Top Banner
Smart Innovation, Systems and Technologies Volume 161 Series Editors Robert J. Howlett, Bournemouth University and KES International, Shoreham-by-sea, UK Lakhmi C. Jain, Faculty of Engineering and Information Technology, Centre for Articial Intelligence, University of Technology Sydney, Sydney, NSW, Australia
19

Smart Innovation, Systems and Technologies - Springer LINK

Mar 16, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Smart Innovation, Systems and Technologies - Springer LINK

Smart Innovation, Systems and Technologies

Volume 161

Series Editors

Robert J. Howlett, Bournemouth University and KES International,Shoreham-by-sea, UKLakhmi C. Jain, Faculty of Engineering and Information Technology,Centre for Artificial Intelligence, University of Technology Sydney,Sydney, NSW, Australia

Page 2: Smart Innovation, Systems and Technologies - Springer LINK

The Smart Innovation, Systems and Technologies book series encompasses thetopics of knowledge, intelligence, innovation and sustainability. The aim of theseries is to make available a platform for the publication of books on all aspects ofsingle and multi-disciplinary research on these themes in order to make the latestresults available in a readily-accessible form. Volumes on interdisciplinary researchcombining two or more of these areas is particularly sought.

The series covers systems and paradigms that employ knowledge and intelligencein a broad sense. Its scope is systems having embedded knowledge and intelligence,which may be applied to the solution of world problems in industry, the environmentand the community. It also focusses on the knowledge-transfer methodologies andinnovation strategies employed to make this happen effectively. The combination ofintelligent systems tools and a broad range of applications introduces a need for asynergy of disciplines from science, technology, business and the humanities. Theseries will include conference proceedings, edited collections, monographs,handbooks, reference books, and other relevant types of book in areas of scienceand technology where smart systems and technologies can offer innovative solutions.

High quality content is an essential feature for all book proposals accepted for theseries. It is expected that editors of all accepted volumes will ensure thatcontributions are subjected to an appropriate level of reviewing process and adhereto KES quality principles.

** Indexing: The books of this series are submitted to ISI Proceedings,EI-Compendex, SCOPUS, Google Scholar and Springerlink **

More information about this series at https://link.springer.com/bookseries/8767

Page 3: Smart Innovation, Systems and Technologies - Springer LINK

Dipankar Deb • Ambesh Dixit •

Laltu ChandraEditors

Renewable Energyand Climate ChangeProceedings of REC 2019

123

Page 4: Smart Innovation, Systems and Technologies - Springer LINK

EditorsDipankar DebInstitute of Infrastructure TechnologyResearch and ManagementAhmedabad, Gujarat, India

Ambesh DixitDepartment of Physics and Centerfor Solar EnergyIndian Institute of Technology JodhpurJodhpur, India

Laltu ChandraDepartment of Mechanical EngineeringIndian Institute of Technology BHUVaranasi, Uttar Pradesh, India

ISSN 2190-3018 ISSN 2190-3026 (electronic)Smart Innovation, Systems and TechnologiesISBN 978-981-32-9577-3 ISBN 978-981-32-9578-0 (eBook)https://doi.org/10.1007/978-981-32-9578-0

© Springer Nature Singapore Pte Ltd. 2020, corrected publication 2022This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or partof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionor information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in thispublication does not imply, even in the absence of a specific statement, that such names are exempt fromthe relevant protective laws and regulations and therefore free for general use.The publisher, the authors and the editors are safe to assume that the advice and information in thisbook are believed to be true and accurate at the date of publication. Neither the publisher nor theauthors or the editors give a warranty, expressed or implied, with respect to the material containedherein or for any errors or omissions that may have been made. The publisher remains neutral with regardto jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,Singapore

Page 5: Smart Innovation, Systems and Technologies - Springer LINK

Organizing Committee

Key Advisor

• Anju Sharma, IAS, Principal Secretary (Higher & Technical Education),Education Department, Government of Gujarat

General Chairs

• Shiva Prasad, Director General, IITRAM• A. U. Digraskar, Director, IITRAM• N. N. Bhuptani, Registrar, IITRAM

