Top Banner
Semiconductor Memories Mohammad Sharifkhani
97

Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Jan 13, 2016

Download

Documents

Fay Cole
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Semiconductor Memories

Mohammad Sharifkhani

Page 2: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Outline

• Introduction

• Non-volatile memories

Page 3: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Semiconductor Memory Classification

Read-Write MemoryNon-VolatileRead-Write

Memory

Read-Only Memory

EPROM

E2PROM

FLASH

RandomAccess

Non-RandomAccess

SRAM

DRAM

Mask-Programmed

Programmable (PROM)

FIFO

Shift Register

CAM

LIFO

Page 4: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Memory Timing: Definitions

Write cycleRead access Read access

Read cycle

Write access

Data written

Data valid

DATA

WRITE

READ

Page 5: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Memory Architecture: Decoders

Word 0

Word 1

Word 2

WordN22

WordN21

Storagecell

M bits M bits

S0

S1

S2

SN - 2

A0

A1

AK-1

K = log2N

SN- 1

Word 0

Word 1

Word 2

WordN22

WordN21

Storagecell

S0

Input-Output(M bits)

Intuitive architecture for N x M memoryToo many select signals:

N words == N select signals K = log2NDecoder reduces the number of select signals

Input-Output(M bits)

Page 6: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Array-Structured Memory ArchitectureProblem: ASPECT RATIO or HEIGHT >> WIDTH

Amplify swing torail-to-rail amplitude

Selects appropriateword

Row

Dec

oder

Bit line2m

Word line

An

An+1

An+m

A0

M.2n

An - 1Column decoder

Input-Output(M bits)

Storage cell in the accessed

word

Page 7: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Hierarchical Memory Architecture

Advantages:Advantages:1. Shorter wires within blocks1. Shorter wires within blocks2. Block address activates only 1 block => power savings2. Block address activates only 1 block => power savings

Globalamplifier/driver

Controlcircuitry

Global data bus

Block selector

Block 0

Rowaddress

Columnaddress

Blockaddress

Blocki BlockP 2 1

I/O

Page 8: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Block Diagram of 4 Mbit SRAM

Clockgenerator

CS, WEbuffer

I/Obuffer

Y-addressbuffer

X-addressbuffer

x1/x4controller

Z-addressbuffer

X-addressbuffer

Predecoder and block selectorBit line load

Transfer gateColumn decoder

Sense amplifier and write driver

[Hirose90]

Page 9: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Contents-Addressable Memory

Ad

dre

ss D

eco

de

r

Data (64 bits)

I/O

Bu

ffe

rs

Comparand

CAM Array29 words3 64 bits

Mask

Control LogicR/W Address (9 bits)

Co

mm

an

ds

29 Va

lid

ity

Bit

s

Prio

rity

En

cod

er

Page 10: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Memory Timing: Approaches

DRAM TimingMultiplexed Adressing

SRAM TimingSelf-timed

Addressbus

RAS

RAS-CAS timing

Row Address

AddressBus

Address transitioninitiates memory operation

Address

Column Address

CAS

Page 11: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

• Introduction

• Non volatile memories

Page 12: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Non-Volatile MemoriesThe Floating-gate transistor

(FAMOS)

Floating gate

Source

Substrate

Gate

Drain

n+ n+_p

tox

tox

Device cross-section Schematic symbol

G

S

D

Page 13: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Floating-Gate Transistor Programming

0 V

- 5 V 0 V

DS

Removing programming voltage leaves charge trapped

5 V

- 2.5 V 5 V

DS

Programming results in higher VT.

20 V

10 V 5 V 20 V

DS

Avalanche injection

Page 14: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

A “Programmable-Threshold” Transistor

“0”-state “1”-state

DVT

VWL VGS

“ON”

“OFF”

Page 15: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

FLOTOX EEPROM

Floating gate

Source

Substratep

Gate

Drain

n1 n1

FLOTOX transistorFowler-Nordheim I-V characteristic

20–30 nm

10 nm

-10 V

10 V

I

VGD

Page 16: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

EEPROM Cell

WL

BL

VDD

Absolute threshold controlis hardUnprogrammed transistor might be depletion always on 2 transistor cell

Page 17: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Flash EEPROM

Control gate

erasure

p-substrate

Floating gate

Thin tunneling oxide

n1source n1drainprogramming

Many other options …

Page 18: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Cross-sections of NVM cells

EPROMFlashCourtesy Intel

Page 19: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Basic Operations in a NOR Flash Memory―

