Top Banner
KAERl/CM-121/94 RN8 1S^ 91 o|*| 7|# Development of High-Power Laser Technology 3#^ -yj^EM|0|Xig A@7|# Fabrication of a Dye Cell of the High Power Dye Laser and Development of the Measurement Technology of the Fluid Velocities in a Dye Cell ? 7l # # # 4 ^ a AUG 0 6 1390 os Tl master ^ x> ^ ItSrpUTHJN If US DHOHIEM IS WHUMBB niffisi m mmm
119

RN8 - OSTI.GOV

May 07, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: RN8 - OSTI.GOV

KAERl/CM-121/94RN8

1S^ 91 o|*| 7|#

Development of High-Power Laser Technology

3#^ -yj^EM|0|Xig

A@7|#

Fabrication of a Dye Cell of the High Power Dye

Laser and Development of the Measurement

Technology of the Fluid Velocities in a Dye Cell

? 7l #

# # 4 ^ a

AUG 0 6 1390

os Tl

master

^ x> ^

ItSrpUTHJN If US DHOHIEM IS WHUMBBniffisi m mmm

Page 2: RN8 - OSTI.GOV

KAERl/CM-121/94

B||0|X1 7|# 7H#

Development of High-Power Laser Technology

*11^21 7H#

Fabrication of a Dye Cell of the High Power Dye

Laser and Development of the Measurement

Technology of the Fluid Velocities in a Dye Cell

"S 9- #

# # 4 # m

% ^ € 4 ^ ^ ^

Page 3: RN8 - OSTI.GOV

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Page 4: RN8 - OSTI.GOV

Sr MAI* rJL#^ q±.<i ^4-4 4^-n-^

7]*k 7ltj 4^6] ^^ti.JIA-]S. *]1SW4.

1994ti 8€ 20^

y^»3x> 2: AH

9- €

3 9- €

3 9- € *1 «l

<3 9- € £ sH

Page 5: RN8 - OSTI.GOV
Page 6: RN8 - OSTI.GOV

I

u>I

A(*>SL

AAI

A(->

S4°I#

I£rSfcA-UA

AJE

r°b

J#AAit#MflA0(AMn&

|U$r|<>(d$it#AN

r##A

5isrir

A AN (A

(oA (mi? A

0S2 Anr AA A!-> r°bfait# SA AA AA fanr NA, AA it#A A4» -\°

Jd

I=#

U 4>JE Aw i&A jofcJE A

$A&■iAAA

S!Ao!-AAfanM4>

oflrtl

J|M'<AAo

mm

fa

5AM

$

Ar£r$irf.

|

UJENAJEr$ix>->

&AJd,it#JEAAArirw|[i

rio cfl,=#'A

i wf.£

mp A

Ja

jot

o{d

sA

£4ns£NIt#JEfacti,AAJar$i

i>.AnHJAmini(&

i

t*> MS A mini AHi |Sw A 41Anr

J£(->A

nrfa

o 0(1Jl%

A A fa Ah>AA

iSAAA

A

s MS=jo

A o(ri A oE 4>AA

A A (4i J|iiA

nrAnil

°#t»r$i

s$

n#Mn#

Aml>m|o

Ja i& Ja3 A AA h> rir |U$HiA ig

AA

Nn#

%

A & A JE Anr4o

Nfa

o|dA

A0

A

A jp A A4b m|m MS A sAA

AN A

Am[m

A n(r\r

iA Hi AA r# A fa Mfa n# A 4bxj,

(llB1>

=1° JE A faA (-> A jp

01.AN ^ n# fa■“ raA Hi 0 ja A A Jd,A

$

rl°ji4>

A

& I(n A 4u Jd,I ojo

A A (-> mini iAda * fa fa A A

f Sn& A A A

A

iiu$JaJ(aAMS

°#t*>fa

Nn#jEA

IAJd,of°

Al>fa

A

IA

|ojfl

J|N'oEAit#

iti$

A

j[fl

t*>

p|fl

Page 7: RN8 - OSTI.GOV

* 7l##* *4*3 SIMM &*

3*4 #4* 4##4, 14# SIMM 4 *#14 #44 #«i 4^4

41 S 3#1441 4**444 **1 * #35.3. 4# 4-0-# 1

-T- 7l#l 114 4*4 4 * #4.

in. #*7lH:# 4* ^ 1#

3#4 43441# 4*14 #44 43# ?#4 4# 49-7}

*3*1 4*4, 43# 4*# ***1 * 4# 4-0-# 43* 14

4 434* 4*44* #4. 4# 444 -0-414# * 43441 #

44 ## 4a# 4-0-4-4 434 4*41# -0-#4 4# 41-44#

I- # ^r #* 434 34# 3.4:4-31 44 4# computer simulation

4 13**. 343i 44 4# 414 *1* #5.4-31, 1## *# ^

4-44 4# 15.# 471 4#4 7]#4 4# LDV# 4-0-44 434

44 #*### 1*1 #1**. 3.5131 3## 4^4447} *#*

3 #* 4444 4444 #1 * 4344# **#*# 44#43

5. #1*1 ##4 31 Fiber-Optic LDV* *4 #4. 33] 3. 4 LDV

4 41-44# 44# 4-0-44 4 s.# 434# 3#43 444-4,

LDV #- turbulence *11-4# 4**4 41# 434# 1*# l7>

**.

IV. #*7114:4#- 1 ##4 4# 4#

-4-

Page 8: RN8 - OSTI.GOV

# 4?44 4 #4 5^g Fiber-Optic LDV 7l#4- o]*

45#44 #S^# S4 # 45# 4544 7ll## 4

5444 7l^o>, ###### §1 sj]o]7|# ISSl^Ml

$144 7lt^As ## 714# S4-. 45- 44-4 3.#^ 454444

7H#4 4514 4% #4 ^ 7)14 4#4 ### 7M# 7>4# 14

4, 45#4 45-8- ##44# ## 454514 4# 71144 4#4

1 444. 5# 4544444 #44 ##444 4# 4# 14-44

LDV4 444# 9-4451# 4, 4# 4# ###14 iMl 1## #

$154, 44# 7M44f# 7144 444 4# 5#4 444 144

#444 4-B-S ^ $14. n4°5. 1 4## #44 5#4 4544

44 454 ^ #44514 4# 4#4 ##4 4#44, 4# IS-

4# ###1144 4#44# ##Sl7l##4 # 7M1# #?##

4 4-#5:4-7} # 455. 4 #44-.

Page 9: RN8 - OSTI.GOV

SUMMARY

I. Project Title

Fabrication of a Dye Cell of the High Power Dye Laser and

Development of the Measurement Technology of the Fluid

Velocities in a Dye Cell

n. Objectives and Importance of the Project

The project objectives are to develope the laser Doppler

velocimeter(LDV) with a directional coupler for the measurement of

fluid velocities in a dye cell and to design a dye cell of the high

power dye laser by using the computer simulation code for the

simulation of the 2 dimension steady-state flow. Since the output

power of the high power dye laser with the pule repetition rate of 10

kHz and the average power of more than 10 W is sensitively affected

by the shape of a dye cell, it is necessary to investicate precisely the

effects of the fluctuation of steady-state fluid and/or the the turbulent

flow. The LDV system is a very useful to analyze the fluid

mechanism in a dye cell. Therefore, it is important to develope the

small size LDV with a single mode optical fiber and a directional

coupler, etc. And a high power dye cell is designed by using the

flow simulation code and the small size Fiber-Optic LDV. Since the

—6—

Page 10: RN8 - OSTI.GOV

design technology of a dye cell and the LDV technology are basic

technologies in the field of the high power dye laser, it is urgent to

develope these technologies.

HI. Scope and Contents of the Projects

- The computer simulation code for the simulation of the

steady-state flow in a dye cell is developed by using the finite

element method.

- The situaion of the fluid flow is measured by the diode laser

LDV sysytem and compared with results of the computer

simulation.

- The small size Fiber-Optic LDV with a dirctional coupler is

designed and fabricated for the real time measurement of fluid

velocities in a dye cell.

IV. Results and Proposal for Applications

- The computer simulation code for the simulation of the

steady-state flow in a dye cell was developed and the small

size Fiber-Optic LDV with a dirctional coupler was designed

and fabricated for the real time measurement of fluid velocities

- The design technology of a dye cell is secured by using the

-7-

Page 11: RN8 - OSTI.GOV

computer simulation code and Fiber-Optic LDV system

fabricated.

The measurement technology of the fluid velocity using the

noncontact LDV method is developed.

Page 12: RN8 - OSTI.GOV

*>SL

4] 1 # ## ........................................................................................11

41 2 # 4# *1*34# ......................... 14

2.1 4# ................................................................................................. 14

2.2 ^Ai^4 Hl^*# ** ....................................................18

2.3 #'ir30l/xi ## ...................................................................19

41 3 # #S413*4 LDV* 4-8-# *### .......29

3.1 -8-41-fMr ##4# LDV -8-8- .............................................29

3.2 #E4] 34*1 LDV* 4-8-# ####...............................30

3.3 4di*Lfl4 *#*5 ## #4 ...........................................42

41 4 # Fiber-Optic LDV# #41 ^ 41# .................................... 47

4.1 4*#W LDV# #4 .......................................................... 47

4.2 #### ^ #### ................................................................ 50

4.3 Fiber-Optic LDV# 41# ^ €### ...............................53

4.4 ^#### Fiber-Optic LDV# *41 # 41#...................66

41 5 # ## ....................................................................................... 75

#31*# ................................................................................................ 81

*# ..........................................................................................................87

(1) -8-8-## 1995# 8# 4Jl 41414# ** ................................ 89

(2) CLEO/Pacific Rim '95 (Chiba, Japan, 1995. 7. 10-14)

#JBEJBL#*, 105

(3) ##*### 41 69# HI

(4) ##*### 41 70# 113

_9_

Page 13: RN8 - OSTI.GOV
Page 14: RN8 - OSTI.GOV

4 1# 4 #

19664 P.P. Sorokin# J.R.LankarcH 4 #4 4 #53 43444

7} #44 49 #4-7}# 444^ 4# #4-## #4## tfl^o] 5l]

444# tq-H.7]] W# 444 44-444 #4##7]] 44# 4 4 #4

f^Jt # $14# 4-4 41 #4 &# 44444 #445 4-4-5] 4 # 4. #4 -S44 •§•7]-, II5] 5 #4#4#4 9"5S} #4# 37}44 #

#4 n-4oL, 4# ##4.4, ^44 44, #44 43 4#, #44 -2-4 4 4^ 44, 55# 4s4 54 7M, €4 5]4- LIDAR 7fl

#, 45.4- 457] #4 a»5]o] 5:4. #4 €43 44 W #44= €

5 4#4 #4- 444 44714 4444 4471-444 5#^ 4 39

4oL $14-. 444 5#4 44-71-4 4444 4&44 453# 44

€#€ 4^4447} $154, 444s 44 #44# #44 444 4

4444 #4# 54- ^44# 49-7} 4*345 $14-. 544- 9454

5 454 #471414 7}##t} $>445 ## #.40] 440)44, O]#

444 4#44# 44453.4 444-5 444534 7114444 4

54444 4544 tfl# #444-44 444- #844 ##%#4 #

4# «}f53 4#5, 4.44 45# 4544 44 §1 444 594

5 $14.

#44 4# 4 5 €#--& o]5jjy}3i 4444 #444 4444-

4-444 #4# 71144-71 4# €€# 44 7}47> $14 € 4-940]

4433 #A]]4 7}4 3}( flow visualization ) ^ ###47l#( flow

velocity mesurment technique )#4 4#€4. #4 #41 ###47]#

— 11 —

Page 15: RN8 - OSTI.GOV

-Sr *i£# #44 ###3# 4 #4 ## ###34^# pi^t #4 4 ###3# 4 #4 44 ###4, ####4# 333# 24l£#

4##4 #44 ### 44# # 44 #3434 4# 444 444 #344 #344. 44# 444 ###3# 4##3—5.^- 4S#(pitot tube)4 4# ##4 (hot wire anemometer)#4

4#44. ^44 44# #3## 4#4# #44 43 3##^ #3 as, ###34 32.## #4 4hs. 3#s# #4^4 -t-4##4 4

3 #44- ###3 344£ 4## ##4. 1970#44 ;ii#44 1980 ti#4 3#3£5. #447] 44"# 444 s#4 #£.4(LDV:Laser

Doppler Velocimeter)# 4£#44 1# ##44 #3# £### 3

#£ 444 ### #44 £#44 #444 4£34-4 4# ###

# 4##4 #44 #£# #3## 4 3 #4 #3 4 7] 4 4. ## 4

LDV# 444# 3#4 #4 ### #3#7] 4#4 #44 £##

4# # #£4 ###4## # #4 3#4 33# 4£#4#

####4&4 4# ### #3# 3W. 44# LDV4 #3# 4#

#4 #44 ###3# 43## 7]## 3£4 43 4## 4#33# 3£34 444 ###£# ##.

a.#4 3£444# 7fl##4 4#44# 44 ### #4- #4

3£4444 ##7l « 334444 4#4## #4 44# 3£44 44 A]## 3 £44 #£7> #£# ##7> 34. ## 4 £34 4 4

£#£7> ##3£s 5##3i #47> #3#4 e#4# 33#44 2.

#### 3# 3.#4 3£4444 ;D#4 7>###. n.44 #4 33

4 #44# 33#4 4# #£3 M#4 ##4 44## #

-12-

A:i A-3

Page 16: RN8 - OSTI.GOV

#14 41444 ^5.5. 43W4 1#1 1444 ^

34 #34 l#4 144 4344 7lj#l 41 #344. # #3#

ifi4 -fMrtei- H#47l#l 4-0-44 1443 41- 45:5. 43#

1 4441444 94435 #34 #3E4 444 544 €41 #4

€41 44 51144 #41 4444# 1 44.

4* 444 # 454 412443441 #3#4 44444 41

444 1441 353## 4-0-44 444 €414 #3#4 44 1

1444 4443., 4 4^144 11441 434 LDV* 4144

44435. 4444. 3513 41 444 424441 14444 44

#1 Navier-Stokes 414 ^ 4 41 Ml 143^35. H2|4

1144 4151144 3H1 4144 €#493, €14 life 9

3 27M# 4435. 4344 111 41511444^4. 3s]ui 4131

441 424414 €34 LDV# 414 41511444 4314- #1

144 4314 444 4414 1113# #4414 141 9#4.

41414141 4 €944 7>1 134 394 LDV4 44 ^ #€€€

1 €143, Fiber-Optic LDV# 44 41444 §1 44€€41 444

€14€4. 35] 5. 4514141 I# €34 #€44# 3#4€4.

-13-

Page 17: RN8 - OSTI.GOV

*11 2 # 4 ^#41^1 t(l 13: 4 #4

2.1 o] #

4# 4 Jlf-# 4444, Reynolds 4^(##^4 4#44 #"4#

44)444 4#4 ##5 445, Macfrr# 44 ####4 44#

##3. 411145, ##41 44 ##47j|4 4 ##4^1-3- 4444. 44

4####444 44# $1 4444 3457} 4# #5 444 M4

4 444 444s. 4# 4# 4####5 #4 ell4&54=(Reynolds

number)4 #44 444444 $144 44 4444 $14. 44#4

4444 44# 444# 41:4444 %4 44#4 444 #44

4#4 4 #5, 45$144 #fr# 441 4^(Computational Fluid

Dynamics; CFD)4»>7> #44 44 #44 $14 44441 #4, 4*113.

