Top Banner
Renata Wentzcovitch Applied Physics and Applied Mathematics Lamont Doherty Earth Observatory Columbia University Electronic Structure 2017 Princeton, NJ, USA Spin crossovers in iron bearing mantle minerals
49

Spin crossovers in iron bearing mantle minerals

Jun 11, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Spin crossovers in iron bearing mantle minerals

Renata WentzcovitchApplied Physics and Applied Mathematics

Lamont Doherty Earth ObservatoryColumbia University

Electronic Structure 2017Princeton, NJ, USA

Spin crossovers in iron bearing mantle minerals

Page 2: Spin crossovers in iron bearing mantle minerals

Earth’s lower mantle

(Mg1-yFey)(Si1-xFex)O3perovskite

(Mg1-xFex)O ferropericlase

+

Lower Mantle: Ferrosilicate perovskite + ferropericlase Low iron concentration (x~0.1) High-temperatures and high pressures

Page 3: Spin crossovers in iron bearing mantle minerals

Pressure induced spin “transition” in (Mg,Fe)O and (Mg,Fe)SiO3

2003

2004

Page 4: Spin crossovers in iron bearing mantle minerals

• Spin crossovers

• Thermodynamics model of a spin crossover: (Mg,Fe)O

• (Mg,Fe)SiO3 (it is not what it seems…)

• Spin crossover in (Mg,Fe)(Si,Fe)O3 and (Mg,Fe)(Si,Al)O3

• Some geophysical consequences•• The BIG PICTURE

• Acknowledgments

Outline

Page 5: Spin crossovers in iron bearing mantle minerals

DFT+U with ab initio U

DFT+U (Cococcioni and de Gironcoli, 2005)

Self-consistent Usc (Kulik, Cococcioni, Sherlis, Marzari, 2006)

Density Functional Perturbation Theory + U for phonons (Floris, de Gironcoli, Gross, Cococcioni, 2011)

Quantum ESPRESSO

QHA to compute vibrational free energy

Wien2K to compute Mössbauer QS

Methods

Page 6: Spin crossovers in iron bearing mantle minerals

d-electrons in crystal fieldMm+→ [core] 3dn

EC EX

S=2High Spin

(HS)

S=1Intermediate

Spin(IS)

S=0Low Spin(LS)

Fe2+ 3d6

Pressure

Spin transition (or crossover)

Page 7: Spin crossovers in iron bearing mantle minerals

d-electrons in crystal fieldMm+→ [core] 3dn

EC EX

S=2High Spin

(HS)

S=1Intermediate

Spin(IS)

S=0Low Spin(LS)

Fe2+ 3d6

Pressure

Spin transition (or crossover)

Page 8: Spin crossovers in iron bearing mantle minerals

Ferropericlase

Page 9: Spin crossovers in iron bearing mantle minerals

Fe

Fe

FeO

O O

O

O

O

O

O O

O

O

O

O

O O

O

O

O

ρel around Fe2+ (Isosurface:ρel=0.3 e/Å3)

A. HS Maj C. LS Maj

B. HS Min+1%

+2%

-1%

-1%

-2%

-3%

∆Voct~-8%

Tsuchiya, PRL (2006)

Page 10: Spin crossovers in iron bearing mantle minerals

HS-to-LS “transition”

PT = 32±3 GPa

0 50 100

-20

0

20

40

P (GPa)

∆H=H

LS-H

HS

(kJ/

mol

) 3.125% 12.5% 18.75%

Static

Tsuchiya, de Gironcoli, and Wentzcovitch, PRL (2006)

Page 11: Spin crossovers in iron bearing mantle minerals

HS-to-LS “transition”

Pexp = 45-60 GPa

0 50 100

-20

0

20

40

P (GPa)

∆H=H

LS-H

HS

(kJ/

mol

) 3.125% 12.5% 18.75%

Static

Tsuchiya, de Gironcoli, and Wentzcovitch, PRL (2006)

Page 12: Spin crossovers in iron bearing mantle minerals

XFe=18.75% (6 irons in supercell)Static

Pc does not depend on HS/LS fraction

0 50 100

-20

-10

0

10

20

30

P (GPa)

∆H

(kJ/

mol

)

6FeHS 0FeLS

4FeHS 2FeLS

2FeHS 4FeLS

0FeHS 6FeLS

Page 13: Spin crossovers in iron bearing mantle minerals

0 50 100

-20

-10

P (GPa)

B

C0 20 40 60 80 100

8

9

10

11

12V

(cm

3 /mol

)

P (GPa)

n=0 n=1/3 n=2/3 n=1

Exp. (Lin et al., 2005)

XFe=18.75%

∆V ~-4.2%

∆VHS-LS = -2.22 nXFe cm3/mol

XFe=17%

Static equation of staten=nLS/(nLS+nHS)

Tsuchiya et al., PRL (2006)

