Top Banner
By Manuel A. Silva Pérez [email protected] May 5, 2010 Concentrated Solar Thermal Power Technnology Training Session 5  SOLAR RESOURCE ASSESSMENT FOR CSP PLANTS http://www.leonardo-energy.org/csp-training-course-5-lessons
40

session 5 solar power

Apr 03, 2018

Download

Documents

Brzata Ptica
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 1/40

By Manuel A. Silva Pé[email protected]

May 5, 2010

Concentrated Solar Thermal Power

Technnology Training

Session 5 – SOLAR RESOURCE

ASSESSMENT FOR CSP PLANTS

http://www.leonardo-energy.org/csp-training-course-5-lessons

Page 2: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 2/40

SOLAR RESOURCE 

ASSESSMENT FOR CSP PLANTS 

Manuel A. Silva Pérez

Group of Thermodynamics and Renewable Energy

ETSI – University of Seville

http://www.leonardo-energy.org/csp-training-course-

lesson-5-assessing-solar-resource-csp-plants 

Page 3: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 3/40

CONTENTS 

Understanding the solar resource for CSP plants

Solar radiation measurement and estimation

Solar radiation databases

Statistical characterization of the solar resource.Typical meteorological years

Solar resource assessment for CSP plants

http://www.leonardo-energy.org/csp-training-course-

lesson-5-assessing-solar-resource-csp-plants 

Page 4: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 4/40

UNDERSTANDING THE SOLAR RESOURCE 

FOR CSP PLANTS 

The Sun as an energy source

Mass: 1,99 x 1030 kg

Diameter: 1,392 x 109 m

Area: 6,087 x 1018 m2

Volume: 1,412 x 1027 m3

Average density: 1,41 x 103 kg/m3

Angular diameter: 31’ 59,3’’ 

Average distance to earth: 1,496 x 1011 m = 1 AU

Equivalent Temperature: 5777 K

Power: 3,86 x 1026 WIrradiance: 6,35 x 107 W/m2

http://www.leonardo-energy.org/csp-training-course-

lesson-5-assessing-solar-resource-csp-plants 

Page 5: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 5/40

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

500

1000

1500

2000

2500

0,0 0,5 1,0 1,5 2,0 2,5 3,0

0

500

1000

1500

2000

2500

 n I 0

(W·m-2 ·m-1)

(m)

Blackbody @ 5777 K 

Extraterrestrial solar spectrumVisible 

http://rredc.nrel.gov/solar/standards/am0/wehrli1985.new.html

UV  IR 

THE SUN  AS  A BLACKBODY 

http://www.leonardo-energy.org/csp-training-course-

lesson-5-assessing-solar-resource-csp-plants 

Page 6: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 6/40

Rayleigh

diffusion Mie diffusion 

Beam

irradiance 

Diffuse

irradiance 

Albedo

irradiance

Beam

irradiance 

INTERACTION BETWEEN SOLAR RADIATION  AND THE 

E ARTH’S  ATMOSPHERE 

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 7: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 7/40

INTERACTION BETWEEN SOLAR RADIATION 

 AND THE E ARTH’S  ATMOSPHERE 

0

500

1000

1500

2000

0,3 1,3 2,3 3,3

Longitud de onda (micras)

   W   /  m   2  ·  m

Extraterrestre

5777 K 

In

Idh

IT

http://rredc.nrel.gov/solar/standards/am0/wehrli1985.new.html

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 8: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 8/40

(Cloudless sky)

Absorption

%

100%

Air molecules

1 to 5 

0.1 a 10 

5 Dust, aerosols

Moisture0.5 to 10 

2 to 10

Diffuse

Reflection

to space % 

Beam 

83% to 56%11% to 23%

5% a 15% 

INTERACTION BETWEEN SOLAR RADIATION 

 AND THE E ARTH’S  ATMOSPHERE 

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 9: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 9/40

SOLAR RADIATION CHARACTERISTICS 

CYCLES 

Daily

Day  – night

Modulation of solar radiation

during the day

 

Seasonal

Modulation of solar radiation

during the year 

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 10: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 10/40

SOLAR RADIATION CHARACTERISTICS 

LOW DENSITY 

Maximum value < 1367 W/m2

Large areas required for solar energy applications

Concentration increases energy power density.

