Top Banner
Prerequisites for Exam P/1 PREREQUISITES FOR EXAM P/1 Much of probability and statistics is applied mathematics. The concepts that you need to know for this exam are built on a strong foundation in a select area in mathematics. This document will review many of the mathematical skills that you should be equipped with to ensure unobstructed progress when studying the material. CONTENTS
34

soa exam P Prerequisite

Dec 27, 2015

Download

Documents

Emad Haq

calculus and algebra review for exam P
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: soa exam P Prerequisite

Prerequisites for Exam P/1

PREREQUISITES FOR EXAM P/1 Much of probability and statistics is applied mathematics. The concepts that you need to know for this exam are built on a strong foundation in a select area in mathematics. This document will review many of the mathematical skills that you should be equipped with to ensure unobstructed progress when studying the material.

CONTENTS

1 Algebra ........................................................................................................................ 1

1.1 Quadratic Formula ......................................................................................................................................... 1 1.2 Laws of Exponents ......................................................................................................................................... 1 1.3 Laws of Logarithms ....................................................................................................................................... 2 1.4 Sum of Arithmetic Series ............................................................................................................................. 3 1.5 Sum of Geometric Series .............................................................................................................................. 3 1.6 Matrix Algebra ................................................................................................................................................. 5

2 Geometry .................................................................................................................... 6

2.1 Pythagorean Theorem .................................................................................................................................. 6 2.2 Areas .................................................................................................................................................................... 7

3 Differential Calculus ............................................................................................... 9

3.1 Basic Formulas and Rules ........................................................................................................................... 9 3.2 Chain Rule ........................................................................................................................................................ 10 3.3 Product Rule ................................................................................................................................................... 11 3.4 Quotient Rule ................................................................................................................................................. 11 3.5 Derivative of Absolute Value Functions............................................................................................... 12 3.6 Second Derivative ......................................................................................................................................... 13 3.7 Optimization ................................................................................................................................................... 14

4 Integral Calculus .................................................................................................... 16

4.1 Fundamental Theorem of Calculus ........................................................................................................ 16 4.2 Basic Formulas and Rules ......................................................................................................................... 17 4.3 Integration by Substitution ...................................................................................................................... 18 4.4 Integration by Parts ..................................................................................................................................... 20 4.5 Tabular Integration...................................................................................................................................... 22

5 Multivariate Calculus ........................................................................................... 25

5.1 Partial Derivatives ........................................................................................................................................ 25 5.2 Double Integration ....................................................................................................................................... 27

Page 2: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 1 of 33

1 Algebra 1.1 Quadratic Formula If π‘Žπ‘₯2 + 𝑏π‘₯ + 𝑐 = 0, then

π‘₯ =βˆ’π‘ Β± βˆšπ‘2 βˆ’ 4π‘Žπ‘

2π‘Ž

Example

π‘₯2 βˆ’ π‘₯ βˆ’ 1 = 0

π‘Ž = 1, 𝑏 = βˆ’1, 𝑐 = βˆ’1

π‘₯ =1 Β± √(βˆ’1)2 βˆ’ 4(1)(βˆ’1)

2(1) β‡’ π’™πŸ =𝟏 βˆ’ βˆšπŸ“

𝟐, π’™πŸ =

𝟏 + βˆšπŸ“πŸ

1.2 Laws of Exponents

π‘ŽοΏ½ β‹… π‘Žπ‘› = π‘ŽοΏ½+𝑛

π‘ŽοΏ½

π‘Žπ‘›= π‘ŽοΏ½βˆ’π‘›

(π‘ŽοΏ½)𝑛 = π‘ŽοΏ½π‘›

π‘ŽοΏ½π‘› = βˆšπ‘ŽοΏ½π‘›

π‘Ž0 = 1, π‘Ž β‰  0

π‘ŽοΏ½ β‹… 𝑏� = (π‘Žπ‘)οΏ½

π‘ŽοΏ½

𝑏�= (

π‘Žπ‘)οΏ½

1π‘Žπ‘›

= π‘Žβˆ’π‘›

(π‘Žπ‘)βˆ’π‘›

= (π‘π‘Ž)𝑛

Page 3: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 2 of 33

1.3 Laws of Logarithms

𝑦 = 𝑒π‘₯ ⇔ π‘₯ = ln(𝑦)

ln(𝑒π‘₯) = 𝑒ln(π‘₯) = π‘₯

ln(π‘₯𝑛) = 𝑛 ln(π‘₯)

ln(π‘₯𝑦) = ln(π‘₯) + ln(𝑦)

ln(π‘₯ + 𝑦) β‰  ln(π‘₯) + ln(𝑦)

ln (π‘₯𝑦) = ln(π‘₯) βˆ’ ln(𝑦)

ln(π‘₯ βˆ’ 𝑦) β‰  ln(π‘₯) βˆ’ ln(𝑦)

Examples

𝑒ln(1

1βˆ’π‘‘) =𝟏

𝟏 βˆ’ 𝒕

π‘’βˆ’π‘₯ β‹… π‘₯ = π‘’βˆ’π‘₯ β‹… 𝑒ln(π‘₯) = π’†βˆ’π’™+π₯𝐧(𝒙)

π‘₯√π‘₯

+π‘’βˆ’2π‘₯

π‘₯4= π‘₯1βˆ’0.5 +

(π‘’βˆ’π‘₯)2

(π‘₯2)2 = π’™πŸŽ.πŸ“ + (π’†βˆ’π’™

π’™πŸ)𝟐

[𝑑𝑛

π‘‘π‘›βˆ’2βˆ’ 2 (

1𝑑)βˆ’1

+ 𝑑0]

12

= [π‘‘π‘›βˆ’(π‘›βˆ’2) βˆ’ 2𝑑 + 1]12

= (𝑑2 βˆ’ 2𝑑 + 1)12

= [(𝑑 βˆ’ 1)2]12

= 𝒕 βˆ’ 𝟏 ln(π‘’βˆ’(π‘₯2+𝑦2)) = βˆ’(π’™πŸ + π’šπŸ) ln(π‘₯2 + 4π‘₯ + 4) = ln(π‘₯ + 2)2 = 𝟐 π₯𝐧(𝒙 + 𝟐)

ln(π‘₯2𝑦3

6𝑧) = ln(π‘₯2𝑦3) βˆ’ ln(6𝑧)

= [ln(π‘₯2) + ln(𝑦3)] βˆ’ [ln(6) + ln(𝑧)] = 𝟐 π₯𝐧(𝒙) + πŸ‘ π₯𝐧(π’š) βˆ’ π₯𝐧(πŸ”) βˆ’ π₯𝐧(𝒛)

Page 4: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 3 of 33

1.4 Sum of Arithmetic Series The general formula is

𝑆𝑛 =𝑛2

(𝑇1 + 𝑇𝑛), where

𝑛 is the number of terms 𝑇1 is the first term of the series 𝑇𝑛 is the last term of the series

An expression for 𝑛 is

𝑛 =𝑇𝑛 βˆ’ 𝑇1

𝑑+ 1

where 𝑑 is the common difference, defined as the difference between a term and the term prior to it. This is useful when we have the first and last terms but have to find the number of terms. Example

𝑆𝑛 = 1 + 5 + 9 + β‹―+ 41

𝑇1 = 1, 𝑇𝑛 = 41 , 𝑛 =41 βˆ’ 1

4+ 1 = 11

𝑆𝑛 =112

(1 + 41) = πŸπŸ‘πŸ

1.5 Sum of Geometric Series Finite The standard formula is

𝑆𝑛 =π‘Ž(π‘Ÿπ‘› βˆ’ 1)π‘Ÿ βˆ’ 1

=π‘Ž(1 βˆ’ π‘Ÿπ‘›)

1 βˆ’ π‘Ÿ, where

𝑛 is the number of terms π‘Ž is the first term of the series π‘Ÿ is the common ratio, i.e., the ratio between a term and the term prior to it

Page 5: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 4 of 33

The next formula is derived from the previous formula but is easier to remember.

