Top Banner
Annals of Fuzzy Mathematics and Informatics Volume x, No. x, (Month 201y), pp. 1–xx ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr @FMI c Kyung Moon Sa Co. http://www.kyungmoon.com Single valued neutrosophic multisets Rajashi Chatterjee, P. Majumdar, S. K. Samanta Received 2 December 2014; Revised 17 January 2015; Accepted 25 March 2015 Abstract. In this paper, we have investigated single valued neutrosophic multisets in detail. Several operations have been defined on them and their important algebraic properties are studied.We have further introduced the notion of distance and similarity measures between two single valued neu- trosophic multisets. An application of single valued neutrosophic multisets in medical diagnosis has been discussed. 2010 AMS Classification: 03E72, 03E75 Keywords: Neutrosophic sets, Single Valued Neutrosophic Sets, Multisets, Simi- larity, Single Valued Neutrosophic Multisets. Corresponding Author: S. K. Samanta (syamal [email protected] ) 1. Introduction The concept of multisets stemmed from the violation of one of the basic prop- erties of classical set theory, which states that an element can occur in a set only once. The term ”multiset” was first introduced by N. G. Bruijn [8]. Multisets, often referred to as ”bags”, are collections of objects that may contain a finite number of duplicates. Multisets are mathematical structures that come handy in areas like database enquiries related to computer science. Also, in dealing with the prob- lems of constructing mathematical models for real-life situations, the data at hand are mainly imprecise and indeterministic. In 1965, Zadeh [31] came up with his remarkable theory of fuzzy sets where he introduced the notion of partial belong- ingness of an element in a set. Later these two concepts have been combined to generate Fuzzy Multisets [18] and were applied in many areas of computer science. After the introduction of Intuitionistic fuzzy sets by Atanassov [4, 5] in 1986, the theory of Intuitionistic Fuzzy Multisets [21] have been developed. On the other hand, in 1995, Florentin Smarandache incorporated the concept of Neutrosophic Logic [22, 23] which sprouted from a branch of philosophy, known as ”Neutrosophy”, meaning ”the study of neutralities” and gave birth to the theory of Neutrosophic
16

Single valued neutrosophic multisets

Aug 18, 2015

Download

Documents

Don Hass

In this paper, we have investigated single valued neutrosophic multisets in detail.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

AnnalsofFuzzyMathematicsandInformaticsVolumex,No. x,(Month201y), pp. 1xxISSN:20939310(printversion)ISSN:22876235(electronicversion)http://www.afmi.or.kr@FMIc KyungMoonSaCo.http://www.kyungmoon.comSinglevaluedneutrosophicmultisetsRajashi Chatterjee, P.Majumdar, S.K.SamantaReceived2December2014;Revised17January2015;Accepted25March2015Abstract. In this paper, we have investigated single valued neutrosophicmultisets in detail. Several operations have been dened on them and theirimportant algebraic properties are studied.We have further introduced thenotionofdistanceandsimilaritymeasuresbetweentwosinglevaluedneu-trosophic multisets. An application of single valued neutrosophic multisetsinmedicaldiagnosishasbeendiscussed.2010AMSClassication: 03E72,03E75Keywords: Neutrosophicsets,SingleValuedNeutrosophicSets,Multisets,Simi-larity,SingleValuedNeutrosophicMultisets.CorrespondingAuthor: S.K.Samanta([email protected] )1. IntroductionTheconceptof multisetsstemmedfromtheviolationof oneof thebasicprop-ertiesof classical settheory, whichstatesthatanelementcanoccurinasetonlyonce. The term multiset was rst introduced by N. G. Bruijn [8]. Multisets, oftenreferredtoasbags, arecollectionsof objectsthatmaycontainanitenumberofduplicates. Multisetsaremathematicalstructuresthatcomehandyinareaslikedatabase enquiries relatedtocomputer science. Also, indealingwiththe prob-lemsofconstructingmathematicalmodelsforreal-lifesituations, thedataathandaremainlyimpreciseandindeterministic. In1965, Zadeh[31] cameupwithhisremarkabletheoryof fuzzysetswhereheintroducedthenotionof partial belong-ingness of anelement inaset. Later thesetwoconceptshavebeencombinedtogenerateFuzzyMultisets[18]andwereappliedinmanyareasofcomputerscience.Aftertheintroductionof IntuitionisticfuzzysetsbyAtanassov[4, 5] in1986, thetheoryof Intuitionistic FuzzyMultisets [21] have beendeveloped. Onthe otherhand, in1995, FlorentinSmarandache incorporatedthe concept of NeutrosophicLogic [22, 23] which sprouted from a branch of philosophy, known as Neutrosophy,meaningthestudyof neutralitiesandgavebirthtothetheoryof NeutrosophicRajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxxSets. Unlike intuitionistic fuzzysets whichassociate toeachmember of the setadegreeof membershipandadegreeof non-membership; , [0, 1], neutro-sophic sets characterize each member x of the set with a truth-membership functionTA(x), an indeterminacy-membership function IA(x) and a falsity-membership func-tionFA(x),eachofwhichbelongstothenon-standardunitinterval]0, 1+[. Thus,although in some cases intuitionistic sets consider a particular indeterminacy or hes-itation margin, = 1 , neutrosophic sets are capable of handling uncertaintyinabetter waysinceincaseof neutrosophicsets indeterminacyis takencareofseparately. Further, in2005, Wanget al, introducedthenotionof Single-ValuedNeutrosophicSets(SVNS)[25],whichdierfromneutrosophicsetsonlyinthefactthat inthe formers case, TA(x), IA(x), FA(x)[0, 1] andcanbe appliedtosolvemanypractical problems. Researchinvolvingsinglevaluedneutrosophicsetsandinterval neutrosophicsets together withtheir applications arenowonfull swing.Notionsof similarity, entropy, subsethoodmeasureetc. of neutrosophicsetshavebeenintroducedandtheirapplicationsinseveralareas[7,17,20,28,29]arebeingexecutedbymanyauthors.Again the theory ofsoft sets was initiated byD. Molodstov[19] in 1999 for mod-elling uncertainty present in real life. Roughly speaking, a soft set is a parameterizedclassicationoftheobjectsoftheuniverse. Molodstovhadshownseveral applica-tionsof softsetsindierentareaslikeintegration, gametheory, decisionmakingetc. LaterMaji etal. [11] denedseveral operationsonsoftsets. Perhapsthisisthe only theory available with a parameterization tool for modelling uncertainty. H.AktasandN. Cagman[1] haveshownthatfuzzysetsarespecial casesofsoftsets.Latermanyauthors[12,13,16]havecombinedsoftsetswithothersetstogeneratehybridstructureslikefuzzysoftsets,intuitionisticfuzzysoftsets,generalizedfuzzysoftsets,vaguesoftsetsetc. andappliedtheminmanyareaslikedecisionmaking,medical diagnosis, similaritymeasureetc. Fewauthors[2, 3, 6, 14, 15] havealsodened the notions of soft multisets,fuzzysoft multisets,neutrosophic soft sets etc.VeryrecentlyS. YeandJ. Ye[30] combinedtheconceptsof singlevaluedneutro-sophicsetsalongwiththetheoryofmultisetsandproposedanewtheoryofSingleValuedNeutrosophicMultisets(SVNMSinshort).InthispaperwehaveslightlymodiedthedenitionofSVNMSandstudieditsproperties. The initial contributions of this paper involve the introduction of variousnewset-theoreticoperatorsonSVNMSandtheirproperties. Later, thenotionofsingle valued neutrosophic sets has been applied in solving a decision making problemregardingmedicaldiagnosis.2. PreliminariesIn this section we give the denition and some important results regarding singlevaluedneutrosophicsets[25]andmultisets.Denition2.1([25]). Let Xbeaspaceof points, withagenericelement inXdenotedbyx. AsinglevaluedneutrosophicsetAinXischaracterizedbyatruth-membershipfunctionTA, anindeterminacy-membershipfunctionIAandafalsity-membershipfunctionFA. ForeachpointxinX,TA(x), IA(x), FA(x)[0, 1].2RajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxxWhenXiscontinuous,aSVNSAcanbewrittenasA =_XT(x), I(x), F(x) x, x XWhenXisdiscrete,aSVNSAcanbewrittenasA =n

