Top Banner
SHRP R19B SHRP R19B BRIDGE FOR SERVICE LIFE BRIDGE FOR SERVICE LIFE BEYOND 100 YEARS: SERVICE LIMIT STATE DESIGN Presentation to HSCOBS 2012
29

SHRP R19BSHRP R19B BRIDGE FOR SERVICE LIFEBRIDGE …sp.bridges.transportation.org/Documents/SCOBS...BRIDGE FOR SERVICE LIFEBRIDGE FOR SERVICE LIFE BEYOND 100 YEARS: SERVICE LIMIT STATE

Feb 09, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • SHRP R19BSHRP R19B

    BRIDGE FOR SERVICE LIFEBRIDGE FOR SERVICE LIFE BEYOND 100 YEARS:

    SERVICE LIMIT STATE DESIGNPresentation to HSCOBS 2012

  • Research Team

    M dj ki d M t I J h K li ki Ph D P E

    Research Team

    Modjeski and Masters, Inc.: John Kulicki, Ph.D., P.E.Wagdy Wassef, Ph.D., P.E.

    University of Delaware: Dennis Mertz, Ph.D., P.E.University of Nebraska: Andy Nowak, Ph.D.NCS Consultants: Naresh Samtani, Ph.D., P.E.

    TRB/SHRPJerry DiMaggioJerry DiMaggio

    Formerly Mark Bush

  • Expected ProductsExpected Products• Framework for calibration• Bridge design procedures and proposed

    specificationsspecifications • Tools required for future SLS improvement

    using calibration frameworkusing calibration framework– Data bases team used

    Modification procedures– Modification procedures

  • SHRP R 19B and NCHRP 12-83SHRP R 19B and NCHRP 12 83• Both projects have same core team – able to

    take advantage of synergytake advantage of synergy• 12-83 deals with concrete SLS only and

    R19B inherits results – modifies as neededR19B inherits results modifies as needed• R19B

    Framework deterioration– Framework – deterioration– Most of Live Load development– General SLS– General SLS– Steel, foundations, bearings, joints

    • Fatigue - joint• Fatigue - joint

  • Topics Covered Here Last YearTopics Covered Here Last Year

    • Sources of WIM data and filteringSources of WIM data and filtering• Effect of removing only a few heavy trucks

    A l i f lti l d• Analysis of multiple presence and conclusions for SLS

    • Preliminary results for non-fatigue SLS live load

    • Approach to Fatigue II

  • Progress Since Last Report toProgress Since Last Report to HSCOBS

  • Non-Fatigue SLS LL Model • Mean Bias and project LL model at mean• Mean, Bias and project LL model at mean

    plus 1.5 standard deviations tabulated with and without DLA for parameters:and without DLA for parameters:– 5 ADTTs = 250, 1,000, 2500, 5000 and 10,000– 10 Time periods = 1 day 2 weeks 1 month 2 months 6– 10 Time periods = 1 day, 2 weeks, 1 month, 2 months, 6

    months, 1 year, 5 years, 50 years, 75 years and 100 years

    – 6 Spans = 30 ft, 60ft, 90ft,120ft, 200 ft & 300ft– With and w/o DLA

  • Progress in Last Year –S f S SStatistics of Non-Fatigue SLS Live Load

    • Based on 95% limit:Based on 95% limit:– ADTT = I,000, Project Bias on HL 93 = 1.4– ADTT = 5,000, Project Bias on HL 93 = 1.45ADTT 5,000, Project Bias on HL 93 1.45

    • COV = 12%• Based on 100 years:• Based on 100 years:

    – Project Bias varies with time interval which will be reflected in calibrated load factorbe reflected in calibrated load factor

    – Not strongly influenced by span length

  • Typical Results For SLS Live Load ModelTypical Results For SLS Live Load Model

    Span 60 ft

    1 20

    1.40

    1.60

    0.80

    1.00

    1.20

    Bias

    ADTT 250

    ADTT 1000

    0.40

    0.60

    B

    ADTT 2500

    ADTT 5000

    ADTT 10000

    0.00

    0.20

    1 10 100 1000 10000 100 years

    DaysDays

  • Basis for Current Service II For SteelBasis for Current Service II For Steel

    ~500,000 cycles of same load, y

  • WIM Input For Service II For SteelWIM Input For Service II For Steel

    • After Filter #1 – includes “Permit Loads”• Prior elimination of several sites• 80 % of “Permit Loads” came from one80 % of Permit Loads came from one

    site – excluded it• Ratios to HL93 (current=1 30)• Ratios to HL93 (current=1.30)

    – Ratio =1.1 yields average = ~1 per monthR ti 1 2 i ld

  • Fatigue IFatigue I

    • Moment based on “1/10 000” criteria inMoment based on 1/10,000 criteria in current spec.

