Top Banner
ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms COAWST Modeling System Training WHOI, Woods Hole, MA August 26, 2014 Hernan G. Arango IMCS, Rutgers University Andrew M. Moore University California Santa Cruz
37

ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Jan 02, 2016

Download

Documents

thaddeus-oneill

ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms. Hernan G. Arango IMCS, Rutgers University. Andrew M. Moore University California Santa Cruz. COAWST Modeling System Training WHOI, Woods Hole , MA August 26, 2014. ROMS 4D-Var Team. Andy Moore – UC Santa Cruz - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

ROMS 4-Deimensional Variational (4D-Var)Data Assimilation Algorithms

COAWST Modeling System Training WHOI, Woods Hole, MA

August 26, 2014

Hernan G. ArangoIMCS, Rutgers University

Andrew M. MooreUniversity California Santa Cruz

Page 2: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

• Andy Moore – UC Santa Cruz• Hernan Arango – Rutgers University• Art Miller – Scripps• Bruce Cornuelle – Scripps• Emanuelle Di Lorenzo – GA Tech• Brian Powell – University of Hawaii• Javier Zavala-Garay - Rutgers University• Julia Levin - Rutgers University• John Wilkin - Rutgers University• Chris Edwards – UC Santa Cruz• Hajoon Song – MIT• Anthony Weaver – CERFACS• Selime Gürol – CERFACS/ECMWF• Polly Smith – University of Reading• Emilie Neveu – Savoie University

ROMS 4D-Var Team

Page 3: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

ROMS

,y R

4D-Var Data Assimilation

bb(t), Bb

fb(t), Bf

xb(0), B

Model solutions depends on xb(0), fb(t), bb(t), h(t)

time

x(t)

Obs, y

xb(t)

xa(t)

Page 4: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

that minimizes the variance given by:

Find ( (0), ( ), ( ), ( ))T T T Tt t t b fz x ε ε η

initialconditionincrement

boundaryconditionincrement

surfaceforcing

increment

corrections for model

error

1 11 1

2 2TTJ z D z Gz d R Gz d

diag( , , , ) b fD B B B Q

Background error covariance

TangentLinearModel

ObsErrorCov.

Innovation

bd y Hx

Data Assimilation

Page 5: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

K = Kalman Gain Matrix

At the minimum of J we have : J z 0

Model space (control vector) search: (Nmodel x Nt) x (Nmodel x Nt)

( ) ( )T Ta

1 1 1 1b bz z D G R G G R y Hx

K

( ) ( )T Ta

1b bz z DG GDG R y Hx

K

Observation space search: (Nobs x Nobs)

OR

4D-Variational Data Assimilation (4D-Var)

Page 6: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

ROMS 4D-Var System• Incremental (linearized about a prior) (Courtier et al., 1994)• Primal (model grid space search) and dual (observation space search) formulations

(Courtier 1997)• Primal: Incremental 4D-Var (I4D-Var)• Dual: Physical-space Statistical Analysis System, PSAS (4D-PSAS) (Da Silva et al,

1995); (4D-PSAS)T

• Dual: Indirect Representer (R4D-Var) (Egbert et al, 1994); (R4D-Var)T

• Strong and weak (dual only) constraint• Preconditioned, Lanczos formulation of conjugate gradient (Lorenc, 2003; Tshimanga

et al., 2008; Fisher, 1997)• Second-level preconditioning for multiple outer-loops• Diffusion operator mode for prior covariances (Derber and Bouttier, 1999; Weaver

and Courtier, 2001)• Multivariate balance operator for prior covariance (Weaver et al., 2001)• Background quality control (Andersson and Järvinen, 1999)• Physical and ecosystem components• Parallel (distributed-memory, MPI)• Publications: Moore et al., 2011a, b, c (Progress in Oceanography)• WikiROMS Tutorials:

https://www.myroms.org/wiki/index.php/4DVar_Tutorial_Introduction

Page 7: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

ROMS 4D-Var Data Assimilation Systems

• I4D-Var primal formulationmodel grid space search

traditional NWP lots of experience strong constraint only (phasing out)