i=1T(xi), I(xi), F(xi) xi, xi XDenition2.2([25]). Thecomplement of aSVNSAisdenotedbyc(A) andisdenedbyTc(A)(x) = FA(x),Ic(A)(x) = 1 IA(x)andFc(A)(x) = TA(x),x X.Denition2.3([25]). ASVNSAis containedinanother SVNSBi.e.ABiTA(x) TB(x),IA(x) IB(x)andFA(x) FB(x), x X.Denition2.4([25]). TwoSVNSAandBaresaidtobeequal iA BandB A.Denition 2.5 ([25]). The union of two SVNMS A and B is a SVNMS C, written as,C= A B,whosetruth-membership,indeterminacymembershipandfalsitymem-bershipfunctionsarerelatedtothoseofAandBasTC(x)=max(TA(x), TB(x)),IC(x) = max(IA(x), IB(x))andFC(x) = min(FA(x), FB(x)), x X.Denition2.6([25]). The intersection of two SVNMS A and Bis a SVNS C, writ-tenas,C= AB,whosetruth-membership,indeterminacymembershipandfalsitymembership functions are related to those of Aand B as TC(x) = min(TA(x), TB(x)),IC(x) = min(IA(x), IB(x))andFC(x) = max(FA(x), FB(x)), x X.Denition2.7([25]). ThedierencebetweentwoSVNMSAandBis aSVNSC, writtenas, C=AB, whosetruth-membership, indeterminacymembershipandfalsitymembershipfunctions are relatedto those of AandBas TC(x) =min(TA(x), FB(x)), IC(x) = min(IA(x), 1 IB(x)) and FC(x) = max(FA(x), TB(x)),x X.Denition2.8([25]). Thetruth-favoriteof aSVNSA, denotedby A, whosetruth-membership, indeterminacy-membership and falsity-membership functions aredenedas TA(x) =min(TA(x) +IA(x), 1), IA(x) =0andFA(x) =FA(x),x X.Denition2.9([25]). Thefalsity-favoriteof aSVNSA, is aSVNSdenotedbyA, whosetruth-membership, indeterminacy-membershipandfalsity-membershipfunctionsaredenedasTA(x) = TA(x),IA(x) = 0andFA(x) = min(FA(x) +IA(x), 1), x X.Denition 2.10 ([24]). Let U= {x1, x2, ..., xn} be the universal set. A crisp bag ormultiset Mof Uis characterized by a function CM (.), (CM: U N) correspondingtoeachx U , knownasthecountfunction. AmultisetMisexpressedasM=_k1x1,k2x2, ...,knxn_suchthatxiappearskitimesinM.3RajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxx3. SingleValuedNeutrosophicMultisetsThe notion of single valued neutrosophic multisets were rst dened in [30]. Herethe three count functions are real valued but in this paper we have redened the no-tion of SVNMS with positive integer valued count functions for the sake of practicaluse.Denition3.1. ASingleValuedNeutrosophicMultiset(SVNMS)A, denedonauniverseXissuchthatcorrespondingtoeachelementof thesetthereexistsafunction, namely, the count functionCf: XN, whichdenotes the numberof timesthatparticularelementoccursintheset, suchthateachx Xischarac-terizedbythreesequencesoflengthsCf(x),namely,atruth-membershipsequence_T1A(x), T2A(x), ..., TkA(x)_, an indeterminacy-membership sequence_I1A(x), I2A(x), ..., IkA(x)_andafalsity-membershipsequence_F1A(x), F2A(x), ..., FkA(x)_.Whentheuniverseunder considerationX= {x1, x2, ..., xn}, is discrete, aSingleValuedNeutrosophicMultisetAoverXisrepresentedasA=n

i=1__T1A(xi), T2A(xi), ..., TkiA(xi)_,_I1A(xi), I2A(xi), ..., IkiA(xi)_,_F1A(xi), F2A(xi), ..., FkiA(xi)__wheretheelementxi Xisrepeatedki= Cf(xi)timesinX.Remark3.2. Thetruth-membershipsequenceisalwaysadecreasingsequenceofmembershipvalueswhereastheindeterminacy-membershipandfalsity-membershipsequencesaresuchthattheycanassumethemembershipvaluesinanyorderand0 TrA(xi) + IrA(xi) + FrA(xi) 3, xi X, i=1, 2, ..., nandr=1, 2, ..., ki. ThishasbeendonetokeepparitywiththedenitionsofFuzzyandIntuitionisticfuzzymultisets.Denition3.3. Thelengthof anelement xi Xof asingle-valuedneutrosophicmultisetA,denedonthesetX,isdenedasl(xi: A) = Cf(xi), i = 1, 2, ..., n.Denition 3.4. The cardinality of a single-valued neutrosophic multiset A is denedasCard(A) =

