Top Banner
Spectrum Analysis Module 6
82

Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

Jan 19, 2016

Download

Documents

Ursula Haynes
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

Spectrum Analysis

Module 6

Page 2: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-2

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Module 6

Spectrum Analysis

A. Define a spectrum analysis and its purpose.

B. Understand the underlying concepts and terminology.

C. Learn how to do a response spectrum analysis.

D. Guidelines for spectrum analysis.

E. Random Vibration Analysis

Page 3: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-3

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Spectrum Analysis

A. Definition & Purpose

What is spectrum analysis?

• A technique to compute a structure’s response to transient excitations that contain many frequencies.

• Excitations could be from sources such as earthquakes, aircraft noise/ flight history, missile launches.

• A spectrum is a representation of a load’s time history in the frequency domain.

• This is also referred to as response spectrum.

Page 4: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-4

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Acceleration vs. time Acceleration spectrum (G vs. Hz)

Spectrum Analysis

… Definition & Purpose

El Centro Earthquake ( 1940 )

A structure subject to the El Centro earthquake can be analyzed using either a Transient analysis or spectrum analysis.

Page 5: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-5

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Spectrum analysis follows a modal analysis.

• Computes the maximum response of the structure to a given spectrum at each natural frequency. This maximum response is computed as scale factor*mode shape.

• These maximum responses are then combined to give a total response of the structure.

Spectrum Analysis

… Definition & Purpose

Page 6: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-6

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• An alternative is to perform a transient analysis.

• Transient analysis is generally more time consuming, especially when a number of components and load conditions have to be considered.

• However, transient analysis is more accurate.

• In spectrum analysis the focus is to get the maximum response quickly, and some information is lost (phase).

Spectrum Analysis

… Definition & Purpose

Page 7: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Used in the design of:

– Nuclear power plants (buildings and components)

– Airborne Electronic equipment (aircraft / missile)

– Spacecraft components

– Aircraft components

– Any structure or component that is subjected to seismic or other erratic loads

– Building frames and bridges

Spectrum Analysis

… Definition & Purpose

Page 8: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-8

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

** Covered in this seminar

Spectrum Analysis

… Definition & Purpose

• ANSYS allows four types of spectrum analysis:

• Single-point response spectrum**

– A single response spectrum excites all specified points in the model.

• Multi-point response spectrum **

– Different response spectra excite different points in the model.

• Dynamic design analysis method (DDAM)

– A specific type of spectrum defined by the U.S. Naval Research Laboratory to evaluate shock resistance of shipboard equipment.

• Power Spectral Density (PSD)**

– A probabilistic approach used in random vibration analysis.

Page 9: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-9

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Spectrum Analysis

B. Terminology & Concepts

Topics covered:

• Definition of a spectrum

• How a response spectrum is used to calculate a structure’s response to the excitation

– Participation factor

– Mode coefficient

– Mode combination

Page 10: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-10

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Spectrum Analysis - Terminology & Concepts

Definition of spectrum

What is a spectrum?

• A curve representing the maximum response of an idealized system to an excitation. The response may be acceleration, velocity, displacement, or force.

• Consider, for example, four single-DOF spring-mass systems mounted on a shaker table. Their frequencies are f1, f2, f3, and f4, with f1 < f2 < f3 < f4.

1 2 3 4

Page 11: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-11

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• If the shaker table is excited at frequency f1 and the displacement response of the four systems is recorded, it will look as shown on the right.

• Now add a second excitation of frequency f3 and record the displacement response. Systems 1 and 3 will each reach their peak response.

• If now a general excitation containing several frequencies is applied and only the peak responses are recorded, we might get the curve shown. This curve is the spectrum, specifically a response spectrum.

f

u

f

u

f

u

Spectrum Analysis - Terminology & Concepts

… Definition of spectrum

Page 12: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-12

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Thus a response spectrum is an envelope of the maximum responses of a number of single DOF systems to a given excitation.

• Input to a spectrum analysis consists of a response spectrum curve and a direction of excitation.

Spectrum Analysis - Terminology & Concepts

… Definition of spectrum

Page 13: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-13

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Spectrum analysis follows a modal analysis in which natural frequencies and mode shapes have been computed.

• In doing a spectrum analysis you will encounter three new terms:

– Participation factor

– Mode coefficient

– Mode combination

• We will define these three terms along with the general outline of how a spectrum analysis is done.