Page 14: Spin crossovers in iron bearing mantle minerals

Thermodynamics

Page 15: Spin crossovers in iron bearing mantle minerals

n = nLS/(nHS+nLS)

G = (1-n)GHS + nGLS + Gmix

Ideal solid solution of HS and LS ferropericlase(xFe = cte)

Page 16: Spin crossovers in iron bearing mantle minerals

n = nLS/(nHS+nLS)

G = (1-n)GHS + nGLS + Gmix

GHS/LS = FHS/LS + PVHS/LS

GHS/LS = FHS/LS(stat+vib) + FHS/LS

el + PVHS/LS

FHS/LSel = - TSHS/LS

el

Gmix = - TSideal

Ideal solid solution of HS and LS ferropericlase(xFe = cte)

Page 17: Spin crossovers in iron bearing mantle minerals

Free energy minimization

1( , )1 (2 1)exp

st vibHS LS

Fe B

n P TGm S

X k T

+−

= ∆

+ +

Page 18: Spin crossovers in iron bearing mantle minerals

Vibrational Virtual Crystal Model

● Replace Mg mass by the average cation mass of the alloy

● Replace “some” inter-atomic force constants of MgO to reproduce the that the static elastic constants of the alloy

Wu et al, PRB (2009)

Page 19: Spin crossovers in iron bearing mantle minerals

Exp

LS fraction n(P,T)

XFe=18.75%

(Wentzcovitch et al., PNAS, 2009)

x = 0.17 Lin et al., Science (2007)

Page 20: Spin crossovers in iron bearing mantle minerals

Exp

LS fraction n(P,T)

XFe=18.75%

x = 0.17 Lin et al., Science (2007)

Page 21: Spin crossovers in iron bearing mantle minerals

Free energy shift (EHS – ELS = - 0.06 eV/Fe):

Lin et al., Science (2007) x=0.17■ Komabayashi et al., EPSL (2010) x=0.10

HS

LS

Page 22: Spin crossovers in iron bearing mantle minerals

+ Experiments (Lin et al., Nature, 2005) (xFe=17%)o and Δ (Fei et al., GRL, 2007) (xFe=20%)

Volume V(P,T,n(P,T)) for xFe= 18.75%

+ 300K (exp.)xFe= 18.75%

+ 300K (exp.)

Page 23: Spin crossovers in iron bearing mantle minerals

Experiments (o xFe=0 and += 40%)

Thermodynamics properties xFe= 18.75%

300K (exp.)

Wu et al, PRB 2009

Page 24: Spin crossovers in iron bearing mantle minerals

Elastic anomalies in Mg1-xFexO

Impulsive stimulated scattering: softening of C11, C12, and C44(Crowhurst et al., 2008, )

Brillouin scattering: softening of C11 and C12, but not C44(Marquardt et al., 2009, )

Inelastic X-ray scattering: softening of C44 and C12, but not C11(Antonangelli et al., 2011, )

Page 25: Spin crossovers in iron bearing mantle minerals

High temperature elasticity

( , , ) ( , ) (1 ) ( , )LS HSV P T n nV P T n V P T= + −

Compressibility:

1( ) ( ) (1 ) ( )9

LS HSij ij LS ij HS ij LS HS

T

nS n V n nS V n S V V VP

α ∂= + − − −

Compliances:

11 12 1α α= = 44 0α =

THSLS

HS

HS

LS

LS

PnVV

KVn

KVn

nKnV

∂∂

−−−+= )()1()()(

(Wentzcovitch et al., PNAS 2009; Wu, Justo, and Wentzcovitch, PRL 2013)

Page 26: Spin crossovers in iron bearing mantle minerals

High Tempearature Elastic Tensor(2000-)

Page 27: Spin crossovers in iron bearing mantle minerals

T = 300 KP = 0 GPa

Page 28: Spin crossovers in iron bearing mantle minerals

KS

G

VP

VS

34S

P

K GV

ρ

+=

SGVρ

=

SKVφ ρ=

T = 300 K

Wu, Justo, Wentzcovitch, PRL 2013

Elastic anomalies in ferropericlase - I

Page 29: Spin crossovers in iron bearing mantle minerals

Spin Crossovers in bridgmanite

(Fe+2) (Fe+3)

Page 30: Spin crossovers in iron bearing mantle minerals

• At 0 GPa: HS state with QS = 2.4 mm/sec

•“New” Fe2+ (QS = 3.5 mm/s) for P > 30 GPa

• Fe2+ QS = 3.5 mm/s increases at the expense of the HS Fe2+

(QS = 2.4 mm/s)

• The two sets of peaks merge at P ~ 60 GPa

McCammon et al. Nature Geoscience (2008)

“New” species of Fe2+: IS?

