Top Banner
HAL Id: inserm-00497537 https://www.hal.inserm.fr/inserm-00497537 Submitted on 1 Jul 2011 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Skeletal Muscle in Motor Neuron Diseases: Therapeutic Target and Delivery Route for Potential Treatments. Luc Dupuis, Andoni Echaniz-Laguna To cite this version: Luc Dupuis, Andoni Echaniz-Laguna. Skeletal Muscle in Motor Neuron Diseases: Therapeutic Target and Delivery Route for Potential Treatments.. Current Drug Targets, Bentham Science Publishers, 2010, pp.1250-61. inserm-00497537
39

Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

May 25, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

HAL Id: inserm-00497537https://www.hal.inserm.fr/inserm-00497537

Submitted on 1 Jul 2011

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Skeletal Muscle in Motor Neuron Diseases: TherapeuticTarget and Delivery Route for Potential Treatments.

Luc Dupuis, Andoni Echaniz-Laguna

To cite this version:Luc Dupuis, Andoni Echaniz-Laguna. Skeletal Muscle in Motor Neuron Diseases: Therapeutic Targetand Delivery Route for Potential Treatments.. Current Drug Targets, Bentham Science Publishers,2010, pp.1250-61. �inserm-00497537�

Page 2: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 1/1

Skeletalmuscleinmotorneurondiseases:therapeutictarget

anddeliveryrouteforpotentialtreatments

LucDUPUIS1,2*&AndoniECHANIZ­LAGUNA1,2,3

(1) Inserm, U692, Strasbourg, F-67085 France (2) Université de Strasbourg, Faculté de Médecine, UMRS692, Strasbourg, F-67085

France (3) Département de Neurologie, Hôpital Civil de Strasbourg, 1 Place de l'Hôpital, BP426,

67091 Strasbourg,France

* To whom correspondance should be addressed: Luc DUPUIS, INSERM U692, Faculté de Médecine, bat 3, 8e étage, 11 rue Humann, STRASBOURG, F-67085, France ; Telephone: (+33) 3 68 85 30 91; Fax: (+33) 3 68 85 30 65; e-mail : [email protected]

Page 3: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 2/2

Abstract(237words):

Lowermotorneuron(LMN)degenerationoccursinseveraldiseasesthataffectpatients

fromneonatestoelderlyandcaneitherbegeneticallytransmittedoroccursporadically.

AmongdiseasesinvolvingLMNdegeneration,spinalmuscularatrophy(SMA)andspinal

bulbarmuscularatrophy(Kennedy’sdisease,SBMA)arepuregeneticdiseaseslinkedto

loss of the SMN gene (SMA) or expansion of a polyglutamine tract in the androgen

receptorgene(SBMA)whileamyotrophiclateralsclerosis(ALS)caneitherbeofgenetic

originoroccursporadically.Inthisreview,ouraimistoputforwardthehypothesisthat

muscle fiber atrophy andweaknessmight not be a simple collateral damage of LMN

degeneration,butinsteadthatmusclefibersmaybethesiteofcrucialpathogenicevents

inthesediseases.InSMA,theSMNgenewasshowntoberequiredformusclestructure

and strength as well as for neuromuscular junction formation, and a subset of SMA

patients develop myopathic pathology. In SBMA, the occurence of myopathic

histopathologyinpatientsandanimalmodels,alongwithneuromuscularphenotypeof

animalmodelsexpressingtheandrogenreceptorinmuscleonlyhasleadtotheproposal

thatSBMAmayindeedbeamuscledisease.Lastly,inALS,atleastpartofthephenotype

might be explained by pathogenic events occuring in skeletalmuscle. Apart from its

potential pathogenic role, skeletalmusclepathophysiological eventsmight be a target

fortreatmentsand/orbeapreferentialroutefortargetingmotorneurons.

Page 4: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 3/3

1) Introduction: lower motor neuron degeneration affects first

neuromuscularjunctions

Voluntary locomotion is governed bymotor units, composed of lowermotor neurons

(LMNs) (alpha‐motor neurons) that innervate skeletalmuscle fibers and control their

contraction.MyelinatedaxonsoftheLMNscontactmusclefibersonadiscreteregionof

the fiber, highly speciallized, called the neuromuscular junction (NMJ). A number of

pathologiestargetthiscriticalregion.First,myasthenicsyndromesaffecttheefficacyof

synaptic transmission through either immunological or genetic processes. In these

pathologies,theabsolutenumberofNMJsremainroughlythesamebuttheirefficacyto

triggeramuscleactionpotentialinresponsetomotorneuronstimulationisdecreased

leadingtofatigablemuscleweakness.NMJsarealsoaffectedduringlowermotorneuron

degeneration.Inthisreview,wewillfocusonpathologiesinvolvingLMNdegeneration,

butsparingsensoryinnervation.Thisgroupofdiseasesaffectspatientsfromneonatesto

elderly people and can either be genetically transmitted or occur sporadically in a

family.Thetable1summarizestheclinical featuresofthediseaseswewill focusonin

thisreview,namelyspinalmuscularatrophy(SMA)[1],spinalbulbarmuscularatrophy

(Kennedy’sdisease,SBMA)[2]andamyotrophiclateralsclerosis(ALS)[3].

During LMN degeneration, NMJs are progressively destroyed, leading to fully

denervated muscle fibers and neurogenic figures in histopathology. The figure 1

presents typicalhistopathologicalandelectrophysiological resultsobtained inpatients

afflictedwith a LMN degeneration. One is able to observe thatmuscle fibers of these

patients display spontaneous denervation activities as judged in electromyography

(figure 1A). Histopathology shows the occurence of small grouped, angulated fibers

(figure 1B‐D). It is thought that reinnervation of muscle fibers by the same motor

neuron leads to these grouped fibers. NMJ destruction during LMN degeneration is

associatedwiththedegenerationof lowermotorneuroncellbodies,hencetheirname

andawidelyacceptedparadigmwasthatLMNdeathwasthecauseofNMJdestruction

inthesepathologies.Indeed,muscledenervationbynervetransectionleadstoroughly

similarhistopathological figures,suggestingthat inLMNdegeneration, thesamecause

(disruption of the nerve to muscle communication) leads to the same consequence

(muscle denervation). However, recent histopathological evidences suggest that

Page 5: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 4/4

grouped atrophic fibers are highly homogenous in type in polyneuropathies, but

heterogenousinLMNdegeneration[4].Thereasonforthisdyscrepancyisunknown,but

might indeed reflect profound differences in the mechanisms of

denervation/reinnervationbetweenpurelydenervatingdiseasesanddiseaseswithLMN

degeneration.

Inthisreview,wewouldliketoputforwardthehypothesisthatmusclefibersmightnot

bethecollateraldamagesofLMNdegeneration,butrather,oneoftheirmurderers.For

this,wewillfirstdescribehowmuscleisinvolvedinthepatterninganddevelopmentof

fully functionalNMJsandhowmuscleparticipates in thepathologyofALS, SBMAand

SMA.Wewillalsogiveinsightsintohowdrugsmighttargetmusclepathophysiological

events or target motor neurons but be delivered through muscles to treat LMN

degeneration.

2) Muscleandmotorneuron:apeertopeerdialogtoestablishneuromuscular

junctions

The establishment of neuromuscular synapses is a highly controlled developmental

event.Motor axons, emerging from the embryonic spinal cord, contact newly formed

myofibers around E13. It was long known that motor neurons and muscles are

interdependantfortheirdevelopment.Indeed,duringdevelopment,motorneuronsdie

if deprivedof their targetmuscle[5‐8]. Conversely,muscledevelopment is arrested in

the absence ofmotor neurons. A neurocentric view of the development of NMJs long

prevailed andpostulated that thisprocesswasmainlydrivenbymotorneurons,with

musclefibersbeingpassiveplayersofNMJdevelopment.Indeed,motorneuronssecrete

averyactiveisoformoftheglycoproteinagrin(neuralagrin),thatissufficienttocluster

nicotinic acetylcholine receptors on themyofiber [9, 10] through a complex receptor

pathway involving the tyrosine kinaseMusk and a co‐receptor LRP4 [11, 12]. In this

model,thepresenceofagrinsecretedbythenerveissufficienttoclusterAchRandform

NMJs.However, in theabsenceof nerves, clustersofnicotinicacetylcholine receptors

still form in the correct , central, regionof thedeveloppingmuscle[13,14].Moreover,

diaphragmmusclesfromE14embryosculturedinthepresenceofrecombinantagrinas

wellasmusclesfromtransgenicmiceoverexpressingaminiaturisedformofagrininthe

Page 6: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 5/5

whole muscle fiber retain the formation of AchR clusters in their central region[15].

Conversely,thetransientmuscleoverexpressionofaconstitutivelyactiveformofErbB2

widened the zone of AchR transcription and of the region where NMJs formed[16].

Altogether, these data show that the sitewhere NMJs form in skeletalmuscle is pre‐

patterned bymuscle cells, independantly of nerve derived cues such as agrin. In the

currentmodel,NMJs thus form through a dialog betweenmuscle andmotor neurons,

muscledriving the zonewhere NMJswill formandneurons strengthening thenewly

formedcontactsbythesecretionofagrin.

ThispathwayofNMJdevelopmenthasbeenlargelystudiedinthecontextofcongenital

myasthenicsyndromes inwhichmutations inMusk[17],ormorerecently inagrin[18]

werefound.Uptonow,thereisnodocumentedassociationbetweenthispathwayand

LMN degeneration. However, it is striking to note that a mutation in Musk, when

introduced in knockin mice, not only leads to the full phenotypic spectrum of

myasthenic syndrome, but also to denervation of endplates andmolecular features of

denervation[19].Inlinewiththis,therecentlydescribedmutationinagrininapatient

withcongenitalmyastheniav[18] leads tonotonly topost‐synapticdefectsbutalso to

pre‐synapticpathologysuggestingthattheAgrin/Muskpathwaymightalsobeinvolved

inthemaintenanceofNMJsinadultsand,thuspotentiallyinLMNdegeneration.

3) Musclepathogenicroleinspinalmuscularatrophy

3‐1) spinalmuscularatrophy

Childhoodspinalmuscularatrophy(hereaftercalledspinalmuscularatrophy,SMA)isa

child‐onsetmotorneurondisease involvingmutations in thesurvivalofmotorneuron

gene[20].SMApatientsaredividedinthreeclinicalgroupsaccordingtotheseverityof

their disease[1]. Type I SMA is characterizedby severe, generalizedmuscleweakness

andhypotoniaatbirthorwithinthefirst6months,withdeathusuallyoccuringwithin

the first 2 years. Type II children are able to sit, although they cannot stand orwalk

unaided,andtheysurvivebeyond2years.IntypeIIISMApatientshaveproximalmuscle

weakness,startingaftertheageof18months.

Page 7: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 6/6

Inthehumangenome,theSMNgeneisduplicatedwithahighlyhomologouscopycalled

SMN2.BothSMNandSMN2genesareexpressedandonlyfivenucleotidesaredifferent

between both genes.We showed that even the promoter sequences and activities of

these two genes were strikingly similar[21]. Importantly, only SMN1 deletions cause

SMA,whileupto5%ofindividualsarelackingtheSMN2gene.Thesubtledifferencein

nucleotide sequencebetweenSMN1 and2hasno effect on the encodedopen reading

framebutprofoundeffectsonSMN2 splicing. Indeed,oneof thenucleotidesdivergent

betweenSMN1andSMN2createsanewsplicingsiteinSMN2mRNAbyskippingexon7.