Spectrum Analysis - Terminology & Concepts

Approach

Page 14: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-14

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• For each mode of the structure, a participation factor i is calculated in the excitation direction.

• The participation factor is a function of the mode shape and the direction of excitation.

• This is a measure of how much a mode will contribute to the deflections (and hence stresses) in the direction of excitation.

Spectrum Analysis - Terminology & Concepts

… Approach - Participation factor

Page 15: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-15

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• For example, consider the cantilever beam shown.

• If an excitation is applied in Y direction, mode 1 will have the highest PF and mode 2 a lower PF. Mode 3 will have zero PF.

• If the excitation is in the X direction, then modes 1 and 2 will have zero PF, whereas mode 3 will have a high PF.

m o d e 3

m o d e 22

m o d e 1

Y

X

Spectrum Analysis - Terminology & Concepts

… Approach - Participation factor

Page 16: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-16

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• The mode coefficient is the “scale factor” used to multiply the mode shapes to get the maximum response.

• The mode coefficient Ai for each mode is Ai = Sii *

Si is the response spectrum value at frequency i

i is the participation factor for mode i

• The maximum modal response is then computed as

{U}i max = Ai {i

*A different formula is used for acceleration, velocity and force spectra; see the ANSYS Theory Manual.

Spectrum Analysis - Terminology & Concepts

… Approach - Mode coefficient

Page 17: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-17

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Once the maximum response at each mode is known for a given response spectrum, these need to be combined in some way to get the total response.

• The simplest combination is to add all the maximum modal responses. However, it is highly unlikely that all the maximum modal responses will occur at the same time.

• Several standard combination methods are published in the literature. Usually each industry’s regulating authority recommends or enforces a technique most suitable for that industry.

Spectrum Analysis - Terminology & Concepts

… Approach - Mode combination

Page 18: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-18

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Six different combination methods are available in the ANSYS program:

– Complete Quadratic Combination (CQC) method

– Grouping Method (GRP)

– Double Sum method (DSUM)

– Square Root of the Sum of the Squares (SRSS) method

– Naval Research Laboratory (NRL) sum method (DDAM)

– Power Spectral Density method

Spectrum Analysis - Terminology & Concepts

… Approach - Mode combination

Page 19: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-19

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• We will discuss the procedure for a single-point response spectrum analysis.

• In the following discussion, we will use the term “response spectrum” to mean single-point response spectrum.

• To learn about multi-point response spectrum and DDAM, please refer to the ANSYS Structural Analysis Guide.

Spectrum Analysis

… Terminology & Concepts

Page 20: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-20

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training ManualC. Procedure

Five main steps:

• Build the model

• Obtain the modal solution

• Switch to spectrum analysis type

• Define the response spectrum

• Solve and review results

Page 21: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-21

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Response Spectrum Procedure

… Obtain the Modal Solution

• Mode extraction:

– Only valid methods are Block Lanczos, subspace, or reduced.

– Block Lanczos strongly recommended

– Extract enough modes to cover the spectrum’s frequency content.

– Expand all modes. Only expanded modes can be used for the spectrum solution.

• Loads and BC’s: For a base excitation, be sure to constrain the appropriate DOFs.

• Files: The .mode file contains the eigenvectors and is needed for the spectrum solution.

Page 22: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-22

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Response Spectrum Procedure

Switch to Spectrum Analysis Type

Build the model

Obtain the modal solution

Switch to spectrum analysis type

• Exit and re-enter Solution

• New analysis: Spectrum

• Analysis options: Discussed next

• Damping: Discussed next

Page 23: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-23

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Response Spectrum Procedure

… Switch to Spectrum Analysis Type

Analysis options

• Type of spectrum: Single point

• Number of modes: If 0 or blank, all expanded modes are used for solution.

Page 24: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-24

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Response Spectrum Procedure

… Switch to Spectrum Analysis Type

Damping

• Available forms of damping are:

– Beta (stiffness) damping

– Constant damping ratio. Can be material dependent but only if specified as a material property* in the modal step.

– Frequency dependent damping ratio (modal damping)

• Some form of damping must be specified for the CQC mode combination method.

*Material property DAMP in this case is damping ratio, not beta damping.

