Top Banner
* Shuttling of Single Electrons and Cooper Pairs Robert Shekhter In collaboration with: L. Gorelik and M. Jonson Chalmers University of Technology / Göteborg University • Electromechanical coupling in Coulomb Blockade structures • Shuttling of electrons by a movable dot (PRL,1998) • Shuttling of Cooper pairs by a movable Single Cooper Pair Box (Nature (2001); PRL (2002) ) • Shuttling of Magnetization between nanomagnets • Discussion and conclusion
23

Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Feb 24, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

*

Shuttling of Single Electrons and Cooper Pairs

Robert Shekhter

In collaboration with:

L. Gorelik and M. Jonson

Chalmers University of Technology / Göteborg University

• Electromechanical coupling in Coulomb Blockade structures

• Shuttling of electrons by a movable dot (PRL,1998)• Shuttling of Cooper pairs by a movable Single Cooper

Pair Box (Nature (2001); PRL (2002) ) • Shuttling of Magnetization between nanomagnets• Discussion and conclusion

Page 2: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Motivation

Molecular manufacturing – a way to design materials on the nanometer scale

Encapsulated 4 nm Au particles self-assembled into a 2D array supported by a thin film, Anders et al., 1995

Scheme for molecular manufacturing

Page 3: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Basic characteristics

Materials properties:

Electrical – heteroconducting

Mechanical - heteroelastic

Electronic features:

Quantum coherence

Coulomb correlations

Electromechanical coupling

11 12 -1R , 1, 10 10 sM R MRCτ ω τ ω= ≈ ≈ −

Page 4: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Tunneling through a metal-organic single-electron device (experiment)

From Han et al., Chem. Phys. Lett. 1998

Specifics of Coulomb Blockade (CB) in molecularly coated dots:

• More emphasized (flat plateaus, sharp edges)

• More pronounced with bias increase

• In some cases – hysteretic I-V curves

Page 5: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Electro-mechanical instability

0

( ) ( ) 0.TEW dt Q t X t

T= >∫

If W exceeds the dissipated power an

instability occurs

Gorelik et al., PRL 1998

Page 6: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Shuttling of electronic charge

In s ta b i l i ty o c c u r s a t a n d d e v e lo p s in to a l im i t c y c leo f d o t v ib r a t io n s . B o th a n d v ib r a t io n a l a m p li tu d e a r e d e te rm in e d b y d i s s ip a t io n .

c

c

V VV>

2I eNω=

Int 2

][VCNe

=

Page 7: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Single C60 TransistorQuantum ”bell”

A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000)

Conclusion: Strong electroelastic effects imply that electrical and mechanical phenomena are coupled on the nanometer length scale – new physics!

Here: Nanoelectromechanics caused by or associatedwith single-charge tunneling effects

Page 8: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Electromechanical couplingExperiments:

• Artificial systems - mechanical oscillator, f=340 Hz, Tuominen et al., PRL 1999

• Tunneling through a vibrating C60 molecule, f=1.2 THz, Park et al., Nature 2000

• Mechanical manufacturing of nanoshuttle, Erbe et al., PRL 2001

Theory:

• Gate controlled shuttling, Nishiguchi, PRB 2001

• Shuttle instability induced by a resonantly tunneling electron, Fedorets et al., Europhys. Lett. 2002

• Quantum shuttle, Armour et al., PRB, 2002

• Shuttling of Cooper pairs by a movable single-Cooper- pair box, Gorelik et al., Nature 2001; Isacsson et al., PRL (in press)

Page 9: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

How does mechanics contribute to tunneling of Cooper pairs?

Is it possible to maintain a mechanically-assisted supercurrent?

Page 10: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

To preserve phase coherence only few degrees of freedom must be involved.

This can be achieved provided:

• No quasiparticles are produced

• Large fluctuations of the charge are suppressed by the Coulomb blockade: CJ EE <<→

∆<<→ ωh

Page 11: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Coulomb Blockade of Cooper Pair Tunneling

20

Parity Ef

( ) ( )

0fe

, 2,

c1

t2

{

c g N

N

E N E N V

N nN n

α= − + ∆

=∆ =

∆ = +

At 2 1 Coulomb Blockade is lifted, and the ground state

is with respect to addition degenerate one extrof Coopea r PairgV nα = +

1 2 S in g le | C o o p e r P a i r B| o1 x| n nγ γΨ > = > + + >

Page 12: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Single Cooper Pair Box

Coherent superposition of two succeeding charge states can be created by choosing a proper gate

voltage which lifts the Coulomb Blockade,

Nakamura et al., Nature 1999

Page 13: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Movable Single Cooper Pair Box

Josephson hybridization is produced at the trajectory turning points since near these points the CB is lifted by

the gates.

Page 14: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Possible setup configurations

Supercurrent between the leads kept at a fixed

phase difference

H

Ln Rn

Coherence between isolated remote leads

created by a single Cooper pair shuttling

Page 15: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Shuttling between coupled superconductors

[ ] [ ]0

Louville-von Neumann equationDynamics:

, ( )i H Htρ ρ ν ρ ρ∂= − − −

22

,

.0

( )22 ( )

ˆ( ) cos ( )

( ) exp

C J

C

sJ J s

s L R

L RJ

H H H

e Q xH nC x e

H E x

xE x E δλ

=

= +

= +

= − Φ −Φ

= ±

Relaxation suppresses the memory of initial conditions.

Page 16: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

How does it work?

[ ]0 0

Between the leads Coulomb degeneracy is lifted producingan additional "electrostatic" phase shift

(1) (0)dt E Eχ± = −∫

Page 17: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong
Page 18: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

0Average current in units as a function of electrostatic, , and superconducting, , phases

2I efχ

Black regions – no current. The current direction is indicated by signs

Page 19: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Mechanically-assisted superconducting coupling

Page 20: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Distribution of phase differences as a function of number of rotations. Suppression of quantum fluctuations of

phase difference

Page 21: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

To avoid decoherence:

• Electromagnetic perturbations should be screened

• Gates should be free from dynamic charged defects

• Single-electron tunneling should be suppressed

9 8

Estimates from below can be extracted from the experiNakamura et al., Na

ment by :

10ture 200

10

0 sφτ− −= −

Recent experiments by Saclay group demonstrate even longer decoherence times,

D. Vion et al., cond-mat/0205343610 sϕτ−≈

Page 22: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

What about shuttling magnetization?

Is it possible to control the effective magnetic couplingbetween two magnets by means of a mediator nanomagnet?

M1 M2m

By mechanically controlling the tunnel barriers and hence the exchange coupling between the magnetic moments M1,2 and m at the turning points the effective interaction between M1 and M2 can be made ferromagneticor antiferromagnetic

Page 23: Shuttling of Single Electrons and Cooper Pairs · Quantum ”bell” Single C60 Transistor A. Erbe et al., PRL 87, 96106 (2001) H. Park et al., Nature 407, 57 (2000) Conclusion: Strong

Conclusions• Electronic and mechanical degrees of freedom of nanometer-scale structures can be coupled.

• Such a coupling may result in an electro-mechanical instability and “shuttling” of electric charge

• Phase coherence between remote superconductors can be supported by shuttling of Cooper pairs.

• Magnetization can be shuttled by a mediator nanomagnet to provide controllable FM or AFM coupling between cluster magnetic moments