ni=1

l(xi:A)j=1_TjA(xi) +IjA(xi)_,xi X,i = 1, 2, ..., n.Example3.5. Suppose X= {x1, x2, x3} denotes three shirts displayed for sale in aparticularshop. Wenowsetforthtoregistertheopinionofadomainofcustomersabout the quality of shirts based on whether the shirts are made up of good fabric,a level of indeterminacy on the part of the customers and whether they feel that theshirtismadeupofanotsogoodfabric. Basedontheopinionofthedomainofcustomersconcerned,asingle-valuedneutrosophicmultisetcanbedenedonXasfollows:A = (0.6, 0.4) , (0.5, 0.3) , (0.2, 0.3) /x1 +0.2, 0.4, 0.7 /x2+(0.8, 0.6, 0.5) , (0.2, 0.2, 0.3) , (0.1, 0.3, 0.4) /x3Also,l (x1: A) = 2,l (x2: A) = 1,l(x3: A) = 3andCard(A) = 5.Denition3.6. Anabsolutesingle-valuedneutrosophicmultisetAis aSVNMSwhereTi(x) = 1,Ii(x) = 1andFi(x) = 0, x X,i = 1, 2, ..., l(x :A).Denition3.7. Anull single-valuedneutrosophicmultisetisaSVNMSwhereTi(x) = 0,Ii(x) = 0andFi(x) = 1, x X,i = 1, 2, ..., l(x :).4RajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxx4. OperationsoverSingleValuedNeutrosophicMultisetsInthissectionwehavedenedseveral settheoreticandalgebraicoperationsonSVNMS.Theseoperationsaredierentfromtheoperationsthathavebeendenedin [30]. Moreover, in our case the behaviour of indeterminacy membership is similarto the behaviour of truth membership whereas in [30] the indeterminacy membershipissimilartothebehaviouroffalsitymembership.4.1. Set-theoreticoperationsoverSinglevaluedneutrosophicmultisets.Denition4.1. ASVNMSAis saidtobe containedinanother SVNMSBixi X,i = 1, 2, ..., n,(i)l(xi: A) l(xi: B)(ii)TrA(xi) TrB(xi)(iii)IrA(xi) IrB(xi)(iv)FrA(xi) FrB(xi), xi X, i = 1, 2, ..., nandr = 1, 2, ..., l(xi: A).Denition4.2. TwoSVNMSAandBaresaidtobeequalitheyaresubsetsofoneanother.Remark4.3. LetAandBbetwoSVNMSovertheuniverseX. Inordertocarryoutanyoperation(set-theoreticoralgebraic)betweenAandBitisveriedatrstwhetherl(xi: A)=l(xi: B), xi X. If l(xm: A) =l(xm: B)foranyxm Xthenwithoutanylossof generality, asucientnumberof 0sareappendedwiththetruth-membershipandtheindeterminacymembershipvalues andasucientnumberof1sareappendedwiththefalsity-membershipvaluesrespectivelytothesequences of smaller lengththerebymakingthelengths equal andfaciltatingtheexecutionofoperations.Example4.4. SupposetwoSVNMSAandBaregivenby,A = 0.5, 0.4, 0.4 /x1 +(0.3, 0.2) , (0.5, 0.4) , (0.6, 0.7) /x2 +0.8, 0.3, 0.2 /x3B= (0.8, 0.6) , (0.4, 0.5) , (0.1, 0.3) /x1 +(0.5, 0.4) , (0.7, 0.7) , (0.5, 0.3) /x2 +0.9, 0.5, 0.2 /x3HereA B.Denition4.5. TheunionoftwoSVNMSAandBoverX, denotedbyAB, isa SVNMS over Xwhose truth-membership,indeterminacy-membership and falsity-membershipvaluesaregivenbyTrAB(xi) = max(TrA(xi), TrB(xi))IrAB(xi) = max(IrA(xi), IrB(xi))FrAB(xi) = min(FrA(xi), FrB(xi))xi X,i = 1, 2, ..., n;r = 1, 2, ..., lwherel = max{l(xi: A), l(xi: B)}.Denition4.6. The intersectionof twoSVNMSAandBover X, denotedbyA B, isaSVNMSoverXwhosetruth-membership, indeterminacy-membershipandfalsity-membershipvaluesaregivenbyTrAB(xi) = min(TrA(xi), TrB(xi))IrAB(xi) = min(IrA(xi), IrB(xi))FrAB(xi) = max(FrA(xi), FrB(xi))xi X,i = 1, 2, ..., n;r = 1, 2, ..., lwherel = max{l(xi: A), l(xi: B)}.5RajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxxExample 4.7. Let two SVNMS A and B, dened over the universe X= {x1, x2, x3}begivenby,A = (0.5, 0.3) , (0.1, 0.1) , (0.7, 0.8) /x1 +(0.7, 0.68, 0.62) , (0.3, 0.45, 0.5) , (0.34, 0.28, 0.49) /x2+(0.67, 0.5, 0.3) , (0.2, 0.3, 0.4) , (0.4, 0.5, 0.7) /x3B= 0.75, 0.2, 0.15 /x1 +(0.43, 0.37, 0.28, (0.5, 0.2, 0.3) , (0.7, 0.8, 0.9)) /x2+(1.0, 0.86, 0.79) , (0.01, 0.1, 0.2) , (0.0, 0.3, 0.2) /x3 A B= (0.75, 0.3) , (0.2, 0.1) , (0.15, 0.8) /x1+(0.7, 0.68, 0.62) , (0.5, 0.45, 0.5) , (0.34, 0.28, 0.49) /x3+(1.0, 0.86, 0.79) , (0.2, 0.3, 0.4) , (0.0, 0.3, 0.2) /x3Denition 4.8. The truth-favorite of a SVNMS A, denoted by A, is a SVNMS andischaracterizedbythetruth-membership, indeterminacy-membershipandfalsity-membershipvalueswhicharerespectivelydenedasTrA(xi) = min(TrA(xi) +IrA(xi), 1)IrA(xi) = 0FrA(xi) = FrA(xi)xi X, i = 1, 2, ..., n; r = 1, 2, ..., lwherel = max{l(xi: A), l(xi: B)}.Denition4.9. Thefalsity-favoriteofaSVNMSA,denotedby A,isaSVNMSand is characterized by the truth-membership, indeterminacy-membership and falsity-membershipvalueswhicharerespectivelydenedasTrA(xi) = TrA(xi)IrA(xi) = 0FrA(xi) = min(FrA(xi) +IrA(xi), 1)xi X,i = 1, 2, ..., n;r = 1, 2, ..., lwherel = max{l(xi: A), l(xi: B)}.Example4.10. ConsideringtheSVNMSAofexample4.7wehave,A = (0.6, 0.4) , (0.0, 0.0) , (0.7, 0.8) /x1+(1.0, 1.0, 1.0) , (0.0, 0.0, 0.0) , (0.34, 0.28, 0.49) /x2+(0.87, 0.8, 0.7) ,(0.0, 0.0, 0.0) ,(0.4, 0.5, 0.7) /x3A = (0.5, 0.3) , (0.0, 0.0) , (0.8, 0.9) /x1+(0.7, 0.68, 0.62) , (0.0, 0.0, 0.0) , (0.64, 0.73, 0.99) /x2+(0.67, 0.5, 0.3) , (0.0, 0.0, 0.0) , (0.6, 0.8, 1.0) /x3Proposition4.11. It hasbeenobservedthat single-valuedneutrosophicmultisetssatisfythefollowingpropertiesunderset-theoreticoperations:1. CommutativeProperty(i)A B= B A(ii)A B= B A2. AssociativeProperty(i)A (B C) = (A B) C(ii)A (B C) = (A B) C6RajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxx3. IdempotentProperty(i)A A = A(ii)A A = A(iii) A = A(iv) A = A4. AbsorptiveProperty(i)A (A B) = A(ii)A (A B) = A5. (i)AA =A(ii)AA = A(iii)A = A(iv)A =Proof. Theproofsarestraight-forward. 4.2. AlgebraicOperationsoverSVNMS.Denition4.12. The addition between two SVNMS A and Bover the universe X,denotedbyA B, isaSVNMSoverX, whosetruth-membership, indeterminacy-membershipandfalsity-membershipvaluesaredenedasTrAB(xi) = TrA(xi) +TrB(xi) TrA(xi).TrB(xi)IrAB(xi) = IrA(xi) +IrB(xi) IrA(xi).IrB(xi)FrAB(xi) = FrA(xi).FrB(xi)xi X,i = 1, 2, ..., n;r = 1, 2, ..., l.Denition4.13. ThemultiplicationbetweentwoSVNMSAandBovertheuni-verse X, denoted by AB, is a SVNMS over X, whose truth-membership, indeterminacy-membershipandfalsity-membershipvaluesaredenedasTrAB(xi) = TrA(xi).TrB(xi)IrAB(xi) = IrA(xi).IrB(xi)FrAB(xi) = FrA(xi) +FrB(xi) FrA(xi).FrB(xi)xi X,i = 1, 2, ..., n;r = 1, 2, ..., l.Example4.14. LettheSVNMSunderconsiderationbethosestatedinexample4.7ThenwehaveAB= (0.875, 0.3) , (0.28, 0.1) , (0.105, 0.0) /x1+(0.829, 0.7894, 0.7264) , (0.65, 0.56, 0.65) , (0.238, 0.224, 0.441) /x2+(1.0, 0.93, 0.853) , (0.208, 0.37, 0.52) , (0.0, 0.15, 0.14) /x3AB= (0.375, 0.0) , (0.02, 0.0) , (0.745, 0.8) /x1+(0.301, 0.252, 0.174) , (0.15, 0.09, 0.15) , (0.802, 0.856, 0.949) /x2+(0.67, 0.43, 0.237) , (0.002, 0.03, 0.08) , (0.4, 0.65, 0.76) /x35. ProposeddistancemeasurebetweentwoSVNMSInthissection, thenotionof distance, denotedbyd(A, B), ingeneral, betweentwoSVNMSAandBdenedovertheuniverseX= {x1, x2, ..., xn}hasbeenpro-posedinthesenseofHamming, NormalizedHamming, EuclideanandNormalizedEuclidean.7RajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxxSupposethat,li= maxi{l(xi: A), l(xi: B)}andL = maxi{li},i = 1, 2, ..., n.Denition5.1. TheHammingdistancebetweenAandBisgivenby,dN(A, B) =n