Thus,theSMN1geneproducesexclusivelyfull lengthfullyfunctionaltranscripts,while

thetranscriptsderivedfromSMN2lackexon7.Mostimportantly,theamountofSMN2

protein are strikingly invertly correlatedwith the clinical severity of disease[22, 23],

suggesting that SMN2 is a modifying gene in SMA. Thus, SMA is caused by SMN1

mutation and the severity of the disease is linked to the potential compensation by

SMN2proteinproducts.ThatSMA is causedby the lackof full‐lengthSMNproteins is

largely substantiated by the evidence that ablating specifically the exon 7 in motor

neuronsleadtomotorneurondegenerationinmice[24‐26].

3‐2) ahousekeepingfunctionforSMNprotein?

WhatisthefunctionofSMN,lostinSMA,thatmightleadtomotorneurondegeneration?

SMNformsalargemultiproteincomplexwithat least7otherproteins(calledgemins)

both inthecytoplasmandinthenucleuswhere it isconcentrated inastructurecalled

gems (for "gemini of coiled bodies"), associated with Cajal bodies[27]. This complex

including SMN and gemins appears crucial for the biogenesis of small nuclear

ribonucleoprotein particles (snRNPs) [28‐30] that are involved in the splicing of pre‐

mRNA.ConsistentwithakeyroleinRNAmetabolism,theablationofexon7ofSMNin

eithermuscleorneuronleadstostrongup‐regulationofanumberofgenesinvolvedin

pre‐mRNA splicing, ribosomal RNA processing, or RNA decay [31]. Furthermore, a

recent study used exon microarray in SMA mice and observed widely distributed

splicing defects in numerous mRNAs[32]. Interestingly, while splicing defects were

prominentlyobservedinallthetissuesstudied,thegenesthatwereabnormalyspliced

were different between tissues, suggesting that the selectivity of SMA for the

neuromuscularsystemisexplainedbytissuespecificalterationsinmRNAsplicing.

Page 8: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 7/7

3‐3) SMNisrequiredformusclefunction

TheSMNproteinisubiquitouslyexpressedandthetissuespecificablationofSMNleads

to drastic alterations in the physiology of the targeted tisue[24‐26, 33]. A number of

studieshaveconvincinglyshownthatSMNexpressionwasrequiredformusclestructure

and function. Invitro,Shafeyandcollaboratorsdemonstrated thatSMNknockdown in

C2C12 myoblasts lead to decreased myoblast proliferation and impaired myotube

fusion[34]. Consistently, in vivo, exon 7 ablation of the SMN gene in mouse skeletal

muscle leads toamassivemuscledystrophyanddeathof theanimals [24] andRNAi

knockdownofSMN indrosophilamusclesis letal indrosophila inamuchmoresevere

waythanneuronalknockdown[35].Thesestudieswereallbasedontheknock‐downor

knock‐out of the SMN gene, a situation much more drastic of what occurs in real

pathological situations. Their relevance for the human pathology is however

strengthenedbytheworkofArnoldandcollaborators[36]thathadpreviouslyobserved

decreased proliferation and impaired fusion of type I SMAmyoblasts. More recently,

Martínez‐Hernández and collaborators showed thatmyotubesof fetuses affectedwith

type I SMA were smaller and with abnormal arrangements suggesting delayed

developmentalmaturation[37].Importantly,aboutaquarterofSMAtype3arereported

to have a dystrophic phenotype with high serum creatine kinase (CK) levels and

“myopathic”histopathology[38].Thus,SMNisrequiredfornormalmusclestructureand

developmenteitherinexperimentalsituationsorinSMApatients.

The function of SMN in muscle is likely to be related to sarcomeric structure. In

drosophila bearing an hypomorphic allele of SMN, Rajendra and collaborators in

2007observedaseveredisorganizationofmusclefilamentsassociatedwithdecreased

actinexpression[39].Indeed,SMNhypomorphdisplayedasimilarphenotypethanflies

withablationofonemuscleisoformofactin.TheseauthorssuggestedafunctionforSMN

in sarcomere formation since both endogenous and transgenic SMN localized to the

sarcomericregionof flymuscle.Sucha functionwas furthersuggestedbytheworkof

Walker and collaborators[40]. Indeed, not only SMN, but also its associated proteins

localize to the sarcomeric Z‐disc in both cardiac and skeletalmyofibrils of themouse.

This localization of the SMN complex appeared independent of its role in pre‐mRNA

splicingsincesnRNPsthemselveswerenotfoundinthesarcomere.SMAmutantmuscles

exhibitnumerousmorphologicaldefects, includingvacuolesandalteredZ‐discspacing

Page 9: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 8/8

andanoverall lossofsarcomericuniformityandalignment.Whetherthisphenotypeis

primarilymyopathicorifitisasecondaryconsequenceofdenervationisnotknownbut

these results establish that myofibrils from SMA type I mice display defects that are

consistentwith those observed in othermyopathies. Furthermore, these observations

are consistentwith theoccurenceof congenital heartdefects in SMA.This functionof

SMNinsarcomereformationmightberelatedtothepostulatedroleofSMNinbeta‐actin

mRNAtranslation[41].Inall,thedataavailablepointtoakeyfunctionforSMNinmuscle

developmentandfunction.

3‐4) SMAisadevelopmentalpathologyofNMJs

Recent evidence suggest that the SMA pathology begins at NMJs. Indeed, Kariya and

collaboratorsusedsevere‐andmild‐SMN2expressingmousemodelsofSMAaswellas

material fromhumanpatients tounderstandthe initialstagesofneurodegeneration in

thehumandisease[42].Inthesestudies,theearliestdefectsappearattheNMJ.Indeed,

lack of SMN protein lead to the failure of post‐natal development of the NMJ. In

particular, NMJs of SMA mice showed impaired maturation of acetylcholine receptor

(AChR) clusters into ‘pretzels’ that were reflected in functional deficits at the NMJ

characterized by intermittent neurotransmission failures. Similar results were also

reportedbyKongandcollaboratorswhichobservedimmaturityofNMJsinSMAmiceas

assessed for instance by persistance of embryonic gene expression, reduced post‐

synaptic apparatus and electrophysiological abnormalities[43]. Importantly, the pre‐

synapticpathologyofsevereSMAmiceisdissociatedfromthepost‐synapticpathology,

suggestingthatbotheventsmightbeindependent[44].Thesedataareindeedconsistent

withearlier studies showing reducedexpressionofAchRgenes in SMAmyocytes[36].

Altogether,SMAshouldnowbeviewedasadevelopmentalNMJsynaptopathy

3‐5) SMAasaglobalneuromuscularpathology

GiventhatSMNhasacrucialfunctioninmuscle,andthatSMApathologyisinitiatedat

theneuromuscularsynapse,onecouldhypothesizethatSMAisindeedamuscledisease

spreading to the motor neuron. Indeed, muscle knockdown of SMN leads to a more

drastic phenotype than neuronal knockdown in Drosophila [35]. This is however not

true inall animalmodels, sinceSMN ablation ispartially rescuedbyneuronalbutnot

Page 10: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 9/9

muscle transgenic expression in the nematode[45]. Furthermore, overexpression of

SMNinskeletalmusclesdidnotallowtherescueofthephenotypeofsevereSMAmice,

whileamorewidespreadoverexpressionincludinghighlevelsinneuronsandlowlevels

inmuscle stronglyalleviated thephenotypeof thesemice [46].However, it shouldbe

kept in mind that the transgenic overexpression of SMN2 in these animals might be

sufficientonitsowntofullyrescuethemusclephenotype.Inthissituation,oneshould

notexpectanevenmoreincreasedsurvivalofthemiceafterincreasingSMNexpression.

Inanycase,thebunchoflitteraturecurrentlyavailablestronglysuggeststhatSMAisa

globalneuromuscularpathology, involvingpathologicalevents inmuscleandneurons,

andpotentiallyanumberofothercelltypes(figure2).

4) MusclepathogenicroleinKennedy’sdisease

4‐1) Kennedy’sdisease

Spinalandbulbarmuscularatrophy (SBMA),orKennedy'sdisease, isapurelygenetic

LMNdegenerationcausedbyexpansionofaCAGrepeatinthefirstexonoftheandrogen

receptor(AR)gene, leadingtoanARproteinwithanexpandedpolyglutamine(polyQ)

tract [47]. Like in other triplet repeat disorder, including Huntington’s disease, the

disease develops only in individuals bearing an expansion of the polyQ tract over a

certainthreshold(>36Gln)andthelengthofthepolyQiscorrelatedwithanumberof

clinicalparameters[48,49].SBMAisanX‐linked,genderspecificdiseasesinceonlymale

carriers of a pathogenic mutation are affected. The phenotype of females carrying a

pathogenicalleleisabsentorverymildevenifhomozygousforanexpandedCAGrepeat

[50,51].SBMApatientsdevelopproximalmuscleweakness,fasciculations,andatrophy,

alongwithlowermotorneurondegenerationinthebrainstemandspinalcord[2,52].A

subsetofpatientsalsodisplayadditionalfeatures,associatedwithandrogendysfunction

such as androgen insensitivity, oligozoospermia or azoospermia, testicular atrophy,

feminizedskinchanges,andgynecomastia[53,54].

DifferentanimalmodelsofSBMAhavebeengeneratedintherecentyears.Inparticular,

expansions of CAG repeats have been introduced in knock‐in mice[55‐57] or in

transgenicmice[58‐61].For instance,malemicewitha113polyglutamine tract in the

Page 11: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 10/10

endogenousARdeveloppedanSBMA‐likeneuromuscularpathology,withearlymuscle

pathology but late spinal cord disease and relatively spared motor neurons. In this

mousemodel, therewasprominentearlydeathofmales causedbyobstructionof the

urinary tract [55]. Interestingly, affected males display several signs of androgen

insensitivity,ascommonlyobservedinSBMA.

ThephysiologicalfunctionofthemutantproteininSBMAisextremelywelldocumented.

The AR is a transcription factor, whose transcriptional activity is activated by

testosterone or dihydrotestosterone[62]. After ligand activation, AR drives the

expression of its target genes, including key factors for muscle growth, male

reproductivefunctionandmalesecondarysexualphenotypes[63].Thelackoffunctional

AR protein leads to testicular feminization and complete infertility in both mice and

humans[64, 65]. In skeletal muscle, AR is especially required for the maintenance in

musclemassandfibertype[66]aswellasmusclestrengthinmales[67].

Studiesinanimalmodelsindicatethathormonalligandsarecrucialforthedevelopment

of SBMA. First, only male transgenic mice develop an SBMA‐like phenotype. Second,

castration of transgenic males alleviates the phenotype while testosterone‐treated

females develop the pathology [58, 60, 61]. This is reminiscent of the absence of

phenotype of women carriers of SBMA mutations [50, 51]. Consistently, a phase 2

clinical trial has recently suggested that androgen deprivation by leuprorelin acetate

maybebeneficialtopatients[68]Thus,SBMAisduetoatoxicgainoffunctioninmutant

ARunmaskedbythepresenceoftheligand.