Program Chair

• Dipankar Deb, Professor, Electrical Engineering, IITRAM, [email protected] (M) +91-7203954452

Program Co-Chair

• Jiten Shah, Assistant Professor, Civil Engineering, IITRAM, [email protected] (M) +91-9712982750

v

Page 6: Smart Innovation, Systems and Technologies - Springer LINK

General Secretary

• Dileep Kumar Gupta, Assistant Professor, Mechanical Engineering, IITRAM,[email protected] (M) 91-9785712695

International Advisory Committee

• Josep M. Guerrero, Professor, Aalborg University, Denmark• Ashok Pandey, Editor-in-Chief, Bioresource Technology, Elsevier• Soteris Kalogirou, Editor-in-Chief, Renewable Energy, Elsevier• Aoife Foley, Editor-in-Chief, R&S Energy Reviews• Shyam Pandey, Professor, Kyushu Institute of Technology, Japan• Moonis Ally, Oak Ridge National Laboratory, USA• Vishaldeep Sharma, Oak Ridge National Laboratory, USA• Samer Sawalha, Associate Professor, KTH Stockholm, Sweden• Ramesh K. Guduru, Assistant Professor, Lamar University, USA• Rodrigo Llopis, Associate Professor, JM I University, Spain• Jayant Parimal, CEO, Adani Green Energy Ltd., India• Puneet Jaggi, President, Solar Gensol, Ahmedabad, Gujarat, India• K. Bharathy, CEO, WRE Pvt. Ltd, Panchmahal, Gujarat, India• Vipul Singh, Associate Professor, IIT Indore, India• M. S. Dasgupta, Professor, BITS Pilani, India• R. Saravanan, Professor, Anna University, India

Technical Committee

• Abd Elnaby Kabeel, Professor, Tanta University, Egypt• El-Sayed El-Agouz, Professor, Tanta University, Egypt• Medhat Elkelawy, Associate Professor, Tanta University, Egypt• Anubha Bilgaiyan, Postdoctoral Researcher, Kyushu University, Japan• Yazan Taamneh, Assistant Professor, Jordan University of Science

and Technology, Jordan• Ramesh K. Guduru, Assistant Professor, Lamar University, Texas.• Jayanta Mondol, Reader, Jordanstown campus, UK• Prashant Srinivasan, Er. Manager, GE Power, Bengaluru, India• Akshay Ambekar, Sr. Er., GE Power and Water, Schenectady, USA• Sanketh Bhat, Lead Engineer, GEG Research, Bengaluru, India• Prem Kumar Patchaikani, Lead Engineer, GEG Research, Bengaluru, India• Gaurang Patel, DGM, DCS Plant, GIFT City, Gandhinagar, India• Laltu Chandra, Associate Professor, IIT (BHU), India

vi Organizing Committee

Page 7: Smart Innovation, Systems and Technologies - Springer LINK

• Ambesh Dixit, Assistant Professor, IIT Jodhpur, India• Saurabh Pandey, Assistant Professor, IIT Patna, India• A. Chowdhury, Associate Professor, SVNIT, Surat, India• Purnanand Bhale, Assistant Professor, SVNIT, Surat, India• Hemantkumar Mehta, Assistant Professor, SVNIT, Surat, Gujarat, India• Nikhil Gakkhar, Scientist, Ministry of New and Renewable Energy, GoI, India• Nitin Karwa, Sr. R&D Engineer, Honeywell, India• Nilesh Purohit, R&D Engineering, Honeywell, India• Y. P. Sharma, Manager, NTPC Limited, Mumbai, India• Amar Prasad, Manager, NTPC Limited, Mumbai, India• Neeraj Agrawal, Associate Professor, Dr. Babasaheb Ambedkar Technological