Only the direct (beam) component can be concentrated

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 11: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 11/40

SOLAR RADIATION CHARACTERISTICS 

GEOGRAPHY 

Cloudless sky: Solar radiation depends mainly on

latitude.

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 12: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 12/40

SOLAR RADIATION CAHRACTERISITICS 

R ANDOM COMPONENT 

Solar radiation is modulated by meteorological

conditions  – CLOUDS

Local climatic characteristics have to be taken into

account!

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 13: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 13/40

Meteorological Station at the Seville Engineering School (since 1984)

Solar radiation measurement

Page 14: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 14/40

0  4  8  12  16  20  24 

Hora Solar 

0

200

400

600

800

1000

0 4 8 12 16 20 24

Hora Solar 

   W   /  m   2

0

200

400

600

8001000

0 4 8 12 16 20 24

Hora Solar 

   W   /  m   2

0

200

400

600

800

1000

0 4 8 12 16 20 24

Hora Solar 

   W   /  m   2

Global irradiance

Diffuse irradiance

Beam irradiance

Solar radiation measurement

Sunshine duration

Campbell – Stokes heliograph

Pyranometer

Shaded Pyranometer

Pyrheliometer

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 15: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 15/40

Measurement of Solar Radiation Broad-band global solar irradiance: Pyranometer

Diffuse radiation is measured with a pyranometer and a shading device (disc,

shadow ring, or band) that excludes direct solar radiation

Response decreases approximately as the cosine of the angle of incidence.

Measures energy incident on a flat surface, usually horizontal

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 16: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 16/40

Easy to model

Sensitive to attenuation

It is the main component under clear sky

Measurement Precise calibration (absolute  – 

cavity- radiometer)

Requires continuous tracking

5.7 º

Eppley Labs pyrheliometer (NIP) & tracker

DIRECT NORMAL (BEAM) IRRADIANCE MEASUREMENT 

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 17: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 17/40

QUALITY CONTROL OF SOLAR RADIATION DATA 

Different procedures, all based on data filtering by:

Comparison with physical constraints, other 

measurements, models.

Visual inspection by experienced staff 

 An example follows (see also

http://rredc.nrel.gov/solar/pubs/qc_tnd/ for a

different, more exhaustive procedure)

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 18: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 18/40

QUALITY CONTROL OF SOLAR RADIATION DATA 

Physically Possible Limits

Extremely Rare Limits

Comparisons vs other measurements

Comparisons vs model Visual inspection

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 19: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 19/40

FILTER 5: VISUAL INSPECTION 

0

200

400

600

800

1000

1200

1400

-8 -6 -4 -2 0 2 4 6 8

hora solar 

   i  r  r  a   d   i  a  n  c   i  a  s   W   /  m   2

IDmedida

ig

id

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 20: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 20/40

TIME OFFSET 

Incorrect time stamp

0

100

200

300

400

500

600

700

800

900

-8 -6 -4 -2 0 2 4 6 8

Ig

horas sol

1orto

ocaso

2

dmdt

0

100

200

300

400

500

600

700

800

900

-8 -6 -4 -2 0 2 4 6 8

Ig

horas solIgcorregida

orto ocaso

22'1'

1

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 21: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 21/40

CLASSICAL ESTIMATION OF

SOLAR RADIATION

Models depend on the variable to estimate and on

the available data and their characteristics:

Estimation of daily or monthly global horizontal or 

direct normal irradiation from sunshine duration

Estimation of hourly values from daily values of 

global horizontal irradiation

Estimation of global irradiation on tilted surfaces

Estimation of the beam component from globalhorizontal irradiation

Etc.