4‐2) MyopathicpathologyinSBMA

Studies in both patients and mice have shown that, apart from lower motor neuron

degeneration,SBMApatientsdisplaymyopathic features. Inparticular,SBMApatients

showedCKelevationinmusclebiopsies[69].Recently,wedescribedafamilywithearly

onset and rapidly progressive SBMAmimicking muscle dystrophy [70]. Three out of

sevenpatients in this familydisplayed increasedCK levels indicating rhabdomyolysis,

suggesting that theoccurenceofsuchmuscleabnormalities is indeedverycommon in

SBMA. It should however be noted that CK elevation is a poor indicator ofmyopathy

since it is subject to large variations and increased in a number of conditions. Apart

Page 12: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 11/11

from plasma CK levels more elevated than expected in denervative diseases, SBMA

patients also often show myopathic abnormalities in muscle biopsies with centrally

nucleatedfibersorothermyopathicfeatures[69]andsuchabnormalitiesdonotappear

tobethesoleconsequenceofdenervation.Inthesameline,Yuandcollaboratorshave

shownthatmusclepathologylongpreceedsspinalcordpathologyinananimalmodelof

SBMA.Furthermore,theseanimalsdisplaymixedfeaturesofmyopathyanddenervation

and showed prominent and lethal myotonic discharges [55]. Thus, while SBMA was

considered as a puremotor neuron disorder, recent research reevaluated this notion

andshowedthatSBMAisamixedconditioninvolvingnotonlyneurogenicdenervation,

butalsomyopathicfeatures.

4‐3) AmyogenicoriginforKDrelatedmotorneurondegeneration?

These findingsprompted to test thehypothesis thatLMNpathologyof SBMApatients

indeed resulted from a myogenic pathology. This idea is further supported by the

crucialroleofARintheskeletalmuscle[63‐65]andbytheintriguingobservationthat

AR accumulates at NMJs[71]. Indeed, the pathology of animal models of SBMA is

primarilymuscular,withbothneurogenicandmyogenicpathologyoccuringlongbefore

motor neuron degeneration is observed [55]. Indeed, in most SBMA animal models,

there is no detectablemotor neuron degeneration [55, 58, 59].Most importantly, the

musclespecificoverexpressionofanon‐expandedARleadstoaSBMA‐likephenotype.

In this model, the phenotype was androgen dependent, witha pathology strictly

affecting males but alleviated by castration[72]. Importantly, mice present with a

pathology not restricted to muscle (muscle necrosis) but also show axonal loss and

denervationrelatedchangesingeneexpressionbutnotlossofMNcellbodies[72].Last,

the pathology did not affect females except when treated with testosterone, and the

cessation of testosterone treatment in females allows complete recovery of the

phenotype [73, 74]. These studies thus provide the convincing proof of principle that

SBMAmight be a LMNdegeneration ofmuscle origin [74] (figure 3). Furtherwork is

neededtodelineatethemechanismslinkingmuscleARandNMJdenervation,aswellas

thepathogenicroleofpolyglutamineexpansion.

Page 13: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 12/12

5) Musclepathogenicroleinamyotrophiclateralsclerosis

5‐1) Amyotrophiclateralsclerosis

Amyotrophic lateral sclerosis (ALS) is the most frequent LMN degeneration of adult

onset. ALS worldwide incidence is estimated to be of 1–3 new cases per 100000

individuals, which ranks ALS as the most frequent neurodegenerative disease after

Alzheimer's and Parkinson's diseases[3]. Like SMA and SBMA, ALS presents with a

progressive paralysis affecting first either limb muscles (spinal onset) or cranial

muscles (bulbar onset). A difference between ALS and other diseases with LMN

degenerationisthatLMNsarenottheonlyneuronalcelltypetobeaffected.Indeed,in

paralleltoLMNinvolvement,uppermotorneurons(corticospinalmotorneurons)also

degenerate.MostoftheALSpatientsdiewithintwotofiveyearsafterthediagnosisbut

the disease is heterogeneous in its duration and clinical presentation. No current

treatment isabletostopthediseaseprocess.RiluzoleremainstheonlyFDAapproved

drugandincreasesthesurvivalofthepatientsbyafewmonths.

MostALScasesarenotassociatedwithafamilyhistoryandare,hence,termedsporadic;

the remainders (20%) are of genetic origin, generally transmittedwith an autosomal

dominantinheritance.SporadicandfamilialALSareclinicallyindistinguishable.Indeed,

even in a single affected family, the clinical presentation of the patients may vary,

strongly suggesting that genetic and/or environmental cues are of pathological

importance[75‐77].Severalgenes includingangiogenin[78],vapb[79],dynactin[80,81],

andmorerecentlytdp43[82­86],fus[87,88]andfig4[89]havebeengeneticallylinkedto

familial forms of ALS, but how these specific mutations lead to ALS is currently

unknown[90].TherecentdescriptionofamousemodeloverexpressingmutantTDP‐43

will hopefully lead to new insights in the field[91]. On the contrary, themechanisms

underlyingALSlinkedtomutationsinthesod1gene,thefirstandmajorgenelinkedto

familialALSin1993,havebeenextensivelystudied[75‐77].Itisinterestingtonotethat

variations in the SMN1 and2 genes involved in SMAhave been reported to be a risk

factorinALSalso[92‐97].

Page 14: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 13/13

5‐2) MyopathicfeaturesinALS

Myopathic features have been rarely described in ALS and are certainly much less

frequent than in SMAor SBMA.However, itwas reported that a largenumberofALS

muscle biopsies displayed myopathic features[98, 99] and moderately elevated CK

levels[100].Theextentofthesefindingsishoweververylimitedsincesimilarchanges

in magnitude are observed upon denervation. Most interestingly, a number of case

reportstudiessuggest thateven typicalALSpatientsmight initiallydisplaymyopathic

features.Forinstance,apatientbearingaSOD1mutationdisplayedCKelevationbefore

EMG abnormalities [101]. Moreover, ALS patients might present ragged‐red muscle

fibers,indicativeofmitochondrialpathologyintheirmuscles[102].Itisnoteworthythat

mitochondrial alterations in skeletal muscle might contribute to the pathology[103].

However, this interpretation is complicated by the fact that detectablemitochondrial

dysfunctioninmuscleisaratherlateevent[104,105]thatcouldindeedbetheresultof

muscle denervation. Thus, ALS is also associated with myopathic changes, although

milderthaninSMAorSBMAandmitochondrialdefectsinmusclemightbeassociatedin

atleastasubsetofALScases.

5‐3) NMJdestructionisthecriticalpathogeniceventinSOD1‐linkedALS

StudiesinALSduringthelasttenyearshavebeenfocusedontheelucidationofSOD1‐

linkedALS, through the use of transgenicmice overexpressingmutant SOD1 (mSOD1

mice) isoforms. Between 3 and 12 months of age, mSOD1 mice develop muscle

weakness linked to muscle denervation and both upper and lower motor neuron

degeneration.ThefirsteventinthisdiseaseprocessisthedestructionoftheNMJ,more

specifically of the postsynaptic apparatus, followed by axonal degeneration and late‐

onset degeneration ofmotor neuron cell body[106, 107]. In years 2000, the accepted

paradigmwas that neuronal expression ofmSOD1was responsible formotor neuron

degeneration,leadingtomuscledenervationandparalysis.Thus,mostresearchefforts

sought tounderstandthemechanisms leading frommutantSOD1expression inmotor

neuronstocelldeath.Indeed,apoptosiswasshowntobethemainmechanismofmotor

neurondeath inALSandmultiplesignalingpathwaysarenowknowntocontribute in

vivo to the degeneration of motor neuron cell body [108]. However, none of these

Page 15: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 14/14

pathwaysdidseemtocontribute tooverallsurvivalofmSOD1miceandallpreclinical

trialsbasedon interferencewithcelldeathpathwaysonlymarginallyaffectedmSOD1

micelifespanMostimportantly,clinicaltrialsbasedonthoseresults,includingtherecent

minocyclinetrial[109],notonlydidnotimprovepatientoutcome,butinsomeinstances

evenworsenit.

Ontopofthis,weandothershaveshownthatevenacompleterescueofmotorneuron

cellbodiesdoesnotcuremSOD1mice.Forinstance,geneablationofbax,akeyplayerin

motor neuron apoptosis, completely rescued mSOD1 mice motor neurons from

apoptosis, while onlymodestly delayingmuscle denervation and animal death [110].

Along the same line, sodium valproate, a drug inhibiting epigenetic chromatin

remodelingduringapoptosis,oraninhibitorofp38MAPK,aproteinkinaseinvolvedin

initiating cell death, are able to rescue the cell bodies but have no effects onmuscle

denervationandanimallifespan[111,112].Last,ablatingmSOD1frommotorneurons,

while delaying onset modestly, did not cure the pathology[113]. Thus, the primary

pathogenic event, determining the survival of the animal, is not motor neuron death

itself, but rather the loss of motor neuron/muscle contacts. Hence, preservingmotor

neuroncellbodiesistherapeuticallynotsufficientsincetherescuedmotorneuronsare

unable to recreate destroyed NMJs. In this model, motor neuron degeneration

representsalate,secondaryconsequenceofsynapticdestruction

5‐4) IsmusclemutantSOD1expressionsufficienttotriggerALS?

InSBMA,recentworksuggestedthatthemuscleoverexpressionofAR,evennotbearing

an expanded polyglutamine tract could lead to the pathology[72]. Could mSOD1

expression in muscle also lead to such a concept in ALS? Indeed, the transgenic

overexpression of mSOD1 was sufficient to induce severe muscle atrophy associated

with significant reduction in muscle strength, sarcomere disorganization, significant

changes in mitochondria morphology and disposition, and disorganization of the

sarcotubular system. The authors involved several signalling pathways, including

autophagyandoxidativestress inthedeleteriouseffectsofmusclemSOD1expression.

However,whilemuscle‐restrictedmSOD1expressionpromotespinalcordastrocytosis

and inflammation, no motor neuron loss was observed. Thus, in this study, muscle

mSOD1 expressionwas not sufficient to support full blown ALS [114]. A very recent

Page 16: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 15/15

studyconfirmedandsignificantlyextendedthis initialwork.WongandMartincreated

transgenicmice overexpressing eitherwild type or twomutations in the SOD1 cDNA

under the control of the skeletal muscle actin promoter[115]. These authors, in a

manner consistentwithDobrowolnyand collaborators, found important clues for this

overexpression triggering localized oxidative stress and subsequent muscle atrophy.

Most interestingly, they found NMJ denervation and animals developped paresis and

motorneurondegeneration.Inthisstudy,muscleSOD1expression,eitherwildtypeor

mutantwassufficienttotriggerthefullALSphenotype.Itisintriguingtonotethatthere

wasnodifferencebetweenwildtypeandmutantSOD1overexpression,reminiscentof

theeffectsofwildtypeARoverexpressioninmuscle[72].

Intriguingly,theknock‐downofmSOD1inmuscledidnotappeartobesufficienttoslow

downthepathology [116,117].Thissuggestseither thatmusclemSOD1expression is

not key in the pathology, or that even the small remaining amounts of mSOD1 in

knockeddownmuscleswere sufficient to lead to their toxic effects, or that theknock

downoccuredtoolateinanimallifespantoyielditsprotectivepotential.Inall,muscle

appears tobeoneof the sitesofmSOD1 toxicity, although it remainselusivewhether

NMJdestructionisprimarilydrivenbymusclemSOD1expression.