4# 443:44# (Finite Element Analysis; FEA)354# 444

44 #5 $14 #44. 4 4444 *}4#4 5## #d^M44 4

44414 444 #### 44 $1 4 #44 444 #455. 44##

4455 ##e)H444.

44# 44## 444 4# ##5114#4# #4# #4 44##

Navier-Stokes 4##55 44#44 #44# #44 #24 4444

4 4444 444 4444444. 4 4# 444#4 444 4#4

4 544# 4444 444 44 body force## 5444 #5, 44

4 4# #44 47)17} 444 ## 4# 4## $145 5# 44, 4 4

#44 444 4°1 4444.

—14—

Page 18: RN8 - OSTI.GOV

p(-f-+11- Vuj+Vp-//V2u = 0 (2.2.1)

V • u = 0 (2.2.2)

4 4 414 U# p# 9M, p# llA, ZL5)3L pfe 44¥ 4444.

4 (2.1.1)44 (2.1.2)4#¥ Sl7\ 4¥4 4je4 #4 as 4-4 ¥44

4, 4 4*44As. 444*114 ¥¥#4 4# ^4# ¥#4 $1

44 44¥# ¥44 #z4¥4 4*44 44-. 4 4*44 4*4

¥ 4¥4 44 44# ¥ 44-.

•1-444 41-4 #£4 444 444As 4444.

• 4 #4¥ 4444 444 A¥ 4 ¥44.

• 431&4! ¥#444 44.

ZL44- 4 #44 44¥ 4¥4 44.

• 444 ¥444¥ 44¥4 471)44.

• #A4 444441 4¥ 4¥4 M:4¥ /)¥# ¥ &4.

• 4¥444 44 4414 #7)144.

. 4¥44 #44-4, A¥#4A4 ¥¥#¥4 4¥ 244 4¥1¥

A44444 44.

4444 4¥, 4£(vorticity)d)l 4) #-44

(convection-diffusion) #44, ¥#(stream) #¥°)1 444# Poisson

-15-

Page 19: RN8 - OSTI.GOV

#4453. 44 safe. 4##4 Navier-Stokes #444 4-5-^g.^

(vorticity-stream) ##¥ #44 (2.1.1)41 curl# 4## 4-&4- #xr

^44 4# #44 (2.1.3)4 f#44, #44 (2.1.4)fe (2)44 (2.1.5)

44- 444-# #fe4-.

P (“^') — /zv2<y = 0 (2.1.3)

v2$r + <y = 0 (2.1.4)

471414 ($) 4 4£(voticity;u) ¥ 44 4444.

% (2.1.5)

dz<2 (5^1dxi Sx2 (2.1.6)

4 #41 ### #444- 4-8-4-fe 4 #44 #4-8r

• #4 ¥44 44¥# #2.,

• ###44 (2.1.2)fe ^H4#¥4 4441 44 4¥45.3. ##4

444-

fe 444-.

ZL44- 4 #44 #4s SU5-4, 4# #44-# 4&4- #4-.

• #44# 4¥# 414#3.¥ 4¥4& 34#5_3 4-44-471- #4#

5,

—16—

Page 20: RN8 - OSTI.GOV

• 4^4 4! 4 l^lAs 1444 444 414,

• 4A1 31^44 441 44144.

• ZL4-JL 4#4#4 414 444 4A44.

241 44411 asWt^ (2.1.3)44] $)^ o4 u* $4144 4

As. 4444 4#4 44 4K£€4.

gv2(/><% + M gv2</>

&C2 5*184> 8v24>

8xi 8x2 )- /zvV = 0 (2.1.7)

4 44 444 #444 44t7]- 4 444.n44 44 As^ 4#4 44 1# #4= $14.• (2.1.7)44 44 44# 4144a, #4 44= %4 4414 Till

444 A?44.

• ns] as 4a,4a,he]a 414 111 as 7]] 411 ^44.

nl as 4S.-41414 344As 4 7l] 411 4= &7] 4 #4

S.414 4ae]^(algorithms)#- H44 HI$1 41 #4 1414

^simulation)! 4" $)A# 1444. H5]H 4A-AS4!44r 244

AS 1414 $17] 141 444 41 #1 1114 All as 44

14 44= $)4. HE] a as^44=4 4l7>4 A4#s 144 4#

441 4#4 4444, 11 244As 1414 $14. 4 44114

112:41-4 4444 44AA^AS 44-fhl 14 141444 4

$14.

-17-

Page 21: RN8 - OSTI.GOV

2.2 -R-fb ^#4 3 <3*4^ OS.

#5-133# 4=43 313333 #3^1 ###3 #4 #4

#5 #3314 fs 53 3 o}# #4. 33# ##33 ##5. #4

#33 ##13 ### 4##334 4# #5 ##15 ### # #

3 ##4. 4#55# (Finite Element Method;FEM)4 7}#4 5#-##

(weighted residual method) 331, 43*# 7] 43*14 ### 33*3*3

(steady-state)# 3 3 3*3*3 (transient), 33# 333 #3# 5#3 3

3-333 # #7] 33-3 ##3-0-5. Ai-g-sq###.

325)# 3 #*#3 3 #5#(constraint)4 3 l#(convection term)3

7] ### 33333#3 2.1333 #1# #5 #334- 4#55##

55. 5#33# 33 ##3 334. 34 31-3 53- #5-#3##

3 #33 3-43 5##(interpolations)# 5#!3 3*# #33 #41

#3 434# 35 3 #34# 44°14. ##355 45-#-

3 5### ###4 LBB5#55 #### Babuska-Bressi 533#

3 3334, 33# #5-#-# 53^*33 #3 #43 4# 7>#3

# #3 #313 313o]#l # 5 #4.

#343 7># 54355 #s-#3 134: 3133### ##5

5#- 444 #4 #7>3 #3°1 #4. 4#34 #54 #33 333

31 #44 34 31 #4333 ### #355 3133344 #

#34. ##34 #### ##(constraint)# #=## ### #31 A}

4455# ## #3 5# #4 penalty ##34. 1#3 ### Penalty

##3 54 337} #5, 331°}3 344717} #71313 4## 3

-18-

Page 22: RN8 - OSTI.GOV

3 99*44 a-1 44 AH-gjui $13 * 4# ^44^4.

2.3 -*1 -M'S!] dl41 #4

9 4*4 A}* #4 44* 99#4l 4# 495)14# 0]S6)] 57)

* *3 7ll#4 49 ALGOR a}<3) 3E number 107 (2-D Steady

State Fluid Flow) S&3^9 4944 14 % 447}4 %44

49*4 444 -a-# Ml- 4 94 4*4^4. 3i 2.3.1(a)4 #9

Hellma A}2] Quartz cell(HELLMA Cat-No. 690.072-QS)# 7] MS.

#4 25 mm, * 20 mm, 99*4 1- d mm4 9Z:# #1 ## 9#

4^-S 3444 d] 4&#r)]d] c 3g«3^-A>o]d] 7}B]d]] n}-e}

5. 93fi(9 494 All 4 ##4)4 93$ *4444. x-y3g#44 p

=0.02 (#3 : 444 A14 *31 #44 &4 4*44 Al$44## 44

•945. #9 #4), 371994 5* 4(4714aR 999 *47} M

4 &71999 A]#44^# 9*44 4# 444 #4), 94(normal)

41-4 93$ 4#444#M4, 4 44-1 4 4-44 l*#3 S3

A14 4 *44 $14. 244s. 4-44All x-y*#*#l y-z*#4Al4

99*3# 4#44^4M4, 3 44-1 14l7> d = 2 mm 4 49

4 44-4 99*3# A]#4 44# 44-7} zl* 2.3.24 4-4- $14-. 3

14 4-3#$4 $11 411 4* 4## &444 941 34 4-8-4

1 #43.711- 4-4-44. 34 JL d * 0.5, 1, 2, 4 rnrnS. 44=44 94=

#4 141* 3*44 4#4 4#* #4, 9*44 *4 9*9* 99

9 #444, 937} M# 44(4491)9 W4*3 $19# * 9 $1

— 19—

Page 23: RN8 - OSTI.GOV

84.

n.% 2.3.344 zil 2.3.648 * 3^ 2.3.1(b)4- 88 43#* 4#

4* ¥ =3-4 84 88 4=7)1 *1-* 4^84, 4*1 ¥ 44 8#% #

*48 484 8-437114-3 zl 883 441# 34* D43 4 "9

484 44 4#4 4414 4444. 4, 3^ 2.3.344 3# 2.3.44-8*

4*88 R = 126 mm, 88 1 = 50 mm, # 4 444 44 444 4

8 d = 1, 2 mm3. 4484- 444. ZLE12. zi^ 2.3.544 3^ 2.3.64

8* R = 291 mm, 44 1 = 80 mm, -f- 4 444 44 847} 44 d

= 1, 2 mm 3. 484- 444. 4444 38 4# 84444 45 4

41-4 844 zz.8 2.3.14 "145-4 #8 844 4, 4 444 h8

8 45 84-7} 444 8 4 84. 38 zi d 7} 4444 444 44

4, 45=7} 5-84 844 4484 8 4 84. 4 484 844 4*

48 R°1 4844 W884 8 4 84. 8413. 448 838 4184

3. 8 88# # 4 8-8 8444 5:4-7} >884, 84 8448 38

4 45. 44*8 44853 8334 8 si 4 4*4 4* 8833 4

344 8t)1 4448444-^- 84 8 4 84-.

38 2.3.788 58 2.3.8444 zl8 l(c)4 84 8484 883

3, 3513 4-4 84 R = 126, 291 mm 3 4444 4 4484 88

d * 2 mrn 3 4844 444 84* 4 *5)1844 84-84-. 8 84-

4 8484 4*4 # 84-4 # 48* 4-844 8838, 8 #44

84* 884* *41* 47}3 54^8 84 38*3 84-.

—20—

Page 24: RN8 - OSTI.GOV

cL’distance between surfaces Idength of cell R:radius of surface

2.3.1 A]]s.o] 2.1 3e#

Page 25: RN8 - OSTI.GOV

-B- tptmn oi = s ‘mui Qg = p frO*)T[£ir ZE7 &ic

^nj-MUlxlQOiS^W^CDN 4^_D4^JD4^i)4^_D4^J)4^_D JDJDJDJD-DJDCDOOCDQOOOCD QOxKJI^rV — ^OOCDCmMIX) (msui'-o) —NirosioNoouN

Page 26: RN8 - OSTI.GOV

(DhO'-'(ri\LOmiSlOD<D^-(M C\1 C\1 C\J -—* '•—1"—1 '•—* —1 tSl tSi ISJ tS! SSSHSHSHSHSISSSMSMSI (M —iscrooiNmiO'tmcxi-’ LDm — QD(D^-(MiS!00<Dxr<M

<~\JCM C\J^—1 ,c—1 —1 '=—1 —*1 Kl £3 IS O iS

n.% 2.3.3 ZL^l(b)^ ^EflS. R = 126 mm, d = 1.0 mm, 1 = 50

mm-S} 7$ -T" "n-^ •yr.5L.51.

Page 27: RN8 - OSTI.GOV

0591/^1'0 ZSblzZ ' 0 IbSZS ' 0 SS8b1z " 0 blSZ9'0 S8Z.17Z ' 0 Z,1zZZ,8'0

% l/,bb'0 S/.TST ' I 8S917S ' I 50TAS'T 99Sbl7 ' I

8

1

OCM

1

Ph

mlww•srJ3r-H

nPnCM

nPM

i>itHahJ

4r°i=

Tjo

W1

—24~

Page 28: RN8 - OSTI.GOV

0i sz.ee'0 e0ssi7'0ssess' 01700Tb ' 0 9SZ.SI ' T Z0S9S ' I ssebs' i b0068' I 09/.170" e e%sz.e" e S9e0s"e i7T0sz"e

s

I

O)(M

ti

(UjWww

wnLOCOc<iWn

uit=HaN4r4=

75?

oT

-25-

Page 29: RN8 - OSTI.GOV

2.3.6 n^l(b)^ ^ns. R

=

—92—

33

COo33

00o

1.60185 1.48845 1.55486 1.20146 1.06786 0.85447 0.80087 0.66748 0.55588 0.40048 0.26688 0.15548 0

Page 30: RN8 - OSTI.GOV

0bZI80'0 8SS9I ' 0 Z.SS1r5"0 Z%Z,SS'0 988017'0 S/,0817'0 l7Sa/S ' 0 17S17S9'0 ST9SA' 0 Zb/,18'0 5Z,bb8'0 TSl8b"0

8

aaotN

aa

PinHw

wrl

cocsiWn

lh‘tH

<1r°t=°h7?

Waa

-27-

Page 31: RN8 - OSTI.GOV

=l$ 2.3.8 rL^l(c)^

R

= 291 m

m, d

—82—

IICOo33

CJ1o

68581 62866 57151 51456 45721 40006 54280 28575 22860 17145 1 1450 05715

Page 32: RN8 - OSTI.GOV

*0 3^ #5.4 LDV# 4-0-#4

3.1 -fi-4-M- 43 4M LDV 44

4314 4#il a ##4 oi^j^>3L 31444 #44# 4#4# #

#4# #4# 7H##7l 4# M4 447}47> #4# ##AS. 4314 7>a] SKflow visualization)^ 4444 7l#(Gow velocity

mesurment technique)## A}###. #4 43144 #471## n]A#

4314 44### ^liHl 44 ###4, ##e}#4# 4444 A#

A# 44#4 4314 4## 44# 4 $14 431444 As 4444

4 4# 444 4## 4444 #444. 44# 4314 4444#

4# #4AS4 4£#(pitot tube) 4 4 ##4431 (hot wire

anemometer)#4 44#4. -3.44 44# #4#4 31471# 43H1

44 44#^ #4as, 4###4 a## #31 4as 4#a# #4

431 #4#44 44 4314 4# 44444A 31## #44.

3144 A#4 4A31 (laser doppler velocimeter)# 3144 44#

43H1 sah4 431314 4A#441 4# #44# 4444 4314

4a# 444# 4444 #4as, 4314 a## 4# 4 $1A4 #

##31## ## 4 $14 444 #4# 4s#4# #44431A# 4

# #4# 44# ###. 44# LDV4 44# 4444 4314 4#

#4# 3144# 7l## A#4 4A3144 7H## 4# 444 4A#

-29-

Page 33: RN8 - OSTI.GOV

4 3144 ##434 14.3#4 433144# 711144 4444# #331444 #14 4

44 4444 4#44# 44 4-44- 4331444 4# # 4di44#37} #3.1 1#7> 44. 4-4 43444 43157} ^1153 #<44-3. 4-47> 444-4 #14# 11444 3.44-## 1# 3#4

#331444 7fll:4 7}#14. 344- #31114 144# 3#4 4

114 4# #31 #4#4 144 7144# turbulence#4 4444

#44 4% rHS !3#44 #4# #44-4 434 #34- ## 4 ### #3#4 7H## 4# #34-4.

# 43444 ###3# ###44## 4#44 #143 4# 433 Cell# 444144-4 #1133 434 #34- ##4 #4# 44# #4 14# 44 444 #4# 114- 4# # 14.

3.2 1^41 4144 LDVfr 4 #4 #114

1144-1#7> 3# 14-414 ##4 444 14 1##7> 1

4-4# 31-43:4-# 31444 71114- 141 3144 314 41315.44

tin #44# #44 414 41# 14#3 144 #3# #4

111# LDV# 7>1431 414. LDV# #114- 411# 41315.

