Top Banner
Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič
41

Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Dec 22, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Simultaneous Diophantine Approximation with Excluded Primes

László BabaiDaniel Štefankovič

Page 2: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Dirichlet (1842) Simultaneous Diophantine Approximation

1 2, ,..., ,n Q

1,..., nr r

Given reals

integers

1/ 2i iQ p trivial

for all i

and

q Q

q

1/ ni iq r Q

such that and

Page 3: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Simultaneous Diophantine Approximationwith an excluded prime

1 2, ,..., n

1,..., nr r

Given reals

integers

i iq r for all i

and q

gcd( , ) 1p q

prime p

?such that and

Page 4: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Simultaneous diophantine -approximationexcluding

1 1/ 3

1 1 1| | | / 3 | 1/ 3q r q r

p

Not always possible

Example 3p

If

then

Page 5: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Simultaneous diophantine -approximationexcluding

1 1| |q r

p

obstacle with 2 variables

1 22 1/ p

1 2 1 23 | ( 2 ) ( 2 ) | 1/q r r p

2 2| |q r

If

then

Page 6: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Simultaneous diophantine -approximationexcluding

p

general obstacle

1 1 2 2 ... 1/n nb b b p t

| | 1/ib p

If

then

Page 7: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Simultaneous diophantine -approximationexcluding

p

Theorem:

If there is no -approximationexcluding p then there exists an obstacle with

3/ 2| | /ib n Kronecker’s theorem ():

Arbitrarily good approximation excluding possible IFF no obstacle.

p

Page 8: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Simultaneous diophantine -approximationexcluding

p

obstacle with 3/ 2| | /ib n

3/ 2pn

pnecessary to prevent -approximation

excluding

psufficient to prevent -approximation

excluding

Page 9: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Motivating example

Shrinking by stretching

Page 10: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Motivating example

set

stretching by

/A m Z Z

gcd( , ) 1x m

moda ax m{ | }Ax ax a A

x

arc length of A

max | (mod ) |a A

a m

Page 11: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Example of the motivating example

A = 11-th roots of unity mod 11177

Page 12: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Example of the motivating example

168

A = 11-th roots of unity mod 11177

Page 13: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

m a prime

thenIf

every small set can be shrunk

Shrinking modulo a prime

Page 14: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

m a prime

1 ,..., da a

m m

proof:

; 0q q Q 1/

1i i n

q pQ

Dirichlet: 1Q m

:x q

| |d A

1 1/ dm there exists such thatx

arc-length of Ax

Shrinking modulo a prime

Page 15: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Shrinking modulo any number

m a prime every small set canbe shrunk

?

Page 16: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Shrinking modulo any number

m a prime every small set canbe shrunk

gcd( , ) 1x m

2km 1{1,1 2 }kA

If

then the arc-length of Ax22k

Page 17: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

1 ,..., da a

m m

proof:

; 0q q Q 1/

1i i n

q pQ

Dirichlet: 1Q m

:x q

Where does the proof break?

2km

Page 18: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

1 ,..., da a

m m

proof:

; 0q q Q 1/

1i i n

q pQ

Dirichlet: 1Q m

:x q

Where does the proof break?

2km

approximation excluding 2

need:

Page 19: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Shrinking cyclotomic classes

m a prime every small set canbe shrunk

set of interest – cyclotomic class(i.e. the set of r-th roots of unity mod m)

•locally testable codes•diameter of Cayley graphs•Warring problem mod p•intersection conditions modulo p k

k

Page 20: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Shrinking cyclotomic classes

cyclotomic class

can be shrunk

Page 21: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Shrinking cyclotomic classes

cyclotomic class

can be shrunk

Show that there is no small obstacle!