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 22: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 22/40

ESTIMATION OF DAILY OR MONTHLY GLOBAL 

HORIZONTAL IRRADIATION FROM SUNSHINE 

DURATION 

 Angstrom – type formulas

H/H0 = a + b (s/s0)

Where

H is the monthly average daily global irradiation on ahorizontal surface

H0 is the monthly average daily extraterrestrial

irradiation on a horizontal surface

s is the monthly average daily number of hours of bright

sunshine, s0 is the monthly average daily maximum number of 

hours f possible sunshine

a and b are regression constants

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 23: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 23/40

ESTIMATION OF DIRECT NORMAL IRRADIATION 

FROM SUNSHINE DURATION 

0

100

200

300

400

500

600

700

800

900

1000

-8 -6 -4 -2 0 2 4 6 8

hora solar / h

   E   b  n

   /   W  ·  m  -   2

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Decomposition models (estimation of beam and diffuse

Page 24: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 24/40

Daily or hourly global horizontal

irradiation values

0.0 

0.2 

0.4 0.6 

0.8 

1.0 

0  0.2  0.4  0.6  0.8  1 

Kt 

       K       d

 

Daily or hourly Diffuse

values

Hb,0 = Hg,0 - Hg,0

Decomposition models (estimation of beam and diffuse

components from global horizontal) 

KT = Kd =Hg,0

Ho

Hd,0

Hg,0

Page 25: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 25/40

KD  – KT MODELS 

Modelos Kt-Kd diarios

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Kt

   K   d

Collares Muneer Liu-Jordan GTER00-05 Ruth and Chant GTERD00-05

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 26: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 26/40

SOLAR RADIATION ESTIMATION FROM

SATELLITE IMAGES

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 27: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 27/40

SOLAR RADIATION ESTIMATION FROM

SATELLITE IMAGES

Energy balance

t a se0 E  E  I  I 

a se g  E  I  I 

 A

 I 

0

1

1

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 28: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 28/40

THE SATELLITE

METEOROLOGICAL SATELLITES 

In meteorology studies frequent and high density

observations on the Earth's surface are required.

Conventional systems do not provide a global

cover.

 An important tool to analyse the distribution of the

climatic system are the METEOROLOGICAL

SATELLITES. These can be:

Polar 

Geostationary: In Europe, the system o geostationary

meteorological satellites is METEOSAT

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 29: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 29/40

METHODOLOGY

 ADVANTAGES 

The geostationary satellites show simultaneously

wide areas.

The information of these satellites is always

referred to the same window.

It is possible to analyse past climate using satellite

images of previous years.

The utilisation of the same detector to evaluate the

radiation in different places.

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 30: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 30/40

METHODOLOGY

DISADVANTAGES 

The range of the brilliance values of cloud cover 

(90-255) and of the soils (30-100) overlap.

The digital conversion results in imprecision for low

values of brilliance.

The image information is related to an instant, while

the radiation data is estimated in a hourly or daily

period.

The spectral response of the detector is not in the

same range of that of conventional pyranometers.

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 31: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 31/40

METHODOLOGY

PHYSICAL  AND STATISTICAL MODELS 

The purpose of all models is the estimation of the

solar global irradiation on every pixel of the image.

The existing models are classified in: physical and

statistical depending of the nature of the apporach

to evaluate the interaction between the solar radiation and the atmosphere.

Both types of models show similar error ranges.

http://www.leonardo-energy.org/csp-training-course-lesson-5-assessing-solar-resource-csp-plants 

Page 32: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 32/40

METHODOLOGY

PHYSICAL  AND STATISTICAL MODELS 

STATISTICAL MODELS

Based on relationships (usually statistical regressions) between

pyranometric data and the digital count of the satellite.

This relation is used to calculate the global radiation from the digital

count of the satellite.

Simple and easy to apply.

They do not need meteorological measurements.

The main limitations are:

The needed of ground data.

The lack of universality.

http://www.leonardo-energy.org/csp-training-course-

lesson-5-assessing-solar-resource-csp-plants 

Page 33: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 33/40

METHODOLOGY

PHYSICAL  AND STATISTICAL MODELS 

PHYSICAL MODELS

Based on the physics of the atmosphere. They consider:

The absorption and scatter coefficients of the atmospheric

components.