i=1li

r=1(|TrA(xi) TrB(xi)| +|IrA(xi) IrB(xi)| +|FrA(xi) FrB(xi)|)Denition5.2. TheNormalizedHammingdistancebetweenAandBisgivenby,lN(A, B) =13nLn

i=1li

r=1(|TrA(xi) TrB(xi)| +|IrA(xi) IrB(xi)| +|FrA(xi) FrB(xi)|)Denition5.3. TheEuclideandistancebetweenAandBisgivenby,eN(A, B) =_n

i=1li

r=1_TrA(xi) TrB(xi)2+IrA(xi) IrB(xi)2+FrA(xi) FrB(xi)2_Denition5.4. TheNormalizedEuclideandistancebetweenAandBisgivenby,qN(A, B) =_13nLn

i=1li

r=1_TrA(xi) TrB(xi)2+IrA(xi) IrB(xi)2+FrA(xi) FrB(xi)2_Remark5.5. Ithasbeenobservedthattheproposeddistancemeasuresasstatedabovesatisesthefollowingproperties:(i)dN (A, B)[0, 3nL](ii)lN (A, B)[0, 1](iii)eN (A, B)_0,3nL_(iv)qN (A, B)[0, 1]Proof. Theproofsarestraight-forward. Proposition 5.6. It has been observed that in general, whatever might be the notioninwhichthe distance betweenany twoSVNMSbe dened, the distance measured (A, B)betweenanytwoSVNMSAandBsatisesthefollowingproperties:(i)d (A, B) 0andtheequalityholdsiA = B.(ii)d (A, B) = d (B, A)(iii)d (A, B) d (A, C) +d (B, C),whereCisaSVNMSoverX.Proof. Theproofs of (i) and(ii) arestraightforward. Wegivetheoutlineof theproofsof(iii)only.ConsiderthreearbitrarySVNMSA, BandC. Thenforr = 1, 2, ..., liwehaveTrA(xi) TrB(xi) =TrA(xi) TrC(xi) +TrC(xi) TrB(xi)TrA(xi) TrC(xi)+TrB(xi) TrC(xi)Similarlyitcanbeshownthat,IrA(xi) IrB(xi)IrA(xi) IrC(xi)+IrB(xi) IrC(xi)FrA(xi) FrB(xi)FrA(xi) FrC(xi)+FrB(xi) FrC(xi)8RajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxxHenceitfollowsthat,