414 4# 114 44 711-1#^ (reference beam technique)! 4#

1#1 (dual beam technique)33 4# # 134 4# 4 #44 #3#

44 314 1441 444 111 ¥ 14 1##4* #1135.4

#44 #31 #11 # 14.

-30-

Page 34: RN8 - OSTI.GOV

4S#]M #*)1#S# #44-7] 44 Optical Fiber LDV4 44

4 44 Polytec LDV 300 Sense# 4##o] 3#4 43 444# 4

S#4 7flfoll #W #44 ###4# 444 3^ 2.3.1(b)4 444

434 44 ###5E» #W5$4. LDV# 4#4 ###^4#4 $1

4 #444 3W 444 37] ^ 4s, 44#4 444 44#4 #

34 4#3 4#4^4 444S3. 444 37]# #4444 1/44 s

4 4# 4#44 444 3.7]7> 44#4 444 4434 4# 34

4, 4-f 4# 4# #44 s#4 #334 44s# 4#4 444]

€4. 4# 4 a]#4 #414 44#44 344 444 37] « #3#

###<04 444 4444.

4^4 /]#€ LDV# 4#4# 4143.44 #44# 4## 4#

4 433 3^ 3.2.14 ##44# 444534. Polytec LDV 300

Sense# 4## SEW Optical Head(LDV-380)4 Controller(LDE-300)

35] 2. # Jl4 5] # 44 Doppler Signal Processor(Q3100)33 4444

$14. 3# 3.2.2# Optical Head ##33 3 7]## #43#

1) Laser Diode Collimator.

444 830 ran43 #44 40 mW$l 4444 4S3] 444

2) Rhombus Beamsplitter.

Laser Beam# # ##33 4^44 4t4## 4## 44,

4*3S# #44 444 4# A4 # 7H4 Wedge Prisms#

#$14. Rhombus Beamsplitter# #44 # 7fl4 4## 30 mm

3 #444 4#44.

3) Bragg Cell and Driver.

-31-

Page 35: RN8 - OSTI.GOV

# ##33. 4¥44 4## #44 Frequency Shift# #?1

4#4 W4^34, 4# B4 40 MHz4 Shift# #4. # beam

4 4# 4341 Bragg cell# #4 #4 Acousto-optic

Modulation(AOM)# 44 beam4 4#t# shift4 44.

#44444 *944 44 Doppler signal-4 4#t# fa# #

3. 434 4### f04 #4 44 #44# *844 4###

A0M4 444 shifts 4 ##44 443 #4 f=fo-fd3 S.

444 444 ## 4-4=41 44 43# 4 # $14.

4) Wedge prisms.

4# A6)! #44 # 7H4 Wedge Prims# 4#4 Front Lens

41 4*3#3# 44

5) Rhombus prisms.

4# B°ll #4 Rhombus prisms# 4# A4 B# 60 mm4 44

As. #444 4*34 # $13# 44.

6) Compensation Prism

Bragg Cell# #44 4# B4 4# A#44 #34# 344

4 #4 #44444 4#4 H414I 4#4 Waist?} 44

4334 44 #4# 4# # $13# 44.

7) Front Lens.

# ?D4 ### #44444 #44 3#44 44# 43?!

4. Front Lens# 34°1 ?}#44 436] 2.444# ^}#4

44#4 444 44# 4# # $14. 4?14 44#4 4-44

44# 4#4 44 #444.

Page 36: RN8 - OSTI.GOV

X : 4444 #4

/i : Front Lens$\ X#t]b]

Adt

dt-- #44# # 4# 444 4 b]

8) Receiver Lens.

#34444 #444 444 444 #44 4# Fibers, s

4#4.

9) Fiber.

Glass/Glass As 200/300 receiving fiberS4 receving lensS 5.

44 3# avalanche photodetector4 4 #4:4".

10) A.P.D(Avaianche photodetector).

4-4-44 4x1- 4444 #Xs 4#4## 4## 44 44

4 4444 #X# 4X44# 44-4 LDE-300 Controllers

Stfl4 44-.

zl3 3.2.3#4 3.2.5444- 44*114 ##4x4- 4-# zz.3

2.3.KW44 4-4-4 # 7H4 4#4^(##44°1 126 mm# 291 mmS

# ### 44-, # ##4444 44^ #44 2 mmW ### 4

S4 2 ### 444)4 #### #44-4 #4# # # &£# #4#

44#4 #4x44. zl^ 3.2.34 7}#4 ^3^-4 ###4 434- #

44-fe 0-ring# 4#x, 4#4# ss 4-4##4 #4# x### #

-33-

Page 37: RN8 - OSTI.GOV

4## 3.2.5### ^444 lrE-5. 2:4# o-ring4 #44 ##

4# #44 ##♦ #4#3E# 444 #4. 44# ##4 4^

4 444 ##41 444E-444 4^-4 4^4 #4# 444 #441

#44# #4#7} zz.^ 3.2.541 4444 #4. 4#4 4444 444

444 ^ #4#7> 444 4^44 ^44 4#4 zl# 3.2.64 zi^

3.2.74 44 #4. ZL*g 3.2.6# 4#fe4 ##4 126 mm# ##4zl,

zl# 3.2.7# 4#4^4 ##4 291 mm# ##44.

—34—

a :•:• X-:■=k.

Page 38: RN8 - OSTI.GOV

r"W — T

zl% 3.2.1 el) °1 ^ LDVCPolytec, 5.# 300)# 4## ##

3**1.

-35-

Page 39: RN8 - OSTI.GOV

Compensation FrontBlocl■Beamsplitter Lens

FibreBragg cell

__and DriverA..P.DLens

Laser Diode Collimator

:%$) 3.2.2 #5*1] LDVCPolytec, 2.ri 300)5] ^-^-^-5] f

2:5.

—36—

Page 40: RN8 - OSTI.GOV

16.70

r*T L TTiT ; : ii

--{ ~~L, TICe

-30-

3.2.3 2 7111- #4# 3L# 2.3.1(b) # #

dill 7C|x]#-fe- tf-13!^ 7(1x1# 1# 1#5E.

Page 41: RN8 - OSTI.GOV

12.00

-94.70-42:90-51.80

-15.40 --36.40-27.50

U>00

I---------- 24.30----------1 1 1 1----------1 | i ! | 1 1 ! i ! in

10 ----------- lj-,-+-L-j j 1 i ! ! 1! i r-t-h

ZL^ 3.2.4 2 44^ ZL^ 2.3.1(b) 4 4}

445}^ #^-4# 444 4-^ 24 44s..

Page 42: RN8 - OSTI.GOV

g57

TT

— <T

W

ojm

r— <-)

W <v

,

.... n- ui

k

CMCO w >

Wn M

wCOCM

J|J,

,_ CO—J

WM

nin

t__ CMCO

W

n

4f|

___8___

-39-

Page 43: RN8 - OSTI.GOV

rz-H 3.2.6 126 mmSl 27flS. ^d^S]

^>4.

—40—

Page 44: RN8 - OSTI.GOV

=L% 3.2.7 291 mmS) 27fl5. 4^4^

4^1.

' l

« X/

—41 —

Page 45: RN8 - OSTI.GOV

3.3 ***-S *1 34

0.1 3.2.14 454 443 LDV* 4*44 ol 3.2.64 ol

3.2.74 q±m] 4# Cell44 *^*£1- *34 44 ol 3.3.14 4

* 44444 3* Burst ^Jlt 4# * $15.4, ol 3.3.14 °>9144344 °1 Burst 4o# FFT44 4* X|^# 144 454-4 44:4 *** 4# * $14. 4 34 *** 44:4 34 * m/s 44 4* €^4 4*4 4^344 **# 514* 5.44 444 4 4 43 * $14.

ol 3.2.6(01 2.3.1(b)5. 4*43 126 mm 4 34)4 4^*4

44 *44 45# x-y44 W* 444 444 ol 3.3.1444 34

4 344 *43 34* 443-53. *344 434 347> ol

3.3.24 44 $14. ob]jl ol 3.2.7(ol 2.3.1(b)5 ##43 291 mm

4 3*)4 4^*4 44 *44 *5* #34 x-y44 W* 3*4

444 ol 3.3.1444 34 4 344 *43 34* 44€55 *3

44 #34 347> ol 3.3.34 44 $14. 4 # 34*5. *4 **

4 4*4 #**44 *54 71*47]- 34* 4 * $lo, 1*5.5. 3

*# *57} *44# 3 * $14. *4 €#fe5 444 4 45*4

*5# *47} 7>4 #* #4**4 *57} 714 4*4 *54 3**

3* $154, 33 1 cm4 3444# 34 **4 1345 4* 4*

* 3 * $14. *4 3*354 4*434 54 €■ ol 3*3444 34* 54, *57} *34 *44 ol 3,3,254 34 W*# 3 *

$14. 44 **4 1 *4 #*54 45 143* 3 * $1*4 4^

—42—

Page 46: RN8 - OSTI.GOV

44 44314 4°14. nslH.5. 4#4^4 291 mmM 44£r

2 mmti.4 #4 4^4 3.4:4^ &4 #-& 4 ^#4 1 t ^44

#4:44. %44 444 4^45.^ zl! 2.3.1(a) #

34 3.^ 2.3.KW4 «» 4# 4#434 291 mm43& 44

44 4444. 44. 44 4 444 s. 4444 444 #4444 m 4# 44444 4444 ^>#414, £.4 444 44#47> 2.4# #

-&-4 $14.

•k

—43—

■ ■}

Page 47: RN8 - OSTI.GOV

SIGNAL SCAN

2M0 ns/aiv

F7 -PrSo

Quit

2.3 MHx/div

r=l. lilMHx S>H=S.19kB P=9s' X

Burst tto-Urt ' Hftlt XW=173‘ Trt L.nstk-1924

zt^ 3.3.1 ZL^ 3.2.14 fc*)l 51144 LDV# 4#44 zz.^j 3.2.64

ZL^ 3.2.74 4^44 4% CeU44 ###&* #444

4# Burst 4S.4 4 Burst 4^# FFT314 ^#5.

4 4Ji.

Page 48: RN8 - OSTI.GOV

3.6 m/s

3.5 m/s

3.4 m/s

2.9 m/s

2.8 m/s

2.7 m/s

1.6 m/s

OUT

ZLH 3.3.2 5rt-S>^ 126 mm^l 27flS. >114^ 4^4^

—45—

Page 49: RN8 - OSTI.GOV

3.0 m/s

2.9 m/s

2.7 m/s

2.6 m/s

,2.4 m/s

1.5 m/s

OUT

3.3.3 ^-##3 291 mm^l 27fl5.

4

—46—

Page 50: RN8 - OSTI.GOV

*1] 4 # Fiber-Optic LDV&I €3] 5 *11 ^

4.1 <-15^* LDV2] fle]

^14# #33 #3 433. ^1# n’^-a 2:A}'&]-aI^]- ‘Sj-fe’ 7]#41m) #3444 ##34# ##43, 4 ##34# #^N4 4###4 44#4 344# #43 #7ls. #344 3414 3341 44 s #4 343# #354 333 3#4# #4 4##3 LDV4 #444. 43#33 434# LDV# 44##3 #344 4 S3 #4##4M#34# 3 #4# #843-4] 4 ##341 4# LDV7> 35. 4344.

3# 4.1.13 4##3 LDV414 3 4341 444 ##4# #r#3 44 #4# £434. 343 3#43#4# 4 #41 4s. 205. #a}4

3 3 3144 #33 ##4-S 7>#4-#, E1 = E10e[ i(2,1,t™k5l)1 4

E2-E20e[ i(2"vt"k52)] 3 &## 3 #4. zz.435. 4 3 #33 #

% 4 7] 3

I = E?0+Eio+2E10E2oCos[ k(£2 — £ i)l (4.1.1)

7} 44. 47]414 E104 E20# 3#34 434s, v# 43344, k 3- 4344. s5]jl U4 £2# 3 #34 4*J##4] 44 44444 3.7144 44-a] (4.1.1)344] 13 3A]-4#-o] 2Njt4 41 447} 43, 2(N+1)ji4 41 #57} 44. 44414 N3 #33 ##344 43# 4

—47—

Page 51: RN8 - OSTI.GOV
Page 52: RN8 - OSTI.GOV

kk IKK ^ w

^kkiy h -i-lolv k-Arkk -kkk tolhk-y- k#k # k-akk kkkk"ZT bkbk# "3TZ# % iKisffsgr '5"o'-R-^r =rWk#^?k WkkblK bkkb kK ^ kti"oiy(E) # ?k "=Hs Its In bb k"S"o'-fek^ ■^■-kPJ ^ -^kk-B kk bk"o"kk k^& ^kkir ^"oHsk kkki -klK-fek kAcn%v irtair kk k^b k: kir ^kk4r kK ^PJ kbkb

(Sl'W PJ • AF ;AF = A

. kK^ # *A % bkM*T k?k b# klkb k^b ‘i: #k& # ki kklk kkiy ^kk b #k& #AF bivk-Akk kk bbb k# kkb?b kthbk 5al?r kk kk^k ^"ou #&#- kb

k #0X -kk-k k££k ^"o-kkk kkbbb-y- kb kb kb

(Z'TT) gmsz K

N(A) - i+n(A)=A77

kk kk-& kk k ‘kk kkir 9-# ‘^nk k“(T+N)Z =

5ms T+N(A)^Z k^NZ = 0 ms n(A)^Z -kk ^rbfc kk-& ^-ti bk

(T+N) kk-Ar ^-H bkN k^b kk k 0msAZ=T£-z| ‘^n

b 9 ms^ + 9 soox = zt 'urbemsji - 0Soox = T a kS kkk

Page 53: RN8 - OSTI.GOV

4.2

4.2.1# *4* W4 41-711- 4*44 *4* 4:5.^ BlH

4 41-4:41 fiber-optic LDV# 54** 7H4544, 4.2.2* 4

*4* 54** 4444. *€^5.# 44 Xo = 850 nm, #1 100

mWti 445-H GaAlAs #5!!44* 444# o_4, 4# pigtailing

44 44 850 nm 4 ^^2.5. **#(34-41: 4 m *!1

44: 125 /zm)! 4445$—4, 4# Fiber- optic Dichroic ####714

55 T5 4444 55 14 IS. 25. 4*4 pigtailing 4 444M4

(beam collimator)°11 44444. °H4 4*41 414# a" 12 15

q±4,d\] 4AM44 11*4* 1*2, 4 44^-414 444 4#

te 24 #2 355 44 #7l (photodiode)! 4 #4 44. 4 #4 42*

band pass filter# ##7l# 7] 4 4 5*5535# 245m 7)5

4 4444 5*4 #4## #444. 44 144* A}### 5 =

4.53° 44.

4 #4 42* band pass filter(TSI, model no.: 1982)4 4! 60

dB44 * #* ##7]# 714 44* ^544 5*5225

(tektronix, model no.: 2440)5 4442* ##4^4. 4! 4*4 1

2KHellma, catalogue no.: 690.072-QS)* 4*4 42*# #4145 5

444 21 3.2.64 24 3.2.74 42** ^1*4^4. 4*4* *41*

44 42444# *4444 4#* *4A1 Ai-g-sHr !4** 4281 4 4*4$54, 4 *44 *5* 44 44-* 7WM 2*# * 4

* 54* 7-1*44 24 45$4.