University, Lonere, Maharashtra, India• Santosh Vora, Professor, Nirma University, Gujarat, India• Akhilesh Arvind Nimje, Associate Professor, Nirma University, Gujarat, India• Rohit Srivastava, Associate Professor, PDPU, Gujarat, India• Hitesh Panchal, Assistant Professor, GEC, Patan, Gujarat, India• Amit Sant, Assistant Professor, PDPU, Gujarat, India• Jatin Patel, Assistant Professor, PDPU, Gujarat, India• Siddharth Joshi, Assistant Professor, PDPU, Gujarat, India• Garlapati Nagababu, Assistant Professor, PDPU, Gujarat, India• Dayashankar Kaul, Assistant Professor, PDPU, Gujarat, India• Anima Gupta, Assistant Professor, Nirma University, Gujarat, India• Chintan Mehta, Assistant Professor, Nirma University, Gujarat, India• Akash Bhavsar, Assistant Professor, GSFC University, Gujarat, India• Sanjeev Jakhar, Assistant Professor, Mody University, Sikar, Rajasthan• Kannan Iyer, Assistant Professor, IITRAM, Gujarat, India• Ajit Parwani, Assistant Professor, IITRAM, Gujarat, India• Kshitij Bhargava, Assistant Professor, IITRAM, Gujarat, India• Manjunath K., Assistant Professor, IITRAM, Gujarat, India

Organizing Committee vii

Page 8: Smart Innovation, Systems and Technologies - Springer LINK

Preface

Developing countries face many challenges in the energy sectors, particularly fossilfuel and their source. The excess usage of fossil fuels causes the worst negativeimpacts on climate change—extreme weather events, global warming, rise inenvironmental temperature and sea level, natural calamities, and groundwaterpollution, to name a few. These problems are known worldwide. The FirstInternational Conference on Renewable Energy and Climate Changes (REC),February 1–2, 2019, was organized by the Institute of Infrastructure TechnologyResearch and Management (IITRAM), Ahmedabad, in collaboration with GujaratKnowledge Society, Government of Gujarat. It was funded by the Student Startupand Innovation Policy (SSIP) initiative of Government of Gujarat.

The purpose of the conference was to bring together researchers, engineers,manufacturers, practitioners, and customers from all over the world to share anddiscuss advances and developments in renewable energy and its implications onclimate changes. The conference included presentations on the latest research trendsshowcasing the important achievements and upcoming challenges in the sector ofrenewable energy and climate changes.

The First International Conference on Renewable Energy and ClimateChange (REC 2019) provided a common avenue to the authorities, practitioners,academicians, scientists, researchers, and students to sit together and devise theirown strategies, experience, and research outcomes for solving their commonproblems. This conference was inevitably multi-dimensional in nature. It covered awide range of areas from renewable energy and climate change and their impacts.The conference also provided a technological forum to discuss the cutting-edgesolutions on development, design, technology, manufacturing, greenhouse effect,sustainable and clean energy, socioeconomic, and policy issues.

ix

Page 9: Smart Innovation, Systems and Technologies - Springer LINK

Deepak Gadhia (Trustee, Muni Seva Ashram, Vadodara, Gujarat), Aninda Bose(Senior Editor, Springer), Laltu Chandra (Associate Professor, IIT (BHU),Varanasi, India), and Prashant Srinivasan (Senior Principal Scientist, SymphonyIndustrial AI, Bengaluru) were the esteemed plenary speakers of this conference.

Ahmedabad, India Dipankar DebJodhpur, India Ambesh DixitVaranasi, India Laltu Chandra

x Preface

Page 10: Smart Innovation, Systems and Technologies - Springer LINK

Contents

Rare Earth Oxides Based Composites for High VoltageSupercapacitors Applications: A Short Review . . . . . . . . . . . . . . . . . . . 1Ajay Tiwari and Ambesh Dixit1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Charge Storage Mechanism of EDLCs and PSCs . . . . . . . . . . . . . 41.2 Need of Higher Operating Voltage Supercapacitors . . . . . . . . . . . 4

2 Rare Earth Metal Oxides (REMOs) Based Compositesfor Supercapacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.1 Transition Metal Oxides (TMOs) for SCs . . . . . . . . . . . . . . . . . . 6