5‐5) MuscleenergymetabolismabnormalitiesasacauseofNMJdestruction

WhatcouldbethemechanismsunderlyingmuscletoxicitytomotorneuronsinALS?We

haveshownthattheneuriteoutgrowthinhibitorNogo‐Aismassivelyexpressedinthe

skeletal muscle of mSOD1 mice and ALS patients [118‐120]. Importantly, Nogo‐A

ablationincreasedmSOD1micelifespanwhile itsoverexpressioninmusclefibers lead

toNMJshrinkage[119].Thesefindingsprovidetheproofofprinciplethatalterationsin

musclegeneexpressionareabletomodulatethediseaseprocessinmSOD1mice.

From a more general point of view, our work suggests that abnormalities in muscle

energymetabolismmightthedirectcause.Weandothershaveobservedthatmusclesof

mSOD1mice display decreased cellular levels of ATP[121, 122], alongwith increased

expression of mitochondrial uncoupling proteins and of markers of both lipid and

carbohydrate use[123, 124]. Indeed, as previously mentioned, mitochondrial

dysfunctionoccuredinmusclesofmSOD1mice,and,toalesserextent,inmusclesofALS

patients[103].These findingssuggestedthatmusclesofALSpatientsandmSOD1mice

Page 17: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 16/16

show an exacerbation of their energy metabolism. To determine whether this was

sufficienttoleadtomotorneurondegeneration,westudiedtheneuromuscularsystemof

mice overexpressing the mitochondrial uncoupling protein 1 in their muscles, as a

model ofmuscle restricted hypermetabolism. These animals displayed age‐dependent

deterioration of the NMJ that correlatedwith progressive signs of denervation and a

mild late‐onset motor neuron pathology[125]. Furthermore, NMJ regeneration and

functional recoverywereprofoundlydelayed following injuryof the sciatic nerve and

crossing these mice with mSOD1 mice exacerbated ALS‐like pathology[125]. Thus, a

muscle restricted mitochondrial defect is sufficient to generate motor neuron

degeneration.

5‐5) ALSasasystemicpathology

Muscle hypermetabolism of mSOD1 mice has broad consequences on the overall

energetic physiology of these animals, and provides clues for a potential therapeutic

strategy.Indeed,mSOD1miceshowbodyweightdeficitascomparedtowildtypesdue

toanincreaseinthebasalmetabolicrate,asareflectofmusclehypermetabolism[123].

Furthermore,energymetabolism,especially lipidmetabolism,wasstrikinglyalteredin

these animals[126]. We sought to determine whether correcting energy deficit of

mSOD1mice could delay their pathology and fed these mice with a diet enriched in

saturated fats. High fat fed mSOD1 mice lived longer and showed reduced muscle

denervation associated with improved motor neuron survival, a finding recently

confirmedbyMattson'sgroupinanothermSOD1strain[123,127].

ALSpatientsalsoshowabnormalitiesintheirsystemicenergyhomeostasis.Couratier’s

group has found an increased energy expenditure in these patients, similar to what

observed in mSOD1 mice[128‐132]. Most importantly, ALS patients show increased

blood lipid levels and hyperlipemia was associated with increased survival [133]and

betterrespiratorycapacityinthesepatients.However,thetranslationfrommSOD1mice

toALSpatientsisnotstraightforwardsincepatientsshowanimportanttrendtobecome

insulinresistant[134].Intheseconditions,theincreaseinenergyintake,intheformof

an high fat diet, might precipitate insulin resistance and worsen patient outcome.

Potential therapeutic strategies based on nutrition should take this trend to insulin

resistanceintoaccount.

Page 18: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 17/17

In all, skeletal muscle is involved in ALS through an increase in its metabolic rate,

precipitating systemic defects in energy homeostasis, such as leanness. Musclemight

also directly influence NMJ stability through energy metabolism defects and yet

unknownsignallingpathways(figure4).

6) Muscleasadrugtargetinlowermotorneurondiseases

The previous results in either SMA, SBMA or ALS point to muscle being an active

contributor to these pathologies. Based on these studies, a number of therapeutic

strategieshavebeenproposedtotargetmusclepathology(figure5).

In SMAmice, treatmentwith follistatin, an inhibitorofmyostatin [135] that increases

musclemass,wasreportedtolessendiseaseseverityinSMAmice[136]butnotinALS

mice[116].InSMAmice,butnotinALSmice,follistatin‐treatedmiceperformedbetter

thantheirvehicle‐treatedlittermates.Themostwidelydocumentedfactorthatcouldbe

beneficial in LMN degeneration through a muscle action is IGF1. In 2002, Antonio

Musaroandcolleaguesgeneratedatransgenicmouselineoverexpressinganisoformof

IGF1 (termed mIGF1) that is retained locally in skeletal muscle and does not

systematically diffuse [137]. Crossing these mice with either mSOD1 mice [138] or

SBMAmice[139]potentlyincreasedthelifespanofbothmodels.InmSOD1mice,mIGF1

expressiondelayedthedisease,enhancedsurvival,stabilizedNMJsandhadalsodistant

protectiveeffectsbydecreasingastrocytosis[138]. InSBMAmice,mIGF1 increasedAR

phosphorylation, promoted the degradation of aggregated AR, rescued the muscle

phenotype,increasedmotorneuroncountsandpotentlyincreasedthelifespanofSBMA

mice[139].Thesedatathussuggestthatapharmacologicalinterventionsolelytargeted

atmuscles is able toprovideglobalprotection tomotorneurons. Indeed, it shouldbe

noted that the protectionmediated by exercise [140‐142], high fat feeding[123, 127],

creatine[143]orcarnitine[144]inanimalmodelsofLMNdegenerationmightwellbe

duetoanactionofthesetreatmentsonskeletalmuscleratherthanonmotorneurons.

Suchanindirecteffectissuggestedbytheprofoundeffectsofexerciseongenesinvolved

inNMJmaintenance[145].

Page 19: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 18/18

7) Muscle a a delivery route to curemotor neurons in lowermotor neuron

diseases

WhileskeletalmuscleisinvolvedinatleastsomeofthekeypathogeniceventsinLMN

degeneration,onecouldalsoconsidertousemuscleasawaytotargetmotorneurons

(figure6).Forinstance,localproductionofneurotrophicfactorsbytheskeletalmuscle

might sustain neuronal survival and enhancemuscle reinnervation. Such an example

wasprovidedbythestudyofLiandcollaborators[146]showingthatmuscleproduction

of GDNF, but not astrocyte derived‐GDNF delayed disease onset and slowed down

diseaseprogressionofmSOD1mice.

Inthesameline,retrogradetransportofatherapeuticgenethroughmuscleinjectionsof

aviruscouldprovideprotectiontomotorneurons.Twodifferentexamplesprovidethe

proof of concept for such a strategy. First, delivery of IGF1 through AAV vectors in

skeletalmuscles leads toprotectionofmotorneuronsanddelayeddiseaseonset.This

protective effect might be due to retrograde transport of viral particles in the axon,

leading to IGF1 production inmotor neurons and autocrine protection of these cells.

Alternatively, and as suggested byA.Musaro and colleagues, IGF1 has profound local

effects on skeletalmuscle thatmight account for its potential for therapeutics in ALS

[138].Asecondexampleofa therapeutic strategyaimingatdeliveringaneurotrophic

factor though skeletal muscle is VEGF. M. Azzouz and collaborators used a lentiviral

vectortoprovideVEGFdirectlytomotorneurons throughretrogradetransport.They

observed that a single injection of a VEGF‐expressing lentiviral vector into various

musclesdelayedonsetandslowedprogressionof inmSOD1mice[147]. Interestingly,

eitherviraldeliveryofVEGForIGF1sloweddiseaseprogressionevenwhentreatment

wasinitiatedattheonsetofdisease,suggestingthatthesestrategiesmightberelevant

inALSpatients.

Viral deliverymight prove useful not only for providing a neuroprotective factor, but

also to restore the causative deficient gene. Indeed,multiplemuscular injections of a

lentiviral vector expressing SMN restored SMN expression in motor neurons and

delayed the pathology of severe SMA mice [148]. Conversely, similar viral strategies

mightbeusedtosilencethetoxicgenewhengainof functionof themutantprotein is

showntoleadtothepathogeniceffects.Inthisline,targetingofSOD1mutationsthrough

siRNA has been achieved by Ralph and collaborators in mSOD1 mice [149] through

Page 20: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 19/19

muscleinjectionsofviralvectorsretrogradelytransportedtomotorneurons.Thismode

of delivery achieved what remains probably the most impressive protective effect in

mSOD1 mice. Thus, muscle might not only be a tissue to target, but also a route to

deliverdrugsortreatments.

8) Conclusion

As a conclusion,when considering all the data discussed above, onemayhypothesize

thatLMNdegenerationmaybe“synaptopathies”ratherthan«motorneurondiseases».

As such, one should focus on designing treatments to strengthen and stabilize the

remaining NMJs and/or to stimulate the generation of newly formed NMJs. To our

knowledge,notreatmenthasbeenspecificallydesignedtotargetNMJsinmotorneuron

diseases until now. It may worth to consider that a drug or treatment targeting the

commonfinalpathwayofdiseaseswithLMNdegenerationi.e.theNMJ,wouldbeequally

beneficialforALS,SMAandSBMApatients.

Lastly, it shouldbekept inmind thatwhileskeletalmuscle isamuchmore important

actor in LMN degeneration than previously anticipated, these affections targetmotor

neurons and involve other cell types, i.e. astrocytes, schwann cells and microglia[75,

150‐157].Anefficienttherapyshouldtakeallthesecellularactorsintoaccount.

Page 21: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 20/20

Figureandlegendstofigures:

Figure1:electrophysiologicalandmusclepathologicalfeaturesofLMNdegenerationin

skeletalmuscle

A.Electrophysiological(EMG)recordingofapatientwithALSdemonstratingfibrillation

potentialsatrest,i.e.spontaneousdenervation‐relatedmuscleactivity.

B‐D.Muscle biopsy of a patientwithALS. All the features associatedwith neurogenic

disorders, i.e. groupingofatrophic fibers (B,C),predominanceofone typeof fiber (D),

andpresenceofangulatedfibers(D),areobserved.

(B:semi‐thinsection,X250;C:H‐Estaining,X200;D:NADH‐TRstaining,X100).

Figure2:potentialmechanismsinvolvingskeletalmuscleinSMA.

Loss of SMN1 leads to two consequences in skeletalmuscle. First, SMN1 loss leads to

abnormalities in sarcomere structure, which are a likely cause of muscle weakness.

Second,SMN1lossdecreasesthepotentialofmuscletoproducematureAchRsubunits,

leading to an abnormal development of NMJs. SMN1 loss in motor neurons has also

profoundeffectsonNMJdevelopment.Seetext(section3)forfurtherdetails.

Figure3:potentialmechanismsinvolvingskeletalmuscleinSBMA.

ThemutantARtoxicityisunmaskedbytestosterone.Thisleadstomyopathicfeatures,

suchasmyotonicdischargesandelevationofbloodCK,contributingtomuscleweakness

and letality. On the other hand,mutant AR toxicity (orwild type AR overexpression)

dismantlesNMJsthroughyetunknownmechanisms.ApathogenicfunctionofmutantAR

inmotorneuronshasalsobeendocumented.Seetext(section4)forfurtherdetails.