Page 25: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-25

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Response Spectrum Procedure

Define the Response Spectrum

Build the model

Obtain the modal solution

Switch to spectrum analysis type

Define the response spectrum

• Settings: type of spectrum and excitation direction

• Table of spectral value versus frequency

• Mode combination method

Page 26: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-26

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Response Spectrum Procedure

… Define the Response Spectrum

Settings:

• Type of spectrum

– Seismic or force (not PSD)

– Seismic spectra - automatically applied at the base

– Force spectrum - manually applied at desired nodes as a force

• Excitation direction (global Cartesian)

– Specified by a unit vector for seismic spectra: 1,0,0 means X; 0,1,0 means Y; 0,0,1 means Z.

– Implied by FX, FY, or FZ labels for force spectrum.

Page 27: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-27

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Response Spectrum Procedure

… Define the Response Spectrum

Spectral value vs frequency table

• First define frequency table. Up to 20 points are allowed.

• Then define corresponding spectral values.

– Specify damping ratio only for multiple spectral curves.

– For a force spectrum, the spectral values can be scaled by the applied force value.

Page 28: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-28

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Mode combination method

• Determines how the individual modal responses are combined.

• Five methods are available:

– CQC (Complete Quadratic Combination)

– GRP (Grouping)

– DSUM (Double Sum)

– SRSS (Square Root of Sum of Squares)

– NRLSUM (Naval Research Laboratory Sum)

Which method you choose typically depends on company or government standards being followed.

Response Spectrum Procedure

… Define the Response Spectrum

Page 29: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-29

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Mode combinations (continued)

• The significance threshold allows you to include only significant modes in the mode combination. It is the ratio of the mode coefficient of a mode to the maximum mode coefficient. Use a zero value to include all modes.

• Type of output allows calculation of different response quantities: displacement, velocity, or acceleration.

Response Spectrum Procedure

… Define the Response Spectrum

Page 30: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-30

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Response Spectrum Procedure

Solve and Review Results

Build the model

Obtain the modal solution

Switch to spectrum analysis type

Define the response spectrum

Solve and review results

• Solve the current load step.

• Mode combination calculations are written as POST1 commands to the .mcom file.

• Review results: discussed next.

Page 31: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-31

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Response Spectrum Procedure

… Solve and Review Results

Review results:

• Enter POST1 (general postprocessor).

• Perform mode combinations

– Commands to do this are written to .mcom file during solution.

– Read the file jobname.mcom using Utility Menu > File > Read Input from...

• Review deformed shape.

• Plot and list stresses and strains.

Page 32: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-32

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training ManualResponse Spectrum Analysis Procedure

Build the model

Obtain the modal solution

Switch to spectrum analysis type

Define the response spectrum

Solve and review results

Page 33: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-33

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training ManualD. Spectrum Analysis Guidelines

• Modal analysis

– Make sure you extract and expand enough modes in the modal analysis to cover the frequency range of interest.

– For example, if the spectrum extends from 1 to 1000 Hz, a rule of thumb is to extract and expand modes up to 1500 Hz.

– Block Lanczos extraction technique recommended

– Use Lagrange multiplier (accurate) method if large numbers of constraint equations are present.

– If you have material dependent damping ratio, this should be specified in the modal analysis.

Page 34: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-34

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual… Spectrum Analysis Guidelines

• Spectrum analysis

– Remember that no results file is written in a spectrum analysis. Instead the instructions for mode combination are written to jobname.mcom.

– Most combination methods involve squaring operations causing the component stresses to lose their signs. Hence deriving equivalent or principal stresses from these unsigned components will be non-conservative and incorrect.

– If equivalent or principal stresses and strains are of interest then you need to issue the command SUMTYPE,PRIN ( General Postprocessor > Load Case > Stress Option …) before reading in jobname.mcom. This causes direct operation on derived quantities leading to more conservative results.

Page 35: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-35

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Spectrum analysis

– During the spectrum analysis the effective mass for each mode as well as the sum of all the effective mass is printed out.

– For a lumped mass system the sum of the effective masses should approach the total mass of the structure as the number of modes used in the spectrum analysis is increased.

– The total effective mass is an indicator of whether enough modes are included in the spectrum analysis.