-50-

Page 54: RN8 - OSTI.GOV

SpectrumAnalyzer

LaserDriver

0.68 /mi or 0.633 //.m Laser

Oscilloscope

BandPass

Amplification Filter

Port R Lens 1 (f=240mm)

0.85 Atm Diode Laser

Port T

Port 2

Ptoho|le(,=i0mm)

Fiber Optic Dichroic Beam Splitter

Lens 2 (f=80mm) Pinhole

4.2.1 Fiber-Optic LDV#

PhotoDiode

Page 55: RN8 - OSTI.GOV

4.2.2 Fiber-Optic LDV-B 4-§-#4

A>^l.

-52-

Page 56: RN8 - OSTI.GOV

4.3 Fiber-Optic LDV4 4] 4* ^ ##44

2^] 4.3.1# Fiber-optic Dichroic ####714 #^]5# 34##

#>8# A}## 25] 4.3.24 44- $14. 44 A}*# ##*# 2.

o> a]^o] 4 ^0)2, 4^4 125 pmSl 4-# 850 nm# ##55

4^#$4. 4 ####44 4 M4A14 ##### a 4.3.14 44

$154, pigtailing4 Ai 444- 3gW53 #5# 44 collimator^ ##

& 0.633 rn 4M4 444# A}#e}4 44# #4-7} s. 4.3.24 44

$14. 242 A}## #5.4 31444 4l#4 #4444 & 34 2^

4.3.34 44 $1-9-4, 4 444# pigtailing#4 4*344 4# ##4

2^ 4.3.44 44 $14. 242 2# 4.3.5# 4 #54] 444# 4#a]

4# driver4 A}#o]2, driver4 4-3.51# power supply4 til# 43#

2^ 4.3.64, &W front board4 til# 43.# 2^ 4.3.74, 2.5]2 4#

# #444 ##44# main board4 45.# 2^ 4.3.84 44 $14.

2^ 4.3.9# 2^ 4.2.14 2|} 4.2.24 #54444 ####4

fiber-optic LDV# ##44 #44553 4## #2# band pass

filter# #443 #4# #, 44* 2*3^233 ### 514 #2

4 #711- 34## 444. 4 #5# dh45^ #443 *3iH=* *

4# #4-7} 25] 4.3.104- 2.1 4.3.1141 44- $14. 4## ### 4# ##53 3.2 cm/s (2! 4.3.10)4- 2.8 cm/s (2^ 4.3.11)4 ##4 #3

4 $14.

—53—

Page 57: RN8 - OSTI.GOV

COUPVBl

beam srurratWONfOLABONG. rajgaaNG, DCHOtn

4.3.1 Fiber-Optic Dichroic

—54—

Page 58: RN8 - OSTI.GOV

' h'cV

4.3.2 *11 Fiber-Optic Dichroic s] Aj-^1.

55

Page 59: RN8 - OSTI.GOV

Insertion Loss (dB)

T <==> 1 T 4==^ 2 2 4=> R 1 <^=^> R

7.8 4.8

4.75 6.6

X 4.3.1 Fiber-Optic Dichroic ^#•@•'^"7] s] z}- X -S

#A1 v}-"e]-i4^- ##"#.

Wavelength Beam DiameterDivergence

AngleCoupling

Efficiency

0.633 (/m) 1.02 (mm) 0.79 (mrad) > 70 (%)

X 4.3.2 ##41# SL^&e-n Fiber-Optic

Dichroic ^###7M

-56-

Page 60: RN8 - OSTI.GOV

Vi

I

Mj|mc&4J&

z

zz.^ 4.3.3 ^^4

Al~g-Jg 850 nm

5]] °)

S]

100 150

200DRIVE CURRENT, mA

OPTICAL POWER, mW

12 3 4 5DIODE VOLTAGE, VOLTS

0

Page 61: RN8 - OSTI.GOV

4.3.4 Pigtailing ^ Si: 5-31] si] °] 4 44.

-58-

i.

Page 62: RN8 - OSTI.GOV

n.% 4.3.5 5114^1 TL:g-7l(driver)^ a}$\.

59

Page 63: RN8 - OSTI.GOV

VI

IN5822CR4

15,00 OUF 2SV

GRW/WHT

CAE‘CR8 l09

15000UF25VFILTER Blll/WHT

MO A

CR3INS822

POWER "SWITCH SWI

4.3.6. #35.A]] j%o]^POWPR Cl mm v

power supply &\£.5L.

Page 64: RN8 - OSTI.GOV

s

I

Ivirul¥T

1ord

+->ti

Si­ts

U)orhr<oWW

i>

nPn

61

Page 65: RN8 - OSTI.GOV

«* car:

MAIN BOARD

4.3.8. «>:£*]] 5)1 °1 *1 main board 3?3.H.

Page 66: RN8 - OSTI.GOV

CHI 2mV A lms -78. UV VERT

nU 4.3.9 4.3.15] 4^4^]5] s.#s) #

Jl.

-63-

Page 67: RN8 - OSTI.GOV

0.0 ▲ . FRBXBDf Hr 30.0k6.0 kHz

ZLl 4.3.10 4.3.9-S] 4UH- ^7lS. ^4^#

^44= f = 6 kHz)

-64-

Page 68: RN8 - OSTI.GOV

^ 4.3.11 ZL^ 4.3.9^ ^715. #4^r#

#4(35.# ^ ^ '^4^ f = 5.25 kHz)

—65—

Page 69: RN8 - OSTI.GOV

4.2%4 4.3^44 4# LDV# 14%5. 334 42M4 4#% %% 4 #44 LDV4 ^444. 44% D4# 51144 S.#4 #44

4 %3# ^71] 4## 4 314# ^4 3134, #47} #€#4 4# #7} 4€%44 3l7H#4 #37} #%s}3, Ai-g-4.4 4#4 #4% 47} #4. zz.44 # 444^ 44% #^4# 44%34 4%#4 4 #47} %%%% 4%%%% LDV# %t)1 414%34%4. 34 4.4.14 # 4-efi 3444 e te4 ti}s. %44 #431^ 444 # % # 44 34 4.3.24 Fiber-optic Dichroic %4##7l4 4 #4 M44 4%- 44 6.5 mm4 4# collimator #711# ^#34, 3.44 4% 4% #4 4% 78.8 mm4 doublet#^# #44 %#3S. 4#44. 4#4 4# 3E] 4.1.14 4# 44 #4# #4 %Apf-oii 4 #44 43#4 # %%44 %%44 44 4^ 45.5 mm4 %33. #%o)l $1# 44#4 oil 4443# #^14^4. 34 4.4.2# 4 %7}#o)i 43#44te4 44 #7] 4 %%4 %34# 4447)## 4 #43# 34 471# #44 % 7)343,34 4.4.3# #4#7l7} #44# 4##4 4% %31:544, 34 4.4.4# 4# #### 4%% 3437} 44. 3 4 4.4.54 34 4.4.6# 4 43# 3^%# 3^ 4^}44, 4## 3# 3444 %#4 #%%4r4 Fiber-Optic LDV4 #%7)14 7}%4 34 4.4.70)1 44 3134, 4# 4#43 ##% %*)14% Fiber-Optic LDV 4 %W4 4-44 34 4.4.80)1 44 314.

4.4 Fiber-Optic LDV4

—66—

Page 70: RN8 - OSTI.GOV

956

I

V\KWK!

'of#-£r

oT>Q.-)oaOsg

nS)$

uiw

3r

TPnPil

—67—

• v

Page 71: RN8 - OSTI.GOV

2-08.58.6

100.4

10 2

68.196.4

18

28.:

in!>o rhX COo tilCO3

PI S

g 25 HOUSING #1

5E 25HAN-03

XI a =5 5 25 25 4 25 titPI A5AI 825

A6061 M 3 1

HE' xiei n HI >t SHPI se pisipi

wkc

-T- ^

ANODIZING ±0.1 CO. 2 W

430

430 95 , 8

4.4.2 Fiber-Optic LDV-S)

^ QA)S-.

Page 72: RN8 - OSTI.GOV

4-^V PI 8 XU'S N E 21 Si 4 §,' &pi tiXI se.11,

g a DECTOR A6061 NS 3 12|

3,HOUSING 5E' XI2I SIS 5X1 EDPI sei pispi V

onr 7J

’-WU 95 . 8 . 9 HAN-04 ANODIZING ±0.1 CO. 2 W wkc

4.4.3 Fiber-Optic LDV^l ^

Page 73: RN8 - OSTI.GOV

?1 8 XH &' % E 2i a* f 8 aa aw 62!A6061 M 3 1g S HOUSING #1IS! X15I as.1 aw snDi se pis? V

wkc-T- 7j

^ %E EL1HAN-00 ANODIZING ±0.1 CO. 2 W

=L^ 4.4.4 Fiber-Optic LDV^ n*}%-

4 4tH.

Page 74: RN8 - OSTI.GOV

2-C0.5

1.0X1.0

A6061Retainer

han-01 ANODIZING

a 13 4.4.5 M 4^1 Me 2-^4M

e

Page 75: RN8 - OSTI.GOV

2-C.l

1.0X1.0

A6061RetainerIE.' 3ISPI

HAN-02 ANODIZING

^S..

Page 76: RN8 - OSTI.GOV

\ 4C-

'<V

« »

ZL^ 4.4.7 Fiber-Optic LDV^ ^-«MI A};*).

-73

Page 77: RN8 - OSTI.GOV

=l^ 4.4.8 Fiber-Optic LDV^ 4-8-

#4 4^1.

Page 78: RN8 - OSTI.GOV

4 5^ # #

1. 4-S-3M# 444

g- -fi~£44| 4% A]^0]^ 0]^dH eTil- §JL ?m

^ 4^" ALGOR a}s] 3.B. number 107 (2-D Steady State Fluid

Flow) 333^ § oj-g-dH 4444 *8414 4#4 g-

3# Al^-5l]ol^5>^i4. 44 4-T-44 Hellma A}4 Quartz

celKHELLMA Cat-No. 690.072-QS)i: 71^3.3 44 25 mm, 4 20

mm, -fMr&ol 4 d mm4 §3# 4& -fg43-3 3.4#4 4

4d:#414 g- 4«am14 444 44- 24€ ^43 1-41 (g- 4f4

4I4&4)4 431- -S-44-&4-. x-y##44 p=0.02 (#3 : 44

4M-14 life 4414 314 444 4§5114^ 441 443 %

4), 34444 5# 4(444^14 -n-4fr 447} $34 4 &4-lMrfr

4#444^ ^*344 4% 444 314), ^4(normal)Aj§4 #3#

41-5114^4-44-. 3431 § 4a>44 44:44 d g- 2 mm3 -f}#44

5:14-4 a] §5114 §4: 44-, #4433 444^4 4444 4

4 #44# 444 #4-44, 437} 5## 44(4444)4 W443

#44 # 4 ###.3.43. #3^4 4^^}4 iM#}g ¥ 44 #4 4=4 4-341 4-#

4 44 a], 44 t ^4 #4t8 ^H—§ g-^% t^e 4^-S-Tll4*3. 3. AMI3 441* 3iflg *§413 #*84-44 414 #§5114 ##44. 4, 4 1-4:4 R = 126 mm, 44 1 = 50 mm, 4 # AMI4 4# 44/> 44

75-

Page 79: RN8 - OSTI.GOV

d = 1, 2 mm3. 4f #4. 3.5] 3. R = 291 mm, 14 1 = 80 mm, m 4

A>44 4# 7]$7\ 44 d = 1, 2 mm 3 4## 4# 44 4M4

#4#4. 3. 44 4# 494144 43 #### #44 4OT M

3.4 M #4& 4, 4 -Ml4 H4 # 43 44?} 44# # 4 #

#4. nB|jL d 7} 44-44 #4# 444, 437} ### 444 #4

4# # 4 #4. 4 M# 444 4##4 R4 414# W41# #

4 #4. 4alls. 4#4 #3# b!M43 4 11# # 4 44 444

& 3:44 #44, 44 4444 h44 43 441-°1 4445.3. #

554 44# ^ #435. #5## 4Til 444444445

1# 4 4 444.

zlb)3 #44# #455, zlbIjl 4# 4# #44 44 R =

126, 291, 500 mm 3 4f#Ai 3 #444 44 d # 0.5, 1, 2 mm 3

#4444 444 4## 4M44##4. 4 14-fe ##4# 4#

1- 414-4- e 44# 44414 ##54, # 444 44# 4W#

#41# 47}3 34«H4 4# 34 #5. #4.

2. #341444 LDV# 4## 4&M4 #4 #4

Polytec4-4 #3^M144 LDV(3l 300 Sense)# A}#44 S#

# #4^44# #&#4 TUI-4 13-# Ml4 #4#1# 44 LDV

4 14 4 a}-§-#4 4 #4.3# 4# 4-8-44 #35 7il#4v44#

Fiber-Optic LDV4 #5 ###m# 4#4 A}-g-$|54, Fiber-Optic

LDV7} 7)14 ##44 444 Ml 4-1444 353## 4-8-44

—76—

Page 80: RN8 - OSTI.GOV

°] LD

V# A

Vg-

^sat

F.

Ai-g

-:̂ zl

b] 2.3

.1(b

)S]

4W£-

3=1-

#1^

4.zz

.^ 2.3

.1 (b

)°H

7l&# z

l^ 3.2

.64 Z

L^ 3.2

.74 ̂

^.4#

4^#

ifls]

44M

1- #

1# 1

4 zl

I 3.3

.14 !

-£: B

urst

!J:4

zl FF

T J|J <h° ^

4W014

44'S’

4 Vw sr 41 4 g iM

J|Jojni 4t m

$ $

;i

3$ <4::o[m do3D t ni|ji w •N w

4 4 o-J w 4 ^ml 5|o| %W W W *J

w 44oh3p

4 * o' o|J

*4

4 7H 4r*p *■ * o' nH WW o| W n|m W W 4

45 I

noo|j7Ko

4

rlo 4Mbjo

ni4

§13"o

4 w 4 ¥4 ^&4 Wi $

j;»5) * ** jJj 4

o

fcH4'o'4-ppi

3up4»JU

$ *

'4IU|lU g:

# ?

4 ^

r)4

^ M ,pi 4 ^

o)nif $ s ^

oh 4 o]Jml * *tih W 4o t ®

"L* ^ *>

f °°t= 4w 3$ ? 3^I «-? s»W o|m4 go njl 4o

4n ml 4

IjoO

4INop4

HIWuH°41

4

I'to _"r $

&

#

w3*4

w#D 4 M4 «P4 w]n) ^ oi m # 3( $ tR=

W

4444ri

o4

3*#

4 <H|r 3D 3JT 4 id|id W

4 W r 1*1 4W oJ 4 W W

4w * 1,10

? t.. f $

tiini ^ 4iii

o% 4 4n?

4 ^ *oT ■ar nH ^ 4 ^1 ^

s *:* * «>

<-lr 4oh 5

4 o"4 4&. 3d

4 44 HIsr ^ 4 y]0

41

4 o|mv\ W w -3-

;•> “gni 63coco

§

5#J4

4 ui|rW. 44

05

M #|

4 4# # 5| Mr rh#D ml

4olD4

otD ojli!

# ojn

iu|n4

4 4 4H1 M4 4

oi

. 4 43D rh Mprj- 41iny 44 <-|r'EfJ3*1 4

ID|ll *

4 'jf

?? 3(

$ «-

COCO oco

4o4

4oJUo

n 3?F°

4

onP ggr|

: 1

4 ulm 4 W ? o M o«4 4

r»r-

Page 81: RN8 - OSTI.GOV

54 3.31, 949 2 mmfi4 #9 #3# 4 37 0>5]y 54 #9 4)3#

4 19 1344 4994. ^H1 7)149 #3#59 3

! 2.3.1(a) # 49 14 3^ 2.3.1(b)4 M# 49 #1494

291 mml^l 9^44 4le}4 94. 44 4 9945 9144 1

?4 #9444 m4# 471444 4414 7-F8-44, 34 4% 4

9#97> 341 137} 44.