Figure4:potentialmechanismsinvolvingskeletalmuscleinSOD1‐linkedALS

Mutant SOD1 expression in skeletalmuscle leads to oxidative stress ,muscle atrophy

and weakness. mSOD1 mice skeletal muscles are also hypermetabolic but whether

mSOD1expression inmuscleor inother cell types is responsibleof thisphenotype is

unknown.MusclehypermetabolismissufficienttodriveNMJdestructionandsystemic

energydeficit.mSOD1expressioninbothmotorneuronsandglialcellsisalsoinvolved

intheoverallALSphenotypeofmSOD1mice.Seetext(section5)forfurtherdetails.

Page 22: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 21/21

Figure5:targetingskeletalmuscleinLMNdegeneration

A potential therapeutic treatment for LMN degeneration might target deleterious

processesoccuringinmuscleitself.

Figure6:skeletalmuscleasadeliveryrouteinLMNdegeneration.

Skeletal muscle is also a privilegied route to deliver drugs targeting motor neurons

throughretrogradetransport.

Page 23: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 22/22

Page 24: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 23/23

Page 25: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 24/24

Page 26: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 25/25

Page 27: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 26/26

Page 28: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 27/27

Table1:clinicalpresentationofdiseaseswithLMNdegeneration

disease onset Cause LMN

involvement

UMN

involvement

Myopathic

features

SMA

typeI birth LossofSMN1 + ‐ +

typeII Before

18mo

LossofSMN1 + ‐ +

typeIII After

18mo

LossofSMN1 + ‐ ++

SBMA

SBMA Adult‐

onset

Expansionofthe

polyglutaminetractof

AR

+ ‐ +++

ALS

sALS Adult‐

onset

Unknown(sporadic) + + Occasionally

reported

fALS Adult

onset

Genetic(multipleloci:

sod1,tdp‐43,fus,vapb...)

+ + Occasionally

reported

Page 29: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 28/28

References

1 LunnMR,WangCH:Spinalmuscularatrophy.Lancet2008;371:2120‐2133.2 KatsunoM,AdachiH,WazaM,BannoH, SuzukiK,TanakaF,DoyuM,SobueG:Pathogenesis, animalmodels and therapeutics in spinal and bulbarmuscular atrophy(sbma).ExpNeurol2006;200:8‐18.3 Brooks BR,Sanjak M,Belden D,Juhasz-Poscine K,Waclawik A:Natural history of amyotrophic lateral sclerosis; in Brown RHJ, Meininger V, Swash M (eds): Amyotrophic lateral sclerosis.London,Dunitz,2000,pp31‐58.4 Baloh RH, RakowiczW, Gardner R, Pestronk A: Frequent atrophic groupswithmixed‐type myofibers is distinctive to motor neuron syndromes. Muscle Nerve2007;36:107‐110.5 Henderson CE, Bloch‐Gallego E, Camu W, Gouin A, Lemeulle C, Mettling C:Motoneuron survival factors: Biological roles and therapeutic potential. NeuromusculDisord1993;3:455‐458.6 MettlingC,CamuW,HendersonCE:Embryonicwingandlegmotoneuronshaveintrinsicallydifferentsurvivalproperties.Development1993;118:1149‐1156.7 HendersonCE,CamuW,MettlingC,GouinA,PoulsenK,KarihalooM,RullamasJ,Evans T, McMahon SB, Armanini MP, et al.: Neurotrophins promote motor neuronsurvivalandarepresentinembryoniclimbbud.Nature1993;363:266‐270.8 Henderson CE, Huchet M, Changeux JP: Denervation increases a neurite‐promotingactivityinextractsofskeletalmuscle.Nature1983;302:609‐611.9 MadhavanR,PengHB:Molecularregulationofpostsynapticdifferentiationattheneuromuscularjunction.IUBMBLife2005;57:719‐730.10 RueggMA,BixbyJL:Agrinorchestratessynapticdifferentiationatthevertebrateneuromuscularjunction.TrendsNeurosci1998;21:22‐27.11 ZhangB,LuoS,WangQ,SuzukiT,XiongWC,MeiL:Lrp4servesasacoreceptorofagrin.Neuron2008;60:285‐297.12 KimN,StieglerAL,CameronTO,HallockPT,GomezAM,HuangJH,HubbardSR,DustinML,BurdenSJ:Lrp4isareceptorforagrinandformsacomplexwithmusk.Cell2008;135:334‐342.13 LinW, Burgess RW, Dominguez B, Pfaff SL, Sanes JR, Lee KF: Distinct roles ofnerveandmuscleinpostsynapticdifferentiationoftheneuromuscularsynapse.Nature2001;410:1057‐1064.14 YangX,ArberS,WilliamC,LiL,TanabeY, JessellTM,BirchmeierC,BurdenSJ:Patterning ofmuscle acetylcholine receptor gene expression in the absence ofmotorinnervation.Neuron2001;30:399‐410.15 Lin S, Landmann L, RueggMA, Brenner HR: The role of nerve‐ versusmuscle‐derived factors in mammalian neuromuscular junction formation. J Neurosci2008;28:3333‐3340.16 Vock VM, Ponomareva ON, Rimer M: Evidence for muscle‐dependentneuromuscularsynapticsitedeterminationinmammals.JNeurosci2008;28:3123‐3130.17 ChevessierF,FarautB,Ravel‐ChapuisA,RichardP,GaudonK,BaucheS,PrioleauC, Herbst R, Goillot E, Ioos C, Azulay JP, Attarian S, Leroy JP, Fournier E, Legay C,SchaefferL,KoenigJ,FardeauM,EymardB,PougetJ,HantaiD:Towardsthemolecular

Page 30: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 29/29

elucidation of congenital myasthenic syndromes: Identification ofmutations inmusk.ActaMyol2005;24:55‐59.18 Huze C, Bauche S, Richard P, Chevessier F, Goillot E, GaudonK, BenAmmarA,Chaboud A, Grosjean I, Lecuyer HA, Bernard V, Rouche A, Alexandri N, Kuntzer T,FardeauM,FournierE,BrancaccioA,RueggMA,KoenigJ,EymardB,SchaefferL,HantaiD: Identification of an agrin mutation that causes congenital myasthenia and affectssynapsefunction.AmJHumGenet2009;85:155‐167.19 Chevessier F, GirardE,Molgo J, Bartling S, Koenig J,HantaiD,WitzemannV:Amouse model for congenital myasthenic syndrome due to musk mutations revealsdefects in structure and function of neuromuscular junctions. Hum Mol Genet2008;17:3577‐3595.20 Lefebvre S, Burglen L, Reboullet S, ClermontO, Burlet P, Viollet L, BenichouB,CruaudC,MillasseauP,ZevianiM,etal.: Identificationandcharacterizationofaspinalmuscularatrophy‐determininggene.Cell1995;80:155‐165.21 Echaniz‐LagunaA,MiniouP,BartholdiD,Melki J:Thepromotersofthesurvivalmotorneurongene(smn)anditscopy(smnc)sharecommonregulatoryelements.AmJHumGenet1999;64:1365‐1370.22 LefebvreS,BurglenL,Frezal J,MunnichA,Melki J:Theroleof thesmngene inproximalspinalmuscularatrophy.HumMolGenet1998;7:1531‐1536.23 LefebvreS,BurletP,LiuQ,BertrandyS,ClermontO,MunnichA,DreyfussG,MelkiJ:Correlationbetween severity and smnprotein level in spinalmuscular atrophy.NatGenet1997;16:265‐269.24 Cifuentes‐DiazC,FrugierT,TizianoFD,LaceneE,RoblotN,JoshiV,MoreauMH,Melki J: Deletion of murine smn exon 7 directed to skeletal muscle leads to severemusculardystrophy.JCellBiol2001;152:1107‐1114.25 Cifuentes‐Diaz C, Nicole S, Velasco ME, Borra‐Cebrian C, Panozzo C, Frugier T,MilletG,RoblotN, JoshiV,Melki J:Neurofilamentaccumulationat themotorendplateandlackofaxonalsproutinginaspinalmuscularatrophymousemodel.HumMolGenet2002;11:1439‐1447.26 FrugierT,TizianoFD,Cifuentes‐DiazC,MiniouP,RoblotN,DierichA,LeMeurM,Melki J: Nuclear targeting defect of smn lacking the c‐terminus in a mousemodel ofspinalmuscularatrophy.HumMolGenet2000;9:849‐858.27 GubitzAK,FengW,DreyfussG:Thesmncomplex.ExpCellRes2004;296:51‐56.28 Fischer U, Liu Q, Dreyfuss G: The smn‐sip1 complex has an essential role inspliceosomalsnrnpbiogenesis.Cell1997;90:1023‐1029.29 LiuQ,FischerU,WangF,DreyfussG:Thespinalmuscularatrophydiseasegeneproduct,smn,anditsassociatedproteinsip1areinacomplexwithspliceosomalsnrnpproteins.Cell1997;90:1013‐1021.30 MeisterG,Hannus S, PlottnerO,BaarsT,HartmannE, FakanS, LaggerbauerB,FischerU:Smnrpisanessentialpre‐mrnasplicingfactorrequiredfortheformationofthematurespliceosome.EMBOJ2001;20:2304‐2314.31 Olaso R, Joshi V, Fernandez J, Roblot N, Courageot S, Bonnefont JP, Melki J:Activationofrnametabolism‐relatedgenesinmousebutnothumantissuesdeficientinsmn.PhysiolGenomics2006;24:97‐104.32 ZhangZ,LottiF,DittmarK,YounisI,WanL,KasimM,DreyfussG:Smndeficiencycausestissue‐specificperturbationsintherepertoireofsnrnasandwidespreaddefectsinsplicing.Cell2008;133:585‐600.33 VitteJM,DavoultB,RoblotN,MayerM,JoshiV,CourageotS,TroncheF,VadrotJ,MoreauMH,KemenyF,MelkiJ:Deletionofmurinesmnexon7directedtoliverleadsto