𝑆𝑛 =first term βˆ’ first omitted term

1 βˆ’ common ratio

The first omitted term is the term that would come after the last term if the series continued. Example

𝑆𝑛 = 1.02 + (1.02)2 + β‹―+ (1.02)20

π‘Ž = 1.02, π‘Ÿ = 1.02, 𝑛 = 20 Using the standard formula,

𝑆𝑛 =1.02[(1.02)20 βˆ’ 1]

1.02 βˆ’ 1β‰ˆ πŸπŸ’.πŸ•πŸ–πŸ‘πŸ‘

Using the alternative formula, the first omitted term is the term after (1.02)20, which is (1.02)21. Thus,

𝑆𝑛 =1.02 βˆ’ (1.02)21

1 βˆ’ 1.02β‰ˆ πŸπŸ’.πŸ•πŸ–πŸ‘πŸ‘

Infinite If the common ratio is between βˆ’1 and 1 (non-inclusive), then an infinite geometric series converges to zero and its sum is finite, which equals

π‘†βˆž =π‘Ž

1 βˆ’ π‘Ÿ

Example

π‘†βˆž = 0.9 + 0.92 + 0.93 + β‹―

π‘Ž = 0.9, π‘Ÿ = 0.9

π‘†βˆž =0.9

1 βˆ’ 0.9= πŸ—

Page 6: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 5 of 33

1.6 Matrix Algebra Suppose we have a two-by-two matrix, 𝐴, defined as follows:

𝐴 = [π‘Ž 𝑏𝑐 𝑑]

The determinant of 𝐴 is

|𝐴| = |π‘Ž 𝑏𝑐 𝑑| = π‘Žπ‘‘ βˆ’ 𝑏𝑐

Example

The determinant of 𝐴 = [2 05 βˆ’2] is

|𝐴| = 2(βˆ’2) βˆ’ 0(5) = βˆ’πŸ’

Page 7: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 6 of 33

2 Geometry 2.1 Pythagorean Theorem

Figure 2.1

If π‘Ž, 𝑏, and 𝑐 are the sides of a right triangle as shown in Figure 2.1, then

π‘Ž2 + 𝑏2 = 𝑐2 Example Find 𝑏 in Figure 2.2.

Figure 2.2

𝑏2 = 𝑐2 βˆ’ π‘Ž2

= (1 + π‘₯)2 βˆ’ (1 βˆ’ π‘₯)2 = 1 + 2π‘₯ βˆ’ π‘₯2 βˆ’ 1 + 2π‘₯ βˆ’ π‘₯2 = 4π‘₯

β‡’ 𝑏 = √4π‘₯ = 2√π‘₯

c

a

b

Page 8: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 7 of 33

2.2 Areas

Diagram Formula for Area

Rectangle & square

Figure 2.3

𝐴 = π‘β„Ž

Triangle

Figure 2.4

𝐴 =12π‘β„Ž

Parallelogram

Figure 2.5

𝐴 = π‘β„Ž

Trapezoid

Figure 2.6

𝐴 = (average of π‘Ž and 𝑏) Γ— β„Ž

=12

(π‘Ž + 𝑏)β„Ž

b

h

b

h

b

h

b

h

a

Page 9: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 8 of 33

Circle

Figure 2.7

𝐴 = πœ‹π‘Ÿ2

Examples

Figure 2.8

Area of rectangle 𝐴 = 2 β‹… 5 = 𝟏𝟎

Area of triangle 𝐴 =12β‹… 2 β‹… 5 = πŸ“

Area of parallelogram 𝐴 = 1 β‹… 3 = πŸ‘

Area of trapezoid 𝐴 =12β‹… (1 + 3) β‹… 2 = πŸ’

Area of circle 𝐴 = πœ‹ β‹… 12 = 𝝅

r

80 1 2 3 4 5 6 7

6

1

2

3

4

5

Page 10: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 9 of 33

3 Differential Calculus 3.1 Basic Formulas and Rules

𝑑𝑑π‘₯

𝑐 = 0

𝑑𝑑π‘₯

𝑐π‘₯ = 𝑐

𝑑𝑑π‘₯

π‘₯𝑐 = 𝑐 β‹… π‘₯π‘βˆ’1

𝑑𝑑π‘₯

𝑒π‘₯ = 𝑒π‘₯

𝑑𝑑π‘₯

𝑐π‘₯ = 𝑐π‘₯ β‹… ln(𝑐) , 𝑐 > 0

𝑑𝑑π‘₯

ln(π‘₯) =1π‘₯

, π‘₯ > 0

𝑑𝑑π‘₯

[𝑓𝑋(π‘₯) + 𝑔𝑋(π‘₯)] = 𝑓𝑋�(π‘₯) + 𝑔𝑋� (π‘₯)

𝑑𝑑π‘₯

𝑐 β‹… 𝑓𝑋(π‘₯) = 𝑐 ⋅𝑑𝑑π‘₯

𝑓𝑋(π‘₯)

𝑑𝑑π‘₯

sin(π‘₯) = cos(π‘₯)

𝑑𝑑π‘₯

cos(π‘₯) = βˆ’ sin(π‘₯)

Note: 𝑐 is a constant. Examples

𝑑𝑑π‘₯

(2π‘₯ + 35) = 2 + 0 = 𝟐

𝑑𝑑𝑑

(𝑑 + 2)(2𝑑 βˆ’ 3) =𝑑𝑑𝑑

(2𝑑2 + 𝑑 βˆ’ 6) = πŸ’π’• + 𝟏

𝑑𝑑π‘₯

(1π‘₯3) =

𝑑𝑑π‘₯

(π‘₯βˆ’3) = βˆ’3π‘₯βˆ’4 = βˆ’πŸ‘π’™πŸ’

𝑑𝑑π‘₯

(2√π‘₯ βˆ’1√π‘₯

) =𝑑𝑑π‘₯

(2π‘₯0.5 βˆ’ π‘₯βˆ’0.5) = π‘₯βˆ’0.5 + 0.5π‘₯βˆ’1.5 =πŸβˆšπ’™

+𝟏

πŸπ’™βˆšπ’™

𝑑𝑑𝑑

ln(𝑑10) =𝑑𝑑𝑑

10 ln(t) = 10 β‹…1𝑑

=πŸπŸŽπ’•

𝑑𝑑𝑦

(𝑒𝑦 βˆ’ 4𝑦) = π’†π’š βˆ’ πŸ’π’š β‹… π₯𝐧(πŸ’)

Page 11: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 10 of 33

3.2 Chain Rule If 𝑓 and 𝑔 are differentiable functions where 𝑦 = 𝑓𝑋(𝑔𝑋(π‘₯)), then

𝑑𝑦𝑑π‘₯

= 𝑓𝑋�(𝑔𝑋(π‘₯)) β‹… 𝑔𝑋� (π‘₯) This formula can be extended to include more than two differentiable functions. For three functions,