***** RESPONSE SPECTRUM CALCULATION SUMMARYCUMULATIVE

MODE FREQUENCY SV PARTIC.FACTOR MODE COEF. M.C. RATIO EFFECTIVE MASS MASS FRACTION

1 2.37E-04 10 -1.18E-20 -5.34E-14 0 1.40E-40 3.07E-382 474 21.099 6.22E-02 1.48E-07 1 3.87E-03 0.851323 1182 10 1.14E-15 2.07E-22 0 1.30E-30 0.851324 1182 10 3.42E-16 6.20E-23 0 1.17E-31 0.851325 1881 10 -5.08E-16 -3.64E-23 0 2.58E-31 0.851326 2361 10 3.52E-11 1.60E-18 0 1.24E-21 0.851327 2361 10 -2.60E-02 -1.18E-09 0.007981 6.76E-04 18 3044 10 -4.39E-13 -1.20E-20 0 1.93E-25 19 3044 10 1.27E-12 3.48E-20 0 1.62E-24 110 4011 10 5.08E-12 8.00E-20 0 2.58E-23 1

SUM OF EFFECTIVE MASSES 4.55E-03

… Spectrum Analysis Guidelines

Page 36: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-36

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training ManualE. Workshop - Response Spectrum Analysis

• In this workshop, you will determine the response of a workbench table to a response spectrum excitation.

• See your Dynamics Workshop supplement for details. (Response Spectrum Workshop - Workbench Table, Page W-40. ).

Page 37: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-37

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training ManualF. Random Vibration Analysis

Topics covered:

• Definition and purpose

• Overview of ANSYS capabilities

• ANSYS procedure

Page 38: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-38

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibration Analysis

Definition and Purpose

What is random vibration analysis?

– A spectrum analysis technique based on probability and statistics.

– Meant for loads such as acceleration loads in a rocket launch that produce different time histories during every launch .

Reference: Random vibrations in mechanical systems by Crandall & Mark

Page 39: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-39

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Transient analysis is not an option since the time history is not deterministic.

• Instead, using statistics the sample time histories are converted to Power Spectral Density function (PSD), a statistical representation of the load time history.

Random Vibration Analysis

… Definition and Purpose

Image from “Random Vibrations Theory and Practice” by Wirsching, Paez and Ortiz.

Page 40: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-40

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

What is a PSD?

• A PSD records the mean square value of the excitation and response as a function of frequency.

– The area under a PSD curve is the variance of the response (square of the standard deviation).

– The units used in PSD is mean square/Hz (e.g. an acceleration PSD will have units of G2/Hz).

– The quantity represented by PSD may be displacement, velocity, acceleration, force, or pressure.

Random Vibration Analysis

… Definition and Purpose

Page 41: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-41

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Typical applications include

– Aircraft electronic packaging

– Airframe parts under atmospheric loading

– Blast deflectors

– Laser guidance systems

– Stable optical platform for telescopes

– Seismic loading of large structures

Random Vibration Analysis

… Definition and Purpose

Page 42: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-42

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Input:

– The structure’s natural frequencies and mode shapes

– The PSD curve (explained next)

Output:

– 1 displacements and stresses that can be used for fatigue life prediction.

– Response PSD curves that show the frequency content of any output quantity ( RPSD ).

– Undocumented (FPAS and RISK ) life prediction capability.

Random Vibration Analysis

… Definition and Purpose

Page 43: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-43

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Loading:

– Base or nodal excitation

– Single-point excitation

• e.g. Single PSD excitation applied to all ground nodes

– Multi-point (i.e., multi-spectra) excitation

• Uncorrelated

• Partially correlated

• Fully correlated

– Partial correlation in terms of spatial coordinates

– Partial correlation in terms of a traveling wave

Random Vibration Analysis

Overview of ANSYS Capabilities

Page 44: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-44

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Solution:

– Relative or absolute 1 output

– Option for calculating 1 forces/stresses etc.

– Solution for complete structure i.e., results can be contoured.

– Output in form of 1 displacements, velocities or accelerations

Random Vibration Analysis

… Overview of ANSYS Capabilities

Page 45: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-45

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Postprocessing:

– 1results can be contoured like any other analysis.

– Response PSD can be computed for any result quantity ( e.g. stress or nodal force at a node of an element) or cross response spectra can be computed between any two quantities (RPSD).

• This enables the user to look at the frequency content of output.

– Covariance between any two quantities can be computed (CVAR).

– Undocumented commands RISK and FPAS allow user to compute equivalent stress / predict life.