• R4D-Var dual formulation observations space search formally most correct

mathematically rigorous problems with high Rossby numbers strong/weak constraint and

• 4D-PSAS dual formulation observation space search an excellent compromise more robust for high Rossby numbers formally suboptimal strong/weak constraint and (4D-Var)T

Page 8: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

I4D-Var Algorithm(Moore et al., 2011a)

Page 9: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

R4D-Var Algorithm(Moore et al., 2011a)

Page 10: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

4D-PSAS Algorithm(Moore et al., 2011a)

Page 11: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

SST Increments dx(0): California Current

I4D-Var 4D-PSAS R4D-VarModel Space

Inner-loop 50

Observation Space

Observation Space

Page 12: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

ROMS Obsy, R

fb, Bf

bb, Bb

xb, B

h, Q

Posterior

4D-Var

Priors &Hypotheses

ClippedAnalyses

Ensemble(SV, SO)

HypothesisTests

Forecast

dof Adjoint4D-Varimpact

Term balance,eigenmodes

UncertaintyAnalysis

error

Ensemble4D-Var

ROMS 4D-VAR

Page 13: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

• Primal preconditioned by B has good convergence properties:

• Dual preconditioned by R-1 has poor convergence properties:

• Can be partly alleviated using the Minimum Residual Method (El Akkraoui et al., 2008; El Akkraoui and Gauthier, 2010)

• Restricted Preconditioned Conjugate Gradient (RPCG) ensures that dual 4D-Var converges at same rate as B-preconditioned Primal 4D-Var (Gratton and Tschimanga, 2009; Gürol et al, 2014)

T -1I G R GB Preconditioned Hessian

-1 T R GBG I Preconditioned stabilizedrepresenter matrix

4D-Var Convergence Issues

Page 14: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Conjugate Gradient Convergence

Congrad: Lanczos-based Conjugate Gradient algorithm (Fisher, 1998)MINRES: Lanczos-based Minimum Residual (El Akkraoui and Gauthier, 2010)RPCG: Lanczos-based Restricted Preconditioned Conjugate Gradient (Gürol et al, 2014)

Jmin

Page 15: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

For multiple outer-loops:

Augmented Restricted B-Lanczos

Page 16: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

ROMS 4D-Var Diagnostic Tools

• Observation impact (Langland and Baker, 2004)

• Observation sensitivity – adjoint of 4D-Var, (R4D-Var)T, (OSSE)

(Gelaro et al., 2004)

• Singular value decomposition (Barkmeijer et al., 1998)

• Expected errors (Moore et al., 2012)

Page 17: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Observation Sensitivity, 4D-PSAS

ADROMS forced by h (a vector correspondingto the velocity grid points that contribute tothe transport normal to 37N over the upper 500m)

Adjoint of the linearized4D-Var system, (4D-Var)T

WC13

Jan 3-7 Jan 2004, 4D-Var Cycle

• Based on (4D-Var)T

• Only available for 4D-PSAS and R4D-Var

• Quantifies the changes that would result in the circulation estimate, I, as result of changes in the observations or the observation array (Moore et al., 2011c)

• Observing System Experiments (OSEs): It can be used to predict the changes that will occur in the event of a platform failure/degradation or change in the observation array

• Adaptive sampling and observation array design

• Figure show the contribution of the observations from each platform to the total transport increment (red bar)

• The SSH observations increases the alongshore transport by ~0.55 Sv

Page 18: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Observation Impact: 4D-PSAS

Jan 3-7 Jan 2004, 4D-Var Cycle

WC13

• It quantifies the contribution of each observation during a 4D-Var analysis

• It yields the actual contribution of each observation to the circulation increment

