Top Banner
WU24# l>U ¥ $ 13¥ 5 mmmA ISEDQ 1.001 751 6-5
225

mmmA - OSTI.GOV

Jan 16, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: mmmA - OSTI.GOV

WU24#

l>U

¥ $ 13¥ 5

mmmA —

ISEDQ

1.001 751 6-5

Page 2: mmmA - OSTI.GOV

n f=j

¥ $ 13^ 5 H

MfflEA 7 T A 7 < 7 7 X *tr > 7 —

Page 3: mmmA - OSTI.GOV

* w %

>f-/7*-l>f?;Dy- (FCT) ) 9FSm«7"n-7i7 h^'Tfig 10 ¥8*0 7 7-

h L*. $^Pyx?Mt (NEDO) iffliffi^

StjaSdUTEIH 15 tt 1 >/l-tLT (M) 77*7*75 y 7*77

-**§§£ l. 2

*E*#_ saxi^f, s*hb

*#, *KrtT6*#, M%*#, 7x —7Z#*#, 7yl7>*—77

-E%@rj:ttf18KW5E$$tl$ISy;_, g • S • #©W?E#:®]©fctl:::/n-7x7

LtSfc.

*7’D-7x7 h©#Sia±Se©*'5*X¥ —AT1 rpCT#%#! S:@eBU, g • S • #

6*5 w9Eft#a^aT#ff ©its^a^x *7 u 7 a* 5 17

T©5Ct, fi£*5W?M

1= (7><

a> a*K*#mi=mm2#***5e%m#g@u, 64*. 1SLTl'5.

*i$$i8S#tt. rK*»K«ffi##s«©w^m?s (*«mR«m*a77xA) j

ten #5# Eg 12 #S©Eg*^ St®fct)©T®?>.

(i)

Page 4: mmmA - OSTI.GOV

Foreword

Based on the framework laid down by AIST (the Agency of Industrial Science and Technology) of

MITI (the Ministry of International Trade and Industry) for R&D in the areas of industrial science and

technology, frontier carbon technology (FCT) R&D project started in 1998. This project is entrusted

to the Japan Fine Ceramic Center (JFCC), a foundation in which 15 companies and 1 organization,

participate, under contract with the New Energy Development Organization (NEDO). At the same

time, JFCC made a joint research contract with National Institute of Materials and Chemical Research

(NIMC) and 2 other national research institutes to establish research scheme. In addition, joint

research contract is concluded with Osaka University, Tokyo Institute of Technology and Waseda

University, and cooperative research contract is made with Mie University, Osaka City University,

Kyoto University, University of Sussex, Techmical University of Vienna and Fraun hofer Institute.

This project has been promoted under the research scheme with the cooperation of industry,

government and universities.

This project has 2 main features. One of them is above-mentioned FCT research system. In

this system, the Research Promotion Council, which is composed of representatives from industry,

government and universities, adjust or steer the entire progress. The other feature is a system to carry

out intensive research and satellite research in parallel so as to increase efficiency of R&D. Intensive

research is made by research institutes of the Fine Ceramic Center in National Institute of Materials and

Chemical Research (Tsukuba) and Osaka University, while satellite research is conducted by 6

companies and 1 organization, members of the Fine Ceramic Center.

This report is results of research in 2000, R&D of frontier carbon technology (development of

High Function Control System for Power Generation).

Page 5: mmmA - OSTI.GOV

Frontier Carbon Technology Research Organization

9F3EM3SX-M*Research grant & Evaluation cost Fund & Aid

Consignment

Central Research Lab. (NIMC) Central Research Lab. (Osaka.U.)

Joint

research

Joint

research

Reentrustment Reentrustment

Joint researchJoint research

NEDO

AIST

Universities Universities

NIMC Osaka Univ.

Overseas Organizations

Satellite research at

Private enterprises

JFCC

(V )

Page 6: mmmA - OSTI.GOV

(NEDO^|t5fe: FCT9f%*S)

mbricXSt*ie#ti:

&mykX?74';\>=)l"j,)WA-

(»ftW!#«1ll«ftrjl-7*#JP±*)

= W.^7')7)lfoj££:#y^7<K-^;UAX-=]—Tftly—V3>

msmstiiFisttsmu-y

(itaa A77'r>-t?7^^xt>5-A)

(vi)

Page 7: mmmA - OSTI.GOV

Frontier Carbon Technology Research Organization(NEDO entrustment to JFCC —FCT)

FCT R&D promoting comittee Comittee Sub-comittee

....................... ........ ...................... ........(Participating members) !Asahi Chemical Industry Co., Ltd. ;Ishikawajima-Harima Heavy Industries Co., Ltd. | Osaka Gas Co., Ltd. «Kawasaki Heavy Industries, Ltd. |Institute of Research and Innovation IShowa Denko K.K. ;Tokyo Gas Co., Ltd. IToshiba Corporation ;NEC CorporationJapan Fine Ceramics Center IMitsubishi Heavy Industries, Ltd. j

(Participating members)Kobe Steel, Ltd.Sumitomo Electric Industries, Ltd. Matsushita Electric Industries Co., Ltd.

(Participating members)Ion Engineering Research Institute Corporation Ishikawajima-Harima Heavy Industries Co., Ltd. Kawasaki Heavy Industries, Ltd.Sumitomo Electric Industries, Ltd.Mitsubishi Heavy Industries, Ltd.Mitsubishi Materials Corporation Applied Films Corporation

: The present R&D was carried outby the Organizations

New Materials Synthesis Technology

Reentrustment

Reentrustment

Reentrustment

Joint research

Reentrustment

Joint research

Joint research

Reentrustment

Osaka University

Mie University

Kyoto University

University of Sussex

Osaka-City University

Technical University of Vienna

Fraunhofer Institute

Waseda University

Tokyo Institute of Technology

Mechanically Functional Materials Processing Technology

Electrically Functional Materials Processing Technology

— Central Reseach Laboratry (Osaka University)________

Central Reseach Laboratry, NIMC (National Institute of Materials and Chemical Research),

MEL

Satellite laboratories (Kobe Steel,Ltd.)(Sumitomo Electric Industries,Ltd.)

— Satellite Laboratories(Ishikawajima-Harima Heavy Industries Co.,Ltd.) (Sumitomo Electric Industries,Ltd.)____________

Central Reseach Laboratry: NIMC (National Institute of Materials and Chemical Research), NIRIM

Satellite Laboratories (Showa Denko K.K.)(Toshiba Corporation)(NEC Corporation)(Japan Fine Ceramics Center)

Reentrustment

Page 8: mmmA - OSTI.GOV

ZfDpxi’hMtg'fjU-y©WJH mm (UFCC.os® #= (ttStx*x*&«W3SSr)nsa mm (#ax#x##8mamf)□ EB4> am06# $B] (JFCC)

® 7 Qy i7HJ—7 —O ^7'7'ny'i)HJ-)'- □ 7'^-7'V-)'-

i. toweis^mtwstMBtratfs

m# f^E M s^jii ams $* bui east mm a

*5 M. Liehr mm ## /J'tft *J3

M. Cedric Urn f# *22

6>»*as BjB tit* SJH it® itti Him#± 6H s# mm # 56A

SB IfBJ amse? M.Popov *m »*

S.P.Hong W.Zhang

ttfcsetsematioss:)

tiara ft s ;I# S=]

56 W

ftfc-i>W3Effi (0 ***(80)

&m »S*

ffifr-SWSRff ((St)77-f7t75v»XM-)

SB m# * m<g*¥l1j # 6 inS)*7K fU

:*166685

(vin)

Page 9: mmmA - OSTI.GOV

«£fc*W3E0r (Ba»«X («))Stii

#± £#± 8SB

IE m± amSIS lasi m# ftj^l# ±a

## t@A IEBSjiime mm —

SIS its

SjfxXSA ##BASJI #= S8 #% 5JII@-fi|5S*t #E #]#B*mm « «#:MPi**s mABsb mm

in® 8S# #B AS 'J'S. 58

S2.

a* aaa* mmBit7k JI #ff

¥B St imm &

WaRW5E(tiK@J#!-a«WS5#lS6tt»)

AErMA tf"t?'7^XX ^->114* 77t>*-77-E

«a be H. KrotoM. Clark

W. WrujS

R. HaubnerB. Lux

B. MommaP. KoidlC. Klages

2. «*%%####*#

S*St%(*E*^)AlXflia asH# A#ss s

X;saSB *

(ix)

Page 10: mmmA - OSTI.GOV

mKb<KUKbm

oKb

|iwm<n

CO

##00^

■KKi 15"■fHsl!sSKVMr VMr

#######*HH-K-KKK-K-K .........« #* fig iS a i- * * ffl-«56 £ X10. K « as fh« « a a ^ jwi* ^ e e v. £ £ « * K-i*ti # ta HtnUB W « « « »K nK S -rt- $ K m gj 111

ir^I

"k-rsLt,Al+»Jhx-V*

A

MttSSIBS

« ft is m-K-#• t is ft « k e o a 4b ®=a #

*Ktt

i S *1iA 00 EEs?k am

to m#0K%A+

1D% $UWII| 1 ®# #:#*#*$2m sbbs-hbi* *36*^&w Ul^EKHP m

BB

iffe

•CnK

?£SH III#

0 -K E

H oM

M

o

SEWSE I AStlESI

uKK-tiSHSiSgMSUn^

EKBB

%%# $ S'f-k-kS 1 e * a s1A 0000H^rCi'I &;£H$ KKK-K

A SWtlxK tCN E0@NE^X'H^£ A H-K»HtN>2:

11^^ 4-A uiKuiKttiM 1 ««ffimS*ni ,74"

1D #:##« # SS:6i$5M B$$K# S-K*«6 # ^#-KE@aa«i

SUg-trto *# £

uiKEK m niftnEoK # miliKlKK ««

Page 11: mmmA - OSTI.GOV

^Frontier Carbon Technology Research organization^

Project Managing Group (PMG)

© Masanori Yoshikawa (JFCC., Tokyo Inst, of Technol. Professor emeritus)OShuzo Fujiwara (NIMC)OYoshinori Koga (NIMC) © Project leader□Akihiro Tanaka (MEL) O Sub-Project leader□Koji Kobashi (JFCC) □ Group leader

1. Development of Substance original production technologyMechanically high function materials

Research Center (NIMC)

Tamikuni Komatsu Mutsumasa Kyotani Hisashi Sawai Takeshi HasegawaTakazumi Kawai Akio Nishiyama Tsutomu Ikeda Fumio KokaiTakumi Kimura M. Liehr Shunji Kurooka Toshiki KomatsuM. Cedric Chiharu Yamaguchi Manabu Taniwaki Toshiya WatanabeKatsuhiro Sasaki Akefumi Ishikura Hiromichi Yoshikawa Junya KitamuraKoichiro Wazumi Chozo Inoue Sadao Fujii Masato BanHiroaki Yosida Akiko Goto M.Popov Kazuo TugawaS.P.Hong W.Zhang

Co - researcher

Hideyo Okushi (ETL)Kikuo Harigaya (ETL)

Satellite Lab. (Toshiba)

Naoshi Sakuma Tadashi Sakai Cyo

Satellite Lab. (JFCC)

Noriyoshi Shibata Michiko KusunokiTsukasa Hirayama Yukari TaniToshiki Shimizu Toshiyuki Suzuki

Satellite Lab. (NEC)

Osamu Sugino Yoshiyuki Miyamoto

(xi)

Page 12: mmmA - OSTI.GOV

Satellite Lab. (Showa Denko)

Tatuyuki Yamamoto Sai Inoue Hajime Murakami Yoshihisa Sakamoto Toshio Morita

Satellite Lab. (IHI)

Tadashi Sassa kenji FuchigamiJoji Shinohara Tsumoru FujiiOsamu Harasaki Kazuo UematsuKatsumi Suzuki Masaaki HoriuchiYoshinori Kawasaki Kouji Takasima

Hajime Kuwahara

Joint Research(New Materials Synthesis Technology and Mechanically Functional Materials Processing Technolgy)

NIMC NIRIM MEL Tokyo Inst, of Technol. Waseda Univ.

Shuzo Fujiwara Yoshinori Koga Keiichiro Ishikawa Tsuguyori Ghana Yozo Kakudate Takako Nakamura Kazuhiro Yamamoto Shu UsubaHiroyuki YokoiMotoo Yumura Satoshi Oshima Kunio UchidaHiroki Gogo

Mutsukazu KamoHisao Kanda Satoshi Koizumi Noriyuki Teraji

Yuji Enomoto Akihiro Tanaka Yuko HibiKazuyuki Mizuhara

Atsushi Hirata Hiroshi Kawarada

Reentrustment(New Materials Synthesis Technology and Mechanically Functional Materials Processing Technolgy)

Mie Univ. Osaka-City Univ. Univ. of Sussex Vienna Univ.of Technol. Fraunhofer Inst.

Yahachi Saito Katsumi Tanigaki H. Kroto

M. Clark

W. Wru

R. HaubnerB. Lux

B. Momma

P. KoidlC. Klages

2. Electrically Functional Materials Processing Technolgy

Research Center (Osaka Univ.)

Koji Kobashi Takeshi Tachibana Yoshiki Nishibayashi Yutaka Ando Makoto Kitabatake Akihiko Watanabe Hirosi Huruta

Page 13: mmmA - OSTI.GOV

Satellite Lab.(Kobe Steel,Ltd.)

Koji Kobashi Takeshi TachibanaKeniti Inoue Yosihiro YokotaKazusi Hayasi Nobuyuki Kawakami

Satellite LabXSumitomo Electric,Indus.)

Naoji Fujimori Yoshiyuki YamamotoShinichi Shikata Hirohisa SaitoTakahiro Imai Keiji IsibasiKeiitiro Tanabe

Joint Research & Reentrustment Research

Osaka Univ. Kyoto Univ.

Kenjiro Oura Shinichi Nakajima Junzo IshikawaTakashi Hirao Takeshi MatsuuraTakatomo Sasaki Kiichiro TsujiTakeshi Kobayashi Sadatoshi KumagaiMotoshi Iketani Hiroshi Yoshida

3. Genenal Research Comittee (JFCC)Evaluation Comittee Research Comittee

Chairman: Osamu Fukunaga Acetech Co.,Ltd.Member Takuo Takeshita Mitsubishi Materials

Mutsukazu Kamo NIRIMMasanori Yoshikawa JFCCKenichi Kondo Tokyo Inst, of Tech.

New Mateials Synthesis Technology

Chairman: Hidetoshi Saito Nagaoka Inst, of Tech.Member Tuneo Suzuki Nagaoka Inst, of Tech

Takahiro Imai Sumitomo Electric Indus.Takafumi Ishikura Tokyo Gas Co.,Ltd

Mechanically Functional Materials Processing Technology

Chairman: Naoto Ohtake Tokyo Inst, of Tech.Member Hidetoshi Kodera Kyoto-Gakuin Univ.

Tetuya Suzuki Keio Univ.Toshiyuki Yasuhara Tokyo Inst, of Tech.Koji Une Asahi Diamond Co.,Ltd.Yasushi Taniguchi Cannon Corp.Akio Nishiyama Mitsubishi MaterialsKunio Komaki New Diamond Forum

Chairman: Syuji Yazu Sumitomo Electric Indus.Member Takahiro Imai Sumitomo Electric Indus.