Random Vibration Analysis

… Overview of ANSYS Capabilities

Page 46: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-46

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training ManualRandom Vibrations Procedure

Six main steps:

• Build the model

• Obtain the modal solution

• Switch to spectrum analysis type

• Define and apply the PSD excitation

• Solve

• Review results

Page 47: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-47

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibrations

Build the Model

Model

• Same considerations as a modal analysis.

• Linear elements and materials only. Nonlinearities are ignored.

• Remember density! Also, if material-dependent damping is present, it must be defined in this step.

• See also Modeling Considerations in Module 1.

Page 48: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-48

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibrations

Obtain the Modal Solution

Build the model

Obtain the modal solution

• Same procedure as a normal modal analysis.

• A few differences, discussed next.

Page 49: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-49

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibrations

… Obtain the Modal Solution

• Mode extraction:

– Only valid methods are Block Lanczos, subspace, or reduced.

– Block Lanczos strongly recommended

– Extract enough modes to cover the spectrum’s frequency content.

– Expand all modes. Only expanded modes can be used for the spectrum solution.

Page 50: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-50

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Loads and BC’s:

– For a base excitation, be sure to constrain the appropriate DOFs.

– For a pressure PSD, apply the pressures on desired surfaces in this step.

• Files: The .mode file contains the eigenvectors and is needed for the spectrum solution.

Random Vibrations

… Obtain the Modal Solution

Page 51: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-51

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibrations Switch to Spectrum Analysis Type

Build the model

Obtain the modal solution

Switch to spectrum analysis type

• Exit and re-enter Solution

• New analysis: Spectrum

• Analysis options: Discussed next

• Damping: Discussed next

Page 52: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-52

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibrations

… Switch to Spectrum Analysis Type

Analysis options

• Type of spectrum: PSD

• Number of modes: If 0 or blank, all expanded modes are used for solution.

• Element calculations: can be ON only if they were ON in the modal step.

Page 53: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-53

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Damping

• All four forms are available.

– Alpha (mass) damping

– Beta (stiffness) damping

– Constant damping ratio

– Frequency dependent damping ratio (modal damping)

• If no damping is specified, ANSYS uses a 1% constant damping ratio as default.

Random Vibrations

… Switch to Spectrum Analysis Type

Page 54: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-54

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibrations

Define and Apply the PSD Excitation

Build the model

Obtain the modal solution

Switch to spectrum analysis type

Define and apply the PSD excitation

• Specify PSD settings

• Define PSD versus frequency table

• Apply excitation at desired nodes

Page 55: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-55

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibrations

… Define and Apply the PSD Excitation

PSD settings

• Spectrum type (units)

– Acceleration (normal units or g2/Hz)

– Velocity

– Displacement

– Force

– Pressure

• Table number defaults to 1. Used for multiple PSD curves.

Page 56: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-56

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

PSD versus frequency table

• Specify table number (usually 1).

• Then enter frequency and PSD value pairs.

Random Vibrations

… Define and Apply the PSD Excitation

Page 57: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-57

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

PSD versus frequency table (continued)

• Graph the PSD table to verify the input.

Random Vibrations

… Define and Apply the PSD Excitation

Page 58: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-58

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Apply the PSD

• Procedure depends on the type of PSD.

• Acceleration, velocity, or displacement PSD:

– These are base excitations and can be applied only at previously constrained nodes.

– Apply as a constraint in UX, UY, or UZ (excitation direction) with a value of 1.0.

Pick nodes...

Random Vibrations

… Define and Apply the PSD Excitation

Page 59: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-59

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibrations

… Define and Apply the PSD Excitation

Apply the PSD (cont'd.)

• Force PSD

– Nodal excitation

– Apply as a force in FX, FY, or FZ (excitation direction) with a value of 1.0 (or desired scale factor).

• Pressure PSD

– Requires pressure to be applied in the modal step.

– Use the load vector (calculated during modal solution) to apply the pressure PSD excitation.

– Set value to 1.0 or desired scale factor.

Page 60: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-60

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibrations

Solve

Build the model

Obtain the modal solution

Switch to spectrum analysis type

Define and apply the PSD excitation

• Solve

• Activate PSD mode combination method

• Specify items to be calculated*

• Calculate participation factors*

• Initiate PSD solution*

*Discussed next

Page 61: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-61

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibrations

… Solve

Items to be calculated:

• Default is to calculate the displacement solution (including stresses and strains) relative to base excitation.