  • Fatigue II - Damage Factor Compared to Current( ) 3/ r cF a t T rk nM M −

    Current =0.75

    ( ) 3/ F a t T rke qA A S H T O

    M Mn

    Current  0.75

    30 ft 60 ft 90 ft 120 ft 200 ft

    0.52 0.71 0.66 0.68 0.73

    0.57 0.74 0.71 .73 0.78

    0 55 0 78 0 73 0 73 0 800.55 0.78 0.73 0.73 0.80

    High = 0 87 or 116% of currentHigh = 0.87 or 116% of current

  • Fatigue II – Load SideFatigue II Load Side

    • Fatigue I – 2 0 HL93 COV = 0 12Fatigue I 2.0 HL93, COV = 0.12• Fatigue II - 0.80 HL93, COV=0.07

    R i d “ ”• Revised “n”

    Longitudinal Members nSimple Span Girders 1.0

    near interiorContinuous Girders 

    near interior support 

    1.5

    elsewhere 1.0

  • Fatigue – Resistance Side and CalibrationFatigue Resistance Side and Calibration

    COV BiasS C Probability COV, BiasS-n Curves ProbabilityPaper

    β

    With help from Drs. Keating, Fisher, Yen. Connor and Roy

  • Fatigue – ConcreteFatigue Concrete

    • Underway at UDELUnderway at UDEL

  • Footing Settlement - Article 10.5.2Footing Settlement Article 10.5.2• Include the δ-0 Concept • Compute angular distortion, Adist = δ/L based

    on consideration of construction points• Compute modified deformation δm, and

    angular distortion, Adistm, as follows:g , distm,δm= γSE (δ) Adistm= γSE (Adist)

    where γ is the load factor due to settlementwhere γSE is the load factor due to settlement• Perform bridge analysis using δm and Adist

    17

  • Data for Immediate Settlement of Spread F ti (FHWA 1987)Footings (FHWA 1987)

    ches

    red, in

    Measur

    Calculated inches

    M

    18

    Calculated, inches

  • Statistics of Various MethodsStatistics of Various Methods

    P k & B l d &Statistic Schmertmann Hough D’Appolonia

    Peck & Bazzara

    Burland & Burbridge

    Count 20 20 20 20 20Min 0.295 0.656 0.311 0.202 0.138Max 4.618 4.294 2.176 4.000 4.735M 1.381 1.971 1.031 0.779 0.829M 1.381 1.971 1.031 0.779 0.829SD 1.006 0.769 0.476 0.796 0.968COV 0.729 0.390 0.462 1.022 1.168

    LegendLegend: M = MeanSD = Standard Deviation COV = Coefficient of Variation (=SD/M)

    19

  • 20

  • Section 3, New Table 3.4.1-4 for γSESection 3, New Table 3.4.1 4 for γSE

    Deformation γDeformation γSEImmediate Settlement• Hough method 1.0g• Schmertmann method• XYZ method (e.g., a regional method)

    1.21.X

    Consolidation settlement 1.0Lateral deformation • P y or SWM soil structure interaction method 1 2• P‐y or SWM soil‐structure interaction method• XYZ method (e.g., a regional method)

    1.21.X

    21

  • Concrete-Related Limit StatesConcrete Related Limit States

    LRFD Description Proposed SLS

    articleDescription Proposed SLS

    5.7.3.4Control of cracking bydistribution of reinforcement

    Service I‐A:Crack control of R/C/

    9.7.2.5Reinforcement requirementsfor concrete deck

    Service I‐B:Crack control of R/C concrete deckService III‐A: Decompression

    5.9.4.2Stresses check at service IIIlimit state after losses‐fully

    t d t

    Service III A: DecompressionService III‐B: Un‐cracked section (max tensile stress)S i III C C k d tiprestressed components Service III‐C: Cracked section (specified crack width)

  • Current Status of LL StudiesCurrent Status of LL Studies

    • Service I: Deck Crack ControlAxle load, not truck load

    Mean of Axle Load for Various ADTTsADTT 1 day 2 weeks

    1 month

    2 months

    6 months

    1 year

    5 years

    50 years

    75 years

    100025.60 30.50 32.00 33.40 34.90 36.30 38.20 39.70 39.90

    250027.70 32.40 33.70 34.90 36.20 37.60 39.10 40.40 40.60

    500028.80 33.80 34.80 35.90 37.20 38.00 39.60 40.60 40.90

    1000029 90 34 70 35 90 36 70 38 00 38 90 40 10 41 30 41 40

    Mean, Bias, Coefficient of Variation at Mean +1.5*

    29.90 34.70 35.90 36.70 38.00 38.90 40.10 41.30 41.40

  • Reliability Indices for Existing Decks C kiCracking

    Benign Exposure conditions(max. Crack width 0.016”)

    Normal Exposure conditions(max. Crack width 0.012”)

    Reliability index for decks designed for LL factor of 1

    Severe Exposure conditions(max Crack width 0 008”)

    for LL factor of 1.

    Assuming ADTT 5000

    (max. Crack width 0.008 )

  • Reliability Indices of Existing P/S Conc. B idBridges

    Decompression Max. Allowable Tension

    Reliability index of bridges designed for LL factor of 0.8, maximum concrete tensile strength of

    Max. Allowable Crack Width (0.016 in., 1 year return period)

    concrete tensile strength ofAssuming ADTT 5000

  • Framework For Calibration – Audience, Expertise and Timeline

    • Audience/expertiseAudience/expertise– specification developers

    researchers– researchers• Timeline

    – 4 demo examples in Phase 1 report– Continued development thru Phase 2– After Academy review-----Spring 2014

  • Spec Product – Audience, Expertise and Timeline

    • Initial Audience – HSCOBS (T5, T10, T14, T15)Initial Audience HSCOBS (T5, T10, T14, T15)• Ultimate Audience – All AASHTO LRFD

    usersusers• Expertise – same as current AASHTO LRFD

    usersusers• Timeline

    – Concrete 2013 meeting– Rest 2014 meeting

  • Toolkit Audience - Expertise and Timeline

    • Available to future Spec developers and p presearchers

    • ExpertiseExpertise– Reliability theory– Bridge Design and evaluation– Bridge Design and evaluation– Bridge inspection helpful

    • Timeline• Timeline –– Currently Spring 2014

  • Thank youThank you.