Atsuhito Sawabe Aoyama-Gakuin Univ.Takatosi Yamada Aoyama-Gakuin Univ.Tetuya Suzuki Keio Univ.Hidetoshi Kodera Kyoto-Gakuin Univ.Naoto Ohtake Tokyo Inst, of Tech.Toshiyuki Yasuhara

Tokyo Inst, of Tech.Syozou Kawano Tohoku Univ.Hidetoshi Saito

Nagaoka Inst, of Tech.Tuneo Suzuki

Nagaoka Inst, of Tech.Koji Une Asahi Diamond Co.,Ltd.Yasushi Taniguchi Cannon Corp.Kenichi Inoue Kobe Steel,Ltd.Manabu Sato Toshiba Tungaloy Co.,Ltd.Takafumi Ishikura Tokyo Gas Co.,LtdKazuhiro Baba NEC Corp.Masatoshi Kitagawa

Matsushita Electric Indus.Akio Nishiyama Mitsubishi MaterialsKunio Komaki New Diamond Forum

Electrically Functional Materials Processing Technology

Chairman: Hidetoshi SaitoNagaoka Inst, of Tech.

Member Takatosi Yamada Aoyama-Gakuin Univ.Syozou Kawano Tohoku Univ.Kenichi Inoue Kobe Steel,Ltd.Masatoshi Kitagawa

Matsushita Electric Indus.

(xi)

Page 14: mmmA - OSTI.GOV

g

(1) ^ .........................................................................................................................................................(i)

(2) (v)o) w)(4) (#

m i $ #! l

i.i

...........7 7< 7t 7 v 7 7i:77—(o < If) 2

2# 17

[##]

2.1 is2.1.1

-----### 7 7<7t7^v77t77—(0<^f)------ 18

2.2 29

2.2.1 7 D^7°7X'7 CVD 1: j;6±@#7X'Vt 7 Kf####

-----#[## 77f7t7^v77i:77 —(7»<^f)-------- 29

2.2.2 7x^7

-----#W 77<7t7^v77i:77 —(7»<m-------- 43

2.3 57

2.3.1 [#!")#%] 7X'Vt7M(D##A0ZK#(h^\7D%k:74'7^;i/^(:#^#:

...........................................................................................— 57

2.3.2 [#isim%]..................................................................................................... 69

2.3.3 AM$%^#7°D-tz7^#J "" 77777—7 7#^El7"" 78

#3 $ .................................................77<7t7f v7 77 77-(77)

3.1 ...............................

3.1.1 Wi M....................................................................................................................

3.1.2 171777. h T CO rx S" ®HIS 7>|HM%#f;k ti-ME..........................................

3.1.3 7< 7 07 7^^.%—7(DM#(h^r(D#Fj^ j;^7X :

77 7DTAS (Total analysis System) "

90

102

(xv)

Page 15: mmmA - OSTI.GOV

3.1.4 126

3.1.5 Ml R*ifWt77Xf'7 ? (D««W • ®9WI9#ttif«......................... 137

3.1.6 gifl'fe cfcW'lf -MMM.............................................................................. 151

3.2 153

3.3 SlK®iSS8ii........................................................................................ 165

I 4 $ 171

(##) X h .................................................................................................................... 173

BWfflilSttS....................................................................................... 190

{<emx*xmimmnm) .....................................................................................................m

(tSttftlfiW9EF/T) .............................................................................. 203

(SfilTOEfcm .............................................................................. 206

(xvi)

Page 16: mmmA - OSTI.GOV

Contents

(1) Foreword........................................................................................................................................ (iii)

(2) Organization Scheme of Frontier Carbon Technology......................................................... ( V )

(3) Organization of the Joint Research Consortium of Frontier Carbon Technology............. (vil)

(4) List of Members of the Joint Research Consortium of Frontier Carbon Technology........ (xi)

Chapter 1 Development of substance............................................................................................ 1

1.1 Synthesis and characterization of high temperature corrosion resistant materials........ 2

Chapter 2 Development of original production process technology for mechanically high

function materials............................................................................................................ 17

2.1 Composition gradient film forming techniques................................................................... 18

2.1.1 Development of high-temperature stable films............................................................. 18

2.2 Large area film forming technology..................................................................................... 29

2.2.1 Report of R&D system (Large diamond coater) for the fiscal year 1998................... 29

2.2.2 Research and development of large area diamond deposition technology.................... 43

2.3 Joint research and entrustment research............................................................................... 57

2.3.1 [Joint Research]

Microfabrication of high fanctional carbon ............................... Waseda Univ. • • • • 57

2.3.2 [Joint Research] Large-area high-rate deposition technique of diamond and related

carbon films.................................................................. Tokyo Inst.Tech. Univ. • • • • 69

2.3.3 [Entrustment Research] Large area diamond depositions and modification of

diamond film growth..................................................................................................... 78

Chapter 3 Combined research and Investigation......................................... JFCC (Tokyo) • • • • 88

3.1 Search on Fabrication Processes for Mechanically High-Performance

Materials ................................................................................................................................ 88

3.2 Overseas Investigation....................................................................................................... 153

3.3 Activity of R&D committee............................................................................................... 165

Chapter 4. Development of common base technology (platform) .......................................... 171

(Appendix) Publication list research report........................................................................... 173

Activity of R&D ................................................................................................. 190

(Insitute of Materials and Chcmuial Research) ................................................ 191

(Mechanical Engineering Laboratory).............................................................. 203

(National Institute for Research in Inorganic Materials)................................. 206

(xvi)

Page 17: mmmA - OSTI.GOV

m #]

6c6&g*i:LTW6. $mcBErso/xfflas • wmkmwmt>^mz.t,£r>tz. $%.

^*iS#SeSSr>i|t:SA^iJfig^/j:i3, a*tt«Snii7'7Xv®#tSTIi,

ifSotti) 3 '7 i7 X^0 j®ftSWI4<3>SW^BJnKi:^£c) fco

X'AX’Tilgti:, 1.5~3.0km/s T*0, Att. 10MET*o7to

ISI'T, (B4C) ®ig*t8B06£J8$£fT0. IBS is-

30 3 7 D >®E$T$*tt7)iS < ,

-1-

Page 18: mmmA - OSTI.GOV

1.1(■?<!£)

1.1.1 sw

65ory±©^1b#H«lc43^TBEtt^>ifAtt&*f

M%U f 6.

¥fi£ i2^gtt.-f t>t’-AX/t7X 'J >Xi£Cck OffSShMISti-aBftttcan

5 C c-BN. BCN ##±##@*#©T#6%6. MS-IiLtfflB4C

4> bcn itftfiiiftiiirffSf-t-sfc*. (mw.fiam77X-?mm &mm«0|5i, 6«£¥fiK ll¥Stc5ISKSfTofc„ 6 61:. C©gB£)?n'T. B4C ©6®

SfiKSff©. -e©6S©ff«$:ffofc= Ctii: =fcO*gB0ttlESffieLfc.

1.1.2 liCtoi:

igf. ttSIffcCff©, ^©«iSC»x5

>x->xf-x.comm^Mmi:*ot6t©5. t< cm#*^x.

»X»6*©Sftttyxi:SRtt£0E6t"5j;5 teSATigE&SIBSm: j3©T. J; D i®

IK*#*#yX^A (036S) t

^A®-ea$nT06.l,)=

H’RtX DLC =k-5®KK1i. ®#© TiN,(Ti, A1)N ^©SEM

®$Ctt^. »**tt^B*»fettffi<. *«>£ 450tCt©6fi©S«-CX,7X7'f Mfc-r-5

V^V»»i6. CttBSSSSHEti:, #SCig$7>i$i <, B*fttt can, ft#g^ttco©Tfc#scati6:tftt$sfo a@#%Tatana

K±=fco. &can. #tcisa

R#*#@Ei*&m&im*T6c$,^o. 'xfny-m^p (bc2n) citssns,

@<X (c) c*xx (b). SS (n) BCN

6C6AC ^©#a©fc»cttjiST*5ti>A5. &-tfftb bcn it&mz. a^sa

fbnx# (c-BN) (B4C) 7)1SoEtoS$ttt. ^+t>F, DLC #A#

3fb#w$&a. ana##%##e#ia«AT©s##T&6:6^^oT©6^6

tso|2). :n*B©sctTF)fa©i®?®Bftffi»iH^'i#bn^:

B-C-N %. B-C SREStitiiT, -KCBDbnT^SIb^migeKAfCVD)*^###.

fflfiKA(PVD)i*Ttt. +5>»(iatt0$.-6flgS^*-r-5i®fiB6:ttReSEK-r6.C6ttB

m?&66#A6n.6. CVD ii-a PVD fficto fcii^CI@iSft5gJSjSS^W1-5

***©#m. CVD b L< a PVD t©#fffl*i#A6tl«>. LfrL&tf

-2-

Page 19: mmmA - OSTI.GOV

-s-

°,£, (Z-n 0)

W'iMCfl*tel7’¥m$?^XXXto« '«$ (ft*i.X^^*«*) #§K#1f-/t

$ («§<-* x^XEMffl®) Wgx.tf'ii'-'i r e u t

Eiscostit (ws^x^xEnm®) «§;<.¥-ic-^i ex-i

S g? it)N::)a f) ^ $ Na-3 9'9T=l

$<f * UY Y-Tt < X > ©

3SSfflgSNDa^^^a'aa

lur/005

°§-v*gx^c:i*@*®4i0KS'HS!3,'a XU$^¥I ‘S?$ •?v*lW5Ii MB^ettSe^XEB1 'lnc;iBi 'E8l©W»aS («@z.x^XEmt»») «» XAMf-x Moa ^ 3"a '%%?%©0#0»mT## N3a -Na-3 r,X^ vxx-A<©> 'fli** °9©9%g$?2S'©EKI$#g$(#*g9©#3#¥mx^sp:l'm

BiTO0TKnos9 ’ a T:iEWtoSSMHHSH ’(mH) §r©$(S$$8*ia$2£B T#^^©«gmxx$#QT -ccria^m#Mx ''iE$¥#x< n ^m/xy-hx©

'%1?¥(X0©

'Xto'5-ttay/:i§i89©e::i#enil!E3*$8WX#¥S 'HMX9vi °5"$^»3ii£<s-©ss$a,5"$ 'n%

“9-4-33

S5-S8W NDa (#@^xxxED»m#) •|5-5X$iy7>2©?RS.OXS5SC^ESgl5©S xixaitf}*

- >n<vj.qi?7 2 ?J-BHiMftg'lsS1® f T®M#f Moa

'tsmv-'iY -5

Page 20: mmmA - OSTI.GOV

A

at A

10* 10*

/(m/s)

---------------------->

ur

01.1-2 sasstaicfcit-Bu-iu^iswatoeBdit

lz-/l/A>iSMS'T-tt, 2 *©¥ff«SRflT7,7X*vi2 j:OiSllSnfcti*S®®)US Kci§at#R&##$#5. es»t2*tovff¥$#@(Dbcofih -fSUZU-llflyt9$iitiT<<^Z>b0T&Z>, l/-;VA>lcd:-5Ri$4liHBl)

a 1.1-3 iciz-^A>si*ft©to{fea$:si"= **/$

sigi2«asn7ti/-;i/«s*ff (ix-ii/) rate, mmnmmmzmm-rz. x< yf- sa«. eie^b*es^'i/-^$gTigfi»KicSAsn?.<h, k-;t/6m##imt:g

E® =kxl:ttBSilAlB]C*<ee/ii%'feV. SF=1As'tt$£ ft 5 *[6] lc 1/

-ll/<hliSS^H7)tn-|/>'i/*SS:lj-?,„ l/-/F53$0C0$U. im#iH *Aftttffitt;: Ltfectt, mn®)WiZi'-)vm:£i}aMznts;rf£,&m-r&' zcot^u-)ia>it mmmb&o. *•>®mmcsis^ia@v. aa • isat(tsn/tjgi4^Rsss^»%seT#«s-tir5= c

®i@®@flIX'lFdr —£f#X>#jK©Sr5?tCd: 0 , 4^lKtStg/istSttWt2jt#^tl, tifIK <h$$®MtciWS®iE-a-fi7)iSfi£S;h.-E>„ £ 6 leSfiKEtoitfllil/'A t,7X*7®S®E*

tcj;DEissnr, »®-(t/)5'(Ea^n-5<3).

-4-

Page 21: mmmA - OSTI.GOV

-s-

03S»a><j£/tf—fr-i i 0

^x® ° 5- ® ¥ # 5 x)? w ® ii mx wi -xx ^ x 'm±-xcAWMmm >stA'iwmAWMm%vMm.mtt?AMCf-2\cra)m °sx$¥%$^x

4X:)W#m 'nY$^5$»¥xirv:fSS '2)M5-'ia.'1^ae:iMS».tO:*K«tta-VU

5«$6© '!#*:! (e?<.V-6-<,¥

< C) ®i*Stt¥J-¥© ’(S-nB) 5-vE5HliEttga)a<¥1i'-/lto- °9"*X

¥¥ST ,»$¥®#©@^a)i<D[r^.X^^,z--Hsr:)B»<¥¥U?33i}lal¥ ”5r¥^¥i

'Og:XU?39#H<¥0^XB»Blltoi$MtdG>$6(^0¥ '?

