    (002

    )

    Structures of LSMO layer

    XRD – monoclinic

    c-oriented

  • 20nm

    H=500 Gauss

    ZFC(black line); FC (red line)

    10nm0 50 100 150 200 250 300

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    260

    M (

    emu

    /cm

    3 )

    T (K)

    30nm

    0 50 100 150 200 250 300

    60

    80

    100

    120

    140

    160

    180

    200

    220

    M (e

    mu

    / cm

    3 )

    T (K)

    0 50 100 150 200 250 300

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    M (

    emu

    / cm

    3 )

    T (K)

    0 50 100 150 200 250 300

    -40

    -20

    0

    20

    40

    60

    80

    100

    120

    140

    160

    M (

    emu

    / cm

    3 )

    T (K)

    ?

    0 50 100 150 200 250 30060

    80

    100

    120

    140

    160

    180

    200

    220

    240

    M (

    emu

    /cm

    3 )

    T (K)

    40nm 50nm

    0 50 100 150 200 250 30060

    80

    100

    120

    140

    160

    180

    200

    220

    240

    M (

    emu

    /cm

    3 )T(K)

    60nm

    ____________________________________________________Magnetization for LSMO

  • 10 nm10 nm

  • 0 50 100 150 200 250 300 3500.05

    0.10

    0.15

    0.20(C)

    T (K)

    -MR

    (%)

    ρ (Ω

    -cm

    )

    T(K)

    0 100 200 3004

    8

    12

    16

    0.08

    0.16 (b)

    -MR

    (%)

    T (K)0 100 200 300

    5

    10

    15

    20

    0.4

    0.6

    0.8(a)

    -MR

    (%)

    T (K)

    H = 0 H = 1T

    0 100 200 300

    6121824

    60 nm

    80 nm

    100 nm

    PHYSICAL REVIEW B 67, 064412 (2003)Current-induced giant electroresistance in La0.7Sr0.3MnO3 thin films

    A. K. Debnath* and J. G. Lin†Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan

  • -8000 -4000 0 4000 8000-4

    -3

    -2

    -1

    03.85%(c)

    ΔR/R

    o (%

    )

    H (Oe )

    -4

    -3

    -2

    -1

    0 2.85%(b)

    -4

    -3

    -2

    -1

    0 2.96%(a)

    -0.4 -0.2 0.0 0.2 0.430

    31

    32

    33

    -ER

    (%)

    I (mA)

    (c)

    dV/d

    I (K

    Ω)

    I (mA)

    22

    24

    26

    -ER

    (%)

    I (mA)

    (b)

    108

    112

    116

    120

    124

    -ER

    (%)

    I (mA)

    (a)

    0.0 0.1 0.2 0.3 0.40246

    0.0 0.2 0.4 0.6 0.8 1.00

    2

    4

    6

    0.0 0.2 0.4 0.6 0.8 1.00369

    12

    PHYSICAL REVIEW B 67, 064412 (2003)Current-induced giant electroresistance in La0.7Sr0.3MnO3 thin films

    A. K. Debnath* and J. G. Lin†Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan

  • thickness (nm) MRH (%) MRI (%) ratio

    60 2.96 5.6 (I = 0.3) 1.9

    80 2.85 6.4 (I = 0.3) 2.311.3 (I = 0.9) 4.0

    100 3.85 3.5 (I = 0.3) 0.94.6 (I = 0.9) 1.2

    _______________________________________________________________________

    Current in Current in nanowirenanowire of LSMO inducedof LSMO inducedmagnetic field, and the thermalmagnetic field, and the thermalenergy delocalized the electrons.energy delocalized the electrons.