The albedo of the clouds and their absorption coefficients.

The ground albedo.

Physical models do not need ground data and are universal models.

Need atmospheric measurements.

http://www.leonardo-energy.org/csp-training-course-

lesson-5-assessing-solar-resource-csp-plants 

Page 34: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 34/40

DATA BASES AND TOOLS

EUROPE HELIOCLIM1 Y HELIOCLIM.

http://www.helioclim.net/index.html  

http://www.soda-is.com/eng/index.html 

ESRA (European Solar Radiation Atlas). http://www.helioclim.net/esra/ 

PVGIS (Photovoltaic Gis) http://re.jrc.cec.eu.int/pvgis/pv/ 

SOLEMI (Solar Energy Mining) http://www.solemi.de/home.html  

USA National Solar Radiation Database

http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3 

NASA http://eosweb.larc.nasa.gov/sse/ 

WORLD METEONORM.

http://www.meteotest.ch/en/mn_home?w=ber  

WRDC (World Radiation Data Centre) http://wrdc-mgo.nrel.gov/

Page 35: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 35/40

http://www.leonardo-energy.org/csp-training-course-

lesson-5-assessing-solar-resource-csp-plants 

Page 36: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 36/40

THE N ATIONAL SOLAR R ADIATION D ATABASE.

TMY3

The TMY3s are data sets of hourly values of solar radiation

and meteorological elements for a 1-year period. Their 

intended use is for computer simulations of solar energy

conversion systems and building systems to facilitate

performance comparisons of different system types,

configurations, and locations in the United States and itsterritories. Because they represent typical rather than extreme

conditions, they are not suited for designing systems to meet

the worst-case conditions occurring at a location.

rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3.

http://www.leonardo-energy.org/csp-training-course-

lesson-5-assessing-solar-resource-csp-plants 

Page 37: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 37/40

STATISTICAL CHARACTERIZATION OF THE 

SOLAR RESOURCE 

The statistical characterization of solar radiation

requires long series of MEASURED data

Sunshine hours  –  good availability

Global horizontal (GH)  –  good availability

Direct Normal (DNI) – 

 poor availability

The statistical distribution of solar radiation

depends on the aggregation periods

Monthly and yearly values of global irradiation have

normal distribution The distribution of yearly values of DNI is not normal

(Weibul?)

http://www.leonardo-energy.org/csp-training-course-

lesson-5-assessing-solar-resource-csp-plants 

Page 38: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 38/40

SOLAR RESOURCE  ASSESSMENT 

FOR CSP PLANTS 

1. Estimate the solar resource from readily availableinformation (expertise required!)

1 Surface measurements1 On site

2 Nearby

2 Satellite estimates

3 Sunshine hours

4 Qualitative information

2. Set up a measurement station1. Datalogger 

2. Pyrheliometer 

3. Pyranometer (global and diffuse)4. Meteo (wind, temperature, RH)

3. Maintain the station (frequent cleaning!)

http://www.leonardo-energy.org/csp-training-course-

lesson-5-assessing-solar-resource-csp-plants 

Page 39: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 39/40

SOLAR RESOURCE  ASSESSMENT 

FOR CSP PLANTS 

5. Perfom quality control of measured data

6. Compare estimates with measurements and

assess solar resource (DNI, Global)

 After 1 year of on-site measurements

1 year is not significant:

long term estimates should prevail

 Analysis must be made by experts

7. Elaborate design year(s) from measured data

Time series -1 year- of hourly or n-minute values Typical

P50

Pxx

http://www.leonardo-energy.org/csp-training-course-

lesson-5-assessing-solar-resource-csp-plants 

Page 40: session 5 solar power

7/28/2019 session 5 solar power

http://slidepdf.com/reader/full/session-5-solar-power 40/40

THANKS FOR  YOUR ATTENTION!

http://www.leonardo-energy.org/csp-training-course-