°¥®a0^#«<¥X-4@#BWW*M:l fr-n 0

"5i

°9r¥$f4->5

0*9) 'HX3£i}*X2¥ '(E).^

a.«S!<ffir—ifiSSSadry* °g-$^mW9¥¥gxn?%#¥:i*SS,$'XM%^iE9# '<5»-v'i5-U?'5 $:iax^a^#S!W- ”9-8«xaw#a9$

9¥#»3BB<¥®-4

in^MCOitiMWSK ®@»MUWIM 5-e t u

e-n 0

imm

Page 22: mmmA - OSTI.GOV

ccT,

CT6C6T,

m 1.1-6

#m[2]%, y-;i/Ax o,

MEE#mm (10'Torr @m) T(Z)^#^fT

>A>thA>X (:A 0#$^

^^16. 3>A>th/X>X(7)M#H, &%# &#

m 1.1-5 m^mmnmmis—j\sjj>iz£%

#g, #>

fs^^^i^/'xji/xvx^i/—<t ^rnn

AA^^;i/AAaX3-X^m0)6^^i6. A(7)^

[j±.mm

A#::>+h

X/X—f 3 XxX+h/'OX

□ — X U — A

□XXA—n-o (Soft If)

m 1.1-6 ^E%-e{5Emr^i5i$fin^E^iMu-;uA'>;Sit^s^:^(D^^:

— 6 —

Page 23: mmmA - OSTI.GOV

5 61Mt;>XxA7)tt8$S£nTU5„ g 1.1-1

Bl 1.1-7 li. 6#icl.x-5ro»t3>7?>-t)-y':>XTfcD. *S

la>f>t. -Y hn>X'f •y?L£-ett5ro®J1fl@&T#!ij££ttTi->.5. mi:

|Sili6Rfi*S$il/-^^>»''l.x. f H 1.1-8

H. 4I*l;M.x-5©*iH©ea*ST, r©rtgBt:=N>IMSS»$ISBSnT43 0. #@©t#*0±B;i:gg#mT©6©A#

f©*i:_ f©*i=, i±*^y

7X*-xfB^s^ttl-r-57t»0-fe>+i-©e«ffl#- h7)$2»FlrfflSShrv-.5„

1.1-1 *M%T*6Effl1"-5=i>7:>-y-/<>-5©ti:t*

#### 3mF

lOkVDC 5.34kV)

150kJ

**MSS lOOkAp

*g»D®uas 1 0/10 #

-7-

Page 24: mmmA - OSTI.GOV

1.1.3-3

wsfffiKv. +©ttigsffffiufc. c©##©a#ia, c®»«sw3i>t, mg6K#O^TSS. «»SlS0fE§tt++0«i!tttt, Sbn-5M®fflttC*#<g#t

h 1.1-9 ®*'jttf^'jf

>S0*H Wt77A) TB„C >W.mfoBt(Dffl$: ->-)lAr A'x^TinE-t-B. ©*(:. y<

/ui/xigE6®xu. ATX"4+x7A&%g$*5. +x

7A0«Sf$. ArtfXiifclC. 0 1.1-10 tt.

w##0#m-c&6. ex-/*^K0E*iz>-y—cj;o. $»ff»ii8EdnT0-5S$i*i

Sff*0E<b$iWaicEAX-T^

Sl.l^ldS-rj;5lc, 3 >+•>+§*, IUi(ttA'Jf>i^'f+ 77A0MJ*. if

88 SIB. X'^f-V77AtCSax.5EA (^HttArtfXTSDELfc) 0 4 S;ft£$'Z U/fcEC 43(45. A°+XS8EB:AiS. X*'r-r7 7AiKSICJ;0 4-f5to*4Ei*6KE4ieTlffli(6$T

©mmmm (sser-fl) shu-hicst. catii

+ 0, ##04E#&R43^%)'o t. 3 >A'>-th:jJDX/2lEI4200VT$>ofc. No.l~No.4

0*ffTI4. NO.50ASJ: 0 t)tox/4E07)if607)i. cnttX'f'VX 5 A0lSff 7)1+54»

Jf0- + f#oT+?.+', C+m+E + & + (f5 AX'4 + XXA7)1@mi:*mL,X4/4*T&5.

A A5/)1. SE6~7aE(0.6~0.7MPa)@l$T'tt. KH*7)$+54i6illce*4+5*fr ICiS LT

-8-

Page 25: mmmA - OSTI.GOV

m 1.1-9 m 1.1-10

e 1.1-2

Exp. No. 1 2 3 4 5

W*[iF] 130 260 260 520 2000

BSI@[ m] 20 20 20 30 40

####[ nn] 50 50 100 100 100

SE[MPa] 0.6 0.6 0.6 0.7 0.9

300 -

Experimental number01.1-11

(DrTr^^im

—9

Page 26: mmmA - OSTI.GOV

No.5(7)j:3l:,

<7)m#&40an(:m< L&. ^(7)$§^, t) ^ < "V 7 9 A11 @C <h H

7^<7lo^. L^L^^6500-10002F^J^(7)7>x>th#m-mi, y<-\"77A$r^m

^(7)T, 2000fl:##^±lf^. ^(7)$g^, 320gec±10secl:7lO,

^(7)ae, mmmi:%A^a/:/^F7#^(7)#A

fgH^l.SkAT&'D^o J^±(7)caj;0.

200VJ^±j!]DX.TL^7(b, #^)^1#AL, ^#(7)^#^#66T#^%lC^^0, #^l:l

7c# o', i—f?)]/(0X^)1^ — mUniT-?) bCDCD* h: — f7 m Mt II ^ II i: li A L /£ A -d ft o

^#$#^(7)|o]±^E6^l7c. J^T, *#%TI1,

O ft o

^:l:, ^l^l:^^##(7)#f^^^6A&7)lC, W 1.1-12 IC^Tj:77^, ^#:^^yo7

7<;i/mi^##^MmAx>;m(7)##mo%a^i:^mLA. mi^^m^aTi:Mi^6o

MU Ax > A'A l^ltuti $ il, f(7)-p|i^X U 7 h^HL^ %# A—7°lC## LAo M<

^%/7iE@(7)^^mT^a<#o #), A(7)%a<LA. m^mAA6A^I:, ^t>th^#eT6^#^j#A^(DT, AOM&AAnx

3-7°TmO)A^C(hT, xxT7/7(T)[E|^m&(h^m^^^^o ^A, ^jKLAB^^A

Itt 1.5g T $> o ftoEl 1.1-13 (:A>#@mai:l5ij'6, ^^(7)m^yn77<;F^^A. (a)ll,

^#I16A, ##LA%#A-7°(7)^:gT&6. (b)ll, (a)(7) A-A' ^(7)gg^(7)#^^m#

{CLAt(7)A&^. /^;i/7#Dit^A

A b 3.00 + 0.05msec ^ 1C, MfflCDffi

#:AA>#@AO#m$A, AAA

b$9 30msec (7)^1:, llchA(H'(7)B

#A#m^AA(7)AAA^. mmi:

$<]

150m/secT&oA. ^A, El 1.1-13

l:AA7°n7 7<;i/ll, ^cEK7)#M

#^#I:AWT, ^l:M#$AA.

(c) II, ##3tSW(7)y<A77

adhesive tape "... . . . ...lugh speed rotating disk

ei 1.1-12 m###^a77'<vi/;m^##

-10-

Page 27: mmmA - OSTI.GOV

°§a.ti

n#nm

xn$q

i?nw

.o®

> 2- % s Pr 3 FR n> 04 S d0' ai $ r E E 3 % n 3 m ft 0 Eff 943 )# 3 # aw 0 E 0 d ft

dd

04 ^9- 0 S 3 3 d E HD- 3av ft a a 04 3 g)4 aW 4 3 # %% r 3

S' 3 0 2 3 43 d g>: % 3 e d d 94

30 r -t E 2S a 0 3S r 3 3

si e e 3 (A 3 d d 3 d d 0 04 04 A3 m \3 vS Ul % 3 0 d ne 3 M U< 0 3d, d o

o # Wd d >$ t=ta 04 % d d4 > A e ft' s 3 A 0 A r ° 0 XU

e E 3rt>n 3 d m d m > d

rx d 0 inn St 0 3 2r 4xo 04 d Pi

== m- (5® % W 0 d d o m d Si3 St % d

d M d 3 d m $%'o d r 4X- >!$ % 0 3 » d d o

A 4 3 iSX s- 3 3 # d S3t d d '4 3 d 33si

(XS

E\3

94m

0-*

#rd

fV 0m

3M

|#vT< FRy.

\3 M%

rd

Sr0

u>3 sto UiOQ St

m3

ma\v d

S94-

w0*'

3d E m

Mav3 C5rt>o 3CA OJ nuii aW 3 3<5- 04 '

E ># O Ulo 0 # d # d 04 3 04 3 £

4ft list >$ ft' U> d 3 ° 3 ° n> 3 d»§ 0 ft)o o ctm % n 0 W 3 E 0- d d54 35 0 II ft'CD St 0 3 3 0 M 0S 25 O 3 d E # E d 3 SUJ d a 3 0 m E d mn 3 E 94 33 v W g~ cnO 3 e 0 si 3 04 M

33 mQ si fV ft' 0 rt d

d d 94w @R 3 o o 3 9r E 3 d 3 S d3 3- 3 ll 1 0 0 t# M E E 0 3 % 0d r^t 0 TT

XO St d p?t % d $] ># o< av >#atC5

BM0

$$

CTQCAn>o

oft'o

$av

Is>. E

av d

404

A Ed

dM

d n d .__ ft d 3 d ~o m E# U d d 3 0 Si d 54- O 3 01 A3 0< v 0< 94 # im 0- d d ft'ft) 3 3S Or si a % 3 3 to d id # oA 3 <3 3% d #1 fV 1 0 rt o 0 d SIS A 3

% r 04 & 3 HB d Ulo 3 rt d 3 o 3 0 d 3

ov 2f # d # 04 4 d ft' 3 □? 3 0 v3 3 3 # 0' 133 E D> V n 3 04 d o d d ft>o 3 E E FSd ov si 3 0 M W U 2m 3 E A y d m S3 si™ m 0 3 3 % 3 # 54 r d 0 o atft 04 s 3 3 d d 3 3 u> d d A O xto Aw 0 A 3? d 3 A f/i 77 \y d 3# 3 # s 5Dt 0' d 04 A- rv# ft'ft) 0< sl d 94 at tti o 043 o 3 % d 3 0 # 9-v xt ol-t g A 04 §d d aw 04 M A

0 E Ln # A 3 ft 0 3 FR FRn A d 3 3E % 3 d ft' 1)6 M d n si 23ft V d 3 d d A •r-i CDo 2 % A a >

# 3 0 % W 0 d 0 ow FR i=$T 3 00 Btn m 04 A 04 3 at m 3 0 >4? aw m <od 3 r^ 3 3 d A d 94 \3 3 d > Si d A 3 dlS r 4 <3 3 E 3 r t d ' E 77 r d M g04 M 31 > 3 m A i3 > d 04 d d 0' iE EvTi3a304

rfftd0'

E@3Erft

Pressure in the injector [atm] The amount of the powder

Page 28: mmmA - OSTI.GOV

Discharge current [kA]

120

X r to3 % d d 25 X # an) d M< d° X to v~ 8 m: sl 4 2 2 r-i 2 e>s 4Ml ° o£5* d Sl F g X F W

4 3_ 8 i FI m 8 2 Si a\v g) HrX X (T#

to CDOd

m 54 t# d 3 m r X FUi § n 4 Sl Sl g 8 X •/£> F94 Sl § ? X d # m d M Mi 2>!

X-o to

o l/i x 4 2 r-i x, ' % X X8; 4 1

^|lE 0+ d 4 t't Mi X # 1 rv

n d 8 d # V x. s S MrF- F \ji <o|. Mi il am X X d 8 8n e>s M OJ M H 4 X d X Q E # 1 ad

SiF8-8

cdm

1 M 2d

dslF

gyin(Y

#DltlO

%?Xr

slw

g}4XX

n>

X

0d8t

F94

pi # AX

sl 4x 0 94 d o7T X M 8 (N ^rEE # d X o > X Mr 35 °

4Xi

S94

s* EE□ 8

d si011/1 sl

f-tX M r

sl4X

#M

X8>L

8#

4 MiX

o< m e>s T §£ F % f V % X(X d 8 E 25 F 4x F S Wi o-

X 1 Mi d8 d CO

dd f't % X E n

8 X H 2 U)o n d r 8 X Ei

EX

siS

d 2™%K)

#8

gH

8*0

oB'a>n Sti-

sl MiX,

d 31F si

# o % X E □ M d E M 2yMidm

o

>M*

94

LnE

3

7?3ya>od8*

94

5?

HIavE2X

XEFa

%r 4 2

F

slF54i/i2<

XIFEX

d-

4avF

F

X()4

54'UTTT3d)f'l

%

E83i

F4XF8

% d vT 0 3 rt o< r 4 Ar E n>o x V 3t n Hi 3 EX F 8 J"'

to 4 x PUUH 4 2 F n 94 fi4 X O<3. oo M 0"' SI r X 8 X W X8 2 m 3 F E r M n\vd 1305 2 4 X V" F d A8* d d 3 d d F X )# IIe>s & g o

f^L 8 Mi X Sl t't % 4 #0 rv

rv 25 H H i# Sl sl m Oi-TtT ° r

Page 29: mmmA - OSTI.GOV

CCT(l3kV

1.1.5 b4c mm&mBf$.{4)

g^##^10XiOmrn(DSUS304 &%^m^/:. C(7)&%e. @#^0^0. 10mm

^(7)##^f|:(l. #8000 (D+h>H^-A

1 >/g y h&/:0. O.lg 1/zm @^(7) B4C^#^^#6H^o

^ 1.1-16(1. ^-(DB4C#Wj^#mm(DSEM#T&6o l#H#(7)^fX)m^(:%^o

Tl50. #0L^C(h(l%6^T$)6. C(7)j^#(l

fto EPMA(Electron Probe Micro Analysis)!!!: 0 StlE5HJT?k'iJ~D Zzlp^:. B h. C^'^SbT

#^C^AT^j;3^M|pJ(1^61l7l^o/:. ^/:L. C(D#j#m^T(l. T# SUS304

(7)^#^7C#T$)6 Fe t) EPMA

-13-

Page 30: mmmA - OSTI.GOV

0 1.1-16 B4C iS#£EEffl<7> SEM <8

■e-TT. -B.zs#6K^'®f$snfc_hc, seicetiiTiSifLfc. -etoiss. mwit,

(Dmmzmittmvx. s«s®ewh±#l. &###&*<T6ct

5 y 3 -y h L fcSElCM vC, |9|1$t;$0 EPMAE# L fc#65S:,

Ttthro Fe ItiStiJKWyTCftofc. lgFto*<h 9 y 3 y h LfcSErolfrBBISH 1.1-17

(C7n"^0 Xtll/l — ^7 — 7\^\y i7 Tti 60 U m ITSi -6 7/1. ^ ^ iC 30—40lim

ggfflt.amyf:. -SEroEStijoJ;^ 20nm g$T85„ SEM #0KBiSi'^tt. SUS304 S«<hiS**6Er=flCSi<tt$IIS.snZ3:^ofc. c

0Slf6E7)s'S$i:d:<$-*UTU5C<h$7ELTV7-E). $fc. -»7j:#MMTJ;<

M.btl-5 J: $ b ICS?l>'{||g£ *lT(A&tA.I tfr b, ;©6

E tt # # t; » & T *> 5 C £7)17K Bt $ n -5.

B4CiSWSEi:iC»»*® x!£@tFr/-!^->£0 1.1-18 (c*f« CCfiili, 0 1.1-17

0 1.1-17 (a). B.CSHS)* (b). B4C ;S*f$EE®«(9v3-yh)

-14-

Page 31: mmmA - OSTI.GOV

±-5ic, <miktfmtLT^ztzbmio'Z-F. b4c t:*

hM,bilTiA5, B4C rolSSttli&K®gKEfc«fcn

Tl'5Ct?:SLTl>5. b (7)cfc 5 ^JrbKtolSiSittroS) U B4C 6ai7)SS)j£$n/2b<htt.

S*®-ai5>E0, btlWTIC^fe'r^lli/j:^. fcfc'U COfSElCbi. Cu 0®rWB?ST'#

6A#^TigAL"CU6. LM 1.1-18 tCliS L-TtA£fl'7)i\ Cu 3 X HjUBtf/Tb-X

6# FMbXiTb6. bffljftiWi, EfetcS;ttffl6ny5X'v$ifflS38ESXi1b(7)=btoT*^)b

iWoti'4. croife)SSHSi$-. Mxtt Ni w Ices-Kxfcig^, E*l:EA1"-5 iErl®t*ffl7)5BStottET»]b»ica:ftUrn5« epma v-y b>yic<ky Cu ®»tfr£

'ftifc. ^®*5S. B4C Cu lilALTl'Si'^fc.