Erase

S D

12 VG

cell arrayBL0 BL1

open open

WL0

WL1

0 V

0 V

Page 20: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Basic Operations in a NOR Flash Memory―

Write

S D

12 V

6 VG

BL0 BL1

6 V 0 V

WL0

WL1

12 V

0 V

Page 21: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Basic Operations in a NOR Flash Memory―

Read5 V

1 VG

S D

BL0 BL1

1 V 0 V

WL0

WL1

5 V

0 V

Page 22: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

NAND Flash Memory

Unit Cell

Word line(poly)

BL

Courtesy Toshiba

Gate

ONO

FGGateOxide

Select line

Select line

Source line(Diff. Layer)

Page 23: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

NAND Flash Memory

Word linesSelect transistor

Bit line contact Source line contact

Active area

STI

Courtesy Toshiba

Page 24: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Characteristics of State-of-the-art NVM

Page 25: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Outline

• Introduction

• Non-volatile memories

• RAM

Page 26: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Read-Write Memories (RAM) STATIC (SRAM)

DYNAMIC (DRAM)

Data stored as long as supply is appliedLarge (6 transistors/cell)FastDifferential

Periodic refresh requiredSmall (1-3 transistors/cell)SlowerSingle Ended

Page 27: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

6-transistor CMOS SRAM Cell

WL

BL

VDD

M5M6

M4

M1

M2

M3

BL

QQ

Page 28: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

CMOS SRAM Analysis (Read)WL

BL

VDD

M 5

M 6

M 4

M1VDDVDD VDD

BL

Q = 1Q = 0

Cbit Cbit

Page 29: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

CMOS SRAM Analysis (Read)

0

0

0.2

0.4

0.6

0.8

1

1.2

0.5 1 1.2 1.5 2Cell Ratio (CR)

2.5 3

Vo

ltage

Ris

e (

V)

Page 30: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

CMOS SRAM Analysis (Write)

BL = 1 BL = 0

Q = 0

Q = 1

M1

M4

M5

M6

VDD

VDD

WL

Page 31: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

CMOS SRAM Analysis (Write)

Page 32: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

6T-SRAM — Layout

VDD

GND

QQ

WL

BLBL

M1 M3

M4M2

M5 M6

Page 33: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Decreasing Word Line Delay

Metal bypass

Polysilicon word lineK cells

Polysilicon word lineWL

Driver

(b) Using a metal bypass

(a) Driving the word line from both sides

Metal word line

WL

(c) Use silicides

Page 34: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Resistance-load SRAM Cell

Static power dissipation -- Want RL largeBit lines precharged to VDD to address tp problem

M3

RL RL

VDD

WL

Q Q

M1 M2

M4

BL BL

Page 35: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

SRAM Characteristics

Page 36: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

• Introduction

• Non-volatile memories

• RAM– SRAM– DRAM

Page 37: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

3-Transistor DRAM Cell

No constraints on device ratiosReads are non-destructiveValue stored at node X when writing a “1” = VWWL-VTn

WWL

BL1

M1 X

M3

M2

CS

BL2

RWL

VDD

VDD 2VT

DVVDD 2VTBL2

BL1

X

RWL

WWL

Page 38: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

3T-DRAM — Layout

BL2 BL1 GND

RWL

WWL

M3

M2

M1

Page 39: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

1-Transistor DRAM Cell

Write: CS is charged or discharged by asserting WL and BL.Read: Charge redistribution takes places between bit line and storage capacitance

Voltage swing is small; typically around 250 mV.

M1

CS

WL

BL

CBL

VDD2 VT

WL

X

sensing

BL

GND

Write 1 Read 1

VDD

VDD /2 V

V BL VPRE– VBIT VPRE–CS

CS CBL+------------= =V

Page 40: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

DRAM Cell Observations 1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out. DRAM memory cells are single ended in contrast to SRAM cells.The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation. Unlike 3T cell, 1T cell requires presence of an extra capacitance that must be explicitly included in the design. When writing a “1” into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than VDD

Page 41: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Sense Amp Operation

DV(1)

V(1)

V(0)

t

VPRE

VBL

Sense amp activatedWord line activated

Page 42: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

1-T DRAM Cell

Uses Polysilicon-Diffusion Capacitance

Expensive in Area

M1 wordline

Diffusedbit line

Polysilicongate

Polysiliconplate

Capacitor

Cross-section Layout

Metal word line

Poly

SiO2

Field Oxiden+ n+

Inversion layerinduced byplate bias

Poly

Page 43: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

SEM of poly-diffusion capacitor 1T-DRAM

Page 44: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Advanced 1T DRAM Cells