    PHYSICAL REVIEW B 67, 064412 (2003)

    Current-induced giant electroresistance in La0.7Sr0.3MnO3 thin filmsA. K. Debnath* and J. G. Lin†

    Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan

  • Subject (2): Nanocrystalline YBCO/LSMObilayers

    --- Proximity effect, spin injection& vortex pinning

    ____________________________________________________

  • ____________________________________________________Multilayer devices

    YBCO

    LSMOYBCO

    YBCO

    YBCO

    LSMO

    LSMO

    LSMO

    V IV

    IinjectVI

    I

    Spin-injectionIc - depression

    proximity effectTc - depression

    FM/N/FM structureMR enhancement

  • ____________________________________________________Interesting topics on YBCO/LSMO

    1) Proximity effects 2) Andreev reflection3) Spin injection4) Spin-accumulation5) π –phase shift

    Superconductor

    Ferromagnet

    Cooper pair

    FM spin

  • ____________________________________________________Proximity effect

    1) Influence of magnetism on supercond.

    Intermixing ⇒ effective exchange field

    Heffect = Hex [dF/(ds+dF)], Tc oscillation

    2) Influence of supercond. on magnetism

    Intermixing ⇒ reconstruction of magnetic order

    Tcurie oscillation

  • ____________________________________________________

    ●● Normal electron injected to Normal electron injected to superconductor will besuperconductor will bereflected as a hole;reflected as a hole;

    ●● Polarized electron injectedPolarized electron injectedinto superconductor will kill into superconductor will kill a Cooper pair.a Cooper pair.

    Spin-injection

  • ____________________________________________________

    ●● YBaYBa22CuCu33OO77 ξS ~ 3-10 nm●● Critical parameter Tc = 90 K, Hc2 ~ 165 T ●● SQUID, Bolometer, Filter, ResonatorSQUID, Bolometer, Filter, Resonator……

    SuperconductorSuperconductor: : RRBaBa22CuCu33OO77, R = Y or rare earth element, R = Y or rare earth element

    Ba

    Y

    Ba

    a=3.89Å

    c=11.7Å

    Wu, Chu et al., PRL (1987)

  • Half metal: (RHalf metal: (R,,Ca)MnOCa)MnO33, R = La, , R = La, NdNd, Pr, Pr……..

    c R,Ca

    R, Ca

    Mn+3

    b

    a

    ___________________________________________________

    ●● Ferromagnetic with 90 % polarizationFerromagnetic with 90 % polarizationfor LCMO. for LCMO. ξξMM ~ 10 -15 nm

    ●● Colossal Colossal magnetoresistancemagnetoresistance (CMR)(CMR)●● Sensor, pickSensor, pick--up head, MRAMup head, MRAM

    Jin et al, Science (1995)

    dd--bandband

    SS--bandband

  • ____________________________________________________

    LCMO = 15 unit cell ~ 10 nmLCMO = 15 unit cell ~ 10 nmN = unit cell of YBCON = unit cell of YBCON = 3 to 12N = 3 to 12

    ~ 3.5 to 14 nm~ 3.5 to 14 nmΔΔTcTc ~ 62 to 2 K~ 62 to 2 K

    EEeffeff--exex ~ 0.74 to 0.42 of ~ 0.74 to 0.42 of EEexexN = 12N = 12

    N = 1N = 1

  • ____________________________________________________Vortex pining device

    YBCO

    LSMO

    V

    I

  • ____________________________________________________

    Critical current ICNormal state resistance RnEnergy gap Δ

    Ic = I(V=1 μV) IC Rn = π ∆ / 2

    = 3.52 π KB TC / 4

    I-V characteristic

  • -4 -2 0 2 4-0.9

    -0.6

    -0.3

    0.0

    0.3

    0.6

    0.940nm

    30nm20nm

    10nm

    YBCO

    V (v

    olt)

    I (mA)

    ____________________________________________________I- V Characteristic (1.9 K)

    Ic decreases with increasing thicknessof LSMO

  • ____________________________________________________Hysteresis in YBCO/LSMO(30nm)Hysteresis in YBCO/LSMO(30nm)

    -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

    -0.04

    -0.02

    0.00

    0.02

    0.04

    2T

    5T

    3T4T

    1T0T

    V (v

    olt.)