• Figure show the contribution to the increment from each part of the control vector: initial conditions (IC), surface forcing (SF), and open boundary conditions (BC)

• Correcting for uncertainties in both IC and SF has the largest impact on the analysis increment

• The observation sensitivity and impact yield the same total transport increment ( I𝜹 37N)

• However, the contribution of each observation platform is different. This is due to nonlinearity and the approximation to the true gain matrix, K

Page 19: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Observations Impact on Alongshore Transport

Page 20: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Total number of obs

Observation Impact

March 2012 Dec 2012

March 2012 Dec 2012Ann Kristen Sperrevik (NMO)

Observations Impact on Alongshore Transport

Page 21: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Impact of HF Radar on 37N Transport

Page 22: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Impact of MODIS SST on 37N Transport

Page 23: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Regions where ROMS 4D-Var has been used

Page 24: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

A

B

C

Grid A

• 10km resolution

• 380x400x30

Grid B

• 5km resolution

• 200x250x42

Grid C

• 5km resolution

• 198x156x42

ROMS Grids

• One of our major objectives is to produce the best ocean state estimate using observations and models (variational data assimilation)

Page 25: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Major Straits and Passages

① Mindoro Strait ~420m

② Panay Strait ~570m

③ Sibutu Passage ~320m

④ Dipolog Strait ~504m

⑤ Surigao Strait ~60m

⑥ San Bernadino Strait ~80m

⑦ Tablas Strait ~565m

⑧ Verde Island Passage

~70m

Page 26: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Cruise CTD TowedADCP

MooredADCP

Glider APEXFloater

UnderwaySurface

T,S

TowedCTD

Time

Exploratory2007

Jun 2007

Joint Cruise 2007

Dec 2007

RegionalIOP 2008

Jan 2008

RegionalIOP 2009

Feb – Mar 2009

Observations

• SST satellite data• SSH altimetry• HF Radar currents

P

WX

PP

P

PP P P

P

PPP

X

XXXX W

WWW

X

M

M

Processed for data assimilation

Not suitable for data assimilation because of tides

Not assimilated

Instrument malfunction

Page 27: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Satellite-derived SST Products

RMSE=0.75oC

Page 28: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Sparse and Incomplete Observations

Jun 6–Jul 3, 2007

• CTD• EM-APEX• Gliders

UK Met Office

EN3 dataset

Page 29: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Averaged Sea Surface Temperature

June 26 – July 22, 2007

Arango et al., 2011

Remarks

Page 30: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Averaged Sea Surface Salinity

June 26 – July 22, 2007

Arango et al., 2011

Page 31: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

20 60 100 140

0

-100

-200

-300

De

pth

Station Numbers

Salinity Observations

20 60 100 140

rms error = 0.17573

Model minus Observations

20 60 100 140

rms error = 0.090601

Model DA minus Observations0.5

0.25

0

-0.25

-0.5

4DVar Assimilation: SalinityModel Before DA

20 60 100 140

Model After DA

34.9

34.6

34.3

34

33.7

33.420 60 100 140

49%

Page 32: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

20 60 100 140

0

-100

-200

-300

De

pth

Station Numbers

Temperature Observations

20 60 100 140

rms error = 2.132

Model minus Observations

20 60 100 140

rms error = 1.3227

Model DA minus Observations4

2

0

-2

-4

4DVar Assimilation: TemperatureModel Before DA

20 60 100 140

Model After DA

30

25

20

15

10

5

20 60 100 140

38%

Page 33: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Observations used in comparison: ship , glider, and APEX

Forecast skill

Page 34: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Remarks

• To our knowledge ROMS is the only ocean community model offering all three 4D-Var systems, (4D-Var)T, and other adjoint-based algorithms

• ROMS 4D-Var Systems: I4D-Var, R4D-Var, 4D-PSAS• Give nearly identical solutions for the same error hypothesis