𝑦 = 𝑓𝑋 (𝑔𝑋(β„Žπ‘‹(π‘₯))) 𝑑𝑦𝑑π‘₯

= 𝑓𝑋� (𝑔𝑋(β„Žπ‘‹(π‘₯))) β‹… 𝑔𝑋� (β„Žπ‘‹(π‘₯)) β‹… β„Žπ‘‹οΏ½ (π‘₯)

Examples

𝑑𝑑𝑑

(4𝑑2 + 5𝑑)7 = 7(4𝑑2 + 5𝑑)6 ⋅𝑑𝑑𝑑

(4𝑑2 + 5𝑑)

= πŸ•(πŸ’π’•πŸ + πŸ“π’•)πŸ” β‹… (πŸ–π’• + πŸ“) 𝑑𝑑π‘₯

(1

1 βˆ’ π‘₯2) =

𝑑𝑑π‘₯

(1 βˆ’ π‘₯2)βˆ’1

= βˆ’(1 βˆ’ π‘₯2)βˆ’2 ⋅𝑑𝑑𝑑

(1 βˆ’ π‘₯2)

= βˆ’(1 βˆ’ π‘₯2)βˆ’2 β‹… (0 βˆ’ 2π‘₯)

=πŸπ’™

(𝟏 βˆ’ π’™πŸ)𝟐

𝑑𝑑π‘₯

(1 βˆ’ π‘’βˆ’π‘₯10) = 0 βˆ’

𝑑𝑑π‘₯

(π‘’βˆ’π‘₯10)

= βˆ’(π‘’βˆ’π‘₯10) β‹…

𝑑𝑑π‘₯

(βˆ’π‘₯

10)

= βˆ’(π‘’βˆ’π‘₯10) β‹… (βˆ’

110)

=𝟏𝟏𝟎

π’†βˆ’π’™πŸπŸŽ

Page 12: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 11 of 33

𝑑𝑑π‘₯

ln(1 + π‘₯2) =1

1 + π‘₯2⋅𝑑𝑑π‘₯

(1 + π‘₯2)

=1

1 + π‘₯2β‹… (0 + 2π‘₯)

=πŸπ’™

𝟏 + π’™πŸ

π‘‘π‘‘πœƒ

(1 + sinπœƒ)4 = 4(1 + sinπœƒ)3 β‹…π‘‘π‘‘πœƒ

(1 + sinπœƒ)

= 4(1 + sin πœƒ)3 β‹… (0 + cos πœƒ) = πŸ’ 𝐜𝐨𝐬 𝜽 (𝟏 + 𝐬𝐒𝐧 𝜽)πŸ‘

3.3 Product Rule Let’s define 𝑒 = 𝑓𝑋(π‘₯) and 𝑣 = 𝑔𝑋(π‘₯), where 𝑓 and 𝑔 are differentiable functions. If 𝑦 = 𝑒 ⋅𝑣, then

𝑑𝑦𝑑π‘₯

= 𝑒� β‹… 𝑣 + 𝑒 β‹… 𝑣� 3.4 Quotient Rule Let’s define 𝑒 = 𝑓𝑋(π‘₯) and 𝑣 = 𝑔𝑋(π‘₯), where 𝑓 and 𝑔 are differentiable functions. If 𝑦 = 𝑒

𝑣,

then

𝑑𝑦𝑑π‘₯

=𝑣 β‹… 𝑒� βˆ’ 𝑒 β‹… 𝑣�

𝑣2

Tip: It is not necessary to memorize the quotient rule, because 𝑒

𝑣 can be written as 𝑒 β‹… π‘£βˆ’1, which

is a product. Then, we can use the product rule instead.

Page 13: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 12 of 33

Example 1

𝑑𝑑𝑑

(3𝑑 + 1)2(𝑑2 + 2) = (𝑑2 + 2) ⋅𝑑𝑑𝑑

(3𝑑 + 1)2 + (3𝑑 + 1)2 ⋅𝑑𝑑𝑑

(𝑑2 + 2)

= (𝑑2 + 2) β‹… 2(3𝑑 + 1) ⋅𝑑𝑑𝑑

(3𝑑 + 1) + (3𝑑 + 1)2 β‹… 2𝑑

= (𝑑2 + 2) β‹… 2(3𝑑 + 1) β‹… 3 + (3𝑑 + 1)2 β‹… 2𝑑 = πŸ”(πŸ‘π’• + 𝟏)(π’•πŸ + 𝟐) + πŸπ’•(πŸ‘π’• + 𝟏)𝟐

𝑑𝑑π‘₯

[(4π‘₯2 βˆ’ 3)3

𝑒π‘₯] =

𝑑𝑑π‘₯

[(4π‘₯2 βˆ’ 3)3 β‹… π‘’βˆ’π‘₯]

= π‘’βˆ’π‘₯ ⋅𝑑𝑑π‘₯

(4π‘₯2 βˆ’ 3)3 + (4π‘₯2 βˆ’ 3)3 ⋅𝑑𝑑π‘₯

π‘’βˆ’π‘₯

= π‘’βˆ’π‘₯ β‹… 3(4π‘₯2 βˆ’ 3)2 ⋅𝑑𝑑π‘₯

(4π‘₯2 βˆ’ 3) + (4π‘₯2 βˆ’ 3)3 β‹… π‘’βˆ’π‘₯ ⋅𝑑𝑑π‘₯

(βˆ’π‘₯)

= π‘’βˆ’π‘₯ β‹… 3(4π‘₯2 βˆ’ 3)2 β‹… 8π‘₯ + (4π‘₯2 βˆ’ 3)3 β‹… π‘’βˆ’π‘₯ β‹… (βˆ’1) = πŸπŸ’π’™(πŸ’π’™πŸ βˆ’ πŸ‘)πŸπ’†βˆ’π’™ βˆ’ (πŸ’π’™πŸ βˆ’ πŸ‘)πŸ‘π’†βˆ’π’™

3.5 Derivative of Absolute Value Functions We can write any absolute value function as follows:

|𝑓𝑋(π‘₯)| = { 𝑓𝑋(π‘₯), 𝑓𝑋(π‘₯) β‰₯ 0

βˆ’π‘“π‘‹(π‘₯), 𝑓𝑋(π‘₯) < 0

Then, the derivative of the absolute value function is the derivative of its individual components. 𝑑𝑑π‘₯

|𝑓𝑋(π‘₯)| = { 𝑓𝑋�(π‘₯), 𝑓𝑋(π‘₯) > 0

βˆ’π‘“π‘‹οΏ½(π‘₯), 𝑓𝑋(π‘₯) < 0

The derivative may or may not be defined at 𝑓𝑋(π‘₯) = 0.

Page 14: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 13 of 33

Example 1

|π‘₯| = { π‘₯, π‘₯ β‰₯ 0βˆ’π‘₯, π‘₯ < 0

𝑑𝑑π‘₯

|π‘₯| = { 𝑑𝑑π‘₯

(π‘₯), π‘₯ > 0

𝑑𝑑π‘₯

(βˆ’π‘₯), π‘₯ < 0= { 𝟏, 𝒙 > 0

βˆ’πŸ, 𝒙 < 0

The derivative is undefined at π‘₯ = 0.

Example 2

|π‘₯2| = { π‘₯2, π‘₯2 β‰₯ 0

βˆ’π‘₯2, π‘₯2 < 0

Because π‘₯2 cannot be negative, |π‘₯2| = π‘₯2 for all π‘₯. Therefore, 𝑑𝑑π‘₯

|π‘₯2| = πŸπ’™, βˆ’βˆž < π‘₯ < ∞ 3.6 Second Derivative The second derivative of a function 𝑓 is the derivative of the first derivative.

