Top Banner
92

SDSS

Jan 07, 2016

Download

Documents

nhi

SDSS. The Sloan Digital Sky Survey. Mapping The Universe. The SDSS is Two Surveys. The Fuzzy Blob Survey. The Squiggly Line Survey. The Site. The telescope 2.5 m mirror. 1.3 MegaPixels $150. 4.3 Megapixels $850. 100 GigaPixels $10,000,000. Digital Cameras. CCDs. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: SDSS
Page 2: SDSS
Page 3: SDSS

The SDSS is Two Surveys

The Fuzzy Blob Survey

The Squiggly Line Survey

Page 4: SDSS

The Site

Page 5: SDSS

The telescope•2.5 m mirror

Page 6: SDSS

1.3 MegaPixels

$150

4.3 Megapixels

$850

100 GigaPixels

$10,000,000

Digital Cameras

Page 7: SDSS

CCDs

Page 8: SDSS

CCDs: Drift Scan Mode

Page 9: SDSS
Page 10: SDSS
Page 11: SDSS

NGC 450

Page 12: SDSS

NGC 1055

Page 13: SDSS

NGC 4437

Page 14: SDSS

NGC 5792

Page 15: SDSS

NGC 1032

Page 16: SDSS

NGC 4753

Page 17: SDSS

NGC 60

Page 18: SDSS

NGC 5492

Page 19: SDSS

NGC 936

Page 20: SDSS

NGC 5750

Page 21: SDSS

NGC 3521

Page 22: SDSS

NGC 2967

Page 23: SDSS

NGC 5719

Page 24: SDSS

UGC 01962

Page 25: SDSS

NGC 1087

Page 26: SDSS

NGC 5334

Page 27: SDSS

UGC 05205

Page 28: SDSS

UGC 07332

Page 29: SDSS

UGCA 285

Page 30: SDSS

Arp 240

Page 31: SDSS

UCG 08584

Page 32: SDSS

NGC 799NGC 800

Page 33: SDSS

NGC 428

Page 34: SDSS

UGC 10770

Page 35: SDSS

Measuring Quantities From the Images:Measuring Quantities From the Images:The Photo pipelineThe Photo pipeline

Page 36: SDSS

Most People use Magnitudesm = –2.5 Log (flux) + C

How do you measure brightness?

We use Luptitudes

m = –2.5 ln (10) [asinh( ) + ln(b)] f/f0

2b

Page 37: SDSS

OK, but how do you measure flux?

Isophotal magnitudes:What we don’t do

Page 38: SDSS

OK, but how do we measure flux?

Petrosian Radius:Surface brightnessRatio =0.2

Petrosion flux:Flux within 2 Petrosian Radii

Page 39: SDSS

Some Other Measures

PSF magnitudes

Fiber magnitudes

Page 40: SDSS

Galaxy Models

de Vaucouleurs magnitudes:assume profile associated with ellipiticals

Exponential magnitudes:Assume profile associated with spirals

I=I0 exp {-7.67[(r/re)1/4]}

I=I0 exp {-1.68(r/re)}

Model magnitudes pick best

Page 41: SDSS

Which Magnitudes to Use?

Photometry of Distant QSOs

PSF magnitudes

Colors of Stars PSF magnitudes

Photometry of Nearby Galaxies

Petrosian magnitudes

Photometry of Distant Galaxies

Petrosian magnitudes

Page 42: SDSS

Other Image Parameters

• Size

• Type

psfMag – expMag > 0.145

• Many hundreds of others

Page 43: SDSS

SPECTRA

Page 44: SDSS
Page 45: SDSS

OBAFGKMLT

h

e

ine

irl/Guy

iss

eong

ime

Page 46: SDSS
Page 47: SDSS
Page 48: SDSS
Page 49: SDSS
Page 50: SDSS
Page 51: SDSS
Page 52: SDSS
Page 53: SDSS
Page 54: SDSS
Page 55: SDSS
Page 56: SDSS
Page 57: SDSS
Page 58: SDSS
Page 59: SDSS

Galaxy Spectra

Galaxies =Star+gas

Page 60: SDSS
Page 61: SDSS

QSO spectra

Z=0.1

Page 62: SDSS

QSO spectra

Z=1

Page 63: SDSS

QSO spectra

Z=2

Page 64: SDSS

QSO spectra

Z=3

Page 65: SDSS

QSO spectra

Z=4

Page 66: SDSS

QSO spectra

Z=5

Page 67: SDSS
Page 68: SDSS
Page 69: SDSS

Types of MapsTypes of Maps

• Main Galaxy Sample• LRG sample• Photo-z sample• QSO sample• QSO absorption systems• Galactic Halo• Ly-α systems• Asteroids• Space Junk