ni=1

lir=1_TrA(xi) TrB(xi)+IrA(xi) IrB(xi)+FrA(xi) FrB(xi)_

ni=1

lir=1_TrA(xi) TrC(xi)+IrA(xi) IrC(xi)+FrA(xi) FrC(xi)_+

ni=1

lir=1_TrB(xi) TrC(xi)+IrB(xi) IrC(xi)+FrB(xi) FrC(xi)_Again,weseeTrA(xi) TrB(xi)2=TrA(xi) TrC(xi) +TrC(xi) TrB(xi)2TrA(xi) TrC(xi)2+TrB(xi) TrC(xi)2SimilarlywehaveIrA(xi) IrB(xi)IrA(xi) IrC(xi)+IrB(xi) IrC(xi)FrA(xi) FrB(xi)FrA(xi) FrC(xi)+FrB(xi) FrC(xi)andhence,

ni=1

lir=1_TrA(xi) TrB(xi)2+IrA(xi) IrB(xi)2+FrA(xi) FrB(xi)2_

ni=1

lir=1_TrA(xi) TrC(xi)2+IrA(xi) IrC(xi)2+FrA(xi) FrC(xi)2_+

ni=1

lir=1_TrB(xi) TrC(xi)2+IrB(xi) IrC(xi)2+FrB(xi) FrC(xi)2_Thustheproofsfollowautomaticallyfromtheaboveresults. Remark5.7. Fromtheaforementionedobservationsitcanbeconcludedthattheproposed notion of distance measures actually dene metrics over the set of all single-valuedneutrosophicmultisetsandhenceifNmdenotesthecollectionofallSVNMSoverauniverseXthen(Nm, d)denesametricspaceoverX.Example 5.8. Let us consider the SVNMS A and Bas stated in example 4.7. ThenwehavedN (A, B) = 7.83,lN (A, B) = 0.29,eN (A, B) = 1.772andqN (A, B) = 0.3418.6. SimilarityMeasurebetweentwoSVNMSInthissectionthenotionof similaritymeasurebetweentwoSVNMShasbeenstated. ThevarioustypesofsimilaritymeasuresbetweentwoSVNMSareproposedasfollows:Denition6.1. TheDistanceBasedSimilarityMeasureisdenedas,Sd (A, B) =11 + d (A, B)wherethedistancemeasurecanbetakeninanyof themethodsasmentionedinSection5.Denition6.2. TheSimilarityMeasurebasedonmembershipdegreesisdenedas,Sm (A, B)=

ni=1

lir=1{min(TrA(xi), TrB(xi)) + min(IrA(xi), IrB(xi)) + min(FrA(xi), FrB(xi))}

ni=1

lir=1_max_TrA(xi), TrB(xi)_+ max_IrA(xi), IrB(xi)_+ max_FrA(xi), FrB(xi)__9RajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxxRemark6.3. Insomecases, especiallywhiledealingwithreal lifeproblems, theelements of the universe under consideration are associated with weights in order tospecifythevaryingdegreesofimportanceoftheelementsathand. Inthiscasewehave considered this possibility and accordingly the similarity measure between twoSVNMShavebeendenedwheretheuniverseoverwhichthesetsaredenedhaveweightsassociatedtoitsconstituentelements.Denition6.4. Theweightedsimilaritymeasureinthesenseof Majumdar andSamanta[17]isdenedas,Sw (A, B)=

ni=1 wi_

lir=1{TrA(xi).TrB(xi)+IrA(xi).IrB(xi)+FrA(xi).FrB(xi)}_

ni=1 wi[(TrA(xi)2+IrA(xi)2+FrA(xi)2).(TrB(xi)2+IrB(xi)2+FrB(xi)2)]._1

ni=1 wi_where0 wi 1,i=1, 2, ..., nandwiaretheweightsassociatedwiththexisrespectivelywherexi X.Denition 6.5. The proposed weighted similarity measure in the sense of DengfengandChuntian[9]isdenedasfollows:LetAbeaSVNMSoverauniverseX. WedeneafunctionA: X [0, 1]as,A(x) =

lr=1{TrA(x) + IrA(x) + (1 FrA(x))}3lwherel = l(x : A)isthelengthofanelementx X.Dene the weightedsimilaritymeasure betweentwoSVNMSAandBover thesameuniverseXas,S

w (A, B) = 1 p

ni=1 wi |B(xi) A(xi)|p

ni=1 wiwhere0 wi 1, i =1, 2, ..., nandwiaretheweightsassociatedwiththexisrespectivelywherexi X.Herepisapositiveintegercalledthesimilaritydegree.Example6.6. WeconsidertheSVNMSAandBasstatedinexample4.7. ThentakingintoconsiderationtheresultlN (A, B) = 0.29fromexample5.8wehave,Sd (A, B) = 0.775andSm (A, B) = 0.485.Proposition6.7. 1. Thedistancebasedsimilaritymeasuresatisesthefollowingproperties:(i)0 Sd (A, B) 1andequalityoccursiA = B(ii)Sd (A, B) = Sd (B, A)(iii)ForA B C,Sd (A, C) Sd (A, B) Sd (B, C)2. Thesimilaritymeasurebasedonmembershipdegreessatisesthefollowingprop-erties:(i)0 Sm (A, B) 1andequalityoccursiA = B(ii)Sm (A, B) = Sm (B, A)10RajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxx(iii)ForA B C,Sd (A, C) Sd (A, B) Sd (B, C)3. Theweightedsimilaritymeasuressatisfythefollowingproperties:(a).(i)0 Sw (A, B) 1andequalityoccursiA = B(ii)Sw (A, B) = Sw (B, A)(b).(i)0 Sw(A, B) 1andequalityoccursiA = B(ii)Sw(A, B) = Sw(B, A)(iii)ForA B C,Sw(A, C) Sw(A, B) Sw(B, C)(iv)CorrespondingtoanytwoSVNMS,foranascendingsequenceofintegralvaluesofpadecreasingsequenceofsimilaritymeasuresisobtained.Proof. Weonlyprove3(b)(iii)and3(b)(iv)sincetheremainingproofsarestraight-forward.LetA B Cthenitiseasytoprovethat{C(xi) A(xi)} {B(xi) A(xi)}sinceTrC(xi) TrB(xi),IrC(xi) IrB(xi)andFrC(xi) FrB(xi), xiX,i = 1, 2, ..., nandr= 1, 2, ..., max{l (xi: B) , l (xi: C)}.Thus,