𝑑2

𝑑π‘₯2𝑓𝑋(π‘₯) =

𝑑𝑑π‘₯

(𝑑𝑑π‘₯

𝑓𝑋(π‘₯))

Example

𝑦 =1

1 βˆ’ π‘₯

𝑑𝑦𝑑π‘₯

=𝑑𝑑π‘₯

(1

1 βˆ’ π‘₯)

=𝑑𝑑π‘₯

(1 βˆ’ π‘₯)βˆ’1

= βˆ’(1 βˆ’ π‘₯)βˆ’2 ⋅𝑑𝑑π‘₯

(1 βˆ’ π‘₯)

=1

(1 βˆ’ π‘₯)2

Page 15: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 14 of 33

𝑑2𝑦𝑑π‘₯2

=𝑑𝑑π‘₯

(𝑑𝑦𝑑π‘₯

)

=𝑑𝑑π‘₯

[1

(1 βˆ’ π‘₯)2]

=𝑑𝑑π‘₯

(1 βˆ’ π‘₯)βˆ’2

= βˆ’2(1 βˆ’ π‘₯)βˆ’3 ⋅𝑑𝑑π‘₯

(1 βˆ’ π‘₯)

=2

(1 βˆ’ π‘₯)3

3.7 Optimization Derivatives can be used to find the maximum or minimum of a function, specifically the local max or min. We will illustrate this application using the following examples. Example 1 Find the local minimum of the function 𝑓𝑋(π‘₯) = π‘₯2 βˆ’ 2π‘₯ βˆ’ 5. Step 1: Take derivative of function.

𝑓𝑋�(π‘₯) = 2π‘₯ βˆ’ 2 Step 2: Set derivative equal to zero, and solve for π‘₯.

𝑓𝑋�(π‘₯) = 2π‘₯ βˆ’ 2 = 0 β‡’ π‘₯ = 1

If the question asks for the value of π‘₯ that minimizes 𝑓𝑋(π‘₯), then the answer is π‘₯ = 1. To find the minimum value of 𝑓𝑋(π‘₯), we continue with Step 3. Step 3: Substitute π‘₯ into function.

𝑓𝑋(1) = (1)2 βˆ’ 2(1) βˆ’ 5 = βˆ’6 The minimum value of 𝑓𝑋(π‘₯) is βˆ’πŸ” .

Page 16: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 15 of 33

Step 4: Perform second derivative test (optional). If we know for sure that βˆ’6 is the minimum and not the maximum point, then we can skip this step. Otherwise, the second derivative test will tell us whether it is a minimum or maximum point. The second derivative of 𝑓𝑋(π‘₯) is

𝑓𝑋��(π‘₯) = 2 If 𝑓𝑋��(π‘₯) is positive at the value of π‘₯ that we calculated, then the point is a minimum point. If 𝑓𝑋��(π‘₯) is negative at the value of π‘₯ that we calculated, then the point is a maximum point. Because 𝑓𝑋��(1) = 2 > 0, (1,βˆ’6) is a minimum point, as shown in Figure 3.1.

Figure 3.1

Page 17: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 16 of 33

4 Integral Calculus 4.1 Fundamental Theorem of Calculus First Theorem The integral of a continuous function 𝑓 from π‘Ž to 𝑏 is

∫ 𝑓𝑋(π‘₯) 𝑑π‘₯𝑏

π‘Ž= 𝐹𝑋(𝑏) βˆ’ 𝐹𝑋(π‘Ž), where 𝐹𝑋(π‘₯) = βˆ«π‘“π‘‹(π‘₯) 𝑑π‘₯

Second Theorem For a continuous function 𝑓,

𝑑𝑑π‘₯

∫ 𝑓𝑋(𝑑) 𝑑𝑑π‘₯

π‘Ž= 𝑓(π‘₯), π‘Ž = constant

This is because

𝑑𝑑π‘₯

∫ 𝑓𝑋(𝑑) 𝑑𝑑π‘₯

π‘Ž=

𝑑𝑑π‘₯

[𝐹𝑋(π‘₯) βˆ’ 𝐹𝑋(π‘Ž)]

= 𝑓𝑋(π‘₯) βˆ’ 0 = 𝑓𝑋(π‘₯)

A more general version of the previous equation with functions 𝑒 = 𝑔𝑋(π‘₯) and 𝑣 = β„Žπ‘‹(π‘₯) in place of π‘Ž and π‘₯ is

𝑑𝑑π‘₯

∫ 𝑓𝑋(𝑑) 𝑑𝑑𝑣

𝑒= 𝑓𝑋(𝑣) β‹… 𝑣� βˆ’ 𝑓𝑋(𝑒) β‹… 𝑒�

Because the lower limit of integration is not a constant, its derivative is not zero. Furthermore, the derivatives of 𝑒 and 𝑣 are the result of the chain rule.

Page 18: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 17 of 33

4.2 Basic Formulas and Rules

βˆ«π‘Ž 𝑑π‘₯ = π‘Žπ‘₯ + 𝐢

∫π‘₯𝑛 𝑑π‘₯ =π‘₯𝑛+1

𝑛 + 1+ 𝐢, 𝑛 β‰  βˆ’1

∫π‘₯βˆ’1 𝑑π‘₯ = ln(π‘₯) + 𝐢

βˆ«π‘π‘Žπ‘₯ 𝑑π‘₯ =1

π‘Ž ln(𝑏)π‘π‘Žπ‘₯ + 𝐢

βˆ«π‘’π‘Žπ‘₯ 𝑑π‘₯ =1π‘Žπ‘’π‘Žπ‘₯ + 𝐢

∫[𝑓𝑋(π‘₯) + 𝑔𝑋(π‘₯)] 𝑑π‘₯ = βˆ«π‘“π‘‹(π‘₯) 𝑑π‘₯ + βˆ«π‘”π‘‹(π‘₯) 𝑑π‘₯

βˆ«π‘Ž β‹… 𝑓𝑋(π‘₯) 𝑑π‘₯ = π‘Ž β‹… βˆ«π‘“π‘‹(π‘₯) 𝑑π‘₯

∫ sin(π‘₯)𝑑π‘₯ = βˆ’ cos(π‘₯) + 𝐢

∫ cos(π‘₯)𝑑π‘₯ = sin(π‘₯) + 𝐢

Note: π‘Ž, 𝑏, and 𝐢 are constants. Examples

∫ (5π‘₯3 + 4) 𝑑π‘₯1

0= [

5π‘₯3+1

3 + 1+ 4π‘₯]

0

1

= [54π‘₯4 + 4π‘₯]

0

1

= (54

+ 4) βˆ’ (0 + 0)

=πŸπŸπŸ’

∫ (1

2√π‘₯βˆ’ π‘’βˆ’2.3π‘₯) 𝑑π‘₯

3

2= [

π‘₯βˆ’0.5+1

2(βˆ’0.5 + 1) +1

2.3π‘’βˆ’2.3π‘₯]

2

3

= [√π‘₯ +1

2.3π‘’βˆ’2.3π‘₯]

2

3

= (√3 +1

2.3π‘’βˆ’2.3(3)) βˆ’ (√2 +

12.3

π‘’βˆ’2.3(2))

β‰ˆ 𝟎.πŸ‘πŸπŸ‘πŸ—

Page 19: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 18 of 33

∫25𝑑𝑑𝑑

10

1= [

25

ln(𝑑)]1

10

=25

[ln(10) βˆ’ ln(1)]