    I (mA)

    YBCOYBCO

  • Subject (3): Epitaxial YBCO/NCMObilayers

    --- How the superconductivity is affected by weak ferromagnetic insulator ?

    ____________________________________________________

  • La1-xSrxMnO3

    E. Dagotto et. al., Physics Reports 344, 1-153 (2001)

    ____________________________________________________

    R0.7(Ca,Sr)0.3MnO3

    C. N. R. Rao et al. J. Phys. Chem. Solids 59, 487 (1998)

  • ____________________________________________________Substrate criteriaSubstrate criteria

    1. Atomically flat2. Chemically comparable3. Well lattice mismatch

    For YBCO, LaAlO3 (100) is ~ 0.4%;SrTiO3(100) is 0.2% for a-parameter, 0.3% for b-parameter; NdGaO3 (110) is 0.7 % for a- and b-parameters

  • YBa2Cu3O7 (001), orthorhombic

    LaAlO3 (100), rhombohedra

    LaAlO3a=b=c=3.79 Åα=β=γ=90.12o

    o-YBa2Cu3O7a=3.82 Å, b=3.85 Å, c=11.63 Å; α=β=γ=90o

    3.79Å

    3.79Å

    b

    a

    c

    Nd0.7Ca0.3MnO3 (001), orthorhombic

    5.42Å

    5.46Å5.44Å

    5.44Å

    o-Nd0.7Ca0.3MnO3a=5.42 Å, b=5.46 Å, c=7.72 Å;α=β=γ=90o

  • PulsePulse--LaserLaser--Deposition system Deposition system ––NeoceraNeocera 180180

    Chamber

    10-8 torr

    PumpFlow meterVacuum gauge

    KrF Laser (248 nm) Focus Len

  • PulsePulse--Laser Deposition system (II) Laser Deposition system (II) -- ChamberChamber

    YBCO

    NCMO

  • NCMO/YBCO NCMO/YBCO heterostructureheterostructure

    Nd0.7Ca0.3MnO3, (40 -350 nm)

    780oC for 1 hour in 50 mtorr O2

    LaAlO3 (100)

    YBa2Cu3O7(100-600 nm)

    850 oC for 1 hour

    400 °C for 6 hours

    in 300 mtorr O2

    ____________________________________________________

  • ____________________________________________________

    10 20 30 40 50 600

    2

    4

    10 20 30 40 50 600

    4

    8

    NCMO(004)NCMO

    (002)

    YBCO(004)

    YBCO(003)

    YBCO(006)

    YBCO(007)

    YBCO(005)

    LAO

    YBCO(002)

    (b)

    Inte

    nsity

    (abi

    tary

    )

    LAO(a)

    X-ray Diffraction Patterns & TEM image

    ●● Both NCMO & YBCOare with c-axis perpendicularto the film surface

    2nm001

    LAONCMO

    ●● Epitaxial growth along [001]

  • ____________________________________________________Basic characterizationBasic characterization

    (Scanning EDX)

  • ____________________________________________________Magnetization(MMagnetization(M) vs. Temperature (T) ) vs. Temperature (T) –– by SQUIDby SQUID

    100 200

    -0.4

    0.0

    0.4

    50 1000

    50

    100

    M (

    10-6em

    u)

    T(K)

    ZFC FC

    NCMO

    80 85 90 95 100

    -50

    0

    50

    ZFC FC

    M(1

    0-6em

    u)

    T(K)

    YBCO

    M(1

    0-3 e

    mu)

    T(K)

    ZFC FC

    (a)

    (b)

    ●● Tc is 88 K for YBCO; TN is ~ 75 K for NCMO; Both transition temperature do not change in NCMO(40nm)/YBCO(160nm).