Page 22: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Theorem:

If there is no -approximationexcluding p then there exists an obstacle with

3/ 2| | /ib n

Page 23: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Lattice

1,...,n

nv v R1v

2vlinearly independent

Page 24: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Lattice

1,...,n

nv v R

1 ... nv v Z Z

Page 25: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Lattice

1,...,n

nv v R

1 ... nv v Z Z

Dual lattice

* { |( ) }TL u v L v u Z

Page 26: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Banasczyk’s technique (1992)

2|| ||( ) x

x A

A e

gaussian weight of a set

( ) ( ) / ( )L x L x L mass displacement function of lattice

Page 27: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Banasczyk’s technique (1992)

( ) ( ) / ( )L x L x L mass displacement function of lattice

0 ( ) 1L x

dist( , ) ( ) 1/ 4Lx L n x

properties:

Page 28: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Banasczyk’s technique (1992)

( ) ( ) / ( )L A L A L discrete measure

*( ) ( )LL

x x

21( ) exp( || || ) exp(2 )

( )T

L

y L

x y iy xL

relationship between the discrete measure and the mass displacement function of the dual

Page 29: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Banasczyk’s technique (1992)

( ) ( ) / ( )L A L A L discrete measure defined by the lattice

*( ) ( )LL

x x

21( ) exp( || || ) exp(2 )

( )T

L

y L

x y iy xL

|| ||

1*

( ) x sL

|| ||

1*

( ) x sL

Page 30: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Banasczyk’s technique (1992)

1

2

3

1 0 0

0 1 0/

0 0 1

0 0 0

n

1 2 3, ,

there is no short vectorwith coefficient of thelast column

w L

0(mod )p

Page 31: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Banasczyk’s technique (1992)there is no short vectorwith coefficient of thelast column

w L

0(mod )p

( ) 1/ 2L u 1: nu ep n

* ( ) 1/ 2Lu *dist( , )u L n

obstacleQED

Page 32: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Lovász (1982) Simultaneous Diophantine Approximation

1 2, ,..., ,n Q

1,..., 0<np p q Q

Given rationals

integers

2

1/

2ni i n

q pQ

for all i

can find in polynomial time

Factoring polynomials with rational coefficients.

Page 33: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Simultaneous diophantine -approximationexcluding

p - algorithmic

1 2, ,..., n Given rationals

can find in polynomial time

,prime p

12 nC p -approximation excluding p

where is smallest such that thereexists -approximation excluding p

/ 24 2nnC n

Page 34: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.
Page 35: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Exluding prime and bounding denominator

If there is no -approximationexcluding pthen there exists an

approximate obstacle with 3/ 2| | /ib n

with q Q

1 1 2 2 ... 1/n nb b b p t | | /n Q

Page 36: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Exluding prime and bounding denominator

necessary to prevent -approximationexcluding p with q Q

the obstacle

sufficient to prevent3/ 2/(2 )n p -approximation

excluding p with /(2 )q Q pn

Page 37: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Exluding several primes

If there is no -approximationexcluding 1,..., kp pthen there exists

obstacle with 1/ 2| | (max( , )) /ib n n k

1 [ ]

1/n

i i ji j A k

b p t

Page 38: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Show that there is no small obstacle!

m=7k

m*

primitive 3-rd root of unity

10 1 7 , gcd( ,7) 1kc c t t

obstacle

know21 0 (mod 7 )k

Page 39: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Show that there is no small obstacle!

10 1 7 , gcd( ,7) 1kc c t t

21 0 (mod 7 )k

20 1Res(1 , )x x c c x

0divisible by 17k

2 20 12( )c c

( 1) / 2

4

7 k

There is g with all 3-rd roots

1/ 2 1/ 2[ (4 7) ,(4 7) ]m m

Page 40: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Dual lattice

1 2 3

1 0 0 0

0 1 0 0/0 0 1 0

1

n

Page 41: Simultaneous Diophantine Approximation with Excluded Primes László Babai Daniel Štefankovič.

Algebraic integers?

possible that a small integer combination with small coefficients is doubly exponentially close to 1/p