Page 70: SDSS

EDR PhotoZ

Tamás BudaváriThe Johns Hopkins

University

István Csabai – Eötvös University, Budapest

Alex Szalay – The Johns Hopkins University

Andy Connolly – University of Pittsburgh

Page 71: SDSS

Template fittingTemplate fittingComparing known

spectra to photometry

++ no need for calibrators, physics in templates

++ more physical outcome, spectral type, luminosity

–– template spectra are not perfect, e.g. CWW

Empirical methodEmpirical methodRedshifts from calibrators

with similar colors

++ quick processing time

–– new calibrator set and fit required for new data

–– cannot extrapolate, yields dubious results

Pros and Cons

Page 72: SDSS

Empirical Methods

• Nearest neighbor– Assign redshift of closest calibrator

• Polynomial fitting function– Quadratic fit, systematic errors

• Kd-tree– Quadratic fit in cells

z = 0.033 z = 0.027 z = 0.023

Page 73: SDSS

Template Fitting

• Physical inversion– More than just redshift– Yield consistent spectral type,

luminosity & redshift– Estimated covariances

• SED Reconstruction– Spectral templates that match

the photometry better– ASQ algorithm dynamically

creates and trains SEDs

Ltype

z

u’g’r’i’z’

Page 74: SDSS

Trained LRG Template

• Great calibrator set up to z = 0.5 – 0.6 !

• Reconstructed SED redder than CWW Ell

Page 75: SDSS

Trained LRG Template

Page 76: SDSS

Photometric Redshifts• 4 discrete templates

– Red sample z = 0.028• z > 0.2 z = 0.026

– Blue sample z = 0.05

• Continuous type– Red sample z = 0.029

• z > 0.2 z = 0.035

– Blue sample z = 0.04

• Outliers– Excluded 2% of galaxies

• Sacrifice?– Ell type galaxies have better

estimates with only 1 SED– Maybe a decision tree?

Page 77: SDSS

z = 0.028

z = 0.029 z = 0.04

z = 0.05

Page 78: SDSS

PhotoZ Plates

• The Goal– Deeper spectroscopic sample

of blue SDSS galaxies• Blind test• New calibrator set

• Selection– Based on photoz results– Color cuts to get

• High-z objects• Not red galaxies

Page 79: SDSS

Plate 672

• The first results– Galaxies are indeed

blue

– … and higher redshift!

• Scatter is big but…– … that’s why needed the

photoz plates

LRGs

z = 0.085

Page 80: SDSS

Plate 672

• Redshift distributions compare OK# of g = 519– Photometric redshifts (Run 752 & 756)

– Spectroscopic redshifts (Histogram scaled)

Page 81: SDSS

Measures of the Clustering

• The two point correlation function ξ(r)

• The power Spectrum

• N-point Statistics

• Counts in Cells

• Topological measures

• Maximum Likelihood parameter estimation

Page 82: SDSS

Constraining CosmologicalParameters from Apparent Redshift-space Clusterings

Taka MatsubaraAlex Szalay

Page 83: SDSS

Redshift Survey Data → or →

Constraining Cosmological Parameters

(Traditional) Quadratic Methods

)(kP )(r,... , , , , , , 8BM nbh

• Effective for spatially homogeneous, isotropic samples.• However, evaluation of in real (comoving) space is not straightforward. (z-evolution, redshift-space distortion)

)(kP

Page 84: SDSS

)()2,1( r

2z

1z

12 r

),,()2,1( 1221 zzRedshift-space:

:space-real ,1z

Example:

Page 85: SDSS

Anisotropy of the clustering

Velocity distortions

real space redshift space

Finger-of-God (non-linear scales)

Squashing by infall (linear scales)

pec0 vrHcz

b/6.0

Page 86: SDSS

Geometric distortions (non-small z) real space redshift space

)(zH

)(zd A

)1()1()1()( M2

M3

0 zzHzH

z

A zH

zdH

Hzd

0M0

M0 )(1sinh

1

1)(

Page 87: SDSS

Likelihood analysis of cosmological parameters without direct determination of or)(kP )(r

LLL ii || (Bayesian)

,...,,,,,, , 8M nbhbii

x

Linear regime → : Gaussian, fully determined by a correlation matrix

modeljiijC

Huge matrix ← a novel, fast algorithm to calculate Cij for arbirtrary z : under development

|iL

Page 88: SDSS

Results

single determination

Normal ±3% ±19% ±16% ±4% ±2% ±0.5% ±0.5%

Red ±2% ±4% ±9% ±2% ±1% ±0.3% ±0.4%

QSO ±14% ±15% ±76% ±20% ±14% ±5% ±6%

M MB b8nh

simultaneous determination (marginalized)

Normal ±14% ±57% ±51% ±2%

Red ±9% ±10% ±33% ±0.9%

QSO ±170% ±75% ±360% ±69%

M MB b

Page 89: SDSS

Direct determinations of cosmological parameters

A novel, fast algorithm to calculate correlation matrix in redshift space

Normal galaxies : dense, low-z, small sample volume

QSOs : sparse, high-z, large sample volume

Red galaxies : intermediate → best constraints on cosmological parameters

Summary

Page 90: SDSS

0.00.0 1.0

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8

ΩM

ΩΛ

Page 91: SDSS

Visualization

• CAVE VR system at Argonne National Laboratory

• SDSS VS v. 1.0 Windows based visualization system

• Tool directly tied to the skyserver for general visualization of multi-dimensional data

Page 92: SDSS

Accessing the Data

• Two databases

• Skyserver (MS SQL)– Skyserver.fnal.gov

• SDSSQT– Download from www.sdss.org

• Lab astro.uchicago.edu/~subbarao/chautauqua.html