Cu LTEAUTl,'5.t)ro^A¥TS5)CbAtEb7)'IC/>j;ofc„ 0 1.1-17

TUbtlTU-E. X$l0tt/1X-><Z);AyXX5A> H I: 73 1a Ttt. B4cSlt6E®iSffAi'

m< U&lzifciK ^®‘56S7)i/hS</j:-5#*l=]lc*oZb. ctibAO. b ®;x-y X X? ■) >Ktt. *5t)l:Tit!i® SUS304 Vz)s#x bt!5„

EPMASSti-tlrTiilREFbSK® B/C®BKtt5:5RAAc. 6E®658ttH. gflSi*®

■htliitiRLT. eA^biSAs’ieijnL. SI«'>LTH5ib

Xbtl, l$t£B/C=4 tfcoZb, ££, bT®##HE^I:abAba^by:. it

fc'L. $Bl:lEfb*'XS(B203)®ieK7)5®l$VT®-5iiJlbtttt3cy'b#Xbtl6.

~lO%i#®«i)iSALtl'5. J0.AAO. C®&EHKe,#b*MR%bbA(@tXlt.

M0&EA&6 b ti!^i5'o7c.

o cu

Coating

Powder■ ■ ■ » 1 ■ * » 1 1 » 1 » 1 1 ■ ■ ■ » i ■ * » »

15 20 25 30 35 402theta (deg)

0 1.1-18 X

-15-

Page 32: mmmA - OSTI.GOV

1.1.6 S§8»i3J:tX%i$OSH

>i§M?£ (SSiaiSy^Xv®#® :

Electromagnetically Accelerated Plasma Spraying) <hCD S K-S: fH % U/t»

SriT'H#®lcBETifeoZiSSl!,'S • $fc. P8SK*

<hi; j: D. $*cD«ejjai$7,7X-7iSStiiT'tt^FiiItg-eSofc-t:7 5 y XX#

totoSttiScDSMAS nfl^C^ofc. CroSET'COX'xXXiiStt 1.5~3.0km/s Sff TX 0 .

S»KH-XI9IC43iDT#tii£h-5SefiDj$E*ttto 10 aETfco it. B4C

R^BtiTiSIt^rfTD £ it. JKJf 15~30limgS<D@1®X'®#tt7i5|®<. ISStttoSU

4-ma. A05*»ro»u6SS^St"-5t:6i)lC. 1 ->3 -y h Sfc 9 <DJ$Ki$Jll6]±£ B

$t. SiEXa -y h®$[6]±cDE«ffSto^MSfT5. iSM&flg

CMUTtt, ti8«KJ3$$. etSttcDffflSffU,

IBK, mSti&IMZfEgiTZttblz, -f*>H-AX/Vy X V >Xftlcd:-5 bn.bcnH

#W3t®

1) Xt-i it f f. X T 0 X,38,203,(1999).O.J. Buzhinskij, Yu.M. Semenets, Fusion Engineering and

Design,45,343,(1999).

2) T. Komatsu, Y. Kakudate, S. Fujiwara, Rev. High Pressure Sci. Technol., 7,983, (1998).

3) ##W, )Slt8($,1996 ¥ 5 R It,P.86.

4) tit® "6.. iWS'JH- MSgffH, Ul*lD5/t. #ttK±,

GID-01-1.1.

— 16 —

Page 33: mmmA - OSTI.GOV

sg2s

m miw.t&Mmti$.mm, b „ sEiMsssti

• <SW16tt^l8iSBfttt6(DiHHt$#SWK4^VT, &####

tt ® ill ft SK^ S $ Slift to $ B ft E & £' ft a ffl L =fc o 11-5E (7) T * 5 „

(D tmmmi&mtim650‘CJE±®gHfcSIBfii,ftft®'CB:ftt££:frt'5>6E®l$ft«cOM%6Bto<h LTH5.

*E9EH- ASBftttm^siPK^iSMiSlc^O^fiKI-^Sffijs^ai^togfflSaE^x

Ay Xffift <fc Dfti&lr -5ftllT^b/d:oT®-54 SffiffiBJIftoixTIi."J 7 U >Ei£ftJ: 0 BN S5g*5=ttXBN:Al ifHEfEKl-. E® Baft'll EfftfC/A cBN

^w.nn^fBtt\z^^mm<ntz.mz 1 5xa>R±®me»ft:f &EE##L® *x *e%ic*5^t, ai scat:j:mm&AtoJT S -5 ft A /»iB b ftft b ##® cBN Ktt, i®E-&js£i£ft =b 0 ff fi Cft

»»® Ai ©iSttiftEO isoceSBSEfttt

A^ETEftAAmEAEcft-oft. ft® BN SftSIlEEEEXft'-AffiT-fEKUfc b4c EEfttiiEUT. 650C-7200sec ® flHtTTiMibtt Eff fl l fclSH, B4C S-5£KfttbA, (StlftWttEETft tWtifr-otc.

(2) *B«EK®Sifi

EB#X"EEE> H"l$]iift#T®M%EEBtoA UTllfi%EfTbT®5. 7 AxtSv-T X □ ftX'EX'V CVD ®Xffl1*7‘n bXE7" (TruDi) X', 20kw TSSSiiii! nJigft A 0 . XEEEA H®^R%EM*ft. eftEft-mX-fEEA K6fiMI$Ltxft«T$)E/7, $

®ff?i243®x, a#ea?M5mt€> K©-&i*OT8irc-£fc. */a dc ^7X7

CVD SBftX nJffittSrW^fc. X®#-S$, XEXE > H /4s’AJtbT-5 ft blfi'rst)''-? ft» |S]#7 AXESe-i- i7 □ ft7'XX*7 cvd lifti5tx 7 'J XXXX'XXWfiJcSgXfTbfc. 6-20nm g$®E / EX X*® $6,E,8;E b ft E XX XE> HEEft-E. ft XX'T*, tftli 0.05-0.07 gSfflfibfl XEft'bfc,,ft®IXA\ #R#%X LT r X 7 X E > H ® i$ MD X ft ifi <b A X □ X fc: X X A y X ft ft

ft«j ftcky? ryEEE>H#K#m®Em«Aaftmft#fj ww^Eftbfc. s bix

BfW^tLT rEii«i$Ex‘DEXft«j ®e7EXffofc„

-17

Page 34: mmmA - OSTI.GOV

2.1

2.1.1 mmmMbfiiWUz <£ 5 ;S>£ilh£fflJ$JiSlti#j7 7 < > 4z 7 $ v 7 x t > 2 — (o<li)

2.1.1.1 get)

(-6sot)an-x'smmim&tzztismtt60 7pj7«t ?iii:-ewiIiB-C-N#.*m $• in v > t §• ®i$-t 6 o *«-ei4, -e<7)-»3-ff

2.1.1.2 li Utoic

%*##&?*& 7 k-A##, 7*7 XV<o 69 &SltS«£ ffl W i§6\ ES»2 Lz>V&-»s'6, KT^fiS

7)>oSi$X1Tii tMV <h t) W & W »,BCNjiWfiV j: 9 W#

l <, & & v w v. bn%^o zzx\ »?ex-

14, ^iWilTl'oSfi'efiibtti-f X <h7)$-e§ "£, Viv±EX7- X XyXViSli (I/-&

6 2 ^ ^ g6t hf 60

^ (!: ^fL6]A^^BC2N(^T

2.1.1.3 Hlto>£

[EI2.1.1-1 f V 'ZfUi

2^(7)X/^v f V v 2 7C#^X/<v ^N#C,

& 1 —V K^ > h^ 60

^/:6^ 923K :: <b^T#6o

0O.4mPa±rK^#^L, 7;l/3'Xf# c## L L h^m

-18-

Page 35: mmmA - OSTI.GOV

Ion Source for Sputtering

Power SourceIon Beam

B TargetSputterParticle,Power Source

SampleHolder" Ion Source

for AssistingIon Beam

Ti Target

Ion Source for Sputtering

Cryo Pump ----[X]------Rotary Pump

@12.1.1-1 £ U

##&#t:#Siwafer(100)&#V\ f-yy h##C(i#J^99%up?)B(Boron)j3Z[f#^

99.999% (^Al(Aluminum)^^V^o f-y'y h(7)%/<v^V>y(±#J^99.999%(7)Ar

(Argon) X V \ 'X > / s' — K ^ > MUi, N2(Nitrogen gas) <h Ar 7^

N,: Ar = 3 : 7)&fR V'/:,

13 mPa> 773K, 3 r.p.m., B & lnm/min

300V^2.1.1-1C#

2.1.1.4 mm^

g]2.1.1-2(:Al^AD#^^fb^-WrT{$#L^BN:AI^#(OFT-IR%^^ Al^^O

m^0at% (DBN^Tld: 800cm"', 1100cm ' 1400cm ' 3 ^ fLT^o

800cm ' 1400cm ' ^ (i, f fLfjThexagonaM@l:^0i-/E)^^## (B-N-B

bending mode) jo X (7#### (B-N stretching mode)T\ 1100cm 1 ^ (i cubic #1:

^TO-modeC^liDf AI'^j[lll#^;jni-61:^jlT, cubic^BC^Sf ^

4.8at%^±-C'(d:, hexagonal#l(:#l,L;f/E)#4Xl:-^^'y^^c^o Kolitsch6(±,

—19 —

Page 36: mmmA - OSTI.GOV

2.1.i-i i&mzkft-m.Material used

Substrate Si (100) wafer

Target Boron : 99%upAluminum : 99.999%

Gas for sputtering Argon : 99.999%Gas for bombard N2 : 30%+Argon : 70%

Sputter cleaning condition

Treatment pressure 6.8 mPaApplied voltage for cleaning 1000 VTreatment time 300 sec

Deposition condition

Treatment pressure 13 mPaSubstrate temperature 773 KDeposition time 120 minApplied voltage for bombardment 300VDeposition rate of boron 1 nm/min

A1 addition (at%)

B-NStretching

mode TO-mode c-BN Reststrahlen

B-N-BBending

mode

Wavenumbers (cm1)

0 2.1.1-2 Al BN mi<7) FT-IR

-20-

Page 37: mmmA - OSTI.GOV

cBNiW^OAl WS/Jllli, cubicti\n&l&Zmg--t t> Z b SriSgr LTV'StJ*14’, i4 4

> i) < ,fr;ifc<:<e>cBN»>Btitjm»<» *ifc t #* ***.

BN:A1 iS SB 4> t| S g, 04*1 g|SEtj O « £

iS88co@£!i, 4 4 4 >-r> 4 £fflv'Til£L£,, 4 4 4 >4’> 4 t 14, 4 >4'> I- i'fso

mm t APM^ttA-g-b-ti-^ser-, E6Eai±, a-,t« u ?*-*&*>*- ttm tx

*-B„ H> *-xji-eii, EAESeK#U-3i44#, 4 o T-e4>ES®tt*i«£L, @SU-$8r44>o LA'L 1 M mti.TOSBu>il!iJ£UI±, +»%m£X-l±mBW£ffl£t 6 Z t l±@#T*6o 4 Z: JIS StSliSg 2000Hv 4 X\ AISI $.fS"CI±, ESA110 i X n >44

±»«£<t4'o-cijt}, ££$$t: 4 5S@$SEW4<7)FF«Ugir@tot:|gi<>6nu < v>„ 44

T\ S$I$*7F4i:Ti!£n-5 BNMSJEOTMti, *H Hysitron tt®X>4 >4'> X i Sit*! HEItSSU’AFM £-fiA.-g-;b-ti:/.:4 4 4 >4'>4--> a AFM *S6 LTv-£><7)

-C'ES l gtiti-tOSEttil fc ESiJ-e £ £ 4 |5]B#UttS<7)«Sf E 4 >4> 6 S-ife-r; b A?r*#4»0 £ 4 US £ K100nm@$<7)|4#T- <> il£As't>TflgT** I). 7 4 4A«J:i WM4:# W'U

^coAE, 44 44> h"4riffl$AsiiT|gr-660XSSS, X/U; X >) yxti ET'^S LA:$EcOI*lS|ie4)l±, #*-C#GPaUmf6o

U4)@W8w#K SKrotll, iSB8BsK<7)*ftU 4 b #x T<fc -E> „ 4 EflelilSgti, 4lC>£

C4£|6]UJ: i)5IEB4)fcE#itB*U9-*l5ti4> (12.U-3#®,). SEEdrtSISS^uiSe

U, 1850 4FI* A'4 in GET45 4 , ifJI£Utta6Tfi!<;r4 L4Wi Stoney 4* £<5lo El±$®<7>$B

LTe*E<7)l*l61SE-43S-aiJ£LU. 4X14%, til: A, t"<7)|*ig|5E43COil.i|£!±ffi t Sftl L

Tensile Stress Film Compressive stress

Substrate

a) 31 Silk* b) E8slB*

0 2.1.1-3 mmpi&fctico-ftm

Page 38: mmmA - OSTI.GOV

195O^fU:^0, Critlcnden^^Murbach^G(:j:b^

aLT%o

A:xijt6 &

(1) In mif ft-{‘(DV'-f &?jijj /E(2) MoiHiOK

Ift U-f . AftKb 1: Z b ^ 1: 6#05^ &6

-e^6o

Es ds2 d a~3(l-t>) l2 df

{fib, 8~48 (/»8) ft^t

4 Es ds2 S' a~ 3{l-v) l2 df

Q : Internal stress

Es : Young s modulus of substrate

ds : Substrate thickness

5 : Curvature

D : Poisson s ratio of substrate

/ : Substrate length

df: Film thickness

M2.1.1 -4

#Otf7 T -f Stoney Z 0 5^] $r#lh L^Zo

El2.1.1-5 (:^#L/:BN:Al##OfE^ AiamOt#a#^5at%OBN:Al^

17GPa^^L/:o CfUi, b%^%#<b LTfRV'GfiTW/BTiN^O^

^ ^fe]#^T^6o d: < 2/:Al^

-22-

Page 39: mmmA - OSTI.GOV

!$N

-a_^

3 ^^

^sia

op^g

Na^

iK-r

iTd

O-0y

yr>tozrv

H?

4n O

sh"4- 0) rv rv 94.O- >-U

rvd

3#n>

5'O

d

E§rv

c#yE9->

0d

4-93dd>

r3#ti-

4*yf9

( < E 0 d

rv45r#yyx

MiC

3o>ydw-otoVerao'3m

M

dd

CN

I3fd>

(3

££U

to 8z m3 N}^ w-

?> sn

m >3 3

rv ,S94-otow

ttin

=r

1

□4 rv g

i i3>94V0dSt­o­

ryimfit

3hr$nrv

rv$S3Vi-□

-4I

y-

o_ 3

d pv

yotoz3dEV

d#E

y-

to

ONn%$#■

n4

r3d 3 -o

< co4- %

st-

d 3 d °CM d

(V rvyd ^?# ^\mS|= X"

3 -e

3 45e v

tm# v^ %

rv f vd94-

toZ

X#rv>p3

^ P3

AVr

\mgm

(3oc-oco/

y-

d

rvs

4fr

^ p3

ottT

# d^ 3S VVr» atydCM

4-dt <Mum

# y a dr y

94V O'r v>m#

M O- 41VE yo ' n

» ^

o- d3

MiJn to v ZM- M-d I rv x?

