Top Banner
Shocks and Fermi-I Acceleration
13

Shocks and Fermi-I Acceleration. Non-Relativistic Shocks p 1, 1, T 1 p 0, 0, T 0 vsvs p 1, 1, T 1 p 0, 0, T 0 v 0 = -v s Stationary Frame Shock Rest Frame.

Mar 28, 2015

Download

Documents

Macie Meads
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Shocks and Fermi-I Acceleration. Non-Relativistic Shocks p 1, 1, T 1 p 0, 0, T 0 vsvs p 1, 1, T 1 p 0, 0, T 0 v 0 = -v s Stationary Frame Shock Rest Frame.

Shocks andFermi-I Acceleration

Page 2: Shocks and Fermi-I Acceleration. Non-Relativistic Shocks p 1, 1, T 1 p 0, 0, T 0 vsvs p 1, 1, T 1 p 0, 0, T 0 v 0 = -v s Stationary Frame Shock Rest Frame.

Non-Relativistic Shocks

p1, 1, T1 p0, 0, T0

vs

p1, 1, T1 p0, 0, T0

v0 = -vs

Stationary Frame

Shock Rest Frame

v1

Page 3: Shocks and Fermi-I Acceleration. Non-Relativistic Shocks p 1, 1, T 1 p 0, 0, T 0 vsvs p 1, 1, T 1 p 0, 0, T 0 v 0 = -v s Stationary Frame Shock Rest Frame.

Particle Acceleration at Strong ShocksGeneral Idea:

Particles bouncing back and forth across shock front:

At each pair of shock crossings, particles gain energy

<E / E> = (4/3) V/c = U/c

p2, 2 p1, 1

U = vs

Stationary frame of ISM

v2 = (1/4) v1 v1 = -U

Shock rest frame

v1 1 = v2 2

1 / 2 = 1/4

Rest frame of shocked material

v2 ‘ = (3/4) Uv1‘ = (3/4) U

Write E = E0 = (1 + U/c) E0 ; = 1 + U/c

Page 4: Shocks and Fermi-I Acceleration. Non-Relativistic Shocks p 1, 1, T 1 p 0, 0, T 0 vsvs p 1, 1, T 1 p 0, 0, T 0 v 0 = -v s Stationary Frame Shock Rest Frame.

Particle Acceleration at Strong Shocks (cont.)

Flux of particles crossing the shock front in either direction:

Fcross = ¼ Nc

Downstream, particles are swept away from the front at a rate :

NV = ¼ NU

p2, 2 p1, 1

U

Stationary frame of ISM

v2 = (1/4) v1 v1 = U

Shock rest frame

v1 1 = v2 2

1 / 2 = 1/4

Rest frame of shocked material

v2 ‘ = (3/4) Uv1‘ = (3/4) U

Probability of particle to remain in the acceleration region:

P = 1 - (¼ NU)/(¼ Nc) = 1 – (U/c)

Page 5: Shocks and Fermi-I Acceleration. Non-Relativistic Shocks p 1, 1, T 1 p 0, 0, T 0 vsvs p 1, 1, T 1 p 0, 0, T 0 v 0 = -v s Stationary Frame Shock Rest Frame.

Particle Acceleration at Strong Shocks (cont.)

Energy of a particle after k crossings:

E = k E0

=> ln (N[>E]/N0) / ln (E/E0) = lnP / ln

or N(>E)/N0 = (E/E0)lnP/ln

Number of particles remaining:

N = Pk N0

=> N(E)/N0 = (E/E0)-2

Page 6: Shocks and Fermi-I Acceleration. Non-Relativistic Shocks p 1, 1, T 1 p 0, 0, T 0 vsvs p 1, 1, T 1 p 0, 0, T 0 v 0 = -v s Stationary Frame Shock Rest Frame.

More General CasesWeak nonrelativistic shocks

p > 2

Relativistic parallel shocks:

p = 2.2 – 2.3

Relativistic oblique shocks:

Almost any spectral index possible

U

BU

U B U

Page 7: Shocks and Fermi-I Acceleration. Non-Relativistic Shocks p 1, 1, T 1 p 0, 0, T 0 vsvs p 1, 1, T 1 p 0, 0, T 0 v 0 = -v s Stationary Frame Shock Rest Frame.

Diffusive Shock Acceleration

b afr

Page 8: Shocks and Fermi-I Acceleration. Non-Relativistic Shocks p 1, 1, T 1 p 0, 0, T 0 vsvs p 1, 1, T 1 p 0, 0, T 0 v 0 = -v s Stationary Frame Shock Rest Frame.

Diffusive Shock Acceleration

Page 9: Shocks and Fermi-I Acceleration. Non-Relativistic Shocks p 1, 1, T 1 p 0, 0, T 0 vsvs p 1, 1, T 1 p 0, 0, T 0 v 0 = -v s Stationary Frame Shock Rest Frame.

Electron Spectra from Diffusive Shock Acceleration

= *rg = Pitch-angle scattering mean free path

Moderately sub-luminal (1HT = 1x/cosBf1 < 1)

Marginally sub-luminal (1HT = 1x/cosBf1 ~ 1)

(Summerlin & Baring 2012)

Page 10: Shocks and Fermi-I Acceleration. Non-Relativistic Shocks p 1, 1, T 1 p 0, 0, T 0 vsvs p 1, 1, T 1 p 0, 0, T 0 v 0 = -v s Stationary Frame Shock Rest Frame.

Asymptotic Particle Spectral Index

n

(Summerlin & Baring 2012)

Page 11: Shocks and Fermi-I Acceleration. Non-Relativistic Shocks p 1, 1, T 1 p 0, 0, T 0 vsvs p 1, 1, T 1 p 0, 0, T 0 v 0 = -v s Stationary Frame Shock Rest Frame.

Effects of Cooling and Escape

= - ( ne) + Qe (,t) - ______ __∂ne (,t)

∂t∂

∂.

Radiative and adiabatic losses

Escape

______ne (,t)tesc,e

Particle injection (acceleration on very

short time scales)

Evolution of particle spectra is governed by the Continuity Equation:

Page 12: Shocks and Fermi-I Acceleration. Non-Relativistic Shocks p 1, 1, T 1 p 0, 0, T 0 vsvs p 1, 1, T 1 p 0, 0, T 0 v 0 = -v s Stationary Frame Shock Rest Frame.

Effects of Cooling and Escape (cont.)

Assume rapid particle acceleration:

Q(, t) = Q0 -q 1 < < 2

Fast Cooling :

tcool << tdyn, tesc for all particles

N(

)

(q+1)

F(

)

q/2

Particle spectrum:Synchrotron or

Compton spectrum:

Page 13: Shocks and Fermi-I Acceleration. Non-Relativistic Shocks p 1, 1, T 1 p 0, 0, T 0 vsvs p 1, 1, T 1 p 0, 0, T 0 v 0 = -v s Stationary Frame Shock Rest Frame.

Effects of Cooling and Escape (cont.)

Assume rapid particle acceleration:

Q(, t) = Q0 -q 1 < < 2

Slow Cooling :

tcool << tdyn, tesc only for particles with > b

N(

)

q

(q+1)

b

F(

)

q

q/2

b

Particle spectrum:Synchrotron or

Compton spectrum:

11