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

Trench Cell Stacked-capacitor Cell

Capacitor dielectric layerCell plateWord line

Insulating Layer

IsolationTransfer gate

Storage electrode

GND

Page 45: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Static CAM Memory Cell

CAM

Bit

Word

Bit

••• CAM

Bit Bit

CAM

Word

Wired-NOR Match Line

Match M1

M2

M7M6

M4 M5M8 M9

M3int

SWord

••• CAM

Bit Bit

S

Page 46: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

CAM in Cache Memory

CAM

ARRAY

Input Drivers

Tag HitAddress

SRAM

ARRAY

Sense Amps / Input Drivers

DataR/W

Page 47: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

• Introduction

• Non-volatile memories

• RAM

• Periphery circuits

Page 48: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Periphery

Decoders Sense Amplifiers Input/Output Buffers Control / Timing Circuitry

Page 49: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Row DecodersCollection of 2M complex logic gatesOrganized in regular and dense fashion

(N)AND Decoder

NOR Decoder

Page 50: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Hierarchical Decoders

• • •

• • •

A2A2

A 2A3

WL 0

A2A3A2A 3A2A3

A3 A3A 0A0

A0A 1A 0A1A0A1A0A1

A 1 A1

WL 1

Multi-stage implementation improves performance

NAND decoder usingNAND decoder using2-input pre-decoders2-input pre-decoders

Page 51: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Dynamic Decoders

Precharge devices

VDD

GND

WL3

WL2

WL1

WL0

A0A0

GND

A1A1

WL3

A0A0 A1A1

WL 2

WL 1

WL 0

VDD

VDD

VDD

VDD

2-input NOR decoder 2-input NAND decoder

Active low inputs (all are high except for the selected WL which is low)

Page 52: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

4-input pass-transistor based column decoder

Advantages: speed (tpd does not add to overall memory access time) Only one extra transistor in signal pathDisadvantage: Large transistor count

A0S0

BL 0 BL 1 BL 2 BL 3

A1

S1

S2

S3

D

Page 53: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

4-to-1 tree based column decoder

Number of devices drastically reducedDelay increases quadratically with # of sections; prohibitive for large decoders

buffersprogressive sizingcombination of tree and pass transistor approaches

Solutions:

BL 0 BL 1 BL 2 BL 3

D

A 0

A 0

A1

A 1

Page 54: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Decoder for circular shift-register

VDD

VDD

R

WL0

VDD

f

ff

f

VDD

R

WL1

VDD

f

ff

f

VDD

R

WL2

VDD

f

ff

f• • •

Page 55: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Sense Amplifiers

tpC V

Iav----------------=

make V as smallas possible

smalllarge

Idea: Use Sense Amplifer

outputinput

s.a.smalltransition

Page 56: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Differential Sense Amplifier

Directly applicable toSRAMs

M4

M1

M5

M3

M2

VDD

bitbit

SE

Outy

Page 57: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Differential Sensing ― SRAMVDD

VDD

VDD

VDD

BL

EQ

Diff.SenseAmp

(a) SRAM sensing scheme (b) two stage differential amplifier

SRAM cell i

WL i

2xx

VDD

Output

BL

PC

M3

M1

M5

M2

M4

x

SE

SE

SE

Output

SE

x2x 2x

Page 58: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Latch-Based Sense Amplifier (DRAM)

Initialized in its meta-stable point with EQOnce adequate voltage gap created, sense amp enabled with SEPositive feedback quickly forces output to a stable operating point.

EQ

VDD

BL BL

SE

SE

Page 59: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Charge-Redistribution Amplifier

0.5

1.0

1.5

2.0

2.5

0.0

0.0 1.00 2.00time (nsec)

V

Vin

Vref5 3V

VL

VS

(b) Transient response

3.00

Concept

M2 M3

M1VL VS

Vref

CsmallClarge

Transient Response

Page 60: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Charge-Redistribution Amplifier―EPROM

SE

VDD

WLC

Load

Cascodedevice

Columndecoder

EPROMarray

BL

WL

Vcasc

Out

Cout

Ccol

CBLM1

M2

M3

M4

Page 61: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Single-to-Differential Conversion

How to make a good Vref?