(Courtier, 1997 dual formulation)• Fully parallel (MPI)• Multivariate Balance Operator: unobserved variables

information is extracted from directly observed data using linear balance relationships (Weaver et al., 2006)

• Efficient Lanczos-based conjugate gradient algorithms• Limited-Memory Preconditioners (LMP): Spectral and Ritz

(Tshimanga et al., 2008)• (4D-Var)T is available for R4D-Var and 4D-PSAS systems used

for observation sensitivity, OSEs, adaptive sampling, and posterior error covariance analysis

Page 35: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

• Digital filter – Jc to suppress initialization shock (Gauthier and

Thépaut, 2001)

• Non-diagonal R

• Bias-corrected 4D-Var (Dee, 2005)

• Time correlations in B

• Correlations rotated along isopycnals using diffusion tensor (Weaver and Courtier, 2001)

• Combine 4D-Var and EnKF (hybrid B)

• TL and AD of parameters

• Nested 4D-Var

• Proper Orthogonal Decomposition (POD) for biogeochemistry source and since terms (Pelc, 2013)

• TL and AD of sea-ice model

Planned Developments

Page 36: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

PhilEX Summary

• The Philippine Archipelago is very complex and challenging for modeling and predict

• ROMS forecasts without data assimilation are usually saltier at the surface when compared with the observations. The thermocline is somewhat diffused.

• The 4D-Var data assimilation corrects these problems:

• RMSE in temperature is decreased between 35% to 42%

• RMSE in salinity is decreased between 40% to 49%

• Excessive salt flux from prescribed lateral boundary conditions for salinity

• There are large areas in need of sampling in time and space to support and evaluate an ocean prediction system for the Philippine Archipelago

Page 37: ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms

Publications

Arango, H.G., J.C. Levin, E.N. Curchitser, B. Zhang, A.M. Moore, W. Han, A.L. Gordon, C.M. Lee, and J.B. Girton, 2011: Development of a Hindcast/Forecast Model for the Philippine Archipelago, oceanography, 20(1), 58-69, doi:10.5670/oceanog.2011.04. Fiechter, J., G. Broquet, A.M. Moore, and H.G. Arango, 2011: A data assimilative, coupled physical-biological model for the Coastal Gulf of Alaska, Dyn. Atmos. Ocean, 52, 95-118. Moore, A. M., H. G. Arango, and G. Broquet, 2011: Analysis and forecast error estimates derived from the adjoint of 4D-Var, Mon. Weather Rev., accepted. Moore, A.M., H.G. Arango, G. Broquet, B.S. Powell, A.T. Weaver, and J. Zavala-Garay, 2011a: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems, Part I: System overview and formulation, Prog. Oceanogr., 91, 34-49, doi:10.1016/j.pocean.2011.05.004. Moore, A.M., H.G. Arango, G. Broquet, C. Edwards, M. Veneziani, B.S. Powell, D. Foley, J. Doyle, D. Costa, and P. Robinson, 2011b: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems, Part II: Performance and Applications to the California Current System, Prog. Oceanogr., 91, 50-73, doi:10.1016/j.pocean.2011.05.003. Moore, A.M., H.G. Arango, G. Broquet, C. Edwards, M. Veneziani, B.S. Powell, D. Foley, J. Doyle, D. Costa, and P. Robinson, 2011c: The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems, Part III: Observation impact and observation sensitivity in the California Current System, Prog. Oceanogr., 91, 74-94, doi:10.1016/j.pocean.2011.05.005.  Zavala-Garay, J., J. L. Wilkin, and H. G. Arango, 2011: Predictability of mesoscale variability in the East Australia Current given strong-constraint data assimilation, J. Phys. Oceanog., accepted. Zhang, W.G., J.L. Wilkin, H.G. Arango, 2010: Toward an integrated observation and modeling system in the New York Bight using variational methods. Part I: 4DVAR data assimilation, Ocean Modeling, 35, 119-133.