3. Fiber-Optic LDV4 44 4 4# 494 9##9

44 Xo = 850 run, #9 100 mWl 4133 GaAIAs 434311

4# 4135. 4-8-4154, 1# pigtailing44 44 850 ran 4 44

4 4133 444(3444 4 m, 44= 125 wW 41413

4, 1# Fiber-optic Dichroic 4#1#7)4 35 T5 1444 35 1

4 35 25 494 pigtailing 4 499 ^7) (beam collimator) 4 144

44: 44711 4-E41 4*5444- #3 15 #344 14444 11

941- 4S-3, 4 449444 444 4& 43 24 #3 335 41

#7] (photodiode) 4 19494. H9 43-9 band pass filter4 ##

7l* 444 31533.54 3^)5194715 4 4144 314 94

91 #194. 44) 14-49 4149 0 = 4.53° 44: 9 #9 459

band pass filter(TSI, model no.: 1982)4 44 60 dB44 ### 9 1

9 ##7)# 7)4 441 5544 595335(tektronix, model no.:

2440)5 9945# 49914. 44) 4-8-9 #349 4-8-4 #3#

(Hellma, catalogue no.: 690.072-QS)4 #14 19 91435 449

-78-

Page 82: RN8 - OSTI.GOV

4=#@# a}#4# #*)]# #4] 4^144# #44#^

4^# #4Al a}#4# 4### 4^4 A]#4^34, 4 #414 #

5.4b g# 4## 7>#44 3## 41 <&i=r 3^# A]-g-5>4 3^434.

4 ^"444 Fiber-optic Dichroic ####7l# 34 4^4 4 /an

431, #4# 4^4 125 /an# 4# 850 nm# SliH #^## A}# 44 4144&2.4, pigtailing^Al ### #*34^-5. 4# 850 nm4 # £4 444# 4#-9-5. A]-g-444. 434] 444# pigtailing44 4 *34# collimator# 4f44 444^4, 444# 444# #4, Fiber-optic Dichroic 4###7l ## 4 445&4.

#34444 #4##^ fiber-optic LDV# #444 #44^-5.

5. 4 #4 #2.# band pass filter# ##7]3 ##4 #, 44# 3#

siais ### 3#4 #3# #44^4 4:33 44# 434# 4#44 43# 444 4# ###3E# #4434 44. ns]2 44 3# 4#4 44# 4 5.-S-4 #3# 3#3^ #445. #4## #44 #4 ### 4###33 3.2 cm/s (3*ij 37)4 2.8 cm/s (3*g38)4

##4 #4 4^4.

# Wl^# #4 444 ##44 44 41-444 4#4 #4 # #3 7flf# 4# ALGOR A>4 33 number 107 33.3*8# 4#

44 3^ 3.2.64 3l 3.2.74 ## #3## ##433 3444 4 #34414 244^44A1 ^###4 #4(# 4#4a1# 4##4)4

#3# #44# a] i-^l 4## #35 4a14. 3 #4 4 3# 4 x-y# #4*

-79-

Page 83: RN8 - OSTI.GOV

4M 24 ##4 4444 #24 $144 z#44 ###45. 47}### ##4 yl#4 ##25. #4"4i: 4 # $14. 2425. 4214

##4 411#4 4444# 4 # $124, 4# 2

4^61 4-f 4-44 ##M1- 7}44# ## ###4. 242 121 4 44 44 44=4 44-24, 2 444 #44 y-z44444 #4=

4 14#2l#(yl#)4# &44 44 441 #(zOT)4 1/34# #

4### W# #25. #44 4 ##2# 42- 44 4#2.5. ####

# #1#27} 144-i- 4 # $1$14. 242 -8-*]]7} 444# S##

4 #417} 4447}# ###441# #14 #44 #4 444 #4#

4: # $12H5. 7}#t!: 4 444 4M4 4s# 121# 24^44

4# 4-El 4$14. 242 #1:44# 24 2711 #4444 44#

5.4 7\m) 44444 44# 4E2 44 4$14. 2425. 425.

444 #44 #2444 7}#44 W4 424 14 #2# 4#42

2 7H 444 444.

-80-

Page 84: RN8 - OSTI.GOV

# JL ^ €

[1] P. S. Bedi, A simplified optical arrangement Jbr the

laser Doppler velocimeter, J. Phys. E4, 27-28, 1971.

[2] K. A. Blake, New developments of the NEL laser

velocimeter and the treatment of data, in Electro-optic

Systems in Measurement, University of Southampton,

25th-26th, September, Southampton, 1972.

[3] H. H. Bossel, W. J. Hiller, and G. E. A. Meier, Noise

cancelling signal difference method for optical velocity

measurements, J. Phys. E5, 893-896, 1972

[4] P. J. Bourke, C. G. Brown, and L. E. Drain, Measurement

of Reynolds shear stress in water by laser anemometry,

DISA Inf. 12, 21-24, 1971.

[5] D. B. Brayon, H. T. Kalb, and F. L. Crosswy,

Two-component dual-scatter laser Doppler velocimeter

with frequency burst signal readout, Appl. Opt.12,

1145-1156, 1973.

[6] L. E. Drain, Coherent and noncoherent metheds in

Doppler optical beat velocity measurement, J. Phys. D5,

481-495, 1972.

[7] L. E. Drain, and B. C. Moss, The frequency shifting of

laser light by electro-optic techniques, in Electro-optic

Systems in Flow Measurement, University of

Southampton, 25th-26th September, Southampton, 1972.

-81-

Page 85: RN8 - OSTI.GOV

[8] T. S. Durrani, and C. A. Created, Frequency domain

analysis of laser Doppler signals for estimation of

turbulence parameters, Proc. IEE(GB)120, 913-918, 1973.

[9] T. S. Durrani, and C. A. Created, Statistical analysis and

computer simulation of laser Doppler velocimeter

systems, Trans. IEE IM-22, 23-34, 1973.

[10] T. S. Durrani, and C. A. Created, Application of photon

correlation analysis to wind tunnel measurememts,

International Congress on Instrumentation in Aerospace

Simulation Facilities, Cal. Tech., Pasadena, Calif.,

210-218, 1973.

[11] T. S. Durrani, and C. A. Created, Theory of LDV

tracking systems, Tras. IEEE, AES-10, 418-428, 1974.

[12] T. S. Durrani, and C. A. Created, Statistical analysis

and cross-correlation techiques for photon-counting

measurements on fluid flows, Appl. Opt. 14. 778-786,

1974.

[13] B. Eliasson, and R. Dandliker, A theoretical analysis of

laser Doppler flowmeters, Optica Acta 21, 119-149, 1974.

[14] J. W. Goodman, Introduction to Fourier Optics.

McGraw-Hill, New york, 1968.

[15] C. A. Created, Noise reduction in a laser velocimeter, J.

Phys. E4, 261-262, 1971.

-82-

Page 86: RN8 - OSTI.GOV

[16] R. M. Huffaker, Laser Doppler detection systems for

gas velocity measurements, Appl. Opt. 9, 1026-1039,

1970.

[17] M. Kerker, The scattering of light and Other

Electromagnetic Radiation, Academic, New York, 1969.

[18] H. Kogelink, Imaging of optical modes-resonators with

internal lenses. Bell Syst. Tech. J. 43, 455-493, 1950.

[19] L. Landing, Analysis of a laser correlation anemometer,

Turbulence in Liquids, University of Missouri, 10-12

September, Rolla, Missouri, 1973.

[20] O. Lanz, C. C. Johnson, and S. Morikawa, Directional

laser Doppler velocimeter, Appl. Opt. 10, 884-888, 1971.

[21] R. Manning, Symmetric transforms for the laser

velocimeter, J. Phy. D6, 1173-1187, 1973.

[22] M. K. Mazumder, Laser Doppler velocity measurement

without directional ambiguity by using frequency shifted

incident beams, Appl. Phys. Lett. 16, 462-464, 1970.

[23] J. E. Rizzo, Velocity measuring interferometers.

Electro-optic Systems in Flow Measurement, University

of Southampton, 25th-26th, September, Southampton,1972.

[24] M. J. Rudd, A new theoretical model for the laser

Doppler meter, J. Phys. E2, 55-58, 1969.

-83-

V • v

Page 87: RN8 - OSTI.GOV

[25] H. C. Van de Hulst, Light Scattering by Small

Particles, Wiley, New York, 1957.

[26] C. P. Wang, A unified analysis of laser Doppler

velocimeters, J. Phys. E5, 763-766, 1972.

[27] C. P. Wang, and D. Snyder, Laser Doppler velocimetry :

experimental study, Appl. Opt. 13, 98-103, 1974.

[28] B. M. Watrasiewicz, Improved signal-to-noise ratio in

the laser velocimeter, J. Phys. E3, 823, 1970.

[29] Y. Yeh, and H. Cummins, Localized fluid flow

measurements with an He-Ne laser spectrometer, Appl.

Phys. Lett. 4, 176-178, 1964.

[30] G. K. Batchelor, An Introduction to Fluid Mechanics,

Cambridge University Press, 1970.

[31] Bercovier, Engelman, Gresho and Sani, "Consistent

Versus Reduced Integration Penalty Methods for

Incompressible Media Using Serveral Old and New

Elements", International Journal for Numerical Methods

in Fluids, vol. 2, pp. 25-42, 1983.

[32] M. Braza, P. Chassaing and H. H. Minh, "Numerical

Study and Physical Analysis of the Pressure and

Velocity Fields in the Near Wake of a Circular Cylinder",

Journal of Fluid Mechanics, vol. 165, pp. 79-130, 1979.

-84-

Page 88: RN8 - OSTI.GOV

[33] A. Brooks, T. J. R. Hughes and W. K. Liu, "Review of

finite Element Analysis of Incompressible Viscous Flows

by the Penalty Function Formulation", Journal of

Computation Physics, vol. 30, pp. 1-60, 1979.

[34] G. G. Carey and J. T. Oden, Finite Elements-Fluid

Mechanics Volume VI, Prentice Hall, 1986.

[35] S. C. R. Dennis and J. D. A. Walker, "Calculation of the

Steady Flow Past a Sphere at Low and Moderate

Reynolds Numbers", Journal of Fluid Mechanics, vol. 48,

pp. 7710789, 1971.

[36] T. J. R. Hughes, The Finite Element Method-linear

Static and Dynamic Finite Element Analysis, Prentice

Hall, 1987.

[37] T. J. R. Hughes and D. S. Malkus, "Mixed Finite

Element Methods — Reduced and Selective Integration

Techniques, A Unification of Concepts", Computer

Methods in Applied Mechanics & Engineering, vol. 15,

pp. 63-81, 1978.

[38] J. L. Lumley and H. Tennekes, A First Course in

Turbulence, The MIT Press, 1983.

[39] R. L. Panton, Incompressible Flow, John Wiley & Sons,

Inc., 1984.

-85-

Page 89: RN8 - OSTI.GOV

[40] H. Schlicting, Boundary Layer Theory, McGraw-Hill

Book Company, 1979. (

[41] T. E. Tezduyar, J. Lion, and D. K. Ganjoo,

"Incompressible Flow Computations based on the

Vorticity-Streem Function and the Velocity-Pressure

Formulations", University of Minnesota Supercomputer

Institute Report UMSI, 89/86, May 1989.

—86—

♦ r«,;' •' ‘

Page 90: RN8 - OSTI.GOV

(1) -§-§-#51 1995ti 8^ 43:

(2) CLEO/Pacific Rim '95 (Chiba, Japan, 1995. 7.

10-14) flA^,

(3) #^#5l^ 693

(4) #^#5l^ ^ 703 #3

-87-

Page 91: RN8 - OSTI.GOV
Page 92: RN8 - OSTI.GOV

##7l*

fiber-optic °] 7] *]]2}-

^#4^', -y €, 4sM, ^ ^#2i% tfl^. 300-791

^s., s£^, 4#?1tfl# 305-600

(1995*4 1-S °d

tij^ellol^sl -fr# ^r3# #^5>7l Sm, ^"W-R- WPS 1^-71# «!-§-%

fiber-optic 31 °M S#5j f-^]# 2Sl#2 632.8 nm-g- 'SUS-E. ^-R-

5. a## 7>y^ ^-R- *8-^ ##7]4 20 mW Si W31-8: 3]°M* °]-g-#4

2.70 /anSl °1S.-¥-e) .

^##4 -R-4-& n s#sj 111 Hiz^A^,Tllilsl -n-#-Sr 30.0 cm/s#4.

* ^7)5. Sl^l -S^g- 640, W425-110,

-89-

Page 93: RN8 - OSTI.GOV

43444* 1966# P. P. Sorokin*- J. R. Lankaid4] #44 4* **#3l3nl[1], 44# ####*# **4* 444*** #4 W* ### *#* -ti444 **# t 31#* *#414 ^ ** ##7} #4 *4#*.^ *4 ##4# *4*# #3##* #* 14*1a-1*- #-Sr 4M°M *#* 7}## * 31* 3# ## **7}# 44717} A?^e)-.I3) 4*#* A-7-4 tfl*44 **7}# 4444 45. 4 4444 4^444* 4# #444 #^* *4* ##7} *#43 314. 4^4 444 ##* 443. #444-44 31444 ##44 #4#44-7} #3435. jls-4 4^444* 4^44 #44 4# #4 *#* 4^43, 45.44 3###4 §14 4^*1# 4444 44 4# #34-4.

4*** #44 ***** 444-3 444-4 44#4 Mas 444 3*4 ##4(LDV: Laser Doppler Velocimeter)145# #7} * ##4 (PIV: Particle Imaging Vel ocimeter)151 *4 7}#44 #4. 4 #44 1964# Y. Yeh# H. Z. Cummins'61# #4-4 43:5. 4## LDV4 444 *** #44 3AM# #44# 4dh#7H] #44 # ## 4# #444 45.## ##4 4*4# 3*4 ##-** 4*4* MAS, # 44 43 3#* ###34, **!#** *# * 314 444# #*#4*3# 4 344 4* **# #44 ** ##3* 5"*4.m 44# LDV* 34 *4444 4 ##* #4#- 4*** #435. *##4, ### #3** **4* #44 44 # *##* #*##33 111#.181 4# 4#** #4* 3*4 3*4 #4*7} ** #44 **471 4*4 *#4 ۥ *#* #** #**31- a}*44 #37} # #& 1 #* * 31333 7l**# #434 #4 #*4 44 a}##3 #4.191 44## #

4# LDV4 44 #** 444A-13 44 313134/* 111 #*4# LDV3 #4.* 1*4a-1* ## LDV3* **4 44* 3#4 *di444* 4&*4# #*

* ##44 #44 4## LDV4 a}*## *4 **** #-# 632.8 nm* ##35. *4*4 4* 4** 7}#^ *#* *## ##7l(variable directional fiber coupler)^44433# 3%4# LDV#4l 711*437} 44. 41 #44 #3# 7}## *4# *44 ##41 4-4435. 4443, 4* 4*44 1*4* 444 *** #4*#44 **a1#1 Fiber-Optic LDV1 #*44 ##437} 44.