Diff.S.A.Cell

2xx

Output

WL

Vref

BL

12

Page 62: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Open bitline architecture with dummy cells

CS CS CS CS

BLL

L L1 L0 R0

CS

R1

CS

L

… …

BLR

VDD

SE

SE

EQ

Dummy cell Dummy cell

Page 63: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

DRAM Read Process with Dummy Cell

3

2

1

00 1 2 3

BL

BL

t (ns)

reading 03

2

1

00 1 2 3

SE

EQ WL

t (ns)

control signals

3

2

1

00 1 2 3

BL

BL

t (ns)

reading 1

Page 64: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Voltage Regulator

-

+

VDD

VREF

Vbias

Mdrive

Mdrive

VDL

VDL

VREF

Equivalent Model

Page 65: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Charge Pump

CLK

VDD

A BM1

M2Vload

Cload

Cpump

2VDD 2 VT

VDD 2 VT

0 V

VB

Vload

0 V

Q=Cpump (VDD-Vt)

-

-

Page 66: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

DRAM Timing

Page 67: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

SDRAM Timing

A chunk of data is processed at the same time effective when data is written in large sequential blocks

Page 68: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

RDRAM Architecture

memoryarray

Databus

Clocks

Column

Rowdemux packet dec.

packet dec.

Bus

k kx l

demux

Rambus DRAM to reduce the access time

Synch. DRAM

Operates at uP clock speed

up to 1.6 GB/sec bandwidth

Highly parallel: A large number of bits can be read/write at the same time interface ; fast and synch

Page 69: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Address Transition Detection

DELAYtdA0

DELAYtdA1

DELAYtdAN2 1

VDD

ATD ATD

Page 70: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

• Introduction

• Non-volatile memories

• RAM

• Periphery

• Reliability

Page 71: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Reliability and Yield

Page 72: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Sensing Parameters in DRAM

From [Itoh01]

4K

10

100

1000

64K 1M 16M256M 4G 64GMemory Capacity (bits/chip)

CD(1F)

CS(1F)

QS(1C)

Vsmax(mv)

VDD(V)

QS= CS VDD/2Vsmax= QS/(CS 1 CD)

Page 73: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Noise Sources in 1T DRam

Ccross

electrode

a-particles

leakage CS

WL

BL substrate Adjacent BL

CWBL

Page 74: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Open Bit-line Architecture —Cross Coupling

SenseAmplifierC

WL1

BL

CBL

CWBL CWBL

CC

WL0

CCBL

C C

WLD WLD WL0 WL1

BL

EQ

Page 75: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Folded-Bitline Architecture

SenseAmplifier

C

WL1

CWBL

CWBL

C

WL0 WL0 WLD

CC

WL1

CC

WLD

BL CBL

BL CBL

EQ

x

x

y

Page 76: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Transposed-Bitline Architecture

SA

Ccross

(a) Straightforward bit-line routing

(b) Transposed bit-line architecture

BL9

BL

BL

BL99

SA

Ccross

BL9

BL

BL

BL99

Page 77: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Alpha-particles (or Neutrons)

1 Particle ~ 1 Million Carriers

WL

BL

VDD

n1

a-particle

SiO21

111

11

22

22

22

Page 78: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Yield

Yield curves at different stages of process maturity(from [Veendrick92])

Page 79: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Redundancy

MemoryArray

Column Decoder

Redundantrows

Redundantcolumns

RowAddress

ColumnAddress

FuseBank:

Page 80: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Error-Correcting Codes

Example: Hamming Codes

with

e.g. B3 Wrong

1

1

0

= 3

Page 81: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Redundancy and Error Correction

Page 82: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Sources of Power Dissipation in Memories

PERIPHERY

ROWDEC

selected

non-selected

CHIP

COLUMN DEC

nCDEV INTf

mCDEV INTf

CPTV INTf

IDCP

ARRAY

m

n

m(n- 1)ihld

miact

VDD

VSS

IDD = ΣCiΔV if+Σ IDCP

From [Itoh00]

Page 83: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Data Retention in SRAM1.30u

1.10u

900n

700n

500n

300n

100n

0.00 .600 1.20 1.80

Factor 7

0.13 m CMOSm

0.18 m CMOSm

VDD

I lea

kag

e

SRAM leakage increases with technology scaling

Page 84: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Suppressing Leakage in SRAM