  • ____________________________________________________

    0 50 100 150 200 250 3000.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.0

    5.0x103

    1.0x104

    1.5x104

    2.0x104

    ρ (m

    ohm

    -cm

    )

    T(K)

    YBCO

    NCMOTcon

    Tcoff

    V

    LAO

    NCMO

    I

    ●● YBCO : Tc ~ 88 K & ΔT < 2 K; NCMO: Insulating

    44--Probe methodProbe method

  • ____________________________________________________●● For Ia = 1 – 90 mA, normal state increases & Tc drops

    with a rate 0.1K/mA.●● open a gap at 230 K ?open a gap at 230 K ?

    Resistivity (ρ) vs. Temperature (T)

    YBCO(200nm)

    50 100 150 200 2500.0

    0.2

    0.4

    0.6

    80 85 900.0

    0.1

    0.2

    0.3

    ρ (1

    0-3oh

    m-c

    m)

    T(K)

    0.1mA 10 mA 30 mA 50 mA 70 mA 90 mA

    ρ (1

    0-3 o

    hm-c

    m)

    T(K)

  • ____________________________________________________

    ●● For Ia = 5 – 30 mA, resistivity decreases.

    Resistivity (ρ) vs. Temperature (T)

    NCMO(200nm)

    100 150 200 250

    100

    101

    102

    103

    104

    200 250

    10-1

    5 mA 10 mA 20 mA 30 mA

    ρ (o

    hm-c

    m)

    T(K)

    0.0001mA 0.001mA 0.01mA 0.1mA 1mA

    ρ (o

    hm-c

    m)

    T(K)

  • ____________________________________________________

    0 50 100 150 200 2500.0

    0.5

    1.0

    1.5

    40mA

    1mA

    ρ (m

    ohm

    -cm

    )

    T(K)

    1mA

    40mA

    ●● For Ia = 1 – 40 mA, normalstate increases & Tc dropswith a rate of 1.0 K/mA.

    Resistivity (ρ) vs. Temperature (T)

    NCMO(200nm)/YBCO(200nm)

    10 20 30 40 50 60 70 800

    2

    4

    6

    8

    10

    R (o

    hm)

    T(K)

    1 mA

    40mA

    30mA

    20mA

    10

    Crossing point

  • ____________________________________________________

    ●● For Ia = 1 – 40 mA, normalstate decreases 30% & Tc drops with a rate of 1.4 K/mA.

    Resistivity (ρ) vs. Temperature (T)

    NCMO(40nm)/YBCO(160nm)

    0 50 100 150 200 2500

    5

    10

    15

    0.001mA 0.01mA 0.1mA 1mA

    ρ (1

    0-3 o

    hm-c

    m)

    T(K)

    40mA30mA 20mA

    10mA

    10 20 30 40 50 60 70 80 90 1000

    20

    40

    60

    80

    100

    120

    140 0.001mA 0.01mA 0.1mA 1mA

    R(o

    hm)

    T(K)

    40mA30mA

    20mA10mA

  • ____________________________________________________

    ●● Tc is suppressed by proximityin NCMO/YBCO at I < 1 mA.

    ●● Tc-suppresion rate at I > 1 mAis one order higher in bilayerdue to the spin-injection.

    Superconducting temperature vs. applying current

    0 20 40 60 80 100

    10

    20

    30

    40

    50

    60

    70

    80

    90

    T c (K

    )

    I (mA)

    YBCO

    NCMO(40)/YBCO(160)

    NCMO(200)/YBCO(200)

  • ____________________________________________________

    ●● Current induces spin-injection effect

    Observe a threshold of effective current I > 1 mALarge Tc-suppresion in a rate of 1.4 K/mA.

    ●● Proximity effect

    Heff-ex = Hex {dF/(dS + dF)}

    0.5Hex for NCMO(200nm)/YBCO(200nm)0.2Hex for NCMO(40nm)/YBCO(160nm)

    ΔTc ~ 34K / 16K

  • Half metal is the future material forall kinds of spintronic devices !!!

    ____________________________________________________