304

do

X#

#3 0^

o-

3K O\

ri ntfff S3 (3 94-^ pv c<mm 5 &-3 v 3 31 # P- 0 d" 93

8Wa

d

H)|nn

^ %/ 94VM dg 3rv 5$

E d

r- cy93 4&% §y r t" CMrv ^3" M} y d & ^34 d m rv

rv

% \P 93 Hrx # n E9-r E

toz>

3rv#

rv

p3#

^ °y frx O 0

doccr

3

ErFd

3

yd

p3m

4-rvPrM9-r0d

3

yrvrvo-y3n^hr}E

53nxd3n[c|-

33o-

m#

everd3yrvrvo-

ax

9+

ccr

ra3g-t <

ydV

Hro

E

CDZ>SE >3 i>#QX BtPr3 otomEl33 x—z>

ti-Sa4%H$

Hardness (GPa) Internal stress(GPa)to 44 ON , , I

O O O O ON 44 to

Page 40: mmmA - OSTI.GOV

Wei

ght c

hang

e (jig

/cm

2) W

eigh

t cha

nge (

|ig/c

m2)

923K

973K

1023K

1073K

Treatment time (min) a) cBN

1023K

1073K1123K

1173K

Treatment time (min) b) cBN-1.8at%Al

El 2.1.1-6 a) cBN, b) cBN-1,8at%AI

24

Page 41: mmmA - OSTI.GOV

gl2.1.1-9(a)(j\ as-depo (7)

depth profile 6

o

4$ 4 w-VO toOJto

r^i3*-oto

8

Sn>Ti<hr

tX

4n£4PX

VOM44-

(X4 <1W ~r

8^ x6^ x° >4P Or

< *toz

iv- Eos- ^i'

| ?

OJW

3 3

#-ti;P

cvP^-

Xp

4A4V(T,

V

4toXto33

to*h

)#+03z

ti- (— "—*

P 4 %>

xr m

v 3' # 4 ^a n 4 K-aft £n^ 5 ^ POr

rvH?34

3pX4=

c~<4

% 3 403 Bjn n

3 ^

4 ^ ^' P^ #{:^ ^ 4

g ti- <"m p ^

4 ti-Ok44>

m ^ti- 'a #hr

Or >O

s>r« 9-r eX >to V3X >0

4 4^p<4 p& xp

4 r0^ 4O <r(XOr4p4xvfV4I i9-rO'toZ

4 P (X° ^ p r 4 4 r Ml^ -jti- P

— p 0003zoo&5

V ti-% S’

r 9 £o<(i4V4v 4 14- ti;4m P4>joMwt 4 pi

3 4

rv fv% rv

rv

4 f v^ P Orti- ti-

>4oo£a2 ^

^ 4m Q) 14 p ^ # 4Ar <41

4

Z r403Z

> 1

4# #

3 8^ ijma^> n^>$tf ^5#n H^ 4 3 P

3rvF3Sn>

m m 4

r,03z

X#M S 44l i(c& fv £x cf*-3rv4 #9-r X"

4

Ok4r>03rv□>

3 41 piFf t04rvti;w414CnOr#P4&if V f V4^ p s aOk4pi03O44ti;44 4 (X

ti; 3 4 ° rv$! a ti;4P 4 vj4 ti; X 4(% A 1194- fv Vr> 0 pX 04 03Z 4<-3 (X # 4f v 541 Or 3 11co- ti- iim (Wm 4 n> 4

to03zi.o-‘+wtoO000503o

X2C+z

cro05

03Z3

Or

□Khm03

g 53

S D>PJa *

P ?X

2 ^H- ^ii^

303zirnti-

$ s"s (X 5 03^ Fv^ o|>ti; ti- ' P

1 ^

Sn 4

4V

(X f v

Orti-4nk4eX

4 n>Or

to 00VO3-2 <frll 3ni? to

toti-P=r i itoz A571( t Pr

4pi (X4 totX 0

3# rx4

11

XX- Mti; 44# #P oh4 84 o3V <o_eX Cf v o'Or 3^ti- 4P (Xf v fv34#

Orti;A044 (Xnto 94z

Intensity (arb. units)

Page 42: mmmA - OSTI.GOV

toCT>

f J%

r i 9-r CM

33-dds93E<v-

XA

d

d

94-

n3X'3Xf#dDf\

CMd

f V O' <r0d

-dd

Xt

3

of94-

% # I *

ddvCMOrdcdX'3CM

94

r 4- d x;

M fv

# 94d d

d 'mi0d 0to

zss #

3 t 1d #<- 00/X Xito Mrn dz00Xi dd\ CM# rv

rv(V- dw 3n n£rz dd 3nF d»rvr* dd Cm

#rdur Xi<- r-3 <-m 33 %3 d3 cfflldt Erd dd rvd rv

d<u d3 04

j#4®M

§ t <X-OAV933nl4-v^3

3r < 9-r 05

m#H?d

~Aat4CM

3i i3^CM

dP

M

N>

•Jl>

3

d

rv fvF$ 3 3 gi:d #] 31 Mo m-9 dI;

3 I3 $+ d 3

to"nm

g

A r- ' d ^ j33X *

S Md S04

rCMd2Dt-CTCVH?d4N

votow%dK)872CDO3dd

(M ^r

Affl d d4Tm 3 d pF ° d

dd3I 43c

O (<^ rv ^ 90s m

3 d2#FFFF

r *

£4□dCMrvrvdorUlo%ndi3

rvF#%

#d04

CM

I ^^ 93' 3 £6-►. ; 4,,> eM ^-v

d °# 1 fv

^ *

00XlMidCM>

rv594-

a*mn>^ P3R+ Bd avr 4-m &<]X f V

rvd d 3 3 v mXt n}3: 3n ^

GdZ

94-

=Ffdd04<r

ms&

3r t 9-r 0 d

mr

xi-av

d3#

>4i

p3

r*

rv#H$p4%'

Cdmf

d3m+it>o-4lmvPd

totont3

3cnm+i>

rvgo

#rvrd-XdVd

3wX-/0oxr

Vdg(1 9-r 05to2

P3ds

dCm

mddtoz

Cm p3di

rv d % ° ^ rvd 30 m? d Affl° d

v3

I#H$toZ

r < 9-r05

d

ton?94-

1 i£Ua-8o3*

d-3o0d

rv(Vo-$dCm

to

*

I i

md

rd

utouoM3rvd

3>

fflm?

dm

rdd^3£X

vo3dCm

o-%Sidd3# t i^3d

o-d>df i

cvrd

CM

Atomic concentration (%

Page 43: mmmA - OSTI.GOV

Atom

ic c

once

ntra

tion

(%)

100B.cfli

0 10 20 30

Sputtering time (min)

a) b4c film

100

& 75

C_o

2S 50(DOCou

• E 25Eo<

00 5 10 15

Sputtering time (min)

b) B4C film (923K, 7200sec)

Stabilized-cBNM

Sputtering time (min)

c) 12{bSti£f£<ZM£IIE+ B4C film (923K, 7200sec)

-27-

Page 44: mmmA - OSTI.GOV

2 ^ C B^C C BN ^ ## f 6 2 & T FCT y o ^ h (7)—c

1) T. Komatsu, Y. Kakudate and S. Fujiwara, Rev. High Pressure Sci.Techol., 7 (1998) 983.

2) S. Kurooka, T. Ikeda, N. Iwamoto, Surface Engineering: In Material Science I,

Ed. by S. Seal et. al. TMS, Warrendale (2000) 357.

3) R. Geick and C. H. Perry, Phys. Rev., 146 (1966) 543.

4) A. Kolitsch, X. Wang, D. Manova, W. Fukarek, W. Moller and S. Oswald, Diam. Relat. Mater., 8

(1999) 386.

5) G. G. Stoney, Proc. Roy. Soc. A82 (1909) 172.

6) E. C. Critenden and Hoffman, Phys. Rev. 78 (1950) 349.

7) H. P. Murbach and Wilman, Proc. Soc. B66 (1953) 905.

8) C. Borse, TZ fur praktische Metallbearbeitung, 66 (1972) H. 1, S, 1/8.

9) I. L. Zagyansky and G. V. Samsonov, J. Appl. Chem. USSR, 25 (1952) 629.

10) C. G. Gofer and J. Economy, Carbon, 33, 4 (1995) 389.

11) L. E. Pechentkovskaya and T. N. Nazarchuk, Sov. Powder Metall., 7, 223 (1981) 83.

-28

Page 45: mmmA - OSTI.GOV

2.2

2.2.1 T'fJDJS^TC V-fSM&'fa*4=9f 7 (7<H)

2.2.1.1 IntroductionThe second system delivered to the FCT project by LEYBOLD (now APPLIED FILM

CORPORATION) known as TruDi (standing for TRUe Diamond) is a large area coating system, see Figure 2.2.1-1. The plasma of TruDi is produced by eight parallel linear microwave-radiating structures located in fused silica tubes, which are used as atmosphere-to-vacuum interfaces. Driven by two 15 kW, 2.45 GHz magnetron tubes, eight individual plasma discharges form circumjacent the silica tubes. Care has been taken to properly design both the rectangular and coaxial waveguide sections since power levels of up to 15 kW c/w can easily cause high voltage arcs and also result in melting of the waveguide material. Therefore, the individual impedances of all transmission line elements and all passive circuits are fully matched to the generators so that operation without reflected power is possible. In the TruDi system, the process gases, mainly hydrogen, methane and carbon dioxide are dissociated and chemically activated by the plasma primarily on or near the outer surfaces of the fused silica tubes, since it is not possible to sustain a high pressure, contact free and flat discharge over areas much larger than the wavelength of the applied microwaves. The maximum operating gas pressure is currently in the range of 4 mbar. The maximum thermal load on the silica tubes limits the process pressure. The surface temperatures can easily exceed one thousand degrees centigrade even with airflow cooling on the inside surfaces of the silica tubes. The substrate can be oscillated during the deposition process to compensate for the non-uniform plasma densities inherent to discrete linear plasma sources. Since the overall thermal load from the plasma can be problematic particularly for dielectric substrates an efficient and homogeneous gas buffer substrate cooling system has been installed.

Figure 2.2.1-1 TruDi - the microwave PECVD system for diamond coatings on 300x300 mm2 substrates

-29-

Page 46: mmmA - OSTI.GOV

The system has the following characteristics:• Equipped with one rotary pump a vacuum of 5T0"2 mbar can be reached within 90 seconds,

with a base pressure at 10'3 mbar.• For a better homogeneity, depositions can be done on a oscillating substrate oscillation speed

is variable. The substrate is insulated for the future use of biasing.• The plasma discharge can be sustained in a pressure ranging from 102 to 4 mbar (maximum

limit due to the thermal overload on the quartz tubes).• The position of the substrate has only a small influence on the plasma shape. But if the

substrate position is set too far away from the plasma region, the growth rate, the substrate temperature are considerably reduced.

• The temperature of the substrate can be measured with a pyrometer through the view port located in the top of the chamber.

• All of the deposition parameters are controlled from a visualization software connected to a stand-alone computer system.

• The process control and the measurement of the deposition parameters are achieved through a programmable logic controller (PLC) SIMATIC S7-300 from SIEMENS. The parameters are sent and read from a PC through a visualization software created for the system. Once the deposition parameters have been sent to the PLC, the process can run with all the safety interlocks even if the PC has been switched off. To record the parameters during the depositions, the PC needs to be on with the visualization software running.

Schematic representation of the system

Mobile armMFC

8 quartz tubes

I m "ilL- Plasma , X. Jr| region

Substrate

Figure 2.2.1-2 Schematic representation of the TruDi from the side

-30-

Page 47: mmmA - OSTI.GOV

Water inlet outlet

Figure 2.2.1-3 Schematic layout of TruDi

Safety interlocksFor a safer use of the system, many safety interlocks have been built in the PLC. Modifications of the status of valves, motors or pumps have been blocked, if it was thought that this action might result in a danger either for the deposition in process or for the user. For example, the microwave generators can’t be switched on when the reactor door is opened, as well as when no gas is flowing through the chamber. When no cooling water is circulating through the system, or when the dilution gas at the exit of the vacuum pump isn’t open, processes can’t be run. The process will be stop if the cooling water flow is cut after that a visual and sound warning has been sent to the user. If the pressure in the chamber rises above 120 mbar (in case of fracture of a quartz tube, or another sudden vacuum leak of the reactor), the process will be shut down. Arc detectors automatically switch the microwave power generators off in case of an arc in one of the waveguide. The reflected power is monitored and the user can set a safety limit. When the reflected power becomes higher than this limit for a maximum of 15 seconds, the microwave power generators are turned off.

2.2.1.2 ExperimentsThe aim of the first depositions performed with TruDi was to prove that diamond could be deposited with this plasma source. Once this has been proved, the parameters were varied to observed their influence on the deposited materials. Many different analyzing techniques were used to characterize the layer: Raman spectra, AES, XRD and XPS. The microwave power, the process pressure and the methane concentration were varied. The typical deposition parameters are given in Table 2.2.1-1. The deposition conditions were chosen in a window that allows a safe and stable use of the system with a closed plasma over the whole substrate area.

-31-

Page 48: mmmA - OSTI.GOV

Table 2.2.1-1 Nucleation and deposition parameters: The substrate temperature wasmeasured with a pyrometer through a view port of the top part of the reactor.

NucleationSubstrate distance from quartz tubes [mm] Oscillation speed [%]MW power [kW]Reflected power [W]H2 [seem]CH4 [seem]Pressure [mbar]Deposition time [h]Substrate temperature [°C]

Dry scratch with diamond powder 17 30 20 ~0

100010 (i.e. 1 %)

1-20-650

Effect of the process pressureStarting with the typical parameters given in Table 2.2.1-1, the pressure was varied between 0.7 and 2 mbar, while keeping all the other parameters constant.

MorphologyThe figure 2.2.1-4 shows the morphology of the grown films with TruDi while varying the process pressure. It was seen that at a pressure under 1.2 mbar, the grown film is difficult to observe by SEM. A film was grown but it is thought to be amorphous. At a pressure equal or higher than 1.2 mbar, well- defined crystals are seen. The morphology is similar to the one of film grown at higher pressure, but some amorphous-like phase can be seen between the crystals.

Figure 2.2.1-4 SEM pictures of the films deposited with TruDi with various process pressure [0.7-2 mbar]. Nucleation: scratched with dry diamond powder (nano-power mixed with 0.25 jL/m grains); depositions with 2x10 kW, 1 % CH4 in 1000 seem H2 for 20±1 hours with a substrate oscillation of 30%; a) 0.7 mbar; b) 1.2 mbar; and c) 2 mbar.