SRAMcell

SRAMcell

SRAMcell

VDD,int

VDD

VDD VDDL

VSS,int

sleep

sleep

SRAMcell

SRAMcell

SRAMcell

VDD,int

sleep

low-threshold transistor

Reducing the supply voltageReducing the supply voltageInserting Extra ResistanceInserting Extra Resistance

Page 85: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Data Retention in DRAM101

100

102 1

102 2

102 3

102 4

102 5

102 6

15M 64M 255M 1G 4G 15G 64G

Capacity (bit)

Curr

ent

(A)

3.3 2.5 2.0 1.5 1.2 1.0 0.8

Operating voltage (V)

0.53 0.40 0.32 0.24 0.19 0.16 0.13

Extrapolated threshold voltage at 25 C (V)

IACT

IAC

IDC

Cycle time : 150 nsT 5 75 C,S

From [Itoh00]

Page 86: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Case Studies

• SRAM

• Flash Memory

Page 87: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

4 Mbit SRAMHierarchical Word-line Architecture

Global word line

Sub-global word line

Block groupselect

Blockselect

Blockselect

Memory cell

Localword line

Block 0

•••

Localword line

Block 1

•••

Block 2...

•••

Page 88: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Bit-line Circuitry

Bit-lineload

Blockselect ATD

BEQ

Local WL

Memory cell

I/O lineI/O

B/T

CD

Sense amplifier

CD CD

I/O

B/T

Page 89: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Sense Amplifier (and Waveforms)

BS

I /O I /O

DATA

Blockselect ATD

BSSA SA

BS

SEQ

SEQ

SEQ

SEQSEQ

Dei

I/O Lines

Address

Data-cut

ATD

BEQ

SEQ

DATA

Vdd

GND

SA, SA

Vdd

GND

Page 90: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

1 Gbit Flash Memory

Sense Latches(10241 32)3 8

Data Caches(10241 32)3 8

Sense Latches(10241 32)3 8

Data Caches(10241 32)3 8

Wo

rd L

ine

Dri

ver

Wo

rd L

ine

Dri

ver

Wo

rd L

ine

Dri

ver

Wo

rd L

ine

Dri

ver

512Mb Memory Array 512Mb Memory Array

BL0 BL1 ····· BL16895 BL16996 BL16897··· BL33791

SGDWL31

WL0SGS

Block0

BLT0

Block1023

Block0

Block1023

Bit Line Control CircuitBLT1

I/O

From [Nakamura02]

Page 91: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Writing Flash MemoryN

um

be

r of

me

mo

ry c

ell

s

0V 1V 2V

Vt of memory cells

Verify level5 0.8 V Word-line level5 4.5 V

(a)

3V 4V

Result of 4 timesprogram

100

0V 1V 2V

Vt of memory cells

3V 4V

102

104

106

108

Evolution of thresholds Final Distribution

From [Nakamura02]

Page 92: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

125mm2 1Gbit NAND Flash Memory

10.7

mm

11.7mm

2kB

Pa

ge b

uffe

r &

ca

che

Ch

arg

e p

ump

16896 bit lines

32 word lines x 1024 blocks

From [Nakamura02]

Page 93: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

125mm2 1Gbit NAND Flash Memory

• Technology 0.13m p-sub CMOS triple-well 1poly, 1polycide, 1W, 2Al• Cell size 0.077m2• Chip size 125.2mm2• Organization 2112 x 8b x 64 page x 1k block• Power supply 2.7V-3.6V• Cycle time 50ns• Read time   25s• Program time 200s / page• Erase time 2ms / block

• Technology 0.13m p-sub CMOS triple-well 1poly, 1polycide, 1W, 2Al• Cell size 0.077m2• Chip size 125.2mm2• Organization 2112 x 8b x 64 page x 1k block• Power supply 2.7V-3.6V• Cycle time 50ns• Read time   25s• Program time 200s / page• Erase time 2ms / block

From [Nakamura02]

Page 94: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Semiconductor Memory Trends(up to the 90’s)

Memory Size as a function of time: x 4 every three years

Page 95: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Semiconductor Memory Trends(updated)

From [Itoh01]

Page 96: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Trends in Memory Cell Area

From [Itoh01]

Page 97: Semiconductor Memories Mohammad Sharifkhani. Outline Introduction Non-volatile memories.

Future generations

• Very specialized technologies for stand alone memories expensive

• Reliability is going to be a very important issue (SER) particularly for SRAMs and DRAMs

• Power is going to be the limiting factor particularly when it comes to standby currents

• Embedded memories is the prominent market thrust driven by all mobile/SoC applications