Page 31: Spin crossovers in iron bearing mantle minerals

HS and LS configurations at 0 GPa

Hsu, Umemoto, Blaha, and Wentzcovitch, EPSL 2009

xFe = 0.25 and 0.125

Page 32: Spin crossovers in iron bearing mantle minerals

Effect of EXC and Hubbard U

24 GPa 15 GPa

4 GPa7 GPa

QS = 2.4 mm/s QS = 3.5 mm/s

• (Mg0.875Fe0.125)SiO3

• QS improved by U

• No spin crossover

Hsu et al., EPSL 2009

Page 33: Spin crossovers in iron bearing mantle minerals

Spin Crossover in Perovskite

(Fe+3)Hsu, Blaha, Cococcioni, and Wentzcovitch (PRL 2011)

Page 34: Spin crossovers in iron bearing mantle minerals

Spin Crossover in Post-Perovskite

(Fe+2) (Fe+3)Yu, Hsu, Cococcioni, and Wentzcovitch (EPSL 2012)

Page 35: Spin crossovers in iron bearing mantle minerals

Spin crossover in aluminous Pv and PPv

(Fe+2) (Fe+3)Al

Fe

Hsu, Yu, and Wentzcovitch (EPSL 2012)

Page 36: Spin crossovers in iron bearing mantle minerals

Consequences for Mantle Structure

Page 37: Spin crossovers in iron bearing mantle minerals

S1

S2

P

Body wave (acoustic) velocities

● Longitudinal waves (P-waves)(compressive waves)

●Transverse waves (S-waves)(shear waves)

ρ

GKVP

34

+=

VS =Gρ

K and G from Voigt-Reuss-Hill boundsρϕKV =

Page 38: Spin crossovers in iron bearing mantle minerals

Making sense of mantle heterogeneities(Seismic Tomography)

δVS

Page 39: Spin crossovers in iron bearing mantle minerals

+

Mineral sequence II

Lower Mantle

(Mgx,Fe(1-x))O(Mg(1-x-z),Fex, Alz)(Si(1-y),Aly)O3

+

CaSiO3

Page 40: Spin crossovers in iron bearing mantle minerals

Elastic anomalies in ferropericlase - IIWu and Wentzcovitch, PNAS 2014

P = 75 GPa

Mg0.88Fe0.12OMg0.79Fe0.21O

34S

P

K GV

ρ

+= S

GVρ

=

Page 41: Spin crossovers in iron bearing mantle minerals

Lower mantle aggregateWu and Wentzcovitch, PNAS 2014

P = 75 GPa

78% Mg0.91Fe0.09)SiO3 (MgPv) + 7% CaSiO3 + 15% Mg0.88Fe0.12O

78% Mg0.91Fe0.09)SiO3 (MgPv) + 7% CaSiO3 + 15% Mg0.79Fe0.21O

Page 42: Spin crossovers in iron bearing mantle minerals

Predicted effectWu and Wentzcovitch, PNAS 2014

Slow (hot) anomaly (plume) with spin crossover

VS VP

1500 km

2000 km

Page 43: Spin crossovers in iron bearing mantle minerals

Potential seismic signatures of spin crossover Wu and Wentzcovitch, PNAS 2014

Zhao, Gondwana Res. 2007 P-models

Page 44: Spin crossovers in iron bearing mantle minerals

Potential seismic signatures of spin crossover Wu and Wentzcovitch, PNAS 2014

Zhao, Gondwana Res. 2007 P-models

Page 45: Spin crossovers in iron bearing mantle minerals

Potential seismic signatures of spin crossover Wu and Wentzcovitch, PNAS 2014

Zhao, Gondwana Res. 2007 P-models

Page 46: Spin crossovers in iron bearing mantle minerals

Geodynamic/seismological analysis of global models

Simultaneous analyses of 2 global P-models and 3 global S-modelsBoschi, Becker, Steinberger, G3, 2007

Page 47: Spin crossovers in iron bearing mantle minerals

ρ,α,Cp,μ,κ

ρ,Vs,Vp,Rs/p,…

Consistent w/experimental data

The Big Picture

Page 48: Spin crossovers in iron bearing mantle minerals

Some Challenges

• ANHARMONIC EFFECTS: temperature dependent phonon frequencies, thermal conductivity, anharmonicfree energy, pre-melting behavior, etc…

• SEARCH FOR new phases, particularly with high iron content

• MULTI-PHASE EQUILIBRIUM: address co-existing complex solid solutions (more accurate free energies).

Page 49: Spin crossovers in iron bearing mantle minerals

Acknowledgments

• Koichiro Umemoto (UMN, ELSI)• Matteo Cococcioni (UMN, EPFL, Lausanne)• Stefano de Gironcoli (SISSA, Trieste)• Gaurav Shukla (UMN)• João F. Justo (USP, São Paulo, Brazil)• Zhongqing Wu (USTC, Hefei)• Taku and Jun Tsuchiya (Ehime, Japan)• Peter Blaha (Vienna, Austria)• Maribel Núnez-Valdéz (Potsdam, Germany)• Yonggang Yu (NOAA, USA)• Pedro da Silveira (UMN, Digital River, Minneapolis)