-32-

Page 49: mmmA - OSTI.GOV

Raman spectraFrom the number of different peaks it can be assumed that the film is formed of many different kinds of bonds, see Fig. 2.2.1-5. It can be seen that the film isn’t only composed of sp3, sp2 bonds but also of trans-polyacetylene (trans-PA). The broad peak around 1470 cm'1 is assigned to C=C double-bond stretching vibration (vl), and that around 1150 cm'1 is due to the mixed vibrations (v3) of C-C single bond stretching and CH in-plane bending. The presence of trans-PA had been often reported to be present in bad quality diamond CVD films that are grown at too low a substrate temperature or with too high a methane content. It is therefore possible that trans-PA is also formed at low pressure. The intensity of the G band decreased with increasing process pressure. The D band is rather broad, between 1300 and 1360 cm'1. The signal/noise ratio is rather high for the film deposited at 0.7 mbar; because of the film thickness, which is very thin.

G band0.7 mbar 1.2 mbar

D band

2 mbar

Trans-PA v1

Trans-PA v3

Raman shift [cm'1]

Figure 2.2.1-5. Effect of the process pressure [0.7-2 mbar] on the Raman spectra of the deposited films Nucleation: scratched with dry diamond powder (nano­power mixed with 0.25 ^m grains); depositions with 2x10 kW, 1% CH4 in 1000 seem H2 for 20±1 hours with a substrate oscillation of 30%.

For comparison with green light Raman (514 nm), UV (244 nm) Raman was used to analyse the sample grown with 2 mbar. Figure 2.2.1-6 shows a comparison of both spectra. With the UV Raman, the D band intensity is increased while the trans-PA peaks don’t appear. UV Raman analysis proved that film with a high content of sp3 was deposited in the film. The XPS analysis of this sample gave the following atomic concentration: Cls 90.59%; Ols 8.33% and Si2p 1.08%. A fair amount of oxygen was still detected but this could be attributed to exposure to air. Detailed analysis performed in the range of 280-290 eV showed that C-C (sp3) bonds accounted for 93% of the overall carbon bonds. The oxygen present in the film is either bonded with Si (Si02; 48%) or present as O-H (contamination from air; 52%). The silicon atoms are either bonded to O (Si02; 63%) or C (SiC; 37%).

33

Page 50: mmmA - OSTI.GOV

Trans-PAv1Green (514 nm) UV (244 nm)

D band

G band

Trans-PA v3

1100 1300Raman shift [cm-1]

Figure 2.2.1-6 Raman spectra of the sample grown with 2 mbar, once with UV Raman and once with green light Raman.

XRD spectraAs expected after the UV Raman analysis, the XRD measurements (Fig. 2.2.1-7) showed that diamond was effectively grown at pressure higher or equal to 1.2 mbar. The film grown at 0.7 mbar didn’t show any diamond peak, unlike for the 2 other samples. The pSiC peaks was seen and it intensity was higher at lower pressure. It is thought that the interlayer between the film and the substrate is mostly formed of pSiC. When the pressure was low, the growth rate was lower and as the deposition times were kept the same, the film thickness decreased with the process pressure. This could explain why the interlayer signal is larger at lower pressure.

-34-

Page 51: mmmA - OSTI.GOV

0.7 mbar

2 mbar !

2e n

Figure 2.2.1-7 Effect of the process pressure [0.7-2 mbar] on the XRD spectra of the deposited films. Nucleation: scratched with dry diamond powder (nano­power mixed with 0.25 pm grains); depositions with 2x10 kW, 1% CH4 in 1000 seem H2 for 20±2 hours with a substrate oscillation of 30%.

ConclusionDepositions are a pressure lower than 1.2 mbar didn’t lead to the growth of diamond; moreover the plasma etched locally the substrate. When the pressure is high enough, growth of diamond was observed. UV Raman XPS and XRD analysis proved that the grown films were mostly composed of sp3 bonds.

Effect of the microwave powerStarting with the typical parameters given in Table 2.2.1-1, the microwave power was varied between 16 and 20 kW, while keeping all the other parameters constant.

MorphologyThe figure 2.2.1-8 shows the morphology of the grown films with TruDi at two different microwave power levels. It was seen that with 16 kW (see figure 2.2.1-8 a), the morphology of the grown film is rather different from the standard polycrystalline diamond film. The larger crystals grew mostly in the scratch lines, with smaller crystals forming a closed film between the larger crystals.

-35-

Page 52: mmmA - OSTI.GOV

Figure 2.2.1-8 SEM pictures of the films deposited with TruDi with various microwave power [16-20 kW]. Nucleation: scratched with dry diamond powder (nano-power mixed with 0.25 grains); depositions with 1 mbar, 1% CH4 in 1000 seem H2 for 19±3 hours with a substrate oscillation of 30%; a) 16 kW; b) 20 kW.

Raman spectraThe measured Raman spectra (see Fig. 2.2.1-9) were rather similar, but some differences could be pointed out. The G band intensity decreased with increasing microwave power. The D was split in 2 bands are lower microwave power level and formed a broad peak at 20 kW. Beside that another broad peak was seen at 1240 cm"1 at high power. Its origin couldn’t be explained.

D band2x8 kWG band2x10 kW

Si 2nd order

Trans-PAv1

Trans-PA v3

Raman shift [cm"1]

Figure 2.2.1-9 Effect of the microwave power level [16-20 kW] on the Raman spectra of the deposited films. Nucleation: scratched with dry diamond powder (nano-power mixed with 0.25 jum grains); depositions with 1 mbar, 1% CH4 in 1000 seem H2 for 20±1 hours with a substrate oscillation of 30%;

-36

Page 53: mmmA - OSTI.GOV

XRD spectraThe XRD analysis confirmed one more time what the SEM observations of the samples showed us. Both measured spectra are shown in Fig. 2.2.1-10. The grown film with 16 kW didn’t show any diamond peak, but only a broad peak for pSiC at 35.60°. With 20 kW, beside the large |3SiC peak, the 3 main peaks for diamond were clearly seen.

3

si&</>c0)

20 30 40 50 602 6[°]

70 80 90 100

Figure 2.2.1-10 Effect of the microwave power level [16-20 kW] on the XRD spectra of the deposited films. Nucleation: scratched with dry diamond powder (nano-power mixed with 0.25 A/m grains); depositions with 1 mbar, 1% CH4 in 1000 seem H2 for 20±1 hours with a substrate oscillation of 30%;

ConclusionThe film deposited with only 16 kW didn’t show the expected characteristic of diamond films. A D band was however observed. From these samples, it appears that 20 kW is the minimal power needed to grow reasonable quality diamond.

Effect of methane concentrationStarting with the typical parameters given in Table 2.2.1-1, the methane concentration was varied between 0.5 and 2 %, while keeping all the other parameters constant.

MorphologyThe figure 2.2.1-11 shows the morphology of the grown films with TruDi with three different methane concentrations. It was seen that with 0.5 % methane, the crystals edged were very smooth, but quite a number of faces showed steps. Doubling the methane fraction, the faces became smoothers, but some amorphous phase was observed between the crystals. With a methane concentration of 2%, the crystals didn’t exhibit smooth faces neither edges. The average crystal size was slightly smaller for the film grown with 0.5% methane. As the films were grown during the same time period (20 hr.) such a difference is expected. The morphology of these crystals showed us that the grown films were very similar to diamond as many (111) faces were seen.

-37-

Page 54: mmmA - OSTI.GOV

Figure 2.2.1-11 SEM pictures of the films deposited with TruDi with various methane concentration [0.5-2%]. Nucleation: scratched with dry diamond powder (nano­power mixed with 0.25 jum grains); depositions with 2x10 kW, 1 mbar, 1000 seem H2 for 20±2 hours with a substrate oscillation of 30%; a) 0.5%; b) 1%; and c) 2%.

Raman spectraThe Raman spectra for these three samples are shown in Figure 2.2.1-12. The D band was particularly seen for the films grown with 1 and 2% methane. While the trans-PA peaks were the highest for the deposition done with 0.5% CH4. As this film was probably thinner than the other ones, could explain why the trans-PA signals appeared with more intensity. The film grown with 1% methane seemed to have the lower graphite content, as its G band was much lower compared the other peaks. With the 2% CH4, the trans-PA peaks weren’t so important compared to the D and G bands.

-38-

Page 55: mmmA - OSTI.GOV

D band0.5% I G band

Trans-PA v1

Trans-PAv3

Raman shift [cm'1]

Figure 2.2.1-12 Effect of the methane concentration [0.5-2 %] on the Raman spectra of the deposited films Nucleation: scratched with dry diamond powder (nano-power mixed with 0.25 /vm grains); depositions with 2x10 kW, 1 mbar, 1000 seem H2 for 20±1 hours with a substrate oscillation of 30%.

XRD spectraThe XRD spectra measured on the three samples are shown in Figure 2.2.1-13. The diamond peaks were distinctly seen for the samples grown with 1 and 2 % methane. Only the (220) diamond peak was observed for the film deposited with 0.5% CH4. This was rather surprising as the intensity of the (111) diamond peak should normally be almost 4 times higher and it was not observed. The (BSiC peaks were detected on the film grown with the lowest methane contents. It is assumed that the interface between the film and the substrate is formed of pSiC and when the film was thinner, the importance of the interface region became larger. The peaks seen at 42° and 71° were probably ghost peaks due to a problem of the X-ray apparatus.

-39-

Page 56: mmmA - OSTI.GOV

0.5 %

Q G,<*

20 n

Figure 2.2.1-13 Effect of the methane concentration [0.5-2 %] on the XRD spectra of the deposited films Nucleation: scratched with dry diamond powder (nano-power mixed with 0.25 pm grains); depositions with 2x10 kW, 1 mbar, 1000 seem H2 for 20±1 hours with a substrate oscillation of 30%.

ConclusionOver the whole range of methane concentrations, diamond was grown. When the methane concentration was low, the growth rate was smaller and longer deposition times would probably show similar XRD spectra.

2.2.1.3 Problems and solutionsSince the installation of TruDi in Tsukuba, many problems arose. The following paragraphs explain the most important problems and the found solutions.

Tuning of the magnetronsIn order to be able to stable emission of the microwaves at the designated frequency, a perfect setting of parameters controlling microwave emission by the magnetron is obligatory. These parameters are Imagnet, the current for the electro-magnet, and 2 upper-limits of the high-voltage (between the anode and the cathode) in the magnetron; one during start of the magnetron: Umagne,ron(Start); and one while running: Umagnetron(Run). Looking at the emission spectra of the magnetron (what it is the frequency of the microwaves, ideally 2.45 GHz), it’s possible to tune all these parameters in order to a have small emission range of ± 1 MHz. The parameters are dependant of the microwave power; for example, the Imagnet has to be increased proportionally with the microwave power level. Figure 2.2.1-14 shows the dependence of these parameters with the microwave power.

-40-

Page 57: mmmA - OSTI.GOV

Upper limit of the high-voltage around 12-12.5 kV

Minimum Maximum

15 MW power [kW]

Figure 2.2.1-14 Evolution of the anode current depending on the controlled variation of the electro magnet current for different microwave power in a 15 kW magnetron

Oil in the compressed airArcs often melted various parts of the systems. The occurrence of the arcs wasn’t understood until oil was found in the compressed air circuit. As the air is used to cool the inside to the quartz tubes, the oil accumulated along the antennas or in the power divider. The presence of oil increased the occurrence of arc destroying some antennas and shield (See pictures in Fig. 2.2.1-15). To solve this problem, oil filters were added between the compressor and the system.

Figure 2.2.1-15 Damages that occurred due to the oil mist in the cooling air circuit: Left:melting of an antenna; Right: Al shield that melted due to an arc along the quartz ring used as support.

-41-

Page 58: mmmA - OSTI.GOV

Arcing in the power divider of MW2During various tests to increase the power to level higher than 20 kW, arcs occurred between the inner and outer conductors at the end of the last division in the power divider of MW2, where the quartz rings are situated, see Fig. 2.2.1-16. The power divider was taken apart and the damage parts were “repaired” by polishing them with sandpaper. The inner power divider was inverted (division to antenna #1 became the one for #8, #2 for #7 and so on). Arcing in the power divider no longer occurred. Another solution was thought of in case of the further occurrence of arcs in this location. As the quartz rings enhanced the occurrence of such arcs along it surface the metallic inner and outer conductor could be further insulated using a 30 mm long quartz tube between the inner conductor and the quartz ring, moving the shortest way for an arc to occur away from the quartz ring.

Figure 2.2.1-16 Pictures of the last division of the inner power divider where arcs occurred along the quartz ring used as support.

Failure of the power supplies for the electro-magnetsTo emit the microwave, a powerful electromagnet is situated around the magnetron. The current circulating through this electromagnet Imagnet is one of the main parameters controlling the emission of the microwaves, see paragraph about the tunning of the magnetrons. At the end of February, the transformer (400V to 30 V) used in the power supply for the electro-magnet which is situated in the power generator MW2 broke down, a new transformer was sent by Aixcon and replaced. 2 weeks later, the same transformer but in power generator MW1 broke down as well. Both power supplies were then send to Aixcon for revision and upgrade. They are expected to return to Tsukuba before the end of March.

2.2.1.4 ConclusionsIt was shown that diamond could be deposited with TruDi. It appeared that the best film, in term of diamond quality, was grown with 20 kW, 1% CH4 in 2 mbar. At microwave power up to 2x10 kW, the system runs smoothly without arcing occurring anymore for deposition times up to 22 hrs.

2.2.1.5 Future plansThe use of shields to limit the plasma under the quartz tubes will be investigated. It is thought that the use of these shields will allow deposition at higher pressure. A better homogeneity of the growth rate over the whole surface will be inquired. To achieve this deposition at lower pressure will be investigated. The growth rate will be even lower, but in order to gain in deposition homogeneity, some concessions must be made.

42-

Page 59: mmmA - OSTI.GOV

2.2.277-f (3<(^)

2.2.2.1 $6#>IC

mm#

Si —/f'yb\^-~f'7-f—/I^K^vyv'H^f ^7”!/^ffl^

—7-Cia#X7X-7^#^m W 300x300mm Lf 4Si (c^)#

#<ki"6o 5X^-^^e>K#(7)#E^LT,

TWW\W<DlMX%<DBMbtyW\&<D&l-t\Zb'&iL-Z>o y y U XXJl/XX X'E

Ar/H2/CH4"7< X n^y'XX^cvD&i: j;^X/ X U xX;i/XXXt > H#^G%K:o(AT

^^/:[3]o MP^, Ar/H2/CH4'7<XO^XXX'7^^JmL/i:XU3>##±^(7)XX'Vt

2.2.2.2 A S

me^-e^Xobx^xxmm^mmm^^m^xvx^xK^^icjov^+^migfk^^x

12kw-C#-t^ ^(D15kw-C(D^^^ij:#LV\ ^%XV

60kw (Dajy]T^y(±^ oT#^6:m^5o

-0(Db7X/^icZ^##^#±i-6#^(j: 1 fv9 a±-e^6Z^^#x.6^, #

A0XT^my]#(D#^#^ #(C/<7-T/W

lokwaT^

Torr a

lOOTorr ^.±-e^^ci-6(D7)^^^m(C^^-CV^o L

lOOTorr AD^L

T Mw 5Torr ax,

ITorr ITorr ^

100nrn/hourm#(C#TL^m%T^V\ ADXT

-43-

Page 60: mmmA - OSTI.GOV

ITorr J^T-C(Dy^-Ve^K^^(±—c

(D 7? t LX %. 9 t# X. b tl&o

^rCT, yn-k^^LT lOOTorr

DC y7X'7tcZ6f##&##i-6Z,h<!:L/Co MW y7X-7(l##:#%@:-C

i-5(Z)^#<$ij;gLTV^6o DC

L^Ly7X-7^#^i-6g#^T/-K^yy

mm&#m#ALTW^f7yy3>(::ct6y7X'7^d(:^(?)m

Z2-C(j: DC

(l)m#, y< yt> Hy< y t > F

(hLT^V^Si

F^#U:^5#oMS&ff o/z. [4]-[8]

##<hLT4O^(DPgWSi(100)'yj:

/\—M^a^LTyyytyM^/a-

##^c[9] ^{@#^#6/^66::,

1 |xm t. 5nm "V t > HA0r)^ —

Cj;i9j#^:%::3^^%y7v7#, $tio^^

Fig 2.2.2-1 xmmw\

(2)

Fig2.2.2-i ^^yynhy^yya#^#^#^

mv\ im#7>yy^-77yn# cvoFig2.2.2-2 #$4"^(340X380mm)om((9mLO^#J^m#(C,

K 100mm, ##J(C 160mm #iic<6j:9^ 47^f" Si

@L/zo y7x-7(D^^^#e^^y—

0"Cia^L/Co 0.2—0.8mbar, #A#y & 10—20kw(5kwX2 ^ —10kwX2 o').