β‰ˆ 𝟎.πŸ—πŸπŸπŸŽ

∫ (π‘’βˆ’3π‘₯ + 35π‘₯) 𝑑π‘₯0.1

0= [

π‘’βˆ’3π‘₯

βˆ’3+

35π‘₯

5 ln(3)]0

0.1

= (π‘’βˆ’3(0.1)

βˆ’3+

35(0.1)

5 ln(3)) βˆ’ (1βˆ’3

+1

5 ln(3))

β‰ˆ 𝟎.πŸπŸπŸ—πŸ• 4.3 Integration by Substitution Integration by substitution is the reverse of the chain rule. We use integration by substitution if the integrand looks like it is the result of the chain rule. Example 1

∫ 2π‘₯π‘’βˆ’π‘₯2 𝑑π‘₯2

1

Notice that 2π‘₯ is the derivative of π‘₯2. So, we make the substitution 𝑒 = π‘₯2. Then, we convert the variable of integration from 𝑋 to π‘ˆ. The relationship between 𝑑π‘₯ and 𝑑𝑒 comes from the derivative of 𝑒 = π‘₯2, i.e., 𝑑𝑒 = 2π‘₯ 𝑑π‘₯. We convert the limits of integration by substituting them into 𝑒 = π‘₯2:

Lower limit: 𝑒 = 11 = 1 Upper limit: 𝑒 = 22 = 4

Therefore,

∫ 2π‘₯π‘’βˆ’π‘₯2 𝑑π‘₯2

1= ∫ π‘’βˆ’π‘’ 𝑑𝑒

4

1

= [βˆ’π‘’βˆ’π‘’]14 = π‘’βˆ’1 βˆ’ π‘’βˆ’4 β‰ˆ 𝟎.πŸ‘πŸ’πŸ—πŸ”

Page 20: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 19 of 33

Example 2

∫2𝑑

(𝑑 + 3)4 𝑑𝑑8

1

Identify the substitution 𝑒 = 𝑑 + 3, where 𝑑 = 𝑒 βˆ’ 3. Then, we have 𝑑𝑒 = 𝑑𝑑. The new limits of integration are:

Lower limit: 𝑒 = 1 + 3 = 4 Upper limit: 𝑒 = 8 + 3 = 11

Therefore,

∫2𝑑

(𝑑 + 3)4 𝑑𝑑8

1= ∫

2(𝑒 βˆ’ 3)𝑒4

𝑑𝑒11

4

= ∫ (2π‘’βˆ’3 βˆ’ 6π‘’βˆ’4)𝑑𝑒11

4

= [2π‘’βˆ’2

βˆ’2+

6π‘’βˆ’3

3]4

11

= [βˆ’1𝑒2

+2𝑒3]4

11

= βˆ’1

112+

2113

+1

42βˆ’

243

β‰ˆ 𝟎.πŸŽπŸπŸ’πŸ“ Example 3

∫√π‘₯

(1 + √π‘₯)3 𝑑π‘₯

9

4

Identify the substitution 𝑒 = 1 + √π‘₯, where √π‘₯ = 𝑒 βˆ’ 1. Then, we have 𝑑𝑒 = 1

2√π‘₯𝑑π‘₯, so that 𝑑π‘₯ = 2√π‘₯ 𝑑𝑒 = 2(𝑒 βˆ’ 1) 𝑑𝑒.

The new limits of integration are:

Lower limit: 𝑒 = 1 + √4 = 3

Page 21: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 20 of 33

Upper limit: 𝑒 = 1 + √9 = 4 Therefore,

∫√π‘₯

(1 + √π‘₯)3 𝑑π‘₯

9

4= ∫

𝑒 βˆ’ 1𝑒3

β‹… 2(𝑒 βˆ’ 1) 𝑑𝑒4

3

= 2βˆ«π‘’2 βˆ’ 2𝑒 + 1

𝑒3𝑑𝑒

4

3

= 2∫ (π‘’βˆ’1 βˆ’ 2π‘’βˆ’2 + π‘’βˆ’3)𝑑𝑒4

3

= 2 [ln(𝑒) + 2π‘’βˆ’1 βˆ’π‘’βˆ’2

2]3

4

= 2 (ln(4) +24βˆ’

12 β‹… 42

) βˆ’ 2 (ln(3) +23βˆ’

12 β‹… 32

)

β‰ˆ 𝟎.πŸπŸ—πŸŽπŸ” 4.4 Integration by Parts Integration by parts is the reverse of the product rule.

𝑑𝑑π‘₯

𝑒𝑣 = 𝑒𝑑𝑣𝑑π‘₯

+ 𝑣𝑑𝑒𝑑π‘₯

Integrating both sides of the equation,

βˆ«π‘‘(𝑒𝑣) = βˆ«π‘’ 𝑑𝑣 + βˆ«π‘£ 𝑑𝑒

𝑒𝑣 = βˆ«π‘’ 𝑑𝑣 + βˆ«π‘£ 𝑑𝑒

Then, the integration by parts formula is

βˆ«π‘’ 𝑑𝑣 = 𝑒𝑣 βˆ’ βˆ«π‘£ 𝑑𝑒

In general, integration by parts is applicable if the integrand is a product of two terms, one of which becomes zero when differentiated repeatedly.

Page 22: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 21 of 33

Example 1

∫ π‘₯π‘’βˆ’π‘₯ 𝑑π‘₯∞

0

The first step is to identify 𝑒 and 𝑑𝑣, where 𝑒 is the term to be differentiated, and 𝑑𝑣 is the term to be integrated. In this example

𝑒 = π‘₯, 𝑑𝑣 = π‘’βˆ’π‘₯ 𝑑π‘₯ Then, we find 𝑑𝑒 and 𝑣.

𝑑𝑒 = 𝑑π‘₯, 𝑣 = βˆ’π‘’βˆ’π‘₯ Next, we apply the integration by parts formula as follows:

∫ π‘₯π‘’βˆ’π‘₯ 𝑑π‘₯∞

0= [π‘₯ β‹… (βˆ’π‘’βˆ’π‘₯)]0∞ βˆ’ ∫ βˆ’π‘’βˆ’π‘₯ 𝑑π‘₯

∞

0

= [βˆ’π‘₯π‘’βˆ’π‘₯]0∞ βˆ’ [π‘’βˆ’π‘₯]0∞ = [βˆ’π‘₯π‘’βˆ’π‘₯ βˆ’ π‘’βˆ’π‘₯]0∞ = (0 βˆ’ 0) βˆ’ (0 βˆ’ 1) = 𝟏

Example 2

∫ (3π‘₯2 + 1)π‘’βˆ’π‘₯10 𝑑π‘₯

∞

0

The first step is to identify 𝑒 and 𝑑𝑣, where 𝑒 is the term to be differentiated, and 𝑑𝑣 is the term to be integrated. In this example

𝑒 = (3π‘₯2 + 1), 𝑑𝑣 = π‘’βˆ’π‘₯10 𝑑π‘₯

Then, we find 𝑑𝑒 and 𝑣.

𝑑𝑒 = 6π‘₯ 𝑑π‘₯, 𝑣 = βˆ’10π‘’βˆ’π‘₯10

Page 23: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 22 of 33

Next, we apply the integration by parts formula as follows:

∫ π‘₯π‘’βˆ’π‘₯ 𝑑π‘₯∞

0= [(3π‘₯2 + 1) β‹… (βˆ’10π‘’βˆ’

π‘₯10)]

0

βˆžβˆ’ ∫ 6π‘₯ β‹… (βˆ’10π‘’βˆ’

π‘₯10) 𝑑π‘₯

∞

0

= [βˆ’10π‘’βˆ’π‘₯10(3π‘₯2 + 1)]

0

∞+ 60∫ π‘₯π‘’βˆ’

π‘₯10 𝑑π‘₯

∞

0

To evaluate the integral in blue, we use integration by parts a second time.