Page 31: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 30/30

severe defect of liver development associated with iron overload. Am J Pathol2004;165:1731‐1741.34 Shafey D, Cote PD, Kothary R: Hypomorphic smn knockdown c2c12myoblastsreveal intrinsic defects in myoblast fusion and myotube morphology. Exp Cell Res2005;311:49‐61.35 ChangHC,DimlichDN,YokokuraT,MukherjeeA,KankelMW,SenA,SridharV,Fulga TA, Hart AC, Van Vactor D, Artavanis‐Tsakonas S: Modeling spinal muscularatrophyindrosophila.PLoSOne2008;3:e3209.36 Arnold AS, GueyeM, Guettier‐Sigrist S, Courdier‐Fruh I, Coupin G, Poindron P,Gies JP: Reduced expression of nicotinic achrs in myotubes from spinal muscularatrophyipatients.LabInvest2004;84:1271‐1278.37 Martinez‐HernandezR,Soler‐BotijaC,AlsoE,AliasL,CasellesL,GichI,BernalS,Tizzano EF: The developmental pattern of myotubes in spinal muscular atrophyindicatesprenataldelayofmusclematuration.JNeuropatholExpNeurol2009;68:474‐481.38 MuqitMM,MossJ,SewryC,LaneRJ:Phenotypicvariabilityinsiblingswithtypeiiispinalmuscularatrophy.JNeurolNeurosurgPsychiatry2004;75:1762‐1764.39 Rajendra TK, Gonsalvez GB, Walker MP, Shpargel KB, Salz HK, Matera AG: Adrosophilamelanogastermodelofspinalmuscularatrophyrevealsafunctionforsmninstriatedmuscle.JCellBiol2007;176:831‐841.40 Walker MP, Rajendra TK, Saieva L, Fuentes JL, Pellizzoni L, Matera AG: Smncomplexlocalizestothesarcomericz‐discandisaproteolytictargetofcalpain.HumMolGenet2008;17:3399‐3410.41 RossollW,JablonkaS,AndreassiC,KroningAK,KarleK,MonaniUR,SendtnerM:Smn, the spinalmuscular atrophy‐determining gene product, modulates axon growthand localization of beta‐actin mrna in growth cones of motoneurons. J Cell Biol2003;163:801‐812.42 Kariya S, Park GH, Maeno‐Hikichi Y, Leykekhman O, Lutz C, Arkovitz MS,Landmesser LT, Monani UR: Reduced smn protein impairs maturation of theneuromuscularjunctionsinmousemodelsofspinalmuscularatrophy.HumMolGenet2008;17:2552‐2569.43 KongL,WangX,ChoeDW,PolleyM,BurnettBG,Bosch‐MarceM,GriffinJW,RichMM, Sumner CJ: Impaired synaptic vesicle release and immaturity of neuromuscularjunctionsinspinalmuscularatrophymice.JNeurosci2009;29:842‐851.44 Murray LM, Comley LH, Thomson D, Parkinson N, Talbot K, Gillingwater TH:Selective vulnerability of motor neurons and dissociation of pre‐ and post‐synapticpathologyat theneuromuscular junction inmousemodelsofspinalmuscularatrophy.HumMolGenet2008;17:949‐962.45 BrieseM, Esmaeili B, Fraboulet S, Burt EC, Christodoulou S, TowersPR,DaviesKE, Sattelle DB: Deletion of smn‐1, the caenorhabditis elegans ortholog of the spinalmuscularatrophygene,resultsinlocomotordysfunctionandreducedlifespan.HumMolGenet2009;18:97‐104.46 GavrilinaTO,McGovernVL,WorkmanE,CrawfordTO,GogliottiRG,DiDonatoCJ,MonaniUR,MorrisGE,BurghesAH:Neuronalsmnexpressioncorrectsspinalmuscularatrophy in severe smamicewhilemuscle‐specific smn expression has no phenotypiceffect.HumMolGenet2008;17:1063‐1075.47 La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH: Androgenreceptor gene mutations in x‐linked spinal and bulbar muscular atrophy. Nature1991;352:77‐79.

Page 32: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 31/31

48 Suzuki K, Katsuno M, Banno H, Takeuchi Y, Atsuta N, Ito M, Watanabe H,Yamashita F, Hori N, Nakamura T, Hirayama M, Tanaka F, Sobue G: Cag repeat sizecorrelates to electrophysiological motor and sensory phenotypes in sbma. Brain2008;131:229‐239.49 RhodesLE,FreemanBK,AuhS,KokkinisAD,LaPeanA,ChenC,LehkyTJ,ShraderJA, LevyEW,Harris‐LoveM,DiProsperoNA, FischbeckKH:Clinical featuresof spinalandbulbarmuscularatrophy.Brain200950 Schmidt BJ, Greenberg CR, Allingham‐Hawkins DJ, Spriggs EL: Expression of x‐linked bulbospinal muscular atrophy (kennedy disease) in two homozygous women.Neurology2002;59:770‐772.51 SobueG,DoyuM,KachiT,YasudaT,MukaiE,KumagaiT,MitsumaT:Subclinicalphenotypic expressions in heterozygous females of x‐linked recessive bulbospinalneuronopathy.JNeurolSci1993;117:74‐78.52 AtsutaN,WatanabeH,ItoM,BannoH,SuzukiK,KatsunoM,TanakaF,TamakoshiA, SobueG:Naturalhistoryof spinal andbulbarmuscular atrophy (sbma):A studyof223japanesepatients.Brain2006;129:1446‐1455.53 ArbizuT,Santamaria J,Gomez JM,QuilezA,Serra JP:A familywithadultspinaland bulbar muscular atrophy, x‐linked inheritance and associated testicular failure. JNeurolSci1983;59:371‐382.54 CasellaR,MaduroMR, Lipshultz LI, LambDJ: Significanceof thepolyglutaminetractpolymorphismintheandrogenreceptor.Urology2001;58:651‐656.55 Yu Z, Dadgar N, Albertelli M, Gruis K, Jordan C, Robins DM, Lieberman AP:Androgen‐dependent pathology demonstratesmyopathic contribution to the kennedydiseasephenotypeinamouseknock‐inmodel.JClinInvest2006;116:2663‐2672.56 Yu Z, Dadgar N, Albertelli M, Scheller A, Albin RL, Robins DM, Lieberman AP:Abnormalitiesofgermcellmaturationandsertolicellcytoskeletoninandrogenreceptor113 cag knock‐in mice reveal toxic effects of the mutant protein. Am J Pathol2006;168:195‐204.57 AlbertelliMA,SchellerA,BrogleyM,RobinsDM:Replacingthemouseandrogenreceptorwithhumanallelesdemonstratesglutaminetract length‐dependenteffectsonphysiologyandtumorigenesisinmice.MolEndocrinol2006;20:1248‐1260.58 Chevalier‐Larsen ES, O'Brien CJ, Wang H, Jenkins SC, Holder L, Lieberman AP,Merry DE: Castration restores function and neurofilament alterations of agedsymptomaticmalesinatransgenicmousemodelofspinalandbulbarmuscularatrophy.JNeurosci2004;24:4778‐4786.59 KatsunoM,AdachiH,KumeA,LiM,NakagomiY,NiwaH,SangC,KobayashiY,Doyu M, Sobue G: Testosterone reduction prevents phenotypic expression in atransgenicmousemodelof spinalandbulbarmuscularatrophy.Neuron2002;35:843‐854.60 KatsunoM,AdachiH,InukaiA,SobueG:Transgenicmousemodelsofspinalandbulbarmuscularatrophy(sbma).CytogenetGenomeRes2003;100:243‐251.61 KatsunoM, Adachi H, DoyuM,MinamiyamaM, Sang C, Kobayashi Y, Inukai A,Sobue G: Leuprorelin rescues polyglutamine‐dependent phenotypes in a transgenicmousemodelofspinalandbulbarmuscularatrophy.NatMed2003;9:768‐773.62 LeeHJ,ChangC:Recentadvances inandrogenreceptoraction.CellMolLifeSci2003;60:1613‐1622.63 MooradianAD,MorleyJE,KorenmanSG:Biologicalactionsofandrogens.EndocrRev1987;8:1‐28.

Page 33: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 32/32

64 McPhaulMJ:Androgen receptormutations and androgen insensitivity.MolCellEndocrinol2002;198:61‐67.65 McPhaulMJ:Moleculardefectsoftheandrogenreceptor.RecentProgHormRes2002;57:181‐194.66 Ophoff J,VanProeyenK,CallewaertF,DeGendtK,DeBockK,VandenBoschA,VerhoevenG,HespelP,VanderschuerenD:Androgensignalinginmyocytescontributestothemaintenanceofmusclemassandfibertyperegulationbutnottomusclestrengthorfatigue.Endocrinology2009;150:3558‐3566.67 MacLeanHE,ChiuWS,NotiniAJ,AxellAM,DaveyRA,McManusJF,MaC,PlantDR,LynchGS,ZajacJD:Impairedskeletalmuscledevelopmentandfunctioninmale,butnotfemale,genomicandrogenreceptorknockoutmice.FASEBJ2008;22:2676‐2689.68 BannoH,KatsunoM,SuzukiK,TakeuchiY,KawashimaM,SugaN,TakamoriM,Ito M, Nakamura T, Matsuo K, Yamada S, Oki Y, Adachi H, Minamiyama M, Waza M,AtsutaN,WatanabeH,FujimotoY,NakashimaT,TanakaF,DoyuM,SobueG:Phase2trial of leuprorelin in patients with spinal and bulbar muscular atrophy. Ann Neurol2009;65:140‐150.69 SoraruG,D'AscenzoC,PoloA,PalmieriA,BaggioL,VerganiL,GelleraC,MorettoG, Pegoraro E, Angelini C: Spinal and bulbar muscular atrophy: Skeletal musclepathologyinmalepatientsandheterozygousfemales.JNeurolSci2008;264:100‐105.70 Echaniz‐Laguna A, Rousso E, AnheimM, CosseeM, Tranchant C: A familywithearly‐onset and rapidly progressive x‐linked spinal and bulbar muscular atrophy.Neurology2005;64:1458‐1460.71 Monks DA, O'Bryant EL, Jordan CL: Androgen receptor immunoreactivity inskeletal muscle: Enrichment at the neuromuscular junction. J Comp Neurol2004;473:59‐72.72 MonksDA,JohansenJA,MoK,RaoP,EaglesonB,YuZ,LiebermanAP,BreedloveSM, JordanCL:Overexpressionofwild‐typeandrogenreceptor inmusclerecapitulatespolyglutaminedisease.ProcNatlAcadSciUSA2007;104:18259‐18264.73 Johansen JA, Yu Z, Mo K, Monks DA, Lieberman AP, Breedlove SM, Jordan CL:Recovery of function in amyogenicmousemodel of spinal bulbarmuscular atrophy.NeurobiolDis2009;34:113‐120.74 JordanCL,LiebermanAP:Spinalandbulbarmuscularatrophy:Amotoneuronormuscledisease?CurrOpinPharmacol2008;8:752‐758.75 BoilleeS,VandeVeldeC,ClevelandDW:Als:Adiseaseofmotorneuronsandtheirnonneuronalneighbors.Neuron2006;52:39‐59.76 Gonzalez de Aguilar JL, Echaniz‐Laguna A, Fergani A, Rene F, Meininger V,LoefflerJP,DupuisL:Amyotrophiclateralsclerosis:Allroadsleadtorome.JNeurochem200777 Dupuis L, Loeffler JP: Neuromuscular junction destruction during amyotrophiclateralsclerosis:Insightsfromtransgenicmodels.CurrOpinPharmacol2009;9:341‐346.78 GreenwayMJ,AndersenPM,RussC,EnnisS,CashmanS,DonaghyC,PattersonV,Swingler R, Kieran D, Prehn J, Morrison KE, Green A, Acharya KR, Brown RH, Jr.,HardimanO:Angmutationssegregatewith familialand 'sporadic'amyotrophic lateralsclerosis.NatGenet2006;38:411‐413.79 Nishimura AL,Mitne‐NetoM, SilvaHC, Richieri‐Costa A,Middleton S, CascioD,KokF,Oliveira JR,GillingwaterT,Webb J,SkehelP,ZatzM:Amutation in thevesicle‐trafficking protein vapb causes late‐onset spinal muscular atrophy and amyotrophiclateralsclerosis.AmJHumGenet2004;75:822‐831.

