Top Banner
INTRODUCTION EFFECT OF OCEAN ACIDIFICATION ON THE NUTRITIONAL QUALITY OF PHYTOPLANKTON FOR COPEPOD REPRODUCTION Morgan Meyers 1* , William Cochlan 1 , Wim Kimmerer 1 , Ed Carpenter 1 1 Romberg Tiburon Center – San Francisco State University METHODS 400 ppm CO 2 air RHO SKE PRO ISO media reservoir fatty acid content egg production hatching success naupliar survival n=50 + ASSESS COPEPOD REPRODUCTION 3 FEED COPEPODS 2 Phytoplankton are the oceans’ primary producers of polyunsaturated fatty acids (PUFA), some of which are considered essential fatty acids (EFA) because animals cannot synthesize them de novo. These EFA support the health and reproduction of heterotrophic marine organisms at higher trophic levels. It is hypothesized that future ocean acidification (OA) conditions due to increased pCO 2 could change the availability of phytoplankton PUFAs for ecologically significant consumers such as copepods, affecting their reproductive success in an increasingly acidified environment 1 . RESEARCH QUESTIONS: I. Does high pCO 2 change the fatty acid composition of phytoplankton? II. Does this change in dietary phytoplankton fatty acid composition affect copepod reproductive success? 1 CULTURE PHYTOPLANKTON *Contact presenting author at [email protected] 1000 ppm CO 2 air RHO SKE PRO ISO media reservoir 400ppm phytoplankton mixture n=50 + 400ppm phytoplankton mixture Rhodomonas salina (RHO) Skeletonema marinoi (SKE) Prorocentrum micans (PRO) Isochrysis galbana (ISO) RESULTS CONCLUSIONS I. High pCO 2 affects the FA composition of phytoplankton - Effect is species-dependent - EFA contents of cryptophytes (R. salina) and diatoms (S. marinoi) are more susceptible than dinoflagellates (P. micans) and haptophytes (I. glabana) II. Feeding on a high pCO 2 diet impacts copepod reproductive success - Some parameters are more sensitive to dietary changes than others - Differences in reproductive success could also be attributed to changes in feeding selectivity, sampled copepod population, and time of year These results show the potential for future OA conditions to alter the EFA content of phytoplankton and affect the productivity of subsequent trophic levels. 0 20 40 60 80 100 400 1000 400 1000 400 1000 RHO SKE PRO TOTAL FATTY ACID PER CELL (%) Figure 1. December 2014 – Relative (A) and absolute (B) total fatty acid content in R. salina (RHO), S. marinoi (SKE), and P. micans (PRO) under low (400) and high (1000) pCO 2 treatments. 0.000 0.004 0.008 0.012 0.016 0.020 400 1000 RHO TOTAL FATTY ACID PER CELL (ng) 0.000 0.000 0.001 0.001 0.001 0.001 400 1000 SKE 0.000 0.050 0.100 0.150 0.200 0.250 400 1000 PRO 0 5 10 15 20 25 30 35 40 400 1000 400 1000 400 1000 RHO SKE PRO EFA PER CELL (%) 0 0.001 0.002 0.003 0.004 0.005 400 1000 RHO EFA PER CELL (ng) 0 0.0001 0.0002 0.0003 0.0004 0.0005 400 1000 SKE 0 0.012 0.024 0.036 0.048 0.06 400 1000 PRO 1A 1B 2A 2B Figure 2. December 2014 – Relative (A) and absolute (B) EFA content in R. salina (RHO), S. marinoi (SKE), and P. micans (PRO) under low (400) and high (1000) pCO 2 treatments. 0 20 40 60 80 100 400 1000 400 1000 400 1000 400 1000 RHO SKE PRO ISO TOTAL FATTY ACID PER CELL (%) Figure 3. June 2015 -Relative (A) and absolute (B) total fatty acid content in R. salina (RHO), S. marinoi (SKE), P. micans (PRO), and I. galbana (ISO) under low (400) and high (1000) pCO 2 treatments. 0 0.05 0.1 0.15 0.2 0.25 400 1000 RHO TOTAL FATTY ACID PER CELL (ng) 0 0.005 0.01 0.015 0.02 0.025 400 1000 SKE 0 1 2 3 4 5 400 1000 PRO 0 0.006 0.012 0.018 0.024 0.03 400 1000 ISO 0 8 16 24 32 40 400 1000 400 1000 400 1000 400 1000 RHO SKE PRO ISO EFA PER CELL (%) 0 0.01 0.02 0.03 0.04 0.05 400 1000 RHO EFA PER CELL (ng) 0 0.0008 0.0016 0.0024 0.0032 0.004 400 1000 SKE 0 0.4 0.8 1.2 1.6 2 400 1000 PRO 3A 3B 4A 4B 0 0.00025 0.0005 0.00075 0.001 0.00125 400 1000 ISO Figure 4. June 2015 -Relative (A) and absolute (B) EFA content in R. salina (RHO), S. marinoi (SKE), P. micans (PRO), and I. galbana (ISO) under low (400) and high (1000) pCO 2 treatments. 0 10 20 30 40 50 60 EGGS PRODUCED PER FEMALE Dec. 2014 June 2015 Median 0 20 40 60 80 100 % EGGS HATCHED PER FEMALE Dec. 2014 June 2015 0 20 40 60 80 100 % NAUPLIAR SURVIVAL PER FEMALE 400ppm 1000ppm Dec. 2014 June 2015 Poisson regression odds ratios June = 0.45 (95% CI 0.36, 0.56) Dec. = 0.61 (95% CI 0.47, 0.79) Logistic regression odds ratios June = 0.55 (95% CI 0.42, 0.77) Dec. = 0.02 (95% CI 0.01, 0.05) Logistic regression odds ratios June = 0.15 (95% CI 0.08, 0.27) Dec. = 0.01 (95% CI 0.00, 0.04) 5A 5B 5C Figure 5. Egg production (A), hatching success (B), and naupliar survival (C) per female in December 2014 and June 2015 after being fed phytoplankton from either the low pCO 2 treatment (black) or the high pCO 2 treatment (gray). Each circle represents an individual female copepod. Error bars show Interquartile range. Polyunsaturated FA (PUFA) Monounsaturated FA (MUFA) Saturated FA (SFA) Eicosapentaenoic acid (EPA) [20:5n-3] Stearidonic acid (SDA) [18:4n-3] Gamma-linolenic acid (GLA) [18:3n-6] Docosahexaenoic acid (DHA) [22:6n-3] EFA ACKNOWLEDGEMENTS I acknowledge the support I have received from Dr. Rodger Harvey (Old Dominion University), Dr. Anne Todgham, the Carpenter Lab, the Wilkerson/Dugdale Lab, the Cochlan Lab, Anne Slaughter, Toni Ignoffo, and RTC facilities. Partial funding was provided by the CSU Council on Ocean Affairs, Science and Technology (COAST) Graduate Research Award. REFERENCES 1. Rossoll D, Bermudez R, Hauss H, Schulz K, Riebesell U, Sommer U, Winder M. (2012) Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 7(4): e34737. doi: 10.1371/journal.pone.0034737 CONTACT Morgan Meyers, MSc candidate (715) 220-1374 [email protected] Carpenter Lab Romberg Tiburon Center 3150 Paradise Dr. Tiburon, CA 94920 (415) 338-3756
1