-44-

Page 61: mmmA - OSTI.GOV

80-

20mm. 0.05-0.1 ^

—450 —

700t<^{kL-CV'6o

Fig2.2.2-3 (C^-f DC X^X'-r CVD

DC XyXX CVD

<7) 4~Y — 7

Ta ^L<(1 2

X#V' l%Th-W 0.5(^)^mv^.

(1. :62Torr. 2000%:. ^^0

#g 350—430V. ## 1.5-4.5A ^L. y^XDzK

0.05. 1mm (D

Si(100)^^"C7^7^^h^&#(7)|g#(i 50mm

Fig2.2.2-4 o @@(Dj)0%%Xi^Ta

:30—lOOTorr.

2000-2600%:. 900V. @# 1.5—4A

<kL. 0.01. m#

1mm (D Si(100)&#-Cm#^m^(7)gE#

50mm tmfeLtz0

x / x u xx;i/X<xt>

Leybolt Systems (%) M~CS> <5 [s]X > T~X§!i

2.45GHz (DT< X D#7°^X V CVD

2.45GHz T#±##3kW

100mm

a6. 8 *(Z)y

X;i/Xk- FT&6 7>XX^j;DM^^X

^4; 0

8%CH4-H20^-o^X

lOmm

160mm

Fig 2.2.2-2 1^4IBIS‘fitli:

Fig 2.2 2-3 DCX^X^ CVD^E

^#7KIN

<-X(Cu)

Fig 2.2.2-4 DC0~70vol%

38mbar , & ^ ^

700~660°C. X % y □ i& tts t) 1800W (C T 6 B# ?£\&& £ fr -d ft

—45 —

Page 62: mmmA - OSTI.GOV

(3)

%zntcm(DwmtLT\z, x m@#(XRD)c j; 0%^# u,VisibleRaman lkZ$ UV-Raman ''jfj^fro fto MTS (%)

(D Nano Indenter (C j; J 9 'JX^JI/^W "VT: > F 0#f # ch

LTkL (x?s) xm@^(XRD)(C L. Raman ftjt \Z ck •§ ’VT: > K £rfr

^L/Zio $ 6H> CSEM (%) 0 Pin-On-Disk Tribometer t MTS (%) 0 Nano Indenter \Z

2.2.2.3

2.2 2.3-1 yp

@$R^^t»-(TT^^^c^:oFig2.2.2-5 0f%h,0#

Z^L(±Fig2.2.2-6(C^i-Z9^2.45GHz0#

0.5mbar 20kw 0/<9

#^0#V\#W(-C^)6T^Tf-<F##0SE#/O% 30mm #0#0$

Sample name FCT1001 Sample name FCT1002 Sample name FCT1003

Pressure O.Smbar Pressure O.Smbar Pressure O.Smbar

Power 14KW Power 14KW Power 14KW

Sub.Temp. 470*C Sub.Temp. 450‘C Sub.Temp. 493‘C

Position 77 (30) mm Position 77 (30) mm Position 37(70) mm

Gas H2:CH4 400:2sccm Gas H2:CH4 400:2sccm Gas H2:CH4 400:2sccmDepo.Time 210min Depo.Time 210 min. Depo.Time 210 min

Sample name FCT1004 Sample name FCT1005 Sample name FCT1006

Pressure O.Smbar Pressure O.Smbar Pressure O.Smbar

Power 14KW Power 20 KW Power 20 KWSub.Temp. 570'C Sub.Temp. 550*C Sub.Temp. 670*C

Position 20(87)mm Position 57 (50) mm Position 20 (87) mm

Gas H2:CH4 400:2sccm Gas H2 GH4 300:30sccm Gas H2.CH4 30030sccmDepo.Time 210 min Depo.Time 210 min. Depo.Time 210 min.

Fig 2.2.2-5 &m3kmz.te\-tz>mw&<F>mmt;h

-46-

Page 63: mmmA - OSTI.GOV

Fig 2.2.2-6 y^d-iim^bCD^XvEI

Visible Raman UV-Raman T##L^:<!:Z5y^-Y^>KiCfB ^ "f 5b°—/7(

-3^ UV-Raman icZ6:?#^ Fig2.2.2-7 ^^"fo f #W<kLT^5%Ut-f >y/HC

Fig2.2.2-8 2(Dynb^7"±@#^#^

Z(D#(D#:fNj:#A/<9—dS 10kw(5kwX2

zf ob^yxmmf&m^mztoif^mmm

nVVn/VY'tr v vwVl a * aaMtf%yjw]lvt 1 f 1 | ||,« TWN^AA/IJniW'iLU^

VW1000 1100 1200 1300 1400 1500 1600

RAMAN SHIFT(cm-l)1700 1800 1900 2000

----- FCT1001

FCT1002

FCT1003

FCT1004

----- FCT1005

----- FCT1006

FCT1007

Fig 2.2.2-7 UV-RAMAN lz£5JlM^

-47-

Page 64: mmmA - OSTI.GOV

s

0<Xism%

ACf'xX4MV~n.

0<Ml4

U>wu>o3i5-

ov4d04nOr

iPXA4AV

(Vc4

a*3p3p3$

4

a5$Me(4A<1nMi4

ssMe

aSt4

Ln4pUl33

ISW-4

n9-r04XX4AV

X50On9-r

M4p}4

SMM-XMlXV~r-fl-4

Vi33

%n

-&rd04

Xi

Mr

#M4od

aOr

ti-0<

M

@14

9l

arvM14PI%k)tonMi4

lla#414Tl

§toto

MMi4

4XVT

n>x

ooo

?tou>ooo°Xg)4

##aaaV344

XV4MdwAVa4y-4#EEra91#aa#

-r p14- o4ma#r

ooVi

4Cg_l

Ma#a

$x

M4

% ^ % °

MI ||S V% null

Mi}41a ^

a 9-r A & # a\tow

04 (4 <5 > 5>4 # 4 X ## a rx rf m

dM

> X 4 & HXM

X(

04a

rsSi 3J3l

1#ra d 4 M?

md ^ d m

m <z±S fa 4

( Mr4 X

s s<: p

9l#94-

toooo

MlVM44rd

I a4 ^dHP

5 Mi}n mX a

n

< M}a ^

4

m

14153>

(4

% gHt e> n nr A- 3- T ™H tffi a » 9

1|» xlr r'# ^r X ^5p ^

s s

d% s5Sv V-y& *04 4

% mm ^ a- #(4 (4 hr 4i $] 0 m- a4 ° y04 I®

4 3$St% mg: a% d04

ry-r4

Ho

a

C Sim

r ^s B

9$rs y- y-^-

% ^

4 d

4nrstr

04 /\Mi

if M 4 (4 X mM

Mi}# X

MlX

# ISa r h n> 9l Ml H

V a r M H (4

>#

MlHAnh-04XX4dvx&#ais(4Ml0

XMrVa4mrxa404

n>

(4ooVtOrr

ma(4

INTENSITY

toM

2P4<

a:4-

>^9-

rrie

SE3a

#S¥/

:>^H

a/i

Page 65: mmmA - OSTI.GOV

-6t-

03 °4-^:) 3I"3 ZY^ij ^

#ox^^q<a.^#o,ooE3 °^n? v^:mm 'Aooe '^01001^(XTT'IO'O ^q4^^9X#2j#)K^<^K^47}^m%°4-^:Ui-3'3%^H -$###%

'00)^4-^%##%^^^ M 0)C,Y(30Ml)ZfHf^T °^V1^ BJL _%n^

Y#0)#%(Z)9^4 < lz:-4>6 OT-3'33 %

6-3zz s,j

99el------

Ml/M------

M------

Ml------

*19ti

(ojmsmm

OOOE 009Z OOOZ 0091 0001

JSSSffliffiBCO^S^SS!

Page 66: mmmA - OSTI.GOV

Fig 2.2.2-11

H Of: 3174=3674-500

3A: 0.1134A:0.129

C24A/C23A=528/140=3.77

m 200002:528=1028-500

H /? :406=906-500

;j£Jt:(nm)

Fig 2.2.2-12 DC

-50-

Page 67: mmmA - OSTI.GOV

2.2.2.3 3 -TJ 0 U Fl(xm t 5nm F/^y—Y)

l^WCX^/77f Ifc Si SEcDSSSttMTT UT AFM C: £ 9 ES

Fig2.2.2-13 F(DmM-aM6^l6mf

^^cT^6. Fig2.2.2-14C?RL^:j;3(:X#7i6#f^^#@ (XPS)

(D^^^#[:3UT^#T6(h Si 2p a C Is FIFTH, 103.7 2: 284.5eVT Si-0 ^

kf—^^7^ y v

6 S%3 >

^ ^ V 7#H7JF3—IF^T

j;

[9-10] \Z <fc T <D t H t> tl T o

(AT XRD (C^DH^LfcIS^^r

Fig2.2.2-15(I)H^T. T^T(D#]&^ 6

AL^^yT"Vt>F(D(lll), (220)^:

(3ii)M[:-mT6[f-/7^#m^$i,

1.00

1.00

2.00

Fig 2.2.2-13 AFM image of silicon scratched

with 1 p, m+5nm diamond powder.

^^6. ^41.6°a72"(26)#%aT

P-SiC —

a, y<-V:E>F<bm^<b(7)#m:4s J

Raman ^7^1: j;

Fig2.2.2-15 (H)C^

T. T^T(Z)#^^6 1333cm '#%an

sp^^T^yT-VT)/ F(Dkf-7,^

L^L, 7;Fn">(DDitm :(Dl#j|J0[:%cT$1) 1480cm"'^acyn ^

— Ft^: H —77 ]

LTU60

j; 0 y< -Vt> F(7)$^# Fig

H trans-(CH)n ZF^5%[ll]L;t/:a6T&

Si-Si :(a) Unscratched(b) Scratched

104 102 100Binding energy (eV)

C-C(sp2)(a) Unscratched(b) Scratched

Binding energy (eV)

2.2.2-14 XPS Si 2p and C 1s spectra of silicon substrate unscratched and

scratched with 1 mm+5nm diamond

powder.

51

Page 68: mmmA - OSTI.GOV

(a) 70vol%Ar

(b) 50vol%Ar

(c) 30vol%Ar

(d) 10vol% Ar

(e) Ovol%Ar

D(220)^ D(311)

50 60 70 8020 (degree)

(II)(a) 70vol%Ar(b) 50vol%Ar(c) 30vol%Ar(d) 10vol%Ar(e) Ovol%Ar

trans-(CH)n

Diamond

1000 1200 1400 1600 1800Raman shift (cm-1)

Fig.2.2.2-15 (I)XRD patterns and (II)Raman spectra of diamond deposited on silicon with

various Ar gas contents for H2 in 8% CH4 at 38mbar.

10vol%, 30vol%<h

Fig2.2.2-16 (I/Kf o 10vol%£"m> 30-300nm > H (7)|§^^'Eb

n^> o —A", Fig2.2.2-16 (b)^^L/r ^ 30vol%

Fig2.2.2-I6(c)j;0^

^61:,

CCT, Fig2.2.2-16(7) (a) :6.35mm (7) SiC#

-IF#, #S:0.5N, ^ : lOcm/sec, : 7mm, M : 15-16%, ^

PIN-ON-DISK Tribometer(:j;0#j^T6 6, $9 0.24(h0.38#^^LT,

Fig 2.2.2-16 SEM micrographs of diamond deposited on silicon at (a) 90vol%H2-10vol%Ar,

(b)70vol%H2-30vol%Ar, and (c) 30vol%H2-70vol%Ar in 8%CH4 under 38mbar.

-52-

Page 69: mmmA - OSTI.GOV

J^_E(DC<E 1: 0, CVD

u, F(D^m(Z)±y// ux^;i/<kcii^6^

^0^:0

3 fZo

±:E#&#:(o&smj;o, /^>-7K$(D#^^x^T(D7;i/=r>(D#AH±y ^ux^;i/y

'f ■t ^ H JUi 3r f>£ Is T& (O Z. ch i)^ b , ^ g^#"7 -5 C ch (C j; 0 Optical Emission

Spectroscopy ^fHmLTy7X7PM:C2%<^ ^

#(D^fMl, 10%CH4-H2(D^^^X^T^XEE32mban "7<^n^ail7 1800Wl:T20^

(%^G%&fTo/:o Fig2.2.2-17 (l) l:XRD^#(7)^^^^L^l:3l:,

gy<"Vt>M(D(iii), (220)<h(3ii)M(:^Br76H—

43.90 (28)#%lT(Z)4H@W3\ (SEM

%0 300nm~lpm) OfllSi:!:!:^ 2-3 fgTfeo/lo £ bll, Raman ttJtlZj:

D5>#fL7c^JI:£: Fig2.2.2-17 (II) \Z7FLfz£o\Zffi 1140 £ 1480cm1 ll 7* □ — F&fcf —

^iOMfbC.): trans-(CH)n[ 11 ] 7^' £ J5& L /i fc & T $> S 0 (1360

ch 1540cm^#iai:^^l^ D ^ G X7 7 CH6(D

H —7 \ZfM LTll, UV-Raman ;jf%\Z 1: D 1¥ L < zFjJaE: L- /c lb )

Dia(111

Dia(220)

Dia(311)

20 (degree)

trans-(CH)n

trans-(CH)n

D 1400Raman shift (cm-1

Fig 2.2.2-17 (I)XRD patten and (II)Raman spectrum of diamond deposited on silicon

for 20hours at 10%CH4-H2 under 32mbar.

SEM 1: j; Fig2.2.2-18 1:^^ o

-53-

Page 70: mmmA - OSTI.GOV

Fig 2.2.2-18 SEM image of nanocrystalline diamond deposited on

silicon for 20hours at 10% CH4-H2 under 32mbar.