𝑒 = π‘₯, 𝑑𝑣 = π‘’βˆ’π‘₯10 𝑑π‘₯

𝑑𝑒 = 𝑑π‘₯, 𝑣 = βˆ’10π‘’βˆ’π‘₯10

∫ π‘₯π‘’βˆ’π‘₯10 𝑑π‘₯

∞

0= [π‘₯ β‹… (βˆ’10π‘’βˆ’

π‘₯10)]

0

βˆžβˆ’ ∫ βˆ’10π‘’βˆ’

π‘₯10 𝑑π‘₯

∞

0

= [βˆ’10π‘₯π‘’βˆ’π‘₯10]

0

βˆžβˆ’ [100π‘’βˆ’

π‘₯10]

0

∞

= [βˆ’10π‘₯π‘’βˆ’π‘₯10 βˆ’ 100π‘’βˆ’

π‘₯10]

0

∞

= (0 βˆ’ 0) βˆ’ (0 βˆ’ 100) = 100

In our final step,

∫ π‘₯π‘’βˆ’π‘₯ 𝑑π‘₯∞

0= [(3π‘₯2 + 1) β‹… (βˆ’10π‘’βˆ’

π‘₯10)]

0

∞+ 60(100)

= 0 βˆ’ 1 β‹… (βˆ’10) + 6,000 = πŸ”,𝟎𝟏𝟎

4.5 Tabular Integration Integration by parts can sometimes be messy to evaluate, which makes it prone to errors, especially when it needs to be done more than once. Tabular integration is an alternative to integration by parts that keeps our calculations organized. Besides, it takes less time and is less prone to errors. Tabular integration is best explained with examples. We will rework the two previous examples to show that integration by parts and tabular integration are equivalent.

Page 24: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 23 of 33

Example 1

∫ π‘₯π‘’βˆ’π‘₯ 𝑑π‘₯∞

0

The first step is to choose the term that would be differentiated if were to do integration by parts, i.e., 𝑒. We write this term in the first row of the first column of the table (see Table 4.1). In this example, this term is π‘₯. Then, we differentiate π‘₯ repeatedly until we get zero, while writing down each derivative in a column. The derivative of π‘₯ is 1, and the derivative of 1 is 0. Next, we write the term that would be integrated if we were to do integration by parts in the first row of the second column. This term is π‘’βˆ’π‘₯. Then, we integrate π‘’βˆ’π‘₯ repeatedly until we have the same number of rows in both columns. Then, we draw diagonal lines from the first row of the first column to the second row of the second column, and from the second row of the first column to the third row of the second column. If we had more rows, we would continue drawing lines in this matter until we get to the last row of the second column. The next step is to label the lines with alternating signs, starting with β€œ+” for the first line. We multiply the terms that are connected by the lines and then multiply by 1 if the line has a plus sign, or βˆ’1 if the line has a minus sign. We do the same for each pair of terms and add them to get the indefinite integral.

π‘₯

π‘’βˆ’π‘₯ + 1 βˆ’π‘’βˆ’π‘₯ βˆ’ 0 π‘’βˆ’π‘₯

Table 4.1

Therefore,

∫ π‘₯π‘’βˆ’π‘₯ 𝑑π‘₯∞

0= [+1 β‹… π‘₯ β‹… (βˆ’π‘’βˆ’π‘₯) + (βˆ’1) β‹… 1 β‹… π‘’βˆ’π‘₯]0∞

= [βˆ’π‘₯π‘’βˆ’π‘₯ βˆ’ π‘’βˆ’π‘₯]0∞ = (0 βˆ’ 0) βˆ’ (0 βˆ’ 1) = 𝟏

Page 25: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 24 of 33

Example 2

∫ (3π‘₯2 + 1)π‘’βˆ’π‘₯10 𝑑π‘₯

∞

0

The term to be differentiated is 3π‘₯2 + 1. The term to be integrated is π‘’βˆ’π‘₯10.

3π‘₯2+ 1

π‘’βˆ’π‘₯10 +

6π‘₯ βˆ’10π‘’βˆ’π‘₯10 βˆ’

6 100π‘’βˆ’π‘₯10 +

0 βˆ’1000π‘’βˆ’π‘₯10

Table 4.2

Using Table 4.2,

∫ (3π‘₯2 + 1)π‘’βˆ’π‘₯10 𝑑π‘₯

∞

0

= [+1 β‹… (3π‘₯2 + 1) β‹… (βˆ’10π‘’βˆ’π‘₯10) + (βˆ’1) β‹… 6π‘₯ β‹… 100π‘’βˆ’

π‘₯10 + (+1) β‹… 6 β‹… (βˆ’1000π‘’βˆ’

π‘₯10)]

0

∞

= [βˆ’10(3π‘₯2 + 1)π‘’βˆ’π‘₯10 βˆ’ 600π‘₯π‘’βˆ’

π‘₯10 βˆ’ 6000π‘’βˆ’

π‘₯10]

0

∞

= βˆ’0 βˆ’ 0 βˆ’ 0 + 10 + 0 + 6,000 = πŸ”,𝟎𝟏𝟎

Page 26: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 25 of 33

5 Multivariate Calculus 5.1 Partial Derivatives When taking the partial derivative of a multivariate function with respect to a variable, π‘₯, we treat all other variables as constants.

Partial derivative of 𝑓𝑋,οΏ½(π‘₯,𝑦) with respect to π‘₯ πœ•πœ•π‘₯

𝑓𝑋,οΏ½(π‘₯, 𝑦)

Partial derivative of 𝑓𝑋,οΏ½(π‘₯,𝑦) with respect to 𝑦 πœ•πœ•π‘¦

𝑓𝑋,οΏ½(π‘₯,𝑦)

Second order partial derivative of 𝑓𝑋,οΏ½(π‘₯,𝑦) with respect to π‘₯

πœ•2

πœ•π‘₯2𝑓𝑋,οΏ½(π‘₯,𝑦) =

πœ•πœ•π‘₯

(πœ•πœ•π‘₯

𝑓𝑋,οΏ½(π‘₯, 𝑦))

Second order partial derivative of 𝑓𝑋,οΏ½(π‘₯,𝑦) with respect to 𝑦

πœ•2

πœ•π‘¦2𝑓𝑋,οΏ½(π‘₯,𝑦)

Second order partial derivative of 𝑓𝑋,οΏ½(π‘₯,𝑦) with respect to π‘₯ and 𝑦

πœ•2

πœ•π‘₯ πœ•π‘¦π‘“π‘‹,οΏ½(π‘₯,𝑦) =

πœ•πœ•π‘₯

(πœ•πœ•π‘¦

𝑓𝑋,οΏ½(π‘₯,𝑦))

πœ•2

πœ•π‘¦ πœ•π‘₯𝑓𝑋,οΏ½(π‘₯,𝑦) =

πœ•πœ•π‘¦

(πœ•πœ•π‘₯

𝑓𝑋,οΏ½(π‘₯,𝑦))

πœ•2

πœ•π‘₯ πœ•π‘¦π‘“π‘‹,οΏ½(π‘₯,𝑦) =

πœ•2

πœ•π‘¦ πœ•π‘₯𝑓𝑋,οΏ½(π‘₯, 𝑦)

Example 1

𝑓𝑋,οΏ½(π‘₯,𝑦) = π‘₯2𝑦

πœ•πœ•π‘₯

(π‘₯2𝑦) = πŸπ’™π’š Treat 𝑦 as constant.