E. °lf^4r LDV-# ^4

444 *** *3 4*3 4* *** sa}437} 4* 4*4 44 ##4#4

*#*#«- **43, 4 *#*#«• #4N# 4#7}#4 44*4 444* **# * 45. 4*44 *4# **4 ## 3*4 ##*l #33# *** *44* 44 4

-90-

.W:V-Xi:■'vV-

>5

Page 94: RN8 - OSTI.GOV

444

4±44

&4#

%‘S 4

s 44^

444

54]

4% LD

V7>

ea. 4

-8-

i

nPn

ku

5minw75°

w

BhgJpnr

TTow

IuhTi>

IosnPn

?I-goo|ui

lWoUh4><oP

Is7T

ISr

«Ju%

tf

:nrntif3(KhPP«nH

kNV8w

IIw■or

fk

wii^

w

f

JpISw

gojni

IUh

w+w

IN'Ur

8U8

%N+

n8W+wII

nTn

t

, 4

?■S'

£■Srtfos■5TW 7s9" 4

TcT

tT5>Jp >pT

i

Luh S»

Jll* oTcl *

$TWisTtifW

'K5F£>W

WWo«MIpTT3T

7sW4IS"o’trW

t3° CRTuh ^

J=!i £'■ §wt—HtiuTM 6°

Dl0 wQi nrm uh

op+ 95Oa W§ V-X

ii1

*u> *nr

M uh0eta <jP.3 sE>2 w

V1 4<Sa nr8 PhX nH

11^ otirW

HoJtil IS

etatf .5£ >2■tfr CO•j" ll_roll) <tft 1^K Hj-nrnr nH" 44

5 44

2k(Y

)N sin

@ = 2

Nn4

2k(Y

)N»i

sing -

2(N

+l)n

7> 5)

2.5.

, 45

544 4

4,

#, 44

544 4

4 2/Y

fe

-/

V-

CO

z>■<

mini ^$ 4

op W1 KJr-< SO’K0% 4

r-go

W R=Kb -Kir

nH op o| 4 *= T

$ 5W W T <>h T ?

5T■5"

IsT

8nrn

£1nH

10ip'or

1 1*fPT?tilr

fsKhWis% ti"

* ?4 *JjJ mjnIS >

T *# Wtiu Wu? Ik

c?5

rH

II

II>

MillPi7T■nS

PMTiTn

i%r

%rISKh

InrMinlH

sT

7sV

Ir—ias

I

!-

I#"-,

i

5'-«

t" :

Page 95: RN8 - OSTI.GOV

el 544=)* 4** 4s#4 [4],[7],[834 4X14 44 $124, (2)4X5] 4s. 0* 44* 44* #55244* **2) 444 *X1X1 *44* 44 4444 244 4 •Sr 444 $124, 4* s@ej 43:4 5344*44 444 $1*444 444 $14-. [4,9,11] a.5]3. AY* LDV4 44X17> 5444 7]442S 244* 5423. 4*7[ 44, **X1 44 554* t s* fd4* #4*23.4 44 4X14* 44# (3)42 2*4 5# * $14. 445-4 XI4444# 4**#42 5 **2S 444X1 4# 5, 422 #5444 24-4444 4554* 4*4, *XN2] <947]- 4554 44 # 544 4 444* 4# 4**224 *#* #54 5 $1X1 44.

in. 4M#ai ^

35 2

3.5 2* 45# 445 557]* 4*44 444 54445 fiber-optic LDV* 3-45* 7)1 #2.44. 44S3-* #4 X0 = 632.8 nm, #4 20 mW°J He-Ne X144 * 4*4$24, 4* X)* 1444 4##2* a>#s>4 ##5 454 44* 454 s] <955* #4-2] 445X1 4*4^4. 4*5 44* 454 554* Xo = 632.8 nmXI4 5*22 44*(newport, model no.: F-SV-20)* 4*44 XI45524, 4X1 45 4X15 4#* 4*444 554-24 54, 35s 50 : 5023 44*4 454* 245 71-45 44* 454 557]* *54 4* 4#*# 1442] 4*4s* 4*5 44* launching units 444# 5*$15. 4* 5 4*442] 7)5* 45 ramS 45 24, 4* 54*# #47)4 26 cm4s 45 55 mm°J ##42 Li23. *X1X1X1 4 4444 24-4 28 = 9.89 S 4*444. 4X1 **# #553.4- 4* 444 54 4* 44542] 44* 4*5 *471- XI5*4as 4-5 632.8 nmX14 @4*4 1.360 [12H 244 9.89 °* 7-1*5 55, (2)4X1 2]44 2.70 jmnS 45*4. 33]2 4# 5 454* 44* *44)2] 4i)4*X] 5554 #554, 55555 5* ssMXl 2] 44 4*5*# 5s* 4*5# #444 #544 10 cm# ##5s L2S 55*4 (SP1-KL)S 5#54. 5*5 53* band pass filter(TSI, model no.: 1982)4 44 60 dB44 *55 * 5* 554* 44 44* 2244 25S222(tektronix, model no.: 2440)2 5553* 55454. 4X1 5*5 #25(Hellma, catalogue no.: 690.072 -QS)# 5*2] #55# 5-954 7>*-s>#4-. A}*#* *4* 5X1 #5X144* * #45X1 #2* #44 A]*#* 45*# #*#4 5*4524, 4 *X]2] *2* #4 55# 71-444 25# * 5* s4* 7-1*44 24544. 444 5444*

—92—

Page 96: RN8 - OSTI.GOV

*444 A44^fe 4-yy 24 341 44 yt}.

24 3

22)2 # 4*4 qyy i* ldv ail44] 7}* *2* 7>y« 44* 4*4 4 Wife 4-5-4 ** 4-4 as 2D4-s>y4.[131

(1) 4 u.^2E.511 4 SS 44* * 10 mm X 44 25 mm x fe4| 5 mmS 44%

4.(2) 444 4 <31-3 4- mash number #120.2-3. grinding* 4444 #600, #800* AS

smoothing* -*, mash number #1200AS polishing#*.

(3) 44*44 &44 444-feA 44* 4-§-#a) 44 25 cm, # 200 m4 #* 44, *44 4=# 5 mm *** 44*# 244471 4414 ^41 #* 44.

(4) #* 4 44*444 *M# 9J* 44*4 ***** *4%4(5) He-Ne 5)14x1 *** *4*41 4*4444 44*44- # 43 4* *4**

44* *4. 441 #4144 44 45* 7)*** #4*4* 4*44 4-4*4-.(6) 44 *4as. #44 44*4 2?H* 4-47} ** 71444 *=)] S444AS4

4*4** &## * Slfe 7}** 44* 4*4 #*7l# 44#4.

IV. -§^#4 ^ S4

24 4

24 5

24 4fe *44 7}** 44* 4*4 **4# S4*fe 4as, 24 444 3

/an42, #5)14 2)44 125 /an* newport*4 44 632.8 nm* **AH 44** 44 *§14 Afe 47)1444 *4*4 447} 3 m# 7}*4 44* 4*4 4*4* 44* 84. 22)2 7M444 ##4 #* 4A1* *4* 44*5)4 44*44 *4x1 44*44 *4€ ###4 *444 44 44** Wiy -7)2)7} *44

-93-

Page 97: RN8 - OSTI.GOV

oil 44 434*4 4-37)1 34. A^ 5# 4341 4143 7>33 #3-8- 333 ##7l 21 334*# 50 : 50 ,5.5. &34^* 4, #43 3#4 43* 2?M3 #44 4# W4# 414 t) 3#2} jgjas. 5 4714# 54## 3 as A 471 47} 3 A, #2. H7> TEMboU* 54# A $14.

A3 6

a3 6# =l% 24 a3 34 34343 fiber-optic LDV* #344 344 A5 5. 4#3 35* band pass filter# 4444 #A 433AS. 44# i^Si25S #44 5*4 413:4 *7l* a.4## 444. 47144 4a.## -tls4 471s. 50 mV/division4A, 7>S## 5*4 3s4 4 3#AS 50 /zs/di vision 44. 4 3S44 5*4 35# ##7)# 4-S-44 60 dBS ###^54, 4 354)7) #444 5*4 354 #4# 13 /zsS #34534. 4 #4# 4## 3# (2)34 (3)34 444 -8-# # 20.8 cm/sS 434 #4. 53 4 35417) 3434 sine3 4 4 envelope# pede­stal 3-i-as 34# 4as 7}*5 344 444 3#41 43 4# 4) 3 4 7)434 w #, TEM00AA4 5)147) ##4 3# 7}#A 344 #33 37l*5S 444. 33 #4 37}#4 ####4 7>37>4S4 #A, 4 37}#* 44# 444 43 333- 4 34S ####44 54 #471 4344 4 envelope4 33 3# #44 sine3 44 31# 3337>7> 33#44 4a 4## **# 3333 334# 3334 4 7l* 444a $14. 4 3t 1343# 147)14 33357} envelpo343 334a $14. $133 31# -8-#4 4ss, 3334 47)7} 43 3-9-4 enveloped] #47) 344 434.[7S1 43 3-9-4# 3#447) 4# 35* #4 343 $] band pass filters pedestal #-§-& 434a 3 #, ##4s ##44 5*4 35* #34434.

A3 7

3.| 7# a3 64 34 pedestal 3## 5.34# 5*4 35* band pass filter s 3433 * ##44 #33 5*4 33:44. 4 354M) s*4 44(node)7} 3 44t1] 3#4a $1A4, 33#42) 3a 4## #34 4314# 5*4 357} #3 34. 44 3s #7l# 9 /zsS, 5*4 #4# fa# 111 Mbs. #34 4&A4, 4 &4

Page 98: RN8 - OSTI.GOV

(2)44 (3)4# 4-8-44 3144 44, 45*3)4 44*4 *#* 30 cm/s&4. 52) 3i 4443:* mils. #44^54, 4fe 4444?)- 5^ 64 4*5.4- 44*4 #4 **#55 444 44 54 4* 1771)4 44*4* 4471-5 81** 54*5 S14-. 55)55 pedestal 4*4 444 43:* 4*454 444* 7>*44 band passfilter* 4-8-444 44. 455* 444 44-#* 4*44 441*57)- 7)7)1455 4445, *5455 4*4 444# *444 fiber-optic LDV* 71)4454 44.

V. # #

4* LDV5* #4°1 »)4* 5*4 455)10)4# 4544)4 *#* #447) 444 7)*s) LDV31 4*4* 44 **»* 44 632.8 nm* 4455 44*4 °1 ♦ o)** 7144 44* 444 4*7)5 3)314-554 5444 44444 fiber- -optic LDV* 7114444. o)* 4144 2o> 3)4O) 3 mo)5, #BH4 440) 125 praol newport/M 44 632.8 nm* 4*5= 44** 44*4°1 81* 7)31444) 4444 4°) 3 mt! 71-44 44* 444 4471# 444S3.4. 52)5 44-481 band pass filter* 4*44 5#4 453)10)4* 45*5 7-1*4* quartz cell314 *## #44 8K4-. 0)5*4 pedestal 4*°1 3)44 44*4 44*45*4 444 5*445* 48154, o) 43:4 *7)* 9 AS5, 5*4 *4* fd* 111 kHz5 #4 °1 48154, o) %4 (2)44 (3)4* °1*44 3144 44 45*4 4)4*4 *** 30 ctn/s^4. °)

445*4 44444 fiber-optic LDV7> 4 4*42 81** 444 * 81814. 45 5* 44448 fiber-optic LDV4 43:4431 5 4*531 314 7l)4# #57>«>4, *43) 43)44 *5* 7)31455 4-445, 4*431 *4#7) 444 3)0)3)4o)55# a>*-6>* *444 fiber-optic LDV* 7)|##57) 44.

^>S) #

# 4** 4447M 4*54 44-4-31 (43)43: #44 93-23)5 **3 44#* *4544, 443] 4*4 44* 4*4 4444 3)43] 5** #4 4#44-7)#€ **44431 314 4^7) 4443]

•V. «

~ 95—

Page 99: RN8 - OSTI.GOV

# 3. S- %

[1] P. P. Sorokin, J. R Lankard, IBM J. Res. Develop. 10, 162 (1966).[2] F. P. Schafer, Dye Lasers (Topics in Applied Physics VoL 1) (Springer-Verlag,

Berlin, 1977) Chapter 1.[3] F. J. Duarte, HighrPower Dye Laser (Springer Series in Optical Sciences Vol.

65) (Springer-Verlag, Berlin, 1991).[4] T. S. Durrani and C. A. Created, Laser Syatems in Flow Measurement (Plenum

Press, New York, 1977).[5] P. V. Farrell, Opics and Lasers in Engineering 17, 187 (1992).[6] Y. Yeh and H. Z. Cummins, AppL Phys. Lett 4, 176 (1964).[7] 2:% 43%, €#4", 3341, -8-S-I-b] 2, 34 (1989).[8] L. E. Drain, The Laser Doppler Techniques (John Wiley & Sons, Chichester,

1980).[9] B. M. Watrasiewicz and M. J. Rudd, Laser Doppler Measurements (Butterworths

Co., London, 1976).[10] °]7]% "333, 4-B-l-el l, 108 (1988).[11] 3341, 37^43 28A, 23 (1991).[12] E. Moreels, C. de Greet, and R. Finsy, AppL Opt 23, 3010 (1984).[13] 337], frg-jf- ### ^#7/# (^3442 34441

feS-, 44:, 1993).

-96-

Page 100: RN8 - OSTI.GOV

Fabrication of the fiber-optic laser Doppler velocimeter of

the forward scattering type using a directional fiber coupler

Jong Soo Kim, Gwon Lim, Choi Wan Hae, Young Hwa Jin, Jae Heung Jo, Soo Chang

Department of Physics, Hannam University, Taejon 300-791, Korea

Sung Ho Kim, Do-Kyeong Ko, Jongmin Lee Atomic Spectroscopy Dept Korea Atomic Energy Research Institute,

Taejon 305-600, Korea

We have designed and fabricated the fiber-optic laser Doppler velocimeter of forward scattering type using a directional fiber coupler in order to measure the liquid velocity in a quartz dye cell of a high power dye laser. The interference fringes with a fringe space of 2.70 m was formed in a dye cell by using a He-Ne laser with the power of 20 mW and a directional fiber coupler with the single mode optical fibers of X = 632.8 nm. From the forward scattering signals, the Doppler frequency of 111 kHz was measured and the liquid velocity of 30.0 cm/s was calculated.

-97-

Page 101: RN8 - OSTI.GOV

n.4 i 5)144 5#e) #E;zM 444 #31414 H44 y-^^S] ^

jY="2sET * 49.s-> 47H4 Xfe #441444 W-5-S 4

##4 ^44 Xo# #314 #4# n93 4fegl4 ##.

^ 2 4-4# W4 ^#4# 4##4 9"44 4^444 Fiber-Optic LDV# 34 9# #45. 47)44 Ll4 life 43, PDfe ^#7], DCfe #-9*

##7), BPFfe band pass filter, AMPfe #44, OSCfe 44# HS.i2£

°J.

3 #4# #4=4 ##4# 4-B-44 f## 4*44^ Fiber-Optic LDV4 4444 44.

5l 4 4144 71-4^ 44# 444 4443., 24 44°1 3 w°}3-, #44 444 125 44 632.8 nm# 4433 44## 44#44 life 71^14-441 444-4 414451#.

2l4 5 414€ 7}44 44# 444 4444 ##«l## 50 : 50 *.3. &4451# 41, #44 #44 4## 2?M4 #441 4# ##41# 4144 4#4 |£E 5 444.

=L% 6 444-44 fiber-optic ell44 s#4 #9.4# 94#4 44495. 4#43. 4#% 49# band pass filter# 4-§-#4 44493 44# 9^3i253 444- 13 AS 4 9#4 492) #4. 43#4 444 ### 20.8 cm/s4.