l(xi:C)r=1_TrC(xi) +IrC(xi) +_1 FrC(xi)__

l(xi:B)r=1_TrB(xi) +IrB(xi) +_1 FrB(xi)__andhence,{C(xi) A(xi)} {B(xi) A(xi)} = {C(xi) B(xi)} 0.So,|{C(xi) A(xi)}|p |{B(xi) A(xi)}p|

ni=1wi|{C(xi) A(xi)}|p

ni=1wi|{B(xi) A(xi)}|pSw (A, C) Sw (A, B)Similarly,itcanbeshownthatSw (A, C) Sw (B, C).Next, suppose that for aparticular pN, ai= |B(xi) A(xi)| andqi=wi,i = 1, 2, ..., n.Thus,p

ni=1 wi |B(xi) A(xi)|p

ni=1 wi=

ni=1 qi (ai)p

ni=1 qi1p= f(p), say.Hence, f(p) is a power meanfunction[10] therebybeing strictlymonotonicallyincreasinginnaturei.e. forp1, p2 Nwithp1< p2, f(p1) < f(p2)._ni=1qi (ai)p1

ni=1qi_1p1 1 _ni=1qi (ai)p2

ni=1qi_1p211RajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxxThis proves the fact that as p increases, the value of the similarity measureSw (A, B)decreasesandhenceitmaybeconcludedthatforasequenceofascendingintegralvalues for pweobtainadecreasingsequenceof similaritymeasures betweentwoSVNMSAandB,whichcompletestheproof. Remark6.8. Fromthe aforementionedproperties it is clear that the weightedsimilarity measure Sw (A, B) in the sense of [17] is not an actual similarity measure inthe actual sense of the term since it does not satisfy all the properties of the axiomaticdenitionof asimilaritymeasure [26]. Wethus termthis particular measure ofsimilarityaweightedquasi-similaritymeasure.7. AnapplicationofSinglevaluedneutrosophicmultisetsinmedicaldiagnosisSince real-life situations involve uncertainties, while constructing a mathematicalmodel ofpractical importanceweneedtoincorporatevariablesthatcandeal withuncertainties. Inthis sectionwestateanexamplewithaviewtoshowhowthetheoryofsingle-valuedneutrosophicmultisetscanbeusedindiagnosingamedicalcondition.Afeverisoneof themostcommonmedical signsanditischaracterizedbyanelevationofbodytemperatureabovethenormal rangeof97.7F 98.5F. Itcanbecausedbymanymedical conditionsrangingfrombenigntopotentiallyserious.Besidesanelevatedbodytemperaturethereareadditionalsymptomssuchasshiv-ering, sweating, loss of appetiteetc. whichareassociatedwithfever. Moreover,there are specic patterns of temperature changes during a fever according to whichafever maybeclassiedas Continuous fever, Pel-Ebsteinfever, Remittent feverand Intermittent fever, which in turn may be classied into Quotidian fever, TertianfeverandQuartanfever. Thesefeverpatternsalongwiththeassociatedsymptomsaidinthediagnosisofaparticulardisease.Consider the case of apersonprimarilydiagnosedwithfever associatedwithshivering, headache, muscleandjointache, cough, runningnoseaccompaniedwithsneezing, lossof appetite, chestpainandfatigue. Theassociatedsymptomsthatare prominent in the person hint at the fact that the person might be suering fromTuberculosis,InuenzaorCommonCold.Tuberculosisisaninfectiousdisease, typicallyof thelungsandischaracterizedbyremittent fever accompaniedbybadcough, at times accompaniedbyblood,paininthe chest, fatigue, loss of appetite, chills andnight sweating. Inuenzaor Fluis characterizedbyremittent fever, extremechills, shivering, cough, nasalcongestionandrunnynoseaccompaniedbysneezing,bodyache,particularlyinthejoints,fatigueandheadache. Ontheotherhand,CommonColdischaracterizedbyremittentfeveraccompaniedbyrunnynose,shivering,cough,bodyache,headacheandsneezing.Forthesakeofdiagnosis,thepatientiskeptundersupervisionforadayandhisfeverpatternalongwiththeothersymptomsaremonitoredthrice, atintervalsof8 hrs, starting from 6:00 hrs in the morning, then at 14:00 hrs and nally at 22:00 hrs.12RajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxxThemedicalndingsofthepatientarerepresentedinatabularformasfollows:SymptomsTimings T Sh Sw H MJ C LA CP F RNS6:00hrs 97.5F - - - m m m - m m14:00hrs 100F m - m m m m - m m22:00hrs 101.2F h - m m m m - m mTable7.1. Tablerepresentingthemedicalndingsofthepatient.HereT, Sh, Sw, H, MJ, C, LA, CP, FandRNSdenotebodytemprature, shiv-ering, sweating, headache, muscle and joint pain, cough, loss of appetite, chest pain,fatigueandrunningnosewithsneezingrespectivelyandthesesymptomsaltogetherconstitute the univrsal set. On the other hand, the symbols m and h are abbrevi-ations for moderate and high respectively which denote the qualitative intensityoftheelementsoftheuniversalset.The above ndings of the patient can be summarized and represented with the helpof a SVNMS, denoted by Pf(symbolic representation for the patients ndings) overtheabovementioneduniverseasfollows:A = (0, 0.5, 0.7) , (0.2, 0.1, 0) , (0.9, 0.1, 0) /T+(0, 0.5, 