3 Issues/Challenges with Supercapacitors . . . . . . . . . . . . . . . . . . . . . . . . 74 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Wind Farm Layout Optimization Using Teaching Learning BasedOptimization Technique Considering Power and Cost . . . . . . . . . . . . . . 11Yash D. Modi, Jaydeep Patel, Garlapati Nagababu and Hardik K. Jani1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Wake Decay Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Analytical Problem Formulation of Wake Model . . . . . . . . . . . . . 143 Teaching Learning Based Optimization . . . . . . . . . . . . . . . . . . . . . . . . 164 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Performance Analysis of Fractional-Order PI-Based Controllerfor Variable Speed Hybrid Standalone WECS . . . . . . . . . . . . . . . . . . . . 23Anjana Jain and R. Saravanakumar1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Mathematical Model of PMSG and Wind Turbine . . . . . . . . . . . . . . . . 25

2.1 Wind Turbine Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.2 Modelling of the PMSG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xi

Page 11: Smart Innovation, Systems and Technologies - Springer LINK

3 System Description and Control Scheme . . . . . . . . . . . . . . . . . . . . . . . 273.1 Fractional-Order PI (FOPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.2 Estimation of Direct-Axis Component of Load-Current

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293.3 Estimation of Quadrature-Axis Component of Load-Current

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Performance Analysis of FOPI for Different Values of k . . . . . . . 304.2 Performance Analysis of FOPI for Various Values of k

with Constant Values of Kp and Ki . . . . . . . . . . . . . . . . . . . . . . . 314.3 Performance Analysis of the Proposed WECS with FOPI

for Variable Wind-Velocity at Constant Load Condition . . . . . . . . 324.4 Performance Analysis of the Proposed WECS with FOPI

for Variable Load at Constant Wind Velocity Condition . . . . . . . . 334.5 Performance Analysis of the Proposed WECS with FOPI During

Faults at Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354.6 THD Analysis for Linear and Nonlinear Loads . . . . . . . . . . . . . . 35

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Selection Criteria for Algae Biodiesel Production Using SlowPyrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Alpesh Mehta and Nirvesh Mehta1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 About Algae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 Algae to Biofuel Conversion Methods . . . . . . . . . . . . . . . . . . . . . . . . . 404 Collection of Algae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Conceptual Design of Slow Pyrolyser . . . . . . . . . . . . . . . . . . . . . 415 Layout for Slow Pyrolyser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 Exhaust Gas Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Performance Analysis of 4-Leg IB APF for 3-Phase 4-Wire Systemwith Renewable Energy Interface Fuzzy Control DC-Bus Capacitor . . . 49Ranjeeta Patel, Anup Kumar Panda and Josep M. Guerrero1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 3-Phase 4-Leg APF (4L APF) Topology . . . . . . . . . . . . . . . . . . . . . . . 503 id-iq Control Strategy with Fuzzy Logic Controller for PV-Based

4L IB APF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.1 Photovoltaic (PV) System with Boost Converter and MPPT . . . . . 54

4 Simulation and OPAL-RT Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xii Contents

Page 12: Smart Innovation, Systems and Technologies - Springer LINK

Evaluation of Dynamic Amplification of Conventionaland Mono-Lattice Structural System for Tall Wind Mill Towers . . . . . . 61Hemal J. Shah and Atul K. Desai1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612 Validation of Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 Description of 125 m High Monopole Tower and Its Finite

Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654 Description of 125 m High Mono-Lattice Tower and Its Finite

Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 Details of Seismic Simulation of Tower . . . . . . . . . . . . . . . . . . . . . . . . 686 Generation of Artificial Time History . . . . . . . . . . . . . . . . . . . . . . . . . 697 Simulation of Artificial Time History . . . . . . . . . . . . . . . . . . . . . . . . . . 708 Result and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.1 Mono-lattice Structural System . . . . . . . . . . . . . . . . . . . . . . . . . . 708.2 Monopole Structural System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718.3 Comparison of Mono and Mono-lattice Structural System. . . . . . . 72