πœ•πœ•π‘¦

(π‘₯2𝑦) = π’™πŸ Treat π‘₯ as constant.

πœ•2

πœ•π‘₯2(π‘₯2𝑦) =

πœ•πœ•π‘₯

(2π‘₯𝑦) = πŸπ’š Differentiate πœ•

πœ•π‘₯ with respect to π‘₯.

Treat 𝑦 as constant.

Page 27: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 26 of 33

πœ•2

πœ•π‘¦2(π‘₯2𝑦) =

πœ•πœ•π‘¦

(π‘₯2) = 𝟎 Differentiate πœ•

πœ•π‘¦ with respect to 𝑦.

Treat π‘₯ as constant.

πœ•2

πœ•π‘₯ πœ•π‘¦(π‘₯2𝑦) =

πœ•πœ•π‘₯

(π‘₯2) = πŸπ’™ Differentiate πœ•

πœ•π‘¦ with respect to π‘₯.

Treat 𝑦 as constant. πœ•2

πœ•π‘¦ πœ•π‘₯(π‘₯2𝑦) =

πœ•πœ•π‘¦

(2π‘₯𝑦) = πŸπ’™ Differentiate πœ•

πœ•π‘₯ with respect to 𝑦.

Treat π‘₯ as constant. πœ•2

πœ•π‘₯ πœ•π‘¦(π‘₯2𝑦) =

πœ•2

πœ•π‘¦ πœ•π‘₯(π‘₯2𝑦) Order of differentiation is reversible.

Example 2

𝑓𝑆,𝑇(𝑠, 𝑑) = 𝑒2𝑠2+𝑠𝑑+3𝑑2

πœ•πœ•π‘ 

(𝑒2𝑠2+𝑠𝑑+3𝑑2) = 𝑒2𝑠2+𝑠𝑑+3𝑑2 β‹…πœ•πœ•π‘ 

(2𝑠2 + 𝑠𝑑 + 3𝑑2)

= 𝑒2𝑠2+𝑠𝑑+3𝑑2 β‹… (4𝑠 + 𝑑 + 0)

= (πŸ’π’” + 𝒕)π’†πŸπ’”πŸ+𝒔𝒕+πŸ‘π’•πŸ πœ•πœ•π‘‘(𝑒2𝑠2+𝑠𝑑+3𝑑2) = 𝑒2𝑠2+𝑠𝑑+3𝑑2 β‹…

πœ•πœ•π‘‘

(2𝑠2 + 𝑠𝑑 + 3𝑑2)

= 𝑒2𝑠2+𝑠𝑑+3𝑑2 β‹… (0 + 𝑠 + 6𝑑)

= (𝒔 + πŸ”π’•)π’†πŸπ’”πŸ+𝒔𝒕+πŸ‘π’•πŸ πœ•2

πœ•π‘ 2(𝑒2𝑠2+𝑠𝑑+3𝑑2) =

πœ•πœ•π‘ 

[(4𝑠 + 𝑑)𝑒2𝑠2+𝑠𝑑+3𝑑2]

= 𝑒2𝑠2+𝑠𝑑+3𝑑2 β‹…πœ•πœ•π‘ 

(4𝑠 + 𝑑) + (4𝑠 + 𝑑) β‹…πœ•πœ•π‘ 

(𝑒2𝑠2+𝑠𝑑+3𝑑2)

= 𝑒2𝑠2+𝑠𝑑+3𝑑2 β‹… (4 + 0) + (4𝑠 + 𝑑) β‹… 𝑒2𝑠2+𝑠𝑑+3𝑑2 β‹… (4𝑠 + 𝑑 + 0)

= πŸ’π’†πŸπ’”πŸ+𝒔𝒕+πŸ‘π’•πŸ + (πŸ’π’” + 𝒕)πŸπ’†πŸπ’”πŸ+𝒔𝒕+πŸ‘π’•πŸ πœ•2

πœ•π‘‘2(𝑒2𝑠2+𝑠𝑑+3𝑑2) =

πœ•πœ•π‘‘[(𝑠 + 6𝑑)𝑒2𝑠2+𝑠𝑑+3𝑑2]

= 𝑒2𝑠2+𝑠𝑑+3𝑑2 β‹…πœ•πœ•π‘‘

(𝑠 + 6𝑑) + (𝑠 + 6𝑑) β‹…πœ•πœ•π‘‘(𝑒2𝑠2+𝑠𝑑+3𝑑2)

= 𝑒2𝑠2+𝑠𝑑+3𝑑2 β‹… (0 + 6) + (𝑠 + 6𝑑) β‹… 𝑒2𝑠2+𝑠𝑑+3𝑑2 β‹… (0 + 𝑠 + 6𝑑)

= πŸ”π’†πŸπ’”πŸ+𝒔𝒕+πŸ‘π’•πŸ + (𝒔 + πŸ”π’•)πŸπ’†πŸπ’”πŸ+𝒔𝒕+πŸ‘π’•πŸ

Page 28: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 27 of 33

5.2 Double Integration We often use double integrals to calculate probabilities and moments. When evaluating double integrals, we always start with the inner integral and work our way out to the outer integral. There are two cases to consider: Case 1: Region of integration is rectangular. Case 2: Region of integration is not rectangular. Case 1 In the first case, double integrals are easier to evaluate. Besides, the order of integration is reversible without the need to redefine the limits of integration. In mathematical notation, this means

∫ ∫ 𝑓𝑋,οΏ½(π‘₯,𝑦) 𝑑𝑦𝑏

π‘Žπ‘‘π‘₯

𝑑

𝑐= ∫ ∫ 𝑓𝑋,οΏ½(π‘₯,𝑦) 𝑑π‘₯

𝑑

𝑐𝑑𝑦

𝑏

π‘Ž

Figure 5.1 shows a rectangular region of integration.

Figure 5.1

x0 c d

y

a

b

Page 29: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 28 of 33

Example Integrate the following function over the shaded region in Figure 5.2.

𝑓𝑋,οΏ½(π‘₯,𝑦) =π‘₯𝑦

2500, 0 < π‘₯ < 10, 0 < 𝑦 < 10

Figure 5.2

If we chose 𝑦 as the variable for the inner integral, then the double integral is

∫ ∫π‘₯𝑦

2500𝑑𝑦

6

2𝑑π‘₯

7

1

Starting from the inside out, the inner integral is with respect to 𝑦, so we treat π‘₯ as a constant when performing the inner integral. Also, after performing the inner integral, we substitute the limits into 𝑦, not π‘₯, because the inner integral is with respect to 𝑦. Once we evaluate the inner integral, the double integral becomes a single integral that we evaluate in the usual way.

∫ ∫π‘₯𝑦

2500𝑑𝑦

6

2𝑑π‘₯

7

1= ∫ [

π‘₯𝑦2

5000]𝑦=2

𝑦=6

𝑑π‘₯7

1

= ∫π‘₯

5000(62 βˆ’ 22) 𝑑π‘₯

7

1

x0 1 7

y

2

6

Page 30: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 29 of 33

=32

5000∫ π‘₯ 𝑑π‘₯7

1

=16

5000[π‘₯2]17

=16

5000(72 βˆ’ 12)

= 𝟎.πŸπŸ“πŸ‘πŸ” If we evaluate the same double integral in the reverse order of integration, we will get the same answer.