3l 7 pedestal 4## 344# 3#4 49# band pass filter3 4444 9 ##4 4 #44 s#5) 49. 44 49 #4fe 9 as3, 5#4 #49 fafe 111 Mb 3 #44 45194, #944)4 4I4-&4 ### 30 cm/s3 3144.

-98-

9 :9 k'. . .X ^ 9'

Page 102: RN8 - OSTI.GOV

Yn

-99

Page 103: RN8 - OSTI.GOV

He-Nelaser

beamcollimator

A Iris

Page 104: RN8 - OSTI.GOV

He-Ne laser directional fiber couplerdye cel I detector —band pass filter

I©T

z

Page 105: RN8 - OSTI.GOV
Page 106: RN8 - OSTI.GOV

^ %

/

— 103 —

Page 107: RN8 - OSTI.GOV

A SOiis 4.30mV? VERTCHI SOmV

Page 108: RN8 - OSTI.GOV

*

Chiba, Japan July 10-14, 1995

SPONSORED BYjapIKn SOCIETY OF APPUED PHYSICS

JN^ffUTE Of ELECTRONICS, INFORMATION AND

COMMUNICATION ENGINEERS IEEE/LASERS AND ELECTRO-OPTICS SOCIETY OSAOPTOELECTRONIC INDUSTRY AND TECHNOLOGY DEVELOPMENT ASSOCIATION

— 105-

Page 109: RN8 - OSTI.GOV

Post

ers

294 / CLBO/PAOFtC RIM / POSTER SESSION

is removed.1 THs bistable behavior in po­larization is based on intracavity anisot­ropies ofloas and phase. Wc observed the dependence of the polarization switching on the angle of 6 ■ O', 45* and 90* be­tween one of the User polarization and the linear-polarized injection light.

In our experiment, the injected light from a master User (Uniphase 1007S/X) which operated on a single-mode ©sol­ution is swept its frequency by the cavity length variation on a temperature con­trol. A sUve User (USHIO UNL-20SRS) operated on a single-mode with one of two orthogonal natural axes. The Injected poUrization angles 6 for the sUve User are set by the adjastment of an isoUtor. The two orthogonal polarizations were separated by a polarizing beam-splitter arid detected by photo diodes set on the

two natural axes of a sUve User. Their data were sampled by a personal com­puter through a digital multimeter and CP-16, figure 1 shows polarization switching waveforms when the master laser is swept to lower and higher fre­quencies for 8 m 0* (p polarization). The first plot is the monitored beat signal be­tween the master and the slave User and the beat frequency shows 0 Hz at a po­Urization switching point. The second and third plots show the intensities of p and s components of the poUrization. The bistable polarization state of the switching is found as shown in Table 1. The same state is also found in the ;ases of 6 = 45* and 90* except for * mark in Table 1.

The polarization switching may de­pend on the cavity anisotropic loss of p and s polarized modes and the splitting frequency between p and s poUrixed res­onant frequencies, fp and fs. We assume that the slave User with fp > fs operates on p polarized mode at first for 8 = 0*. When the injected light of p polarization is swept to higher frequency, the s polar-

sampling numberP79 fig. 1. Polarization switching waveforms in the single-mode sUve User when the master laser is swept to lower and higher frequencies for p polarization. The first plot is the beat signal between the master and sUve lasers and the beat frequency shows 0 Hz at a polarization switching point. The second and third plots show the intensities of p and $ components of polarizations.

P79 Table 1. Observed polarization bistability in the sUve laser by injecting a tunable frequency signal from the master laser.

ized mode can not build up at fs because the p polarized mode exists at fp. If the sUve laser operates on s polarized mode at first its mode changes to p poUrixed mode at fp by spatial hole burning effect. When the injected light is swept to lower frequency, the intensity of p poUrized mode at fp decreases by gain saturation effect and s poUrized mode can build up again at fs by spatial hole burning effect. We can take the similar consideration in the cases of 8 = 45* and 90*.

1. S. T. Hendow, R. W. Dunn. W. WChow, J. C. Small. Optics Lett 7.356 (1982)

P80

A new type of optical band-pass filter using total internal reflections

Der-Oxin Su <t a!The architecture of this new type of op­tical band-pass filter is shown in Fig 1 It consists of a pair of transmission-type volume gratings' G„ C} with identical structures in the upper part and a pair of reflection-type volume gratings G&, C, with identical structure in the lower part. The K-vector diagram1 of each volume grating is shown in circle near that grat­ing. The output of the upper part is the input of the lower part, and the perfor­mance of the lower part is opposite to that of the upper part. For convenience, the performances of these two parts are

P80 fig. 1. The architecture of this new type of optical band-pass filter.

written together with a slash. The input wave is normally incident on G,/C. and it can be diffracted by G,/G, into the substrate. The diffracted angle U proportional/mverieJy proportional to wavelength in a transmission-type/ze. flection-type volume grating, respec­tively. The diffracted angle correspondirwto the central wavelength Xc is designed so that it is equal to the critical angle. Then the component with wavelength larger/smaller than Xc is partly reflected and attenuates obviously as the wave is guided through the substrate. Because the structure of G,/G, is the same as that Gi/C*. the diffracted wave of C,/G« will be parallel to the input wave, that is, the output wave passes normally through the substrate. Hence, the upper/lower acts as a low/high pass filter. Conse­quently. it can act as a band-pass filter and its bandwidth is determined by the number of total internal reflection and dispersive properties of the volume gratings.1 Y. T. Huang, D. C. Su. Y. K. Tsai,

"Wavelength-division-multiplexing and -demultiplexing by using a sub­strate-mode grating pair." Opt. Lett. 15.1629-1631 (1992).

2 H. Kogelnik. "Coupled wave theory for thick hologram gratings," Bell Syst Tech J. 48,2909-2947 (1969).

Laser Metrology and Environmental Optics P81-P83

781

Fiber-optic laser Doppler velockneter using a directional fiber coupler

Jae Heung Jo. Jong Son Kim. Wan Hae Choi. Soo Chang, Department ef Physics. Hannam Lfnnwify, Taejon 300-791. Korea Laser Doppler vetocimeter (LDV) that is proposed firstly by Y. Yeh and H. Z. Cumminsts* is a well established tech­nique in many fields such as fluid me­chanics and thermal engineering.1 It pro­vides remote, absolute and non-invasive measurement of the velocity distribution within a probe volume, with high spatial resolution. However, there are still some problems in the LDV system, its large body, large probe, and high pnee. In or­der to solve these problems, the versatil­ity of the technique has been extended by the avail!ty of optical fibers and related components.1 fiber LDV system have been also developed to enhance the po­tential of the conventional fixed-type LDV.* In this paper, we have proposed the possibility of the small, tight and re­mote fiber-optic LDV system with a var­iable directional fiber coupler (DC) in or­der to measure the velocity of fluids in a quartz dye cell of the dye laser on work­ing and to produce a sufficiently small

instrument.figure 1 is the schematic diagram of

the fiber-optic LDV system of forward scattering type with a DC. Since the vis­ible light is useful foe the arrangement of the optical system and to seek for the po­sition of a probe volume, we use the red He-Ne laser with 20 mW as the source

—106~

Page 110: RN8 - OSTI.GOV

riOICA / i.Uw>ro«.<Ki

Ml fig. 1. The schematic diagram of the fiber-optic User Doppler vdotimeter system of forward scattering type with a variable directional fiber coupler (DC), where LI and L2 are lenses, PD the photo-detector; BPF the electronic band pass filter, AMP the 60 dB amplifier OSC the digital oscilloscope.

(wfpplflr'

P81 Fig. 2. The Doppler signal detected by the photchdetector (PD) without pedestal noises. The fluids velocity of 30 cm/s by using the Doppler frequency of 111 kHz and the fringe space of 27 is obtained.

beam. The DC is made of two single mode fibers of He-Ne laser with 3 m long and can be controlled the coupling effi­ciency by handling distances between two fibers. The laser beam is divided by two beams with same intensity by DC with Intensity ratio of 50:50. These two beams are colliminated and focused at the probe volume in a dye cell by micro­scope objective lenses and focusing lens L,. The scattering signals is collected at a detector by the collecting lens L2. The signal detected by the photo-diode is served in the digital oscilloscope through the electric band pass filter (BPF) and the amplifier (AMP), figure 2 shows a Doppler signal detected by the photo- detector (PD) without pedestal noises. From fig. 2, we obtain the fluids velocity of 30 cm/s by using the Doppler fre­quency of 111 kHz and the fringe space of 2.7 |tm. Next, we will try to get the backward scattering signals by using the improved probes that will be made of two transmitting single mode optical fi­bers and a receiving multi-mode optical 1 2 3 4

1. Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).

2. L. E. Drain, The Laser Techniques (John Wiley & Sons, Chichester, 1980).

3. D. A. Jackson, J. D. C Jones, OpL Laser Tech. 18.299 (1986).

4. Y. Ikeda, T. Nakajima, S. Hosokawa, JL Matsumoto, Meas. Set. TechnoL L 260(1990).

M2

User long-path absorption experiments udng the Hctroreflector fa Space (R1S)

Nobuo Sugimoto, Atsushl Mhuto, Ichiro Mitsui, Yasuhiro Sasano, Toehikazu Itabe,® Tetsuo Aoti,* Masao Takabc,* Norihba Hirotnoto,* Hlroo Kummori* National Institute jor E/roimanentat Studio, 16-2 Onoftwa, Tbdbdw, Jhendb* 305 Jxpew

Experiments on the earth-satelBte-earth laser long-path absorption measurements of atmospheric trace species are planned with the Retrorefledoc In Space (RIS) for the Advanced Earth Observing Satellite (ADEOS). The ADEOS is a Japanese sun- synchronous polar-orbit satellite which is scheduled for launch in February 1996. The RIS is a single-element hollow cube- comer retroreflector with an effective di­ameter of 0.5 m.u

In the RIS experiments, a laser beam is transmitted from a ground station, reflected by RIS, and received at the ground station. The absorption spectrum of the atmosphere is measured in the round-trip optical path. The column con­tents and the vertical profiles of atmo­spheric trace species are derived from the measured spectra.

figure 1 shows a schematic diagram of the ground system for the experiment The system consists of an optical satellite

M2 Fig. 1. Ground system for the RIS experiment

P82 Fig. 2. Simulated return signal (photonnumber per shot) in the ozone measurement

Niwnbw Density el Oten* (aH)

M2 Fig. 3. Ozone profile retrieved from the simulated signal.

tracking system and a laser transmitter/ receiver system for spectroscopic mea­surements. We use a tracking system with a 1-5-m diameter telescope at the Communications Research Laboratory We developed an active satellite tracking method which utilizes the image of RIS lit by a second-harmonics Nd:YAG laser. The active method will be used at the same time with the programmed tracking to achieve the accuracy required by the RIS experiments.

For the spectroscopic measurements, we use two single-longitudinal-mode TEA-CO, lasers which have capability of switching laser lines rapidly* One of the lasers is tuned to the laser lines close to the absorption lines of the target mole­cule, and the other is used for measuring the reference signals. We measure high- resolution absorption spectra of the at­mosphere by using the Doppler-shift of the return beam caused by the satellite movement.

figure 2 shows an example of the sim­ulated return signals which is calculated with the actual system parameters and the reflection characteristics of the RIS. In this measurement, the line of a CO, laser is switched every one second to measure the two absorption lines of ozone seen in the figure. Vertical profile of ozone will be obtained from the spectra by means of inversion method using the pressure de­pendence of absorption line shape, fig­ure 3 shows the ozone profile retrieved from the simulated signals. We plan to measure vertical profiles of ozone and methane, and column contents of CO%. HNOv CFC12. CO. NA etc. with the TEA C02 lasers ('*C,40* °C*tM and their second and third harmonics. ^Communications Research Laboratory. 4-2-1 Nukui-tita. Koganei. Tokyo 184 Japan1. N. Sugimoto, A. Minato, Y. Sasano.

CLECT91. Baltimore, p. 450 (1991).2. A. Minato, N. Sugimoto. Y. Sasano.

Appl. Opt. 31, 6016 (1992).3. R. J. Nordstrom. L. J. Berg, A. F.

DeSimone. N. Sugimoto, Rev. Sri.Instr. 64,1663 (1993).

/

-107-

Page 111: RN8 - OSTI.GOV

torch 22, 1995Jae Beung Jo toman University Department of Ryslcs Ojung-dcng 133, Taedck-gi Tfcejcn, 300-791 Rm

Dear Er. Jo:

I an pleased to infona you that your paper stcfaaissicn for the EACXP2C RIH ccmmmas Of USERS AMD ECS3QO-OFZZC3 1995 (CLED/Padflc Rin«9S), July 10 - 14, 1995, in Qllba, Japan at the Kakuhari Masse Convention Center has been accepted as a poster presentation and is scheduled as follows:

PAPER MCMBER: ESI

IMBt TITI2: Fiber-optic laser Dcpplervelocimeter using a directicnal fiber coupler'

SESSION: Paster SessionDUE: Thursday, July 13, 1995 TIKE: 13:30 - 15:30

Thursday, July 13, 1995 13:30 - 15:30

Each author is provided a bulletin board that is 4 feet high by 8 feet vide cn which to display your paper. You my set-up your posterboard cn July 13, 1995 between 13:00 - 13:30 ane remove your paper between 15:30 - 16:00. Authors will remain in the vicinity of the bulletin board for the duration of the session to answer the questions of the attendees. Poster papers will not be supplied will any audiovisual equipment. If you have any questions please contact me at (908)562.3896 by phene? (908) 562.8434 by fax? or [email protected] by email.

Please sign and return the enclosed tvw copyright fom to Mete vega at the JEEB/izas Executive Office by June 9, 1995.

Please note that all speakers and session chairs rust pay the conference registration fee in order to support the Conference, Cccplete registration and other information will be included in the Advance Program. He greatly appreciate your interest in the Conference and we look forward to seeing you in Chiba, Japan.

Regards,

tolissa K, EstrinZZZE/I2DS Meetings Manager, CXByPacific Rin'95

Tetfvtia* Program Information: Q£Q/F*dfic 81m *95 • EEE/tEOS • 445 Hoe lane • PO Bee 1331 • fbcacewey • KJ • 068SH33I • USA TtiL I 908 5*2 3893 • Fa* I *08 $62 S4M

CartbC Mormadon: QEOvradSc 8Sm *95 • Oim\ • Sumfcomo fodoon Te»«ho it tea. S< Te»o 7-deme • KoroBi. Tei)e 13$ Japan • T<L *61 3 5432 7721 • 35612772$In tiw US. and Europe CLEO/Fadfc JBm VS • OS\ Coherence Sevfce Dcparoncm • 20! OManadxflett VWcnue. NW • W*h»roeon. DC20036-1623 • USA• Tet I 202416 *950 " F« 1 2024166140

-108-

Page 112: RN8 - OSTI.GOV

fie Pacific Rim Conference on Lasers and Electro-Optics

.,-Makuhari Messe Convention Center : Chiba, Japan

July 10-14, 1995

Co-Located with lnterOpto'95

Page 113: RN8 - OSTI.GOV

peaImproved Performance of Vertical-Cavity Modulator through the use of Diffused Quantum Watt*, EH. U, W.OH. Choy. 77m

Unlvarsfycf Hong Kong. Hong Kong The transmission and fcs SekHnduced-change spectra of a verticaFcarity Fabry-Perot AViGa^jAVGaAs rfiffused-quantum- wel modutslor are analyzed and results Indicate improved modulation performance and capa- b*y to wide bandwidth applications.