9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Thermo-economic Comparison of Solar Heat Driven NH3–LiNO3

and NH3–H2O Absorption Refrigeration System . . . . . . . . . . . . . . . . . . 77Nishant Modi, Bhargav Pandya and Jatin Patel1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.1 Thermodynamic Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793 Model Validation and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 814 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Thermo-economic Analysis of Biomass-Powered Single EffectLiBr/H2O Absorption Refrigeration System . . . . . . . . . . . . . . . . . . . . . . 87Bhaumik Modi, Bhavesh Patel and Anurag Mudgal1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893 Thermo-economic Modeling of ARS . . . . . . . . . . . . . . . . . . . . . . . . . . 904 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1 Effect of Generator Temperature on COP and Annualized Costof Biomass-Powered ARS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Effect of Evaporator Temperature on COP and Annualized Costof Biomass-Powered ARS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Contents xiii

Page 13: Smart Innovation, Systems and Technologies - Springer LINK

Issue and Challenges with High-Temperature Solar Selective Materialfor Solar Thermal Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Rajesh Kumar and Ambesh Dixit1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992 Associated Issues and Challenges in Developing High-Temperature

Stable Selective Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033 The Current Status of High-Temperature Solar Selective Coatings . . . . . 1034 Potential High-Temperature Solar Selective Coatings . . . . . . . . . . . . . . 1055 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Investigation on the Relative Influence of Absorber Layer DefectStates Over Performance of Pb-Based and Sn-Based PerovskiteSolar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Piyush Baldha, Krunal Patel and Kshitij Bhargava1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102.2 Pb-Based Solar Cell Device Architecture . . . . . . . . . . . . . . . . . . . 1112.3 Sn-Based Solar Cell Device Architecture . . . . . . . . . . . . . . . . . . . 112

3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133.1 Optimization of Absorber Layer Thickness in Simulated

Pb-Based and Sn-Based Solar Cells . . . . . . . . . . . . . . . . . . . . . . . 1133.2 Influence of Defects in the Absorber Layer Over

the Performance of Simulated Cells . . . . . . . . . . . . . . . . . . . . . . . 1154 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Application of Fuzzy Linguistic Modeling Aggregatedwith VIKOR for Optimal Selection of Solar Power Plant Site:An Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Bhavin Shah, Harsh Lakhani, Kumar Abhishek and Soni Kumari1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192 Case Study: Selection of the Alternatives for Solar Power

Plant Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Controller Design for Buck–Boost Converter Using State-SpaceAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129Dhrumil Daftary and Chirag H. Raval1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292 Modelling of DC–DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

2.1 State-Space Averaged Model of DC–DC Converter . . . . . . . . . . . 1302.2 Small-Signal Transfer Function of Buck–Boost Converter . . . . . . . 132

xiv Contents

Page 14: Smart Innovation, Systems and Technologies - Springer LINK

3 Designing the Parameters of Buck–Boost Converter . . . . . . . . . . . . . . . 1364 Analyzing the Transfer Function G(s) . . . . . . . . . . . . . . . . . . . . . . . . . 1365 Designing the Controller for Transfer Function G(s) . . . . . . . . . . . . . . . 1376 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Optimal Utilization of Reactive Power Capability of RenewableEnergy Based Distributed Generation for Improved Performanceof Distribution Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141Praghnesh Bhatt, Chao Long, Bhinal Mehta and Nilay Patel1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1412 Classification of DG Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1423 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.1 Real Power Loss Representation for DNs . . . . . . . . . . . . . . . . . . 1433.2 Representation of Active Power Losses in Terms of Power

Factor of DG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1433.3 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4 Case Studies’ Simulation, Results, and Discussions . . . . . . . . . . . . . . . 1454.1 Medium Voltage (MV) Distribution Network . . . . . . . . . . . . . . . . 1454.2 Performance of DN Without Optimizing Reactive

Power of DGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1474.3 Performance of DN with Optimizing Reactive Power Capability

of DGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1475 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Voltage Control of Wind and Diesel-Based Distributed GeneratingSystem Using PSO and CSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153Pankita Mehta, Praghnesh Bhatt and Vivek Pandya1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1532 Voltage Control of Isolated Power System . . . . . . . . . . . . . . . . . . . . . . 1543 State-Space Representation of Wind–Diesel-Based Hybrid Power