∫ ∫π‘₯𝑦

2500𝑑π‘₯

7

1𝑑𝑦

6

2= ∫ [

π‘₯2𝑦5000

]π‘₯=1

π‘₯=7

𝑑𝑦6

2

= βˆ«π‘¦

5000(72 βˆ’ 12) 𝑑𝑦

7

1

=48

5000∫ 𝑦 𝑑𝑦6

2

=24

5000[𝑦2]26

=24

5000(62 βˆ’ 22)

= 𝟎.πŸπŸ“πŸ‘πŸ” Case 2 In the second case, double integrals are trickier. They are reversible, but the limits of integration have to be redefined. We will demonstrate this with the following example. Example 1 Integrate the following function over the shaded region in Figure 5.3.

𝑓𝑋,οΏ½(π‘₯,𝑦) = π‘’βˆ’(π‘₯+𝑦), π‘₯ > 0, 𝑦 > 0

Page 31: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 30 of 33

Figure 5.3

Step 1: Draw a diagram that satisfies all the constraints. In this example, the diagram has been given. However, on the exam, you often have to draw your own diagram. The constraints of the region are π‘₯ > 0, 𝑦 > 0, and π‘₯ + 𝑦 < 2. The region that satisfies these constraints is the shaded region in Figure 5.3. Note that Step 2 and Step 3 can be interchanged.

Step 2: Choose one variable for the outer integral. If we choose π‘₯, then the limits of the outer integration would be the minimum and maximum value of π‘₯ in the region. From the diagram, we see that the minimum value of π‘₯ is 0 and the maximum value of π‘₯ is 2. Thus, the lower limit is 0 and the upper limit is 2.

∫ (βˆ«π‘“π‘‹,οΏ½(π‘₯,𝑦)𝑑𝑦)𝑑π‘₯2

0

Likewise, if we choose 𝑦, then the limits of the outer integration would be the minimum and maximum value of 𝑦 in the region, which are 0 and 2, respectively.

∫ (βˆ«π‘“π‘‹,οΏ½(π‘₯,𝑦)𝑑π‘₯) 𝑑𝑦2

0

x0 1 2

y

1

2

y

xοΌ‹y= 2

Page 32: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 31 of 33

Both integrals will produce the same answer, but the variable that you choose for the outer integration will determine the order of integration; so you should choose the variable that will not require separating the region of integration, if possible. Step 3: Determine the limits of the inner integral. The third step is to define the rest of the integral. The variable for the inner integral will automatically be the variable not chosen for the outer integral. For example, if we chose π‘₯ for the outer integral, then the inner integral will be with respect to 𝑦. To determine the limits of integration when the integration is on 𝑦, draw a line parallel to the 𝑦-axis that cuts across the region of integration, as shown in Figure 5.4. The limits are the 𝑦-coordinates of the intersection points of the vertical line that was just drawn and the top and bottom bounds of the region.

Figure 5.4

In this example, the lower limit is 𝑦 = 0 because the vertical line intersects the lower bound at 0. Similarly, the upper limit is 𝑦 = 2 βˆ’ π‘₯ because the vertical line intersects the upper bound at 2 βˆ’ π‘₯. Since the vertical line can be drawn at any arbitrary location within the range of values of π‘₯, we always express the 𝑦-coordinates in terms of π‘₯, or the variable chosen for the outer integral. Therefore, our double integral is

x0 1 2

y

1

2

y

xοΌ‹y= 2

y = 2 βˆ’ x

y = 0

Page 33: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 32 of 33

∫ (βˆ«π‘“π‘‹,οΏ½(π‘₯,𝑦)𝑑𝑦)𝑑π‘₯2

0= ∫ (∫ 𝑓𝑋,οΏ½(π‘₯, 𝑦) 𝑑𝑦

2βˆ’π‘₯

0)𝑑π‘₯

2

0

On the other hand, if we chose 𝑦 for the outer integral, then the inner integral will be for the variable π‘₯. In this case, we draw a line parallel to the π‘₯-axis that cuts across the region, shown below in Figure 5.5.

Figure 5.5

We determine the limits of integration in the same way as before except the limits are now the π‘₯-coordinates of the intersection points of the horizontal line and the left and right bounds of the region, expressed in terms of 𝑦. In this example, the horizontal line intersects the left bound at π‘₯ = 0 and the right bound at π‘₯ = 2 βˆ’ 𝑦. Therefore, our double integral is

∫ (βˆ«π‘“π‘‹,οΏ½(π‘₯,𝑦)𝑑π‘₯) 𝑑𝑦2

0= ∫ (∫ 𝑓𝑋,οΏ½(π‘₯,𝑦) 𝑑π‘₯

2βˆ’π‘¦

0)𝑑𝑦

2

0

Step 4: Evaluate the double integral. The last step is to evaluate the double integral. There are 2 possible orders of integration, 𝑑𝑦 𝑑π‘₯ or 𝑑π‘₯ 𝑑𝑦. Regardless, we always start with the inner integral and work our way out.

x0 1 2

y

1

2

y

xοΌ‹y= 2

x = 2 βˆ’ yx = 0

Page 34: soa exam P Prerequisite

Prerequisites for Exam P/1

Page 33 of 33

We will start with the 𝑑𝑦 𝑑π‘₯ case.

∫ (∫ 𝑓𝑋,οΏ½(π‘₯,𝑦) 𝑑𝑦2βˆ’π‘₯

0)𝑑π‘₯

2

0= ∫ (∫ π‘’βˆ’(π‘₯+𝑦) 𝑑𝑦

2βˆ’π‘₯

0)𝑑π‘₯

2

0

= ∫ [βˆ’π‘’βˆ’(π‘₯+𝑦)]𝑦=0𝑦=2βˆ’π‘₯

𝑑π‘₯2

0

= ∫ [βˆ’π‘’βˆ’(π‘₯+2βˆ’π‘₯) βˆ’ π‘’βˆ’(π‘₯+0)]𝑑π‘₯2

0

= ∫ (βˆ’π‘’βˆ’2 + π‘’βˆ’π‘₯)𝑑π‘₯2

0

= [βˆ’π‘’βˆ’2π‘₯ βˆ’ π‘’βˆ’π‘₯]02 = (βˆ’2π‘’βˆ’2 βˆ’ π‘’βˆ’2) βˆ’ (0 βˆ’ π‘’βˆ’0) = 𝟏 βˆ’ πŸ‘π’†βˆ’πŸ

Next, we will show that the 𝑑π‘₯ 𝑑𝑦 case produces the same answer.

∫ (∫ 𝑓𝑋,οΏ½(π‘₯,𝑦) 𝑑π‘₯2βˆ’π‘¦

0) 𝑑𝑦

2

0= ∫ (∫ π‘’βˆ’(π‘₯+𝑦) 𝑑π‘₯

2βˆ’π‘¦

0) 𝑑𝑦

2

0

= ∫ [βˆ’π‘’βˆ’(π‘₯+𝑦)]π‘₯=0π‘₯=2βˆ’π‘¦

𝑑𝑦2

0

= ∫ [βˆ’π‘’βˆ’(2βˆ’π‘¦+𝑦) βˆ’ π‘’βˆ’(0+𝑦)]𝑑𝑦2

0

= ∫ (βˆ’π‘’βˆ’2 + π‘’βˆ’π‘¦)𝑑𝑦2

0

= [βˆ’π‘’βˆ’2𝑦 + π‘’βˆ’π‘¦]02 = (βˆ’2π‘’βˆ’2 βˆ’ π‘’βˆ’2) βˆ’ (0 βˆ’ π‘’βˆ’0) = 𝟏 βˆ’ πŸ‘π’†βˆ’πŸ