PTOImpurity Induced Disordering Produced Lateral Optical Confinement In AIGaAsASaAs Quantum WeO Waveguide*, EK. U. C.*8. Cheung. W.-K. Tsui. 77m University of Hong Kong, Hsng Kong Atwod*nensionalA)6aAs/6aAs quantum wefl waveguide with lateral optical confinement can be produced using Impurity Induced disorder­ing. The tingle and mufti mode gukfing requirements are analyzed In terms of mask width, hyeta thidmess. and wavelengths.

P71A Simple and Efficient Scaler Finite Element Approach to Nonlinear Optical Channel Waveguides, A. Nlryama. M. Koshba. Hokkaido University. Sapporo. Japan A unified scalar finite element approach is developed to both TE*fte and TMfiko nonlin­ear waves in three-rSmeosional optical waveg­uides. Propagation characteristics of nonlinear efiptical core fibers and graded-index nonlin­ear channel waveguides are investigated in

detal f

P72Propagation of Incident Gausalsn-Beam Down Adjoining Nonlinear Planar Waveguide, J.-S. Jeong. SK Song. S.D. Jung. E.-H. Lee. Electronics and Telecommunications Research Institute. Taejon, KonaIn adjoining nonfinear planar waveguide, we present numerical restits that a sectary wave can be generated from high-power Gaussian beam excitation after propagation of few hun-

OPT1CAL SWITCHING. COMPUTING AND INFORMATION PROCESSING

P73Optical Adaptive Processing for an Intensity Invariant Pattern Recognition, K. Matsuoka, M. Taniguchi. Y. Mckuno, Osaka National Research Institute, Osaka. Japan We propose optical adaptive dberimhation to a pattern recognition by using a two-correlator system, which achieves an intensity Invariant recognition by adaptive thresholding. Computer simulation results show the perfor­mance of optical adaptive discrimination.

P74Use of Limited Distortion Invariant Correlation Fitter* for Recognition of Road Signs/ 14. Taniguchi. K- Matsuoka. Osaka

National Research Institute, Osaka, Japan We propose multiple-object correlation fitters with fimtted distortion invariance to the recog­nition of road signs. To detect the distorted signs, the techniques of Mefin harmonics decomposition and synthetic discriminant function are applied.

P75Unified Fitter Modulation Synthetic Discriminant Function, RJC Wang, IX Watson, C.R. Chafwin, University of Glasgow, Glasgow, UKVia the fitter modulation operator N, the modi­fied fitter synthetic discrimination totetion per­mits advantageous preprocessing of hdMdual training-set Images that are used to construct the filer synthetic dscriminant function which eppfies a modulation operator M.

P76A Compact Implementation of Optical Omega Network, K.W. Wong, T. Ngal, LM.

Cheng. City University ot Hong Hong. Kowloon Tong. Hong Kong A technique to the compact implementation of optical Omega network k proposed. By using this technique, the whole Omega network b realized by a single set of optics in a time-mul­tiplexed recursive manner.

P77Application of Reflective Block Optics to a Discrete Correlator, D. Miyazaki. K. Matsushita. Osaka Ctty University. Osaka. JapanReflective block optics (REBOP) k a packag­ing technique for rigid and reliable optical computing system. We present experiments on a preliminary system based on REBOP. In addition, we propose use of a sek-atgning

technique for REBOP.

P78Reduced Alignment Accuracy Requirement for Free-Space Optical Interconnection Using Focused Gaussian Beams, K SasaH. K. Shinozakf. T. Kamfoh. OH Electric Industry Company Limited. Tokyo. Japan Numerical simulation reveals that the align­ment accuracy requirement for free-*pace optical interconnection k severer for lateral misalignment than longitudinal one. It k also shown that lateral misafignment requirement b greatly reduced by using focused Gaussian beams.

P79Optical Polarization Switching and Bistability by Injected Light In a 633nmHe- Ne Laser, T. OWa. S. Ohno, Y. Atoro, T.

kfinose, Doehbha Univetsfy, Kyoto. Japan Optical polarization switching and bbtahety in

a single-mode 633 nm He-Ne laser are observed by Injected fight with the polarization axes of 0*. 45* and 80*.

PSOA New Type of Optical Band-Pass Fitter Using Total Internal Reflection*, D.-C. Su,

J.-T. Chang. W.-R. Un. Y.-T. Huang. National Chlao Tung University, HstnChu, Taiwan. R.O.O.Anew type of optical bandpass fitter which consists a pair of transmission-type volume gratings and a pair of reflection-type volume gratings k proposed and a sample k fabri­cated to testing Us quafity.

LASER METROLOGY AND ENVIRONMENTAL OPTICS

P81Fiber-Optic Laser Doppler Velocimeter using a Directional Fiber Coupler, J.H. Jo. JS. ton. WJL Choi, S. Chang. Hannam University, Taejon. Korea We have designed and fabricated the fiber­optic laser Doppler vetodmeter using a direc­tional tber coupler in order to measure the velocity of fluids in a quartz dye cel of the dye laser.

P82Laser-Long-Path Absorption Experiments Using the Retroreflector (n Space (RIS). N. Sugimoto. A. Mmto, 1. Matsui. Y. Sasano. National Institute for Environmental Studies. Ibaraki, Japan. T. Itabe. T. Add. M. Takabe. N. Hiromoto. H. Kunimori, Communications Research Laboratory. Tokyo. Japan Plan for earth-sateCte-earth laser long-path absorption experiment using the Retroreflector in Space b presented. Vertical profiles of ozone and methane, and column contents of CFC12. HNO> etc. win be measured with sin- gte4ongrtudmal-mode TEA CO] lasers.

P83High-Accuracy Dimension Measurements of Complex Optical Parts using Femtosecond Optical Pulses, K. Minoshrma. H. Matsumoto. National Research Laboratory of Metrology. Ibaraki. Japan Dimensions of complex optical parts are accu­rately measured by using femtosecond optical pulses. The overlapping optical pubes from the parts can be separated by mating nonlin­ear second- harmonic correlation with refer­ence pubes with variable delays.

-110-

Page 114: RN8 - OSTI.GOV

Abstracts, Bulletin of the Korean Physical Societym 12 # # 2 m

Vol. 12 No. 2 October 1994

69 E 1

B : 1994. 10. 21 (n")~22 (&)

jf±@m m

mThe Korean Physical Society

-111-

Page 115: RN8 - OSTI.GOV

Pa-55 464 5£ ##625 Zr02 444 #4 ^6-

5#^. #5#4l (<>mct #s)tl#). 46# o|]447}- B|^ 3L2. 46 1#^£7)- 4

# Kaufman^ °1##§- #§-#4 Zr0z#46 464 1£ 41442 46 4#

fi)24 46 6)1444 *I$H] 4# #44 444## u1'5:<tiyo (inhomogenity)# £44 4

4# 4644 ^144 4# °)6 5£ #4# 44 &6 444 424&4. c}#

44-i- 4442 444 444 44-4 4444 -f-4444 462* 4444 4-644

2r0z444 446 4414 444 4442 £44424, x-d $11(xrd)# 4644 44

4 144 4644 4144 444 4441 44642 £4444.

1222:-----1 Fiber-Optic LDV4 441 _S_ _©)*.. 464 6^6# #4

4* 7##( I ). 4##', £416. 4^(444). 44 444 LDV(LaserDoppler Ve loci meter) 64 6444 6EI1(1 )5-b t cm4 3.7] 5 £64 464 014 4*k>) tx}525 6 464146 He-Ne(6328 A) 4444 442-£6 666 (#zN 41:80m a441:2~3/zm). 2B]2 He-NeB|)446 666 147)5.2.6 6446 2£## 4462.54 ldv# £146 6 6#6 41442.. 4# 4644 2#4 4£e)1446 42-^5 4646 Quartz CbIKhellmaCat.-No. 690.072-08)44 6662# 41 44^}.* 6 666 46 444 66£4 2#4 42511446 42-i 444 426 6 414# 71)6(44162 ; 664 93-23)4 6625 66 466.

(1) Tariq S.Durrani and Clive A. Created, “LASER SYSTBS . IN FLOW MEASURMENT", PLENUM PRESS, NEW YORK AND LONDON, 1977.

Pa-57 ^44 42a# 464 446 44 41 £6 646 64. 464".

446. 4441. 66. 646, 444 (KIST). 44 42a# 4644 644 66 4 446(A= 1.55 um) #66 4644# 4)a4#4. 264 446S.4 Ge4 §4 264 (9 mole%) 646# ##444^24, 44 42a# #446 KrF (A= 248 nm) 5)14464 Fresnel 644 46644 411 446 core44 #44 44# 644332.4, A= 1.55 um 6444 644 44446 4^4. x6r, # 244?!- 4 446# 4644 4124 64444 #44 4a#4 #244#4 # #44^4. , .

-112-

Page 116: RN8 - OSTI.GOV

Abstracts, Bulletin of the Korean Physical Society#13 till

VoL 13 No. 1 April 1995

B tW : 1995. 4. 21 (^-)—22 (5.)

mAm

The Korean Physical Society

-113-

Page 117: RN8 - OSTI.GOV

Ib-4 ^ gwayg. ol-S-4 48-fr ^4# 4178. ?M4. 444. 3*Kfr.^(Wcl), 0.633 pa S><gS=. 411# o]-g-% 411 441 44?)# 4144 #414 4 4 91 44H‘#14fe 411 -M4S14. 411 *#3 4444 44 444 46 41 #414 a444 4f44'.14I44 46 #(41-4 41 7]141 4?8 %#oJ «1^M #844# 4144- °1 ^4-10.41 Fourier transform 141 4% ml 441 114&4.

1) J. L. Santos, T. P. Newson, and D. A. Jackson, Opt.Lett. 15, 573 (1990).

Ib~S_____U 1.3 am-'cMS-S zj]414 0. 68 tm 4455. e8o]l# 414 54

'Iber-optic LDV 4 7:4. 44H. 44, 5Hf. 41(444). 1.3 pm 44 £-5- 4414 4H 411 441 ItMH 4144 -T 4155. #b]4 f, 4# laser Doppler

velocimeter(LDV)4 4164# lllfe IH-jl, 0. 68 pm 445= 3]o]l

SI #4# #8* 111 4&14 46 44141 44 41# 4416 #4#55 4H44- T.5)JL 14@ S.#2j 15466: 11144 fll44 27>1 <§ElS. avalanche photodiodeS. 4 #1^4- ZLBjJL 4 1561 60 dB 4 4^7]Sj- 7}4 electric band pass filters, burst 1JL5 46 f, high speed A/D converter if fast Fourier transform 55ZL=i»55 o| a1;£4 4115, 45.64 444. 7]|41$i4.

1) Thang T. Nguyen and Le N. Binh, Appl.Phys.Lett. 45, 1163 (1984).

2) Manfred Stieglmeier and Cameron Tropea, Appl.Opt., 4096 (1992).

1116 ^ Fibers chip-4 ^5HNr 41# BH InGaAsP/InP

>§j41 % 4)4- Q)^, ^^(#^-^^4^9-£ 3Hd4S!94!). 45454 ^±^7} ggg 1-544, Wsl 14 4-1154- 444 $144 4444 £454 3:44 544 111141 444 44 #51 4144- 4 49416 4544 ±4 444 11# 1155 bh 1InGaAsP/InP 5:45.4 £.41 95#4 (single core: 1.12um (Xg) InGaAsP, double core: 1.05um (Xg) InGaAsP/InP/1.05um InGaAsP, triple core: 1.12um(X„) InGaAsP/InP/1.12um InGaAsP)/InP/1.12um InGaAsP) 4 44 4H2.5. 45.45.1- 14 4 4^4 fiber-4 chips] 414 si £4111 42. 154S4. £45.4 ££ # 4-F8 41-6 BPM#1 1114 Simulation 1&54, BH 1 £454 446: RIE1 1114 rib 4 # Ilf LPMOCVD 41 H14 414 1£4.1) J. F. Vinchant, IEEE Photon. Tech. Lett, vol.6, NO. 11, pp 1347 (1994)

—114—

Page 118: RN8 - OSTI.GOV

4 4 4 3 1 4

#471133413 4444 33443 5#33443 INIS #4133

KAERi/CM-121/94

41# / 9-41 3#4 93944# 434 4144 43## #44# 7#

49444 4 9-41 3 4 #, 44443 #5144-

4 9 4 5 941 4# 14,444. 444 (44443, #444)

4 4 4 44 44714 49441493 44 4 1995.8.18

3E)1 O] X] 111 P. 33 #( o), 9( ) 5L 7] cm.#344

9449 %-7B(o )444( )._#«!% .q34#-fr- 4449 33.4494444 44443 Til# #3 #%7] 94C-28

3# (300## M)4)

3#9 4^144# 414M #44 434 3#4 4% 497> #34-7] nfl#o)l,

93# 419-4 ###4 5 4# 4## 43# 1414 93## 44414#: #4. 4 * 444 4444 5 93944 #44 4# #3# 4-B-4-4 93# 49-444 -fi-#4 4# 4#44## 4 # 1# 93# 3## 344-3 44 4# computer

simulation# 4344. 3#3 44 4# #14 #4# #34-3, ### ## ^ 4

44 4# #3# #7l 44-4 7l#4 ## LDV# 4#4-4 93#%H4 ##14# ##4 #4 #4. 3#3 3#4 9394471- ##4-3 ## #444 4444 #4 4 93499 ##%## #44:435. #44-71 44-4 31 Fiber-Optic LDV# 9 4 #4-. 343 4 LDV 5 4 #4 44. 44-# 4 #4-4 43# #34# 3443 4 44-4, LDV 4- turbulence #4#41- 4#44 41 #4 43#4 4## 17}%4.

#411 443 (101:4 414) 4144 3#4 ##41, #1=1 41-71,#4, 134, 44 41, Fiber-Optic LDV

*** 4413 9-4, $* #113 9-4

Page 119: RN8 - OSTI.GOV

BIBLIOGRAPHIC INFORMATION SHEETPerforming Org.

Report No.Sponsoring Org.

Report No.Standard Report NO. INIS Subject

CodeKAERI/CM-121/94

Title / Subtitle Fabrication of a Dye Cell of the High Power Dye Laser and Development of the Measuerment Technology of the Fluid Velocities

in a Dye Cell

Project Manager and Dept. Jae Heung Jo, Dept, of Physics, Hannam University

Researcher and Dept. Soo Chang, Kwon Lim, Jee Teak Kim, Wan Hae Choi (Dept, of Physics, Hannam University)

Pub.Place Taejon Pub. Org. KAERI Pub.Date Aug.18,1995

Page 111 P. III. and Tab. Yes(0), No( ) 3. 7] cm.

Note

Classified 0pen(0),0utside( ),_Class Report Type

Sponsoring Org. Hannam University Contract No. 94C-28

Abstract (About 300 Words)

o The computer simulation code for the simulation of the steady-state flow in

a dye cell is developed by using the finite element method.

o The situaion of the fluid flow is measured by the diode laser LDV

sysytem and compared with results of the computer simulation.

o The small size Fiber-Optic LDV with a dirctional coupler is designed and

fabricated for the real time measurement of fluid velocities in a dye cell.

Subject Keywords (About 10 Words)

Directinal Coupler, Scattering,Laser Doppler Velocimeter, Dye Cell,

Interferometry, Fiber-Optic LDV

*** serial no., ## research year