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554 Evolutionary Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.1 Cuckoo Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1574.2 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5 Simulation Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1596 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Contents xv

Page 15: Smart Innovation, Systems and Technologies - Springer LINK

Harmonic Current Signal Injection-Based Grid ImpedanceMeasurement Technique for Active Harmonic Filter . . . . . . . . . . . . . . . 165Bhargav Nashikkar, Rajendrasinh Jadeja, Vinod Patel,Tapankumar Trivedi and Uvesh Sipai1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1652 Harmonic Current Signal Injection Method for Grid Impedance

Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1672.1 Controlling of AHF for Impedance Measurement . . . . . . . . . . . . . 1682.2 Grid Impedance Measurement Algorithm . . . . . . . . . . . . . . . . . . . 168

3 Calculations of Inductance, Capacitance and Resonant Frequency . . . . . 1694 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1715 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Experimental Investigation of Dehumidifier Hybrid Air ConditionerIntegrated Zeotropic Refrigerant Blend R-407C Air Source WaterHeat Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175Juned R. Kazi and Neeraj Agrawal1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1752 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

2.1 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1773 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1794 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Experimental Investigation of the Solar Dryer Using Phase-ChangeMaterial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185C. O. Yadav and P. V. Ramana1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1852 Design and Development of Experimental Setup . . . . . . . . . . . . . . . . . 1873 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1894 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Design and Optimization of Hybrid Electric Vehicle . . . . . . . . . . . . . . . 199Tarang Varmora, Manish Kumar and Shah Krupa Rajendra1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1992 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

2.1 Selection of Type of HEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2002.2 Selection of Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2002.3 Selection of Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2012.4 Selection of Braking System . . . . . . . . . . . . . . . . . . . . . . . . . . . 2012.5 Steering and Suspension System . . . . . . . . . . . . . . . . . . . . . . . . 201

xvi Contents

Page 16: Smart Innovation, Systems and Technologies - Springer LINK

3 Roll Cage Design and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2023.1 Optimization of Design and Analysis . . . . . . . . . . . . . . . . . . . . . 205

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Climate Control of Greenhouse System Using Neural PredictiveController . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211Shriji V. Gandhi and Manish T. Thakker1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2112 Mathematical Model of GHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2123 Neural Predictive Control for GHS . . . . . . . . . . . . . . . . . . . . . . . . . . . 2134 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

4.1 Stabilizing Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2174.2 Tracking Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Green Concrete by Replacing Coarse Aggregate with Cupola Slagfor Environmental Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223Vishwash K. Mistry and Dipak J. Varia1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

1.1 World Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2241.2 Indian Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2241.3 Scenario in Gujarat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2251.4 Cupola Furnace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2251.5 Need of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2261.6 Alternative Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2271.7 Aggregate Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

2 Expriemental Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2282.1 Cement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2282.2 Fine Aggregate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2282.3 Coarse Aggregate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2282.4 Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2282.5 CSA (Cupola Slag Aggregate) . . . . . . . . . . . . . . . . . . . . . . . . . . 229

3 Experimental Programme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2293.1 Concrete Mix and Sample Preparation . . . . . . . . . . . . . . . . . . . . . 2293.2 Tests Performed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2303.3 Tests on Fresh Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2313.4 Tests on Hardened Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

4 Cost Comparision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2355 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Contents xvii

Page 17: Smart Innovation, Systems and Technologies - Springer LINK

Potential Study of Atmospheric Water Generator (AWG) for HumidClimatic Conditions of Eastern States in India . . . . . . . . . . . . . . . . . . . . 239Krunal Patel, Jatin Patel and Harshil Raval1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2402 Description of System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

2.1 Analytical Prediction of Condensate Extraction . . . . . . . . . . . . . . 2443 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2454 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2465 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Exergy Analysis—A Useful Concept of Sustainability for Air SourceHeat Pump System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249Nidhi Trapasia, Krunal Patel and Rajesh Patel1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2502 Description of System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2513 Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2514 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2545 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Role of Algae in CO2 Sequestration Addressing Climate Change:A Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257Vishal Paul, P. S. Chandra Shekharaiah, Shivbachan Kushwaha,Ajit Sapre, Santanu Dasgupta and Debanjan Sanyal1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2572 Algae as a Potential CO2 Capturing Agent . . . . . . . . . . . . . . . . . . . . . . 2583 Algal Strain Selection for CO2 Sequestration . . . . . . . . . . . . . . . . . . . . 259