0.9) , (0.1, 0.1, 0) , (1, 0.3, 0) /Sh+(0, 0, 0) , (0.1, 0, 0) , (0.9, 0.9, 1) /Sw +(0, 0.5, 0.4) , (0.1, 0.2, 0.2) , (0.8, 0.3, 0.3) /H+(0.5, 0.5, 0.5) , (0, 0.1, 0) , (0.2, 0.3, 0.4) /MJ+(0.55, 0.5, 0.4) , (0.2, 0, 0) , (0.5, 0.4, 0.5) /C+(0.5, 0.5, 0.45) , (0.2, 0.2, 0.1) , (0.4, 0.3, 0.4) /LA+(0, 0, 0) , (0.1, 0.1, 0) , (0.8, 0.9, 0.9) /CP+(0.58, 0.5, 0.5) , (0.3, 0.2, 0.1) , (0.3, 0.3, 0.4) /F+(0.5, 0.4, 0.4) , (0.1, 0.1, 0) , (0.2, 0.3, 0.4) /RNSSupposethestandardsymptomaticcharacteristicsof thediseasesarerepresentedbythefollowingSVNMSas,TB= (0, 0.5, 0.6) , (0, 0.1, 0) , (0.9, 0.4, 0.2) /T+(0.6, 0.6, 0.5) , (0.1, 0.1, 0) , (0.2, 0.1, 0.1) /Sh+(0.5, 0.5, 0.7) , (0.1, 0.2, 0.1) , (0.4, 0.3, 0.1) /Sw +(0, 0, 0) , (0, 0.1, 0) , (0.8, 0.8, 0.9) /H+(0, 0, 0) , (0.1, 0.1, 0.1) , (0.9, 1, 0.9) /MJ+(1, 0.9, 0.9) , (0.1, 0, 0.1) , (0, 0, 0.1) /C+(0.6, 0.6, 0.5) , (0.3, 0.2, 0.2) , (0.4, 0.5, 0.4) /LA+(0.7, 0.6, 0.6) , (0.2, 0.1, 0.1) , (0.2, 0.3, 0.1) /CP+(0.5, 0.4, 0.3) , (0.4, 0.4, 0.3) , (0.4, 0.5, 0.3) /F+(0.4, 0.3, 0.3) , (0.3, 0.3, 0.2) , (0.5, 0.4, 0.5) /RNSInf= (0.8, 0.7, 0.7) , (0, 0.1, 0.1) , (0.1, 0.1, 0.2) /T+(0.9, 0.8, 0.8) , (0, 0, 0.1) , (0.1, 0.2, 0.1) /Sh+(0, 0, 0) , (0, 0, 0) , (0.9, 0.9, 0.1) /Sw +(0.6, 0.6, 0.5) , (0.2, 0.1, 0.1) , (0.3, 0.3, 0.2) /H+(0.9, 0.8, 0.8) , (0.1, 0.1, 0) , (0.1, 0, 0) /MJ+(0.6, 0.6, 0.5) , (0.1, 0.2, 0.1) , (0.3, 0.4, 0.2) /C+(0.6, 0.5, 0.5) , (0.2, 0.2, 0.1) , (0.4, 0.3, 0.3) /LA+(0, 0, 0) , (0.1, 0.2, 0.1) , (0.8, 0.9, 0.8) /CP+(0.5, 0.4, 0.3) , (0.4, 0.4, 0.3) , (0.4, 0.5, 0.3) /F+(0.4, 0.3, 0.3) , (0.3, 0.3, 0.2) , (0.5, 0.4, 0.5) /RNSCC= (0.1, 0.5, 0.7) , (0.1, 0.1, 0.2) , (0.9, 0.4, 0.3) /T+(0.9, 0.8, 0.8) , (0.1, 0, 0.1) , (0, 0.2, 0.1) /Sh+(0, 0, 0) , (0.2, 0.1, 0.1) , (0.9, 0.4, 0.3) /Sw +(0.6, 0.6, 0.5) , (0.2, 0.1, 0.1) , (0.3, 0.2, 0.2) /H+(0.7, 0.6, 0.6) , (0.3, 0.1, 0.1) , (0.2, 0.3, 0.3) /MJ +(0.6, 0.6, 0.5) , (0.1, 0.2, 0.1) , (0.3, 0.4, 0.2) /C+(0.6, 0.5, 0.5) , (0.2, 0.2, 0.1) , (0.4, 0.3, 0.3) /LA+(0.5, 0.5, 0.4) , (0.1, 0.1, 0) , (0.4, 0.3, 0.3) /CP+(0.5, 0.4, 0.3) , (0.4, 0.4, 0.3) , (0.4, 0.5, 0.3) /F+(0.7, 0.7, 0.6) , (0.2, 0.2, 0.1) , (0.3, 0.3, 0.4) /RNS13RajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxx.The disease of the patient is diagnosed using the weighted similarity measure (Def-inition6.5.). Suppose, forthesakeofdiagnosis, thehighestpriorityisassignedtoheadacheandmuscleandjointacheandconsequentlysymptomssuchas,shivering,sweating,coughing,runningnoseandshivering,chestpain,fatigue,lossofappetiteandbodytemperaturehave beenprioritized. Letthe respectiveweights assignedtoT, Sh, Sw, H, MJ, C, LA, CP, LA, CP, F, RNSbe0.2, 0.7, 0.7, 0.9, 0.9, 0.6, 0.3,0.4,0.3and0.6.Thedecisionmakingprocess involves calculatingtheweightedsimilaritymea-sures between the SVNMS Pfand the respective SVNMS representing the diseases.ThesetbearingthehighestmeasureofsimilaritywithrespecttoPfisthediseasethathasaectedtheperson. Inordertoconrmtheobtainedresult,theprocessisrepeatedformorethanoneintegralvaluesofpi.e. thesimilaritydegree.Thecalculationshavebeenrepresentedinatabularformasfollows:DiseaseSetsSimilarityDegree(p) PatientData TB Inf CCp = 1 Pf0.69 0.89 0.87p = 2 Pf0.68 0.86 0.85p = 3 Pf0.66 0.85 0.83Table 7.2. Tableshowingthe similaritymeasures betweenthediseasesetsandPf.Thus, fromtheabovendingsitisclearthatthepatienthasbeensueringfromInuenza.8. ConclusionIn this paper a new hybridized concept, namely Single Valued Neutrosophic Mul-tisethasbeenstudied. Varioussettheoreticandalgebraicoperatorshavebeende-ned and their properties have been discussed. The notions of distance and similaritymeasureshavealsobeenincorporated. Finallyanexamplecitingtheapplicabilityofsinglevaluedneutrosophicmultisetsinproblemspertainingtomedicaldiagnosishas been stated. Being characterized by an indeterminacy membership value, singlevalued neutrosophic sets provide a far more generalized tool in handling uncertaintyascomparedtofuzzysetsorintuitionisticfuzzysets. Sincesinglevaluedneutro-sophicmultisetshaveresultedbymergingtogethertheconceptsof multisetsandsinglevaluedneutrosophicsets,theformerareafurthergeneralizationofthelatterin the sense that in this case multiple occurrances of an element with varying degreesof membershipvaluesaretakenintoconsiderationandthushavemoredegreesoffreedomcomparedtothelatter. Moreover, thenotionsof distanceandsimilaritymeasuresarestatedwithaviewtoaidinthewidespreadapplicabilityof SVNMSin elds like medical