Romberg Tiburon Center – San Francisco State …...Egg production (A), hatching success (B), and naupliar survival (C) per female in December 2014 and June 2015 after being fed phytoplankton

Jul 06, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Romberg Tiburon Center – San Francisco State …...Egg production (A), hatching success (B), and naupliar survival (C) per female in December 2014 and June 2015 after being fed phytoplankton

INTRODUCTION

EFFECT OF OCEAN ACIDIFICATION ON THE NUTRITIONAL QUALITY OF PHYTOPLANKTON FOR COPEPOD REPRODUCTION

Morgan Meyers1*, William Cochlan1, Wim Kimmerer1, Ed Carpenter1

1Romberg Tiburon Center – San Francisco State University

METHODS

400 ppm CO2 air RHO SKE PRO ISO media

reservoir

fatty acid content

egg production

hatching success

naupliarsurvival

n=50 +

ASSESS COPEPOD REPRODUCTION

3 FEED COPEPODS2

Phytoplankton are the oceans’ primary producers of polyunsaturated fatty acids (PUFA), some of which are considered essential fatty acids (EFA) because animals cannot synthesize them de novo. These EFA support the health and reproduction of heterotrophic marine organisms at higher trophic levels. It is hypothesized that future ocean acidification (OA) conditions due to increased pCO2 could change the availability of phytoplankton PUFAs for ecologically significant consumers such as copepods, affecting their reproductive success in an increasingly acidified environment1.

RESEARCH QUESTIONS:

I.  Does high pCO2 change the fatty acid composition of phytoplankton? II. Does this change in dietary phytoplankton fatty acid composition affect copepod reproductive success?

1 CULTURE PHYTOPLANKTON

*Contact presenting author at [email protected]

5A

1000 ppm CO2 air RHO SKE PRO ISO media

reservoir

400ppm phytoplankton

mixture

n=50 +

400ppm phytoplankton

mixture

Rhodomonas salina (RHO)Skeletonema marinoi (SKE)Prorocentrum micans (PRO)Isochrysis galbana (ISO)

RESULTS

CONCLUSIONSI. High pCO2 affects the FA composition of phytoplankton - Effect is species-dependent - EFA contents of cryptophytes (R. salina) and diatoms (S. marinoi) are more susceptible than dinoflagellates (P. micans) and haptophytes (I. glabana)

II. Feeding on a high pCO2 diet impacts copepod reproductive success - Some parameters are more sensitive to dietary changes than others - Differences in reproductive success could also be attributed to changes in feeding selectivity, sampled copepod population, and time of year

These results show the potential for future OA conditions to alter the EFA content of phytoplankton and affect the productivity of subsequent trophic levels.

0

20

40

60

80

100

400 1000 400 1000 400 1000

RHO SKE PRO

TOTA

L FA

TTY

ACID

PER

CEL

L (%)

Figure 1. December 2014 – Relative (A) and absolute (B) total fatty acid content in R. salina (RHO), S. marinoi (SKE), and P. micans (PRO) under low (400) and high (1000) pCO2 treatments.