• Velocity and acceleration solutions are also available, relative to base or absolute.

Page 62: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-62

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibrations

… Solve

Calculate participation factors:

• Must be done for each PSD table defined.

• Specify base or nodal excitation.

Initiate PSD solution:

• Results are written to the .rst file.

Page 63: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-63

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibrations

Review Results

Build the model

Obtain the modal solution

Switch to spectrum analysis type

Define and apply the PSD excitation

Solve

Review results

• Plot and list 1 quantities (POST1)

• Generate a response PSD (POST26)

• Calculate covariance between two quantities (POST26)

• Life prediction

Page 64: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-64

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibrations- Review Results

Review 1-Sigma Stresses

• Random vibration results are 1 quantities: 1 displacements, 1 stresses, etc.

• All quantities assume a Gaussian (normal) distribution with zero mean.

• For example, a maximum displacement of Umax = 0.15 indicates a 68% probability (1) that Umax will be 0.15 or less. It also indicates:

– a 95% probability (2) that Umax will be 0.15x2 = 0.3 or less.

– a 98% probability (3) that Umax will be 0.15x3 = 0.45 or less.

123

Gaussian (normal)

Distribution

Page 65: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-65

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

To review 1 displacements & stresses:

• Enter POST1 (General Postproc).

• Read results from load step 3, which is where 1 results are stored on the results file.

– Note: 1 velocities and 1 accelerations, if requested, are stored in load steps 4 and 5, respectively always.

• Then plot and list the desired quantities.

Random Vibrations- Review Results

… Review 1-Sigma Stresses

Page 66: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-66

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Random Vibrations- Review Results

Review 1-Sigma Stresses

Page 67: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-67

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

1 results are typically used for:

• Fatigue calculations

– In PSD analyses, the average frequency of excitation (number of cycles/second) is given by 1 velocity / 1 displacement.

– Using normal distribution the stress level is at 1 68% of the time, at 2 27% of the time (95-68), and at 3 3% of the time (98-95).

– Knowing the above two quantities, fatigue life can be predicted using usual S-N diagram procedures.

Random Vibrations- Review Results

Review 1-Sigma Stresses

Page 68: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-68

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Response PSD

• Gives engineers an idea of how a response quantity (stress, for example) varies with frequency.

• Results file contains 1 values, which is the square root of the area under the PSD curve.

• POST26, the time-history postprocessor, is used to calculate response PSD.

Random Vibrations- Review Results

Response PSD

Page 69: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-69

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

To calculate response PSD

1. Enter POST26 and first store the frequency vector.

– You can use 1 to 10 additional data points on either side of a natural frequency for a smoother frequency curve. Default is 5.

– Variable 1 is automatically assigned to the frequency vector.

Random Vibrations- Review Results

… Response PSD

Page 70: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-70

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

2. Identify results quantities for which response PSD is to be calculated.

– TimeHist Postpro > Define Variables...

– Can be any nodal or element result item.

Choose category, then pick node...

Random Vibrations- Review Results

… Response PSD

Page 71: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-71

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

3. Calculate and plot the response PSD.

– TimeHist Postpro > Calc Resp PSD...

– TimeHist Postpro > Graph Variables…

Random Vibrations- Review Results

… Response PSD

Page 72: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-72

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Covariance

• Covariance represents the correlation between two quantities.

• Can be calculated between any two response quantities; for example, stress at two different points in the model.

• POST26, the time-history postprocessor, is used to calculate covariance.

Random Vibrations- Review Results

Covariance

Page 73: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-73

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

To calculate covariance:

1. Reset or exit and re-enter POST26.

2. Identify the two response quantities for which covariance is to be calculated.

Random Vibrations- Review Results

… Covariance

Page 74: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-74

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

3. Calculate and retrieve the covariance.

– TimeHist Postpro > Calc Covariance...

– Use *GET to retrieve the covariance: *GET,COVAR,VARI,#,EXTREM,CVAR -or- Utility Menu > Parameters > Get Scalar Data...

Random Vibrations- Review Results

… Covariance

Page 75: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-75

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• In PSD analysis only component stresses are valid (the mode combinations work only on component stresses).