3.1 Algae Cultivation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2604 Global Carbon Cycle, Carbon Credit, and Current Focus on Algae

Globally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2614.1 Companies Involved in Algae-Based CO2 Capture . . . . . . . . . . . . 2614.2 Global Carbon Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Chemical Looping Reforming (CLR) System for H2

Production—A Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267Mit Pujara, Mit Sheth, Nikunj Rachchh, Rameshkumar Bhoraniyaand Atal Bihari Harichandan1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2672 Different Types of Oxygen Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

2.1 Cu-Based Oxygen Carrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2692.2 Ni-Based Oxygen Carrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2692.3 Fe-Based Oxygen Carrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

xviii Contents

Page 18: Smart Innovation, Systems and Technologies - Springer LINK

2.4 Ce-Based Oxygen Carriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2722.5 Mixed Metal Oxides Oxygen Carrier . . . . . . . . . . . . . . . . . . . . . . 273

3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Commitment for a Cleaner India: Utilization of CO2 and SewageWastewater by Green Algae Scenedesmus sp. Under LaboratoryConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277Debanjan Sanyal, Santosh Kodgire, Dishant Desai, Nishant Saxena,Sunita Singh and Santanu Dasgupta1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2772 Materials and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

2.1 Biomass Production of Scenedesmus Sp. Under 2% CO2 . . . . . . . 2782.2 Growth and Total Organic Carbon Captured by Scenedesmus

Sp. in Sewage Wastewater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2803 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

3.1 Biomass Production of Scenedesmus Sp. Under 2% CO2 . . . . . . . 2803.2 Growth and Total Organic Carbon Captured by Scenedesmus

Sp. in Sewage Wastewater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2834 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

A Design Framework for Portable Artificial Photosynthesizer:A Future Reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287Raja Sekhar Mamillapalli and V. Vishnu Namboodiri1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2882 Model for Artificial Photosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2893 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Thermodynamic Analysis of Transcritical CO2 Booster Systemswith Flooded Evaporator for Supermarket Application . . . . . . . . . . . . . 293Manju Lata, Ashish Kumar Yadav and Dileep Kumar Gupta1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2942 Booster Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2953 Thermodynamic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2974 Operating Conditions and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 2985 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2986 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Correction to: Climate Control of Greenhouse System Using NeuralPredictive Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1Shriji V. Gandhi and Manish T. Thakker

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Contents xix

Page 19: Smart Innovation, Systems and Technologies - Springer LINK

About the Editors

Dipankar Deb completed his Ph.D. from University of Virginia, Charlottesvillewith Prof. Gang Tao, IEEE Fellow and Professor in the Department of ECE in2007. In 2017, he was elected to be an IEEE Senior Member. He has served as aLead Engineer at GE Global Research Bengaluru (2012–15) and as an AssistantProfessor in EE, IIT Guwahati 2010–12. Presently he is Associate Professor at theDepartment of Electrical Engineering, Institute of Infrastructure TechnologyResearch and Management. He leads efforts towards innovation. He is a StudentStartup and Innovation Project Coordinator at IITRAM. He mentors students tobuild Intellectual Property Rights (Patents).

Ambesh Dixit (PhD, 2010, Wayne State University MI, USA) has experience incomputational and experimental condensed matter physics with special emphasison design and development of materials for energy applications. He is currentlyworking on the development of materials for energy conversion and storage. He hasauthored several research publications in international journal and in conferenceproceedings.

Laltu Chandra (PhD, 2005, University of Karlsruhe Germany) has experience inexperimental and numerical heat transfer and fluid mechanics. His interest is on thenuclear and concentrated solar thermal sub-systems design, development and eval-uation. Recently, he has developed open volumetric air receiver based solar con-vective furnace system for metals processing. He has authored several researchpublications in international journal, as book chapters and in conference proceedings.

xxi