Page 34: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 33/33

80 Puls I, Jonnakuty C, LaMonte BH, Holzbaur EL, TokitoM, Mann E, Floeter MK,BidusK,DraynaD,OhSJ,BrownRH, Jr.,LudlowCL,FischbeckKH:Mutantdynactin inmotorneurondisease.NatGenet2003;33:455‐456.81 MunchC,SedlmeierR,MeyerT,HombergV,SperfeldAD,KurtA,PrudloJ,PerausG,HanemannCO,StummG,LudolphAC:Pointmutationsofthep150subunitofdynactin(dctn1)geneinals.Neurology2004;63:724‐726.82 Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C,Bouchard JP,LacomblezL,PochigaevaK,SalachasF,PradatPF,CamuW,MeiningerV,Dupre N, Rouleau GA: Tardbp mutations in individuals with sporadic and familialamyotrophiclateralsclerosis.NatGenet2008;40:572‐574.83 KuhnleinP,SperfeldAD,VanmassenhoveB,VanDeerlinV,LeeVM,TrojanowskiJQ, Kretzschmar HA, Ludolph AC, Neumann M: Two german kindreds with familialamyotrophiclateralsclerosisduetotardbpmutations.ArchNeurol2008;65:1185‐1189.84 RutherfordNJ,ZhangYJ,BakerM,GassJM,FinchNA,XuYF,StewartH,KelleyBJ,KuntzK,CrookRJ,SreedharanJ,VanceC,SorensonE,LippaC,BigioEH,GeschwindDH,KnopmanDS,MitsumotoH,PetersenRC,CashmanNR,HuttonM,ShawCE,BoylanKB,BoeveB,Graff‐RadfordNR,WszolekZK,CaselliRJ,DicksonDW,MackenzieIR,PetrucelliL, Rademakers R: Novel mutations in tardbp (tdp‐43) in patients with familialamyotrophiclateralsclerosis.PLoSGenet2008;4:e1000193.85 SreedharanJ,BlairIP,TripathiVB,HuX,VanceC,RogeljB,AckerleyS,DurnallJC,Williams KL, Buratti E, Baralle F, de Belleroche J,Mitchell JD, Leigh PN, Al‐Chalabi A,MillerCC,NicholsonG,ShawCE:Tdp‐43mutationsinfamilialandsporadicamyotrophiclateralsclerosis.Science2008;319:1668‐1672.86 YokosekiA,ShigaA,TanCF,TagawaA,KanekoH,KoyamaA,EguchiH,TsujinoA,IkeuchiT,KakitaA,OkamotoK,NishizawaM,TakahashiH,OnoderaO:Tdp‐43mutationinfamilialamyotrophiclateralsclerosis.AnnNeurol2008;63:538‐542.87 KwiatkowskiTJ, Jr.,BoscoDA,LeclercAL,TamrazianE,VanderburgCR,RussC,DavisA,GilchristJ,KasarskisEJ,MunsatT,ValdmanisP,RouleauGA,HoslerBA,CortelliP, de Jong PJ, Yoshinaga Y, Haines JL, Pericak‐VanceMA, Yan J, Ticozzi N, Siddique T,McKenna‐Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH, Jr.: Mutations in thefus/tls gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science2009;323:1205‐1208.88 TicozziN,SilaniV,LeclercAL,KeagleP,GelleraC,RattiA,TaroniF,KwiatkowskiTJ, Jr., McKenna‐Yasek DM, Sapp PC, Brown RH, Jr., Landers JE: Analysis of fus genemutation in familial amyotrophic lateral sclerosis within an italian cohort. Neurology200989 ChowCY, Landers JE,BergrenSK, SappPC,GrantAE, Jones JM,Everett L, LenkGM,McKenna‐YasekDM,WeismanLS,FiglewiczD,BrownRH,MeislerMH:Deleteriousvariantsof fig4,aphosphoinositidephosphatase, inpatientswithals.AmJHumGenet2009;84:85‐88.90 Lagier‐Tourenne C, Cleveland DW: Rethinking als: The fus about tdp‐43. Cell2009;136:1001‐1004.91 WegorzewskaI,BellS,CairnsNJ,MillerTM,BalohRH:Tdp‐43mutanttransgenicmicedevelopfeaturesofalsandfrontotemporallobardegeneration.ProcNatlAcadSciUSA2009;106:18809‐18814.92 CorciaP,CamuW,PralineJ,GordonPH,VourchP,AndresC:Theimportanceofthesmngenesinthegeneticsofsporadicals.AmyotrophLateralScler2009;10:436‐440.

Page 35: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 34/34

93 CorciaP,CamuW,HalimiJM,Vourc'hP,AntarC,VedrineS,GiraudeauB,deToffolB, Andres CR: Smn1 gene, but not smn2, is a risk factor for sporadic als. Neurology2006;67:1147‐1150.94 Corcia P, Mayeux‐Portas V, Khoris J, de Toffol B, Autret A, Muh JP, Camu W,AndresC:Abnormalsmn1genecopynumberisasusceptibilityfactorforamyotrophiclateralsclerosis.AnnNeurol2002;51:243‐246.95 VeldinkJH,KalmijnS,VanderHoutAH,LemminkHH,GroeneveldGJ,LummenC,Scheffer H,Wokke JH, Van den Berg LH: Smn genotypes producing less smn proteinincreasesusceptibilitytoandseverityofsporadicals.Neurology2005;65:820‐825.96 VeldinkJH,vandenBergLH,CobbenJM,StulpRP,DeJongJM,VogelsOJ,BaasF,Wokke JH, SchefferH:Homozygousdeletionof the survivalmotorneuron2 gene is aprognosticfactorinsporadicals.Neurology2001;56:749‐752.97 Echaniz‐LagunaA, Guiraud‐Chaumeil C, Tranchant C, ReeberA,Melki J,WarterJM: Homozygous exon 7 deletion of the smn centromeric gene (smn2): A potentialsusceptibility factor for adult‐onset lower motor neuron disease. J Neurol2002;249:290‐293.98 Iwasaki Y, Sugimoto H, Ikeda K, Takamiya K, Shiojima T, Kinoshita M: Musclemorphometryinamyotrophiclateralsclerosis.IntJNeurosci1991;58:165‐170.99 Achari AN, Anderson MS: Myopathic changes in amyotrophic lateral sclerosis.Pathologicanalysisofmusclebiopsychangesin111cases.Neurology1974;24:477‐481.100 Amrit AN, AndersonMS: Serum creatine phosphokinase in amyotrophic lateralsclerosis. Correlation with sex, duration, and skeletal muscle biopsy. Neurology1974;24:834‐837.101 StewartHG,Mackenzie IR, EisenA, BrannstromT,Marklund SL, Andersen PM:Clinicopathologicalphenotypeofalswithanovelg72csod1genemutationmimickingamyopathy.MuscleNerve2006;33:701‐706.102 HiranoM, Angelini C,Montagna P, Hays AP, Tanji K,MitsumotoH, Gordon PH,NainiAB,DiMauroS,RowlandLP:Amyotrophiclateralsclerosiswithragged‐redfibers.ArchNeurol2008;65:403‐406.103 DupuisL,GonzalezdeAguilar JL,OudartH,deTapiaM,BarbeitoL,Loeffler JP:Mitochondriainamyotrophiclateralsclerosis:Atriggerandatarget.NeurodegenerDis2004;1:245‐254.104 Echaniz‐LagunaA,ZollJ,PonsotE,N'GuessanB,TranchantC,LoefflerJP,LampertE: Muscular mitochondrial function in amyotrophic lateral sclerosis is progressivelyalteredasthediseasedevelops:Atemporalstudyinman.ExpNeurol2006;198:25‐30.105 Echaniz‐LagunaA,ZollJ,RiberaF,TranchantC,WarterJM,LonsdorferJ,LampertE: Mitochondrial respiratory chain function in skeletal muscle of als patients. AnnNeurol2002;52:623‐627.106 FischerLR,CulverDG,TennantP,DavisAA,WangM,Castellano‐SanchezA,KhanJ,PolakMA,Glass JD:Amyotrophic lateralsclerosis isadistalaxonopathy:Evidence inmiceandman.ExpNeurol2004;185:232‐240.107 PunS,SantosAF,SaxenaS,XuL,CaroniP:Selectivevulnerabilityandpruningofphasic motoneuron axons in motoneuron disease alleviated by cntf. Nat Neurosci2006;9:408‐419.108 GueganC,PrzedborskiS:Programmedcelldeathinamyotrophiclateralsclerosis.JClinInvest2003;111:153‐161.109 GordonPH,MooreDH,MillerRG,FlorenceJM,VerheijdeJL,DoorishC,HiltonJF,SpitalnyGM,MacArthurRB,MitsumotoH,NevilleHE,BoylanK,MozaffarT,Belsh JM,Ravits J, Bedlack RS, Graves MC, McCluskey LF, Barohn RJ, Tandan R: Efficacy of

Page 36: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 35/35

minocyclineinpatientswithamyotrophiclateralsclerosis:Aphaseiiirandomisedtrial.LancetNeurol2007;6:1045‐1053.110 Gould TW, Buss RR, Vinsant S, Prevette D, Sun W, Knudson CM, Milligan CE,OppenheimRW:Completedissociationofmotorneurondeathfrommotordysfunctionbybaxdeletioninamousemodelofals.JNeurosci2006;26:8774‐8786.111 RouauxC,PanteleevaI,ReneF,GonzalezdeAguilarJL,Echaniz‐LagunaA,DupuisL,MengerY,BoutillierAL,Loeffler JP:Sodiumvalproateexertsneuroprotectiveeffectsin vivo through creb‐binding protein‐dependent mechanisms but does not improvesurvival in an amyotrophic lateral sclerosis mouse model. J Neurosci 2007;27:5535‐5545.112 DewilM,delaCruzVF,VanDenBoschL,RobberechtW:Inhibitionofp38mitogenactivated protein kinase activation and mutant sod1(g93a)‐induced motor neurondeath.NeurobiolDis2007;26:332‐341.113 BoilleeS,YamanakaK,LobsigerCS,CopelandNG,JenkinsNA,KassiotisG,KolliasG,ClevelandDW:Onsetandprogressionininheritedalsdeterminedbymotorneuronsandmicroglia.Science2006;312:1389‐1392.114 DobrowolnyG,AucelloM,RizzutoE,BeccaficoS,MammucariC,BonconpagniS,BeliaS,WannenesF,NicolettiC,DelPreteZ,RosenthalN,MolinaroM,ProtasiF,FanoG,SandriM,MusaroA:Skeletalmuscleisaprimarytargetofsod1g93a‐mediatedtoxicity.CellMetab2008;8:425‐436.115 WongM,MartinLJ:Skeletalmuscle‐restrictedexpressionofhumansod1causesmotorneurondegenerationintransgenicmice.HumMolGenet116 MillerTM,KimSH,YamanakaK,HesterM,UmapathiP,ArnsonH,RizoL,MendellJR,GageFH,ClevelandDW,KasparBK:Genetransferdemonstratesthatmuscleisnotaprimary target for non‐cell‐autonomous toxicity in familial amyotrophic lateralsclerosis.ProcNatlAcadSciUSA2006;103:19546‐19551.117 TowneC,RaoulC,SchneiderBL,AebischerP:Systemicaav6deliverymediatingrna interference against sod1: Neuromuscular transduction does not alter diseaseprogressioninfalsmice.MolTher2008;16:1018‐1025.118 Dupuis L, Gonzalez de Aguilar JL, di Scala F, Rene F, de Tapia M, Pradat PF,LacomblezL,SeihlanD,PrinjhaR,WalshFS,MeiningerV,Loeffler JP:Nogoprovidesamolecular marker for diagnosis of amyotrophic lateral sclerosis. Neurobiol Dis2002;10:358‐365.119 JokicN,GonzalezdeAguilarJL,DimouL,LinS,FerganiA,RueggMA,SchwabME,DupuisL,LoefflerJP:Theneuriteoutgrowthinhibitornogo‐apromotesdenervationinanamyotrophiclateralsclerosismodel.EMBORep2006;7:1162‐1167.120 JokicN,GonzalezdeAguilarJL,PradatPF,DupuisL,Echaniz‐LagunaA,MullerA,Dubourg O, Seilhean D, Hauw JJ, Loeffler JP,Meininger V: Nogo expression inmusclecorrelateswithamyotrophiclateralsclerosisseverity.AnnNeurol2005;57:553‐556.121 DeraveW, Van Den Bosch L, Lemmens G, Eijnde BO, RobberechtW, Hespel P:Skeletal muscle properties in a transgenic mouse model for amyotrophic lateralsclerosis:Effectsofcreatinetreatment.NeurobiolDis2003;13:264‐272.122 Dupuis L, di Scala F, Rene F, de Tapia M, Oudart H, Pradat PF, Meininger V,Loeffler JP: Up‐regulation of mitochondrial uncoupling protein 3 reveals an earlymuscularmetabolicdefectinamyotrophiclateralsclerosis.FasebJ2003;17:2091‐2093.123 Dupuis L, Oudart H, Rene F, Gonzalez de Aguilar JL, Loeffler JP: Evidence fordefectiveenergyhomeostasisinamyotrophiclateralsclerosis:Benefitofahigh‐energydietinatransgenicmousemodel.ProcNatlAcadSciUSA2004;101:11159‐11164.