• Since the component stresses are 1statistical quantities, equivalent stress and principal stresses cannot be computed in the usual way.

• The RISK command can calculate equivalent stress by Monte Carlo simulation. RISK can also be used for life prediction.

Random Vibrations- Review Results

RISK & equivalent stress

Page 76: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-76

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Sample uses of RISK command

– CASE 1

INPUT: Location of interest and Design strength (or mean and standard deviation of strength)

OUTPUT: Safety margin, Probability of failure, PDF, CDF

– CASE 2

INPUT: Location of interest and Acceptable probability of failure

OUTPUT: Required design strength, PDF, CDF

Random Vibrations- Review Results

… RISK & equivalent stress

PDF - probability density function

CDF- Cumulative probability density function

Page 77: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-77

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• RISK analysis sample output

RISK COMMAND WAS ISSUED FOR NODE 50 OF ELEMENT 28

SIX ESOL COMMANDS WITH VARIABLE NUMBERS 3 THRU 8 ARE CREATED

THE COVARIANCE MATRIX OF CARTESIAN STRESS RESPONSES IS COMPUTED BELOW:

SX SY SZ SXY SXZ SYZ

0.1665E+07 0.2156E+07 0.0000E+00 -0.5234E+05 0.0000E+00 0.0000E+00

0.2156E+07 0.2791E+07 0.0000E+00 -0.6776E+05 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

-0.5234E+05 -0.6776E+05 0.0000E+00 1645. 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

A DETERMINISTIC DESIGN STRENGTH = 4687.5 WAS SPECIFIED

STATISTICS BASED ON THE SAFETY MARGIN OF VON MISES STRESS WILL BE COMPUTED

MEAN OF THE SAFETY MARGIN = 3452.3

STANDARD DEVIATION = 900.41

COEFFICIENT OF SKEWNESS = -1.0480

COEFFICIENT OF KURTOSIS = 3.9813

COMPUTED SAFETY INDEX = 3.8342

COMPUTED PROBABILITY OF FAILURE = 0.20000E-02

COEFFICIENT OF VARIATION FOR COMPUTED PROBABILITY OF FAILURE = 0.70640E-01

BASED ON 95% CONFIDENCE THE PROBABILITY OF FAILURE IS LESS THAN = 0.22324E-02

Random Vibrations- Review Results

… RISK & equivalent stress

Page 78: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-78

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• When will it fail?

• What is the probability of failure?

t

a

X(t)

t

Random Vibrations- Review Results

First Passage Failure

Page 79: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-79

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• The FPAS command can be used to estimate first passage failure

• FPAS Works with displacement and component stresses

• Sample uses of FPAS command:

– CASE 1

INPUT: location , max. allowable value, desired probability of failure

OUTPUT: Statistical average frequency, life in seconds

– CASE 2

INPUT: Location, maximum allowable value, time to failure

OUTPUT: Statistical average frequency, probability of failure

Random Vibrations- Review Results

First Passage Failure

Page 80: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-80

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

• Typical output for First Passage Failure

– fpas,ttfa,4,3,1,6.0,0.001

– COMPUTED STATISTICAL AVERAGE FREQUENCY IS 285.36

– THE EXPECTED NUMBER OF POSITIVE CROSSING OF THRESHOLD VALUE 1.0906

– PER UNIT TIME IS 0.69170E-06

– BASED ON FAILURE PROBABILITY OF 0.10000E-02 THE TIME TO FAILURE IS 1445.7

– TIME TO FAILURE IS 0.144571E+04

Random Vibrations- Review Results

First Passage Failure

Page 81: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-81

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training Manual

Build the model

Obtain the modal solution

Switch to spectrum analysis type

Define and apply the PSD excitation

Solve

Review results

Random Vibrations

Procedure

Page 82: Spectrum Analysis Module 6. Training Manual January 30, 2001 Inventory #001447 6-2 Module 6 Spectrum Analysis A. Define a spectrum analysis and its purpose.

January 30, 2001

Inventory #001447

6-82

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

DY

NA

MIC

S 5

.7D

YN

AM

ICS

5.7

Training ManualG. Workshop – Random Vibration (PSD)

• In this workshop, you will determine the displacements and stresses in a model airplane wing due to an acceleration PSD.

• See your Dynamics Workshop supplement for details (Random Vibration Workshop - Model Airplane Wing , Page W-43 ).