0.000

0.004

0.008

0.012

0.016

0.020

400 1000

RHO

TOTA

L FA

TTY

ACID

PER

CEL

L (n

g)

0.000

0.000

0.001

0.001

0.001

0.001

400 1000

SKE

0.000

0.050

0.100

0.150

0.200

0.250

400 1000

PRO

0

5

10

15

20

25

30

35

40

400 1000 400 1000 400 1000

RHO SKE PRO

EFA

PER

CELL

(%)

0

0.001

0.002

0.003

0.004

0.005

400 1000

RHO

EFA

PER

CELL

(ng)

0

0.0001

0.0002

0.0003

0.0004

0.0005

400 1000

SKE

0

0.012

0.024

0.036

0.048

0.06

400 1000

PRO

1A 1B

2A 2B

Figure 2. December 2014 – Relative (A) and absolute (B) EFA content in R. salina (RHO), S. marinoi (SKE), and P. micans (PRO) under low (400) and high (1000) pCO2 treatments.

0

20

40

60

80

100

400 1000 400 1000 400 1000 400 1000

RHO SKE PRO ISO

TOTA

L FA

TTY

ACID

PER

CEL

L (%

)

Figure 3. June 2015 -Relative (A) and absolute (B) total fatty acid content in R. salina (RHO), S. marinoi (SKE), P. micans (PRO), and I. galbana (ISO) under low (400) and high (1000) pCO2 treatments.

0

0.05

0.1

0.15

0.2

0.25

400 1000

RHO

TOTA

L FA

TTY

ACID

PER

CEL

L (n

g)

0

0.005

0.01

0.015

0.02

0.025

400 1000

SKE

0

1

2

3

4

5

400 1000

PRO

0

0.006

0.012

0.018

0.024

0.03

400 1000

ISO

0

8

16

24

32

40

400 1000 400 1000 400 1000 400 1000

RHO SKE PRO ISO

EFA

PER

CELL

(%)

0

0.01

0.02

0.03

0.04

0.05

400 1000

RHO

EFA

PER

CELL

(ng)

0

0.0008

0.0016

0.0024

0.0032

0.004

400 1000

SKE

0

0.4

0.8

1.2

1.6

2

400 1000

PRO

3A 3B

4A 4B

0

0.00025

0.0005

0.00075

0.001

0.00125

400 1000

ISO

Figure 4. June 2015 -Relative (A) and absolute (B) EFA content in R. salina (RHO), S. marinoi (SKE), P. micans (PRO), and I. galbana (ISO) under low (400) and high (1000) pCO2 treatments.

0

10

20

30

40

50

60

EGG

S PR

OD

UCE

D P

ER F

EMAL

E

Dec. 2014 June 2015

Median

0

20

40

60

80

100

% E

GG

S H

ATCH

ED P

ER F

EMAL

E

Dec. 2014 June 2015

0

20

40

60

80

100

% N

AUPL

IAR

SURV

IVAL

PER

FEM

ALE

400ppm 1000ppm

Dec. 2014 June 2015

Poisson regression odds ratios

June = 0.45 (95% CI 0.36, 0.56)

Dec. = 0.61 (95% CI 0.47, 0.79)

Logistic regression odds ratios

June = 0.55 (95% CI 0.42, 0.77)

Dec. = 0.02 (95% CI 0.01, 0.05)

Logistic regression odds ratios

June = 0.15 (95% CI 0.08, 0.27)

Dec. = 0.01 (95% CI 0.00, 0.04)

5A 5B

5C Figure 5. Egg production (A), hatching success (B), and naupliar survival (C) per female in December 2014 and June 2015 after being fed phytoplankton from either the low pCO2 treatment (black) or the high pCO2 treatment (gray). Each circle represents an individual female copepod. Error bars show Interquartile range.

Polyunsaturated FA (PUFA)

Monounsaturated FA (MUFA)

Saturated FA (SFA) Eicosapentaenoic acid (EPA) [20:5n-3]

Stearidonic acid (SDA) [18:4n-3]

Gamma-linolenic acid (GLA) [18:3n-6]

Docosahexaenoic acid (DHA) [22:6n-3]EFA

ACKNOWLEDGEMENTSI acknowledge the support I have received from Dr. Rodger Harvey (Old Dominion University), Dr. Anne Todgham, the Carpenter Lab, the Wilkerson/Dugdale Lab, the Cochlan Lab, Anne Slaughter, Toni Ignoffo, and RTC facilities. Partial funding was provided by the CSU Council on Ocean Affairs, Science and Technology (COAST) Graduate Research Award.

REFERENCES1. Rossoll D, Bermudez R, Hauss H, Schulz K, Riebesell U, Sommer U, Winder M. (2012) Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 7(4): e34737. doi:10.1371/journal.pone.0034737

CONTACTMorgan Meyers, MSc candidate(715) 220-1374 [email protected]

Carpenter LabRomberg Tiburon Center3150 Paradise Dr.Tiburon, CA 94920(415) 338-3756