Page 37: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 36/36

124 Gonzalez de Aguilar JL, Niederhauser‐Wiederkehr C, Halter B, De Tapia M, DiScala F, Demougin P, Dupuis L, Primig M, Meininger V, Loeffler JP: Gene profiling ofskeletal muscle in an amyotrophic lateral sclerosis mouse model. Physiol Genomics2008;32:207‐218.125 DupuisL,GonzalezdeAguilarJL,Echaniz‐LagunaA,EschbachJ,ReneF,OudartH,HalterB,HuzeC,SchaefferL,BouillaudF,LoefflerJP:Musclemitochondrialuncouplingdismantlesneuromuscular junctionandtriggersdistaldegenerationofmotorneurons.PLoSOne2009;4:e5390.126 Fergani A, Oudart H, Gonzalez De Aguilar JL, Fricker B, Rene F, Hocquette JF,Meininger V, Dupuis L, Loeffler JP: Increased peripheral lipid clearance in an animalmodelofamyotrophiclateralsclerosis.JLipidRes2007;48:1571‐1580.127 Mattson MP, Cutler RG, Camandola S: Energy intake and amyotrophic lateralsclerosis.NeuromolecularMed2007;9:17‐20.128 DesportJC,PreuxPM,TruongTC,VallatJM,SautereauD,CouratierP:Nutritionalstatusisaprognosticfactorforsurvivalinalspatients.Neurology1999;53:1059‐1063.129 Desport JC, Preux PM, Truong CT, Courat L, Vallat JM, Couratier P: Nutritionalassessment and survival in alspatients.AmyotrophLateral SclerOtherMotorNeuronDisord2000;1:91‐96.130 Desport JC, Preux PM, Magy L, Boirie Y, Vallat JM, Beaufrere B, Couratier P:Factorscorrelatedwithhypermetabolisminpatientswithamyotrophiclateralsclerosis.AmJClinNutr2001;74:328‐334.131 Desport JC,TornyF,LacosteM,PreuxPM,CouratierP:Hypermetabolisminals:Correlations with clinical and paraclinical parameters. Neurodegenerative Dis2005;2:202‐207.132 Funalot B, Desport JC, Sturtz F, CamuW, Couratier P: High metabolic level inpatientswithfamilialamyotrophiclateralsclerosis.AmyotrophLateralScler2008:1‐5.133 Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar JL, Bonnefont‐Rousselot D,BittarR, SeilheanD,Hauw JJ, LacomblezL, Loeffler JP,MeiningerV:Dyslipidemia is aprotectivefactorinamyotrophiclateralsclerosis.Neurology2008;70:1004‐1009.134 PradatPF,BruneteauG,GordonPH,DupuisL,Bonnefont‐RousselotD,SimonD,SalachasF,CorciaP,FrochotV,LacorteJM,JardelC,CoussieuC,ForestierNL,LacomblezL, Loeffler JP, Meininger V: Impaired glucose tolerance in patients with amyotrophiclateralsclerosis.AmyotrophLateralScler2009:1‐6.135 Tsuchida K, Nakatani M, Hitachi K, Uezumi A, Sunada Y, Ageta H, Inokuchi K:Activin signaling as an emerging target for therapeutic interventions. Cell CommunSignal2009;7:15.136 Rose FF, Jr., Mattis VB, Rindt H, Lorson CL: Delivery of recombinant follistatinlessensdiseaseseverity inamousemodelofspinalmuscularatrophy.HumMolGenet2009;18:997‐1005.137 MusaroA,McCullaghK,PaulA,HoughtonL,DobrowolnyG,MolinaroM,BartonER, Sweeney HL, Rosenthal N: Localized igf‐1 transgene expression sustainshypertrophy and regeneration in senescent skeletal muscle. Nat Genet 2001;27:195‐200.138 Dobrowolny G, Giacinti C, Pelosi L, Nicoletti C,WinnN, Barberi L,MolinaroM,Rosenthal N, Musaro A: Muscle expression of a local igf‐1 isoform protects motorneuronsinanalsmousemodel.JCellBiol2005;168:193‐199.139 PalazzoloI,StackC,KongL,MusaroA,AdachiH,KatsunoM,SobueG,TaylorJP,Sumner CJ, Fischbeck KH, Pennuto M: Overexpression of igf‐1 in muscle attenuates

Page 38: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 37/37

diseaseinamousemodelofspinalandbulbarmuscularatrophy.Neuron2009;63:316‐328.140 DeforgesS,BranchuJ,BiondiO,ClementG,ParisetC,LecolleS,LopesP,VidalPP,ChanoineC,CharbonnierF:Motorneuronsurvivalispromotedbyspecificexerciseinamousemodelofamyotrophic‐lateral‐sclerosis.JPhysiol2009141 Grondard C, Biondi O, Armand AS, Lecolle S, Della Gaspera B, Pariset C, Li H,GallienCL,VidalPP,ChanoineC,CharbonnierF:Regularexerciseprolongssurvivalinatype2spinalmuscularatrophymodelmouse.JNeurosci2005;25:7615‐7622.142 Kirkinezos IG, Hernandez D, Bradley WG, Moraes CT: Regular exercise isbeneficialtoamousemodelofamyotrophiclateralsclerosis.AnnNeurol2003;53:804‐807.143 KlivenyiP, FerranteRJ,MatthewsRT,BogdanovMB,KleinAM,AndreassenOA,MuellerG,WermerM,Kaddurah‐DaoukR,BealMF:Neuroprotectiveeffectsofcreatineinatransgenicanimalmodelofamyotrophiclateralsclerosis.NatMed1999;5:347‐350.144 KiraY,NishikawaM,OchiA,SatoE,InoueM:L‐carnitinesuppressestheonsetofneuromuscular degeneration and increases the life span of mice with familialamyotrophiclateralsclerosis.BrainRes2006;1070:206‐214.145 Ferraiuolo L, DeBono JP,Heath PR,HoldenH, Kasher P, ChannonKM,Kirby J,ShawPJ:Transcriptionalresponseoftheneuromuscularsystemtoexercisetrainingandpotentialimplicationsforals.JNeurochem2009;109:1714‐1724.146 LiW,BrakefieldD,PanY,HunterD,MyckatynTM,ParsadanianA:Muscle‐derivedbutnotcentrallyderivedtransgenegdnfisneuroprotectiveing93a‐sod1mousemodelofals.ExpNeurol2007;203:457‐471.147 AzzouzM, RalphGS, StorkebaumE,Walmsley LE,MitrophanousKA, KingsmanSM,CarmelietP,MazarakisND:Vegfdeliverywithretrogradelytransportedlentivectorprolongssurvivalinamousealsmodel.Nature2004;429:413‐417.148 Azzouz M, Le T, Ralph GS, Walmsley L, Monani UR, Lee DC, Wilkes F,MitrophanousKA,KingsmanSM,BurghesAH,MazarakisND:Lentivector‐mediatedsmnreplacementinamousemodelofspinalmuscularatrophy.JClinInvest2004;114:1726‐1731.149 RalphGS,RadcliffePA,DayDM,CarthyJM,LerouxMA,LeeDC,WongLF,BilslandLG,GreensmithL,KingsmanSM,MitrophanousKA,MazarakisND,AzzouzM:Silencingmutantsod1usingrnaiprotectsagainstneurodegenerationandextendssurvival inanalsmodel.NatMed2005;11:429‐433.150 Barbeito LH, Pehar M, Cassina P, Vargas MR, Peluffo H, Viera L, Estevez AG,BeckmanJS:Aroleforastrocytesinmotorneuronlossinamyotrophiclateralsclerosis.BrainResBrainResRev2004;47:263‐274.151 PeharM,CassinaP,VargasMR,CastellanosR,VieraL,Beckman JS,EstevezAG,Barbeito L: Astrocytic production of nerve growth factor inmotor neuron apoptosis:Implicationsforamyotrophiclateralsclerosis.JNeurochem2004;89:464‐473.152 VargasMR, PeharM, Cassina P, Beckman JS, Barbeito L: Increased glutathionebiosynthesisbynrf2activationinastrocytespreventsp75ntr‐dependentmotorneuronapoptosis.JNeurochem2006;97:687‐696.153 CassinaP,CassinaA,PeharM,CastellanosR,GandelmanM,deLeonA,RobinsonKM,MasonRP,BeckmanJS,BarbeitoL,RadiR:Mitochondrialdysfunctioninsod1g93a‐bearingastrocytespromotesmotorneurondegeneration:Preventionbymitochondrial‐targetedantioxidants.JNeurosci2008;28:4115‐4122.154 Olivera S, Fernandez A, Latini A, Rosillo JC, Casanova G, Wajner M, Cassina P,Barbeito L: Astrocytic proliferation and mitochondrial dysfunction induced by

Page 39: Skeletal Muscle in Motor Neuron Diseases: Therapeutic ...

Dupuis,L&Echaniz‐Laguna,A 38/38

accumulated glutaric acidemia i (gai) metabolites: Possible implications for gaipathogenesis.NeurobiolDis2008;32:528‐534.155 VargasMR, PeharM, Diaz‐Amarilla PJ, Beckman JS, Barbeito L: Transcriptionalprofile of primary astrocytes expressing als‐linked mutant sod1. J Neurosci Res2008;86:3515‐3525.156 Yamanaka K, Chun SJ, Boillee S, Fujimori‐TonouN, Yamashita H, Gutmann DH,Takahashi R, Misawa H, Cleveland DW: Astrocytes as determinants of diseaseprogressionininheritedamyotrophiclateralsclerosis.NatNeurosci2008;11:251‐253.157 Lobsiger CS, Boillee S, McAlonis‐Downes M, Khan AM, Feltri ML, Yamanaka K,Cleveland DW: Schwann cells expressing dismutase activemutant sod1 unexpectedlyslowdiseaseprogressioninalsmice.ProcNatlAcadSciUSA2009;106:4465‐4470.