diagnosis,data retrieval on the web or in multicriteria decisionmakingproblems.14RajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxxAcknowledgments. Theauthorsexpresstheirsincerethankstotheanonymousreferees for their valuable and constructive suggestions which have improved the pre-sentation. TheauthorsarealsothankfultotheEditors-in-ChiefandtheManagingEditorsfortheirvaluableadvice.Theresearchof therstauthorissupportedbyUniversityJRF(JuniorResearchFellowship).Theresearchof thesecondauthor is supportedbyUGC(ERO) Minor ResearchProject.The research of the third author is partially supported by the Special Assistance Pro-gramme (SAP) of UGC, New Delhi, India [Grant No. F 510/8/DRS/2009 (SAP-II)].References[1] H.Aktas,N.Cagman,Softsets&softgroups,Inform.Sci.177(2007)2726-2735.[2] S. Alkhazadeh, A. R. Salleh, FuzzySoftMultisettheory, Abstract&AppliedAnalysis201220(2012).[3] S. Alkhazadeh, A. R. Salleh, N. Hassan, Softmultisettheory, Appl. Math. Sci. 5(2)(2011)3561-3573.[4] K.T.Atanassov,IntuitionisticFuzzySets,FuzzySetsandSystems20(1986)87-96.[5] K. T. Atanassov, IntuitionisticFuzzySets: TheoryandApplications, Physica-VerlagHeidel-bergNewYork(1999).[6] K.V.Babitha,S.J.John,Onsoftmultisets,Ann.FuzzyMath.Inform.5(1)(2013)35-44.[7] S. Broumi, F. Smarandache, CorrelationCoecient of Interval Neutrosophic Set, AppliedMechanicsandMaterials436(2013)511-517.[8] N. G. De Bruijn,Denumerations of Rooted trees and Multisets,Discrete Appl. Math. 6 (1983)25-33.[9] L. Dengfeng, C. Chuntian, New Similarity measures of intuitionistic fuzzy sets and applicationtopatternrecognition,PatternRecognitionLetters23(2002)221-225.[10] XuLiquan, Power-MeanFunctionAndIts MeanInequality, Scientic Inquiry9(2) (2008)103-108.[11] P.K.Majiet.al,Softsettheory,Comput.Math.Appl.45(2003)555-562.[12] P.K.Majiet.al,Fuzzysoftsets,TheJournalofFuzzyMathematics9(3)(2001)589-602.[13] P. K. Maji, R. BiswasandA. R. Roy, IntuitionisticFuzzySoftSets, TheJournal of FuzzyMathematics9(3)(2001)684-690.[14] P.K.Maji,Neutrosophicsoftset,Ann.FuzzyMath.Inform.5(1)(2013)2287-623.[15] P. Majumdar, Soft Multisets, Journal of Mathematical and Computational Science 2(6) (2012)1700-1711.[16] P.MajumdarandS.K.Samanta,Generalizedfuzzysoftsets,Comput.Math.Appl.59(2010)1425-1432.[17] P. Majumdar, S. K. Samanta, OnSimilarityandEntropyof NeutrosophicSets, Journal ofIntelligentandFuzzySystems,26(3)1245-1252.[18] S.Miyamoto,FuzzyMultisetsandTheirGeneralizations,MultisetProcessingSpringerBerlinHeidelberg(2001)225-235.[19] D.Molodstov,SoftSetTheory-FirstResults,Comput.Math.Appl.37(1999)19-31.[20] R. Sahin, A. Kucuk, SubsethoodMeasurefor SingleValuedNeutrosophicSets, Journal ofIntelligentandFuzzySystems(2014)Doi: 10.3233/IFS-141304.[21] T.K.Shinoj,S.J.John,IntuitionisticFuzzyMultisetsAndItsApplicationinMedicalDiag-nosis,WorldAcademyofScience,EngineeringandTechnology61(2012)1178-1181.[22] F. Smarandache,A unifying eld in logics: Neutrosophic logic,Neutrosophy,neutrosophic set,neutrosophicprobabilityandstatistics(2005).[23] F. Smarandache, NeutrosophicSet-AGeneralizationof theIntuitionisticFuzzySet, JournalofDefenseResourcesManagement1(1)(2010)107-116.15RajashiChatterjeeetal./Ann. FuzzyMath. Inform. x(201y),No. x,xxxx[24] A.Syropoulus,MathematicsofMultisets,Pre-proceedingsoftheWorkshoponMultisetPro-cessing(2000)286-295.[25] H. Wanget. al, Single ValuedNeutrosophic Sets, Multispace andMultistructure 4(2010)410-413.[26] L.Xuecheng,Entropy,distanceandsimilaritymeasureoffuzzysetsandtheirrelations,FuzzySetsandSystems52(1992)305-318.[27] R. R. Yager, On the Theory of Bags, International Journal of General Systems 13 (1986) 23-37.[28] J. Ye, Vectorsimilarityof simpliedneutrosophicsetsandtheirapplicationinmulticriteriadecisionmaking,Int.J.FuzzySyst.16(2)(2014)204-211.[29] J. Ye, Q. S. Zhang, Single valuedneutrosophic similaritymeasures for multiple attributedecisionmaking,NeutrosophicSetsandSystems2(2014)48-54.[30] S. Ye, J. Ye, Dicesimilaritymeasurebetweensinglevaluedneutrosophicmultisets anditsapplicationinmedicaldiagnosis,NeutrosophicSetsandSystems6(2014)48-52.[31] L.A.Zadeh,FuzzySets,InformationandControl8(3)(1965)338-353.Rajashi Chatterjee([email protected])DepartmentofMathematics,Visva-Bharati,Santiniketan-731235,WestBengal,In-dia.P.Majumdar([email protected])Department of Mathematics, M.U.C. Womens College, Burdwan-713104, West Ben-gal,India.S.K.Samanta([email protected])DepartmentofMathematics,Visva-Bharati,Santiniketan-731235,WestBengal,In-dia.16