PIN-ON-DISK Tribometer IC j: (6.35mm CO SiC # — C'T)

Fig2.2.2-19

720m 0.05-0.07 (0.5N) T&D,

NanoIndenter(:j;D#jo^:#^(D^^:^Fig2.2.2-20lC^T.

114^^ lOOGPa 10%^

Czetc*

PIN-ON-DISK Tribometer

- 0.9

- 0.8

- 0.7

- 0.6o 0.6

in dry airr humidity: 15-16%1N(speed: 5cm/s, radius: 5mm) 0.5N(speed: 10cm/s, radius: 7mm)

- 0.5

0.2 0.3 0.4 0.5 0.6Sliding distance (km)

Fig 2.2.2-19 Friction coefficients of nanocrystalline diamond deposited on

silicon for 20hours at 10%CH4-H2 under 32mbar.

54—

Page 71: mmmA - OSTI.GOV

Analvst Prolect.xlsHardness vs Disolacement Into Surface

Displacement Into Surface (nm)

• 048.xls

Fig 2.2.2-20 Hardness of nanocrystalline diamond deposited on silicon for

20hours at 10%CH4-H2 under 32mbar.

2.2.2.4

HE,5£H;§ffT9o f# btl7ty J 9 U X y y 'V^ > FflUfCO UV-Raman 5^3^

TEM^#i:j;i9yy/7

^61:, ^^<6t)4<>f(Dm%l:io%

2.2.2.5 #E5:E

[1] D. Zhou, D. M. Gruen, L. C. Qin, T.G. McCauley, A. R. Krauss, J. Appl. Phy., Vol.84(4),

(1998)1981.

[2] A. Erdemir, C.R. Fenske, A.R. Krauss, D M. Gruen, T.McCauley, R.T. Csencsits, Surface

and Coatings Technology 120-121 (1999) 565-572.

[3] S.P. Hong, C. Morel, ^#$d, # 103

#, (2001,3)289.

[4] R. Polini, M. Tomellini, M. Fanfoni, F. Normand, Surf. Sci. 373. 230(1997)

[5] H. Liu, D. S. Dandy, J.Electrochem.Soc., 143,1104(1996)

[6] M. Y. Gamarnik,Phys.Rev.B,54,3,2150(1996)

[7] J. -M. Ting, J.Mater.Sci.,30,16,4095(1995)

[8] S. Abraham, C. J. Mchargue, R. E. Clausing, L. Heatherly, J. D. Hunn, Diamond. Relat.

-55-

Page 72: mmmA - OSTI.GOV

Mater.,4,4,261(1995)

[9] S.P. Hong, C. Morel, ^ 102

#, (2000,9)235.

[10] S. Iijima, Y. Aikawa, K. Baba, J. Mater. Res., Vol.6(7), (1991)1491.

[11] T. Lopez-Rios, E. Sandre’, S. Leclerg, E. Sauvain, Phys. Rev. Lett. 76 (1996) 4395.

-56-

Page 73: mmmA - OSTI.GOV

2.3 • ssEsm

2.3.1 [#(a]Bf#]

^zr □ X tf ^ 4=- '> 7

2.3.1.1 liDtfXC

^ >s;x 7(FET)^fM# o,

4.8GHz, 11GHz

(1) y<Tt>M(7)mmADn:^#

R S147 A > X y A > X(RIE, Reactive Ion Etching) £/fUX

^fToT#^o C^T^X'yA>X#J

XvA^X^A^LT, CW: CF4^Ar^^AL^:^A^#^$ai:i30^A

#1: Oz 1: CF4&#AL/:MJ&#XT#Xy 7>XM#S4%T&0,Xy 7>Xi#^(Z)i#S

yA>X#X(ELT O2 (h CHFa^EA^A^m^/l. X, iRl^lcX^X^m^LTi^^^

^:##^o'XxX'7 (ICP, Inductively Coupled Plasma) ^mW/cXvA^X^y^-Vt

fro&.

A<7XR]A0I&^6U:1:,

7n^y^XT cvD^ irs#±^y<-v

O fc o

-57-

Page 74: mmmA - OSTI.GOV

2.3.1.2 y-ff

(a) rtS

Sf t'-i> U V 7 7 7 x -Rtf RIE SES b < ti ICP ge£fflto. #ea,7X7t> H

©a«ajnx*fT7/;<, -es-r. ssssESfig ib(ioo>-vx> hs«±k

l/>X h£0.2~0.3/imB*b, lft'-i>J V 77 7- IC<fc 9 7 - > £tiiili b.

##T-5. =fc DSJfftO.lam to A1 fLT. Xtog£f4

ffl'j7ht75:(T5t, A1 /17 —>7X7/»s'Sfi£S*l3,, X toj; 7 teSiMS- RIE SERE/

ICPSETX-yXXXSRofc. Xto^)*SH2.3.1-l ICStb fib. X7fi>7'**X£b

T02t CHF3 toZBS # X Tff 7 fc.

t-(0.2-0.3 fjm)

(a) IsitxhAl

(d) ')? b j-y

nm—ir~Li—i r

(b) EB USpLrLrLrLrirLri-rLr^

(e) %>f

(c) Al MM

IH 2.3.1-1 Al TX^MJjni^P-fcX

(b)

(1) RIE fdck'SMJ&PX

RIE fC X 0 X v X > ^ L > F £ SEM&CX FESEM TE

{BL, Xy^

CHF3/02= 4 %T 30 y 2.3.1-2 tC^T. (E,

<E h&tDfa & o £fc, X'yf mis' FiltJ 1.0 M m/h T' fe -S o [o) # 1C L T ^ X 7 ^ X

1:1: CHF3 702=20%T 30 2.3.1-3 tC^T. C(7)X3lCXvf->^

±fxl:l: CHF3 /O2 (E. x v A 6 (cXmic/5:0. SEM TtllEliW#

Bl 2.3.1-4 1C CHF3/O2 = 20%TX vX>^/L^X AFM

5X5/2rnT#M(7)[E][E]^10nmaT(E#^lC^m'r&6o W'L&ZFb, Xy

— 58 —

Page 75: mmmA - OSTI.GOV

0 2.3.1-2 RIE 0 2.3.1-3 RIE

CHF3 /02 = 4%'C(DX'751>y CHF3 /O2 = 20°/o

30 ft 30 ^

0 2.3.1-4 RIE CHF3 /02 = 20%T*J:yJ?>'fLtz£m<D AFM #

C0$M#A(5X5 //m)(D[H]ai^ 10nm &T

CHF3&#AT

CHF3/02-4%Tmm%IXv^>^

-59-

Page 76: mmmA - OSTI.GOV

m 2.3.1-5 RIE CHF3 /02 = 4%X<£>1M}jnX

8 'A

El X'7T>XC(DT7^:77<7

0 |g 2.3.1-5(b)IlM^7< >&7^'-7^X'yT>XL^:t)(DT&

6. #/J\m$@^100nrnTXv^>y^#lTW6C6^t)^6. XyT>X

mT$>6 t)(D(D, H-A U 7X7 7^—

4o0,

^ (D T 7 1: RIE I: T 6 x v T > XXllx y T >X#@(7)?ja#&^x v T 7 X#J#(D#

^lc ICP d:6XvT7X^ff ^-fi&##K:^To

(2) ICP1:T6MADX

ICP ^@^11X7X7^^ LT##^^X7X7(Inductively Coupled Plasma)&f8W%:X

7X7XvT7X^#(DcaT&0, C(D T7^X7X7m^m^6C2:lCckO^^^A: 7°7X7^#6C(h^Te^. RIE m@(h ICP 2.3.1-1 1:^

To X, m^X: ICP ##0#g§BI^|g| 2.3.1-6

2.3.1-1 ICP 2£Wt RIE ES-

ICP RIE

MHz 20 13.56

Bill Pa 0.05— 4.0-

o<;i/ W-frW-m

7° 7X7^ cm2 -1012 — 10'"

-60-

Page 77: mmmA - OSTI.GOV

Tornado Type ICP RFPower

Plasma

BIAS RF Power

g] 2.3.1-6 ICP 3

2r A1 <^LT30^%v^>^^fT3^. ^-(D^m^^2.3.1-7 I:^T.

m 2.3.1-7 ICP lz£& 02<b CHF30;l^^X^miVcX^^>^.

(a)AI 7%9#&#I. (b)AI "7X<7|#^#.

gi 2.3.1-7

#^{%/zfrT(A6 C 4.0//m/h 6 RIE (btk#GLT4

$ 6(: RIE A1

61-

Page 78: mmmA - OSTI.GOV

TWHih&ofcrt*, m 2.3.1-7(a) \Z ICP (2 X Z> X y 7 > XT'te A1

7X^Xhjt^^e<'f6C6^oJ#6^o^. X, l3 2.3.1-7(b)H

A1 XX/7^#^L/:t)(7)'r&6. C(7)4:3

#(7)^@6I^@^(:%T&6C6^^6. BI2.3.1-8 (: ICP

t>M(DmmAo%%v7>y^^T. mu, %v7>xiiefwmi5#T&5.

m 2.3.1-8 ICP IZ&& 021 CHF3 <D;M£;tfX£ffll';/zX^^>K'0M7j[]X.

Bl 2.3.1-8(a)I:M^IE^^/^^'->^X v7>XL/l$§^^^To %v7>X#J#(D#

Xv7>X^^^%g<, ^OAITXX(7)j##^^^W^^,

^#i%7X^X Hta^6%v7>X^m#T#6. Bl2.3.1-8(b)I:aT(D^mm^^< >

&X^\-X^Xv7>XL/ct)(T)T&6. ICP C 61: 4; 0,

Xy7>X#@(7)%#^m^^^6, RIE 6tk#LT%y7>X#m(D#geW&

^I:[o]6L^:6 6^6)^6.

^2.3.1-2 (: ICP&OCRIE I: j;6%v7>X$g^^^6^T^<o

2.3.1-2 ICP &U* RIE lCck^X'v7><7".

ICP RIE

M^^fX 0z(7)^ Tfittx, SEttO TSttx. SEttO

M^^x O2+CHF3 ¥S'I4©> #@#0 ¥Stt®. iilttx

X'77>Xig^ 4.0 U m/h 1.0 li m/h

2.3.1.3 k(d^t□ xb°^4^'>7

(a) (4#

li^TRFTX^ h n >x/i v7 U >X&I:4; 0^-$g^(ooi)MgO##±I: ir##$r

^\7n%hf^4:5/-WI/^#^i±/:o #1:^(7) Ir

cvD^m^mwT,

-62-

Page 79: mmmA - OSTI.GOV

#72.3.1-9 2.3.1-10

2.3.1-2 /? n#(D# (4 ^(D 1 #:&)

(D(hC5(:D'7 6

m#(D7< /7 0#7°7%7 CVD g#(ASTeX,AX5200 X)^m WT#^F^(7)^g^

M&ff-D/Co KBJBte SEM AZS RHEED \Z&D l¥fffi£fTO fc„

0 2.3.1-9

^7X7 CVD^gflit®

El 2.3.1-10 HI§0^7X7

2.3.1-3 ^7Pll=£4vA7U^^>K^i]ifE©3M*.

A'fTXSStic [00i]SiRfiE#

es) (ASTeX) (ASTeX)

f±tl Torr 45 ~ 150 25 35

W7X V -120 ~ -140 - -

%xW$fj$L mA/cm2 150 - 200 - -

$ks$ r 880 — 920 800 870

H2 seem 95 180 400

CH4 seem 5(5%) 2(1%) 0.4 (1%)

N2 seem - 20 -

utrs 15 ~ 30 min. 5 ^ 40 hours 9 hours

-63

Page 80: mmmA - OSTI.GOV

(w asm

(1) Ir(001)/Mg0(001) RHEED A° ^ >

m 2.3.1-11 \Z RF 7^ h □ >XA° y ? U 0 f£(gfLfc Ir(001)/Mg0(001)<7)

RHEED /^->^7K-To

[100] [010] [110] [110]

(a) : [100] (b) STHAltofp] : [110]

g] 2.3.1-11 Ir(001)BS(D RHEED /\°£—>.

[100]A#T[1^C7%'/—[110]A#TIl2^:^T##$^l, >

Ir ##(D X ^(004)0^4"

600 nmT&o/to

(2) Diamod(001)/Ir(001)/Mg0(001) SEM #

fML/z Ir /? CVD 150

Torr, #WM^ 900 "C, #^^^ 200rnA/crn"(7)^m:T/W7A#^^^

$1l20^ffVX ASTeX^<7°(D^@[:j:0^:#^a<140^^fTO^ (#2.3.1-3#

M) o |X] 2.3.1-12 M##(D SEM

64 —

Page 81: mmmA - OSTI.GOV

0 2.3.1-12 ■$*y-V;e>K(001)SJ*© SEM #.

R®J$IISIC7'7X*vroS^0T^Zc®«1ceg 2~3 mm HtR©^ > K»

flg T # fc. 7" 7 X7 (C S * L T tA fc SS ® IS A * <4 ttj» o T (A -5 Ifi, * St i & o T H 0 .

rttJtcff < KiWS^'E«snfc„ crutnmamy’y

X-?<D%i0U8ltfl&fr-ofzcbizf&B'tZtg,t>ti%' _hg|to SEM

LC

(3) Diamod(001)/Ir(001)/Mg0(001) AFM ft

0 2.3.1-13 (a),(b)iC¥SibB£**ti<h)$© AFM ft&f .

(a) ¥a<bfiK#Kj(SK6$# 39 mm) <b> (¥aftnjc*9mm)

0 2.3.1-13 7*'f'VzE>K(001)iSEro AFM ft.

-65-

Page 82: mmmA - OSTI.GOV

< & D> ikfa<D&&£l£ffl¥ft<D 30 nm H&~T:'&-otZo 0

(b)T, ( (001) @) ^r%±LT5X5 AtmT#I^L^aC6, 5nm

FET^f##T6

(4) Diamod(001 )/Ir(001 )/MgO(001) RHEED #

[110] [110]

[110]

m 2.3.1-14 ^V-^VROODjtfil(D RHEED #.

El 2.3.1-14 (D RHEED K^TTW6 C<E^b M##

^/:^&{[:R)(:##(D[iio]A[Ri(7)/i^ —xc[j:o^:b

6^^[i2xi

2X1 RHEED

2.3.1.4 %tSbt^'&(D%-\m

(l) 5? 'i \^y H

%V A>^(DMfS^X(bLT O2C CHF3^)mA6C(E[: A 0,

- RiE ><y##(?)#

a#^A;bfL

— 66 —

Page 83: mmmA - OSTI.GOV

T&-5.

- ^D%7°9X-7 CVD AKA: Ir g^±^7V-Vt> M

^rOXt^^yt ^l/fWM-SrfFM L/ca

AFM(Cck6##lT^5 X5 /imTSnmm:

RHEED 2X1

/^->^m&6TmmTeyxo

##"7 -5 o

#W3tE

(1) S.Shikata et al., 2nd International Conference on the Applications of

Diamond Films and Related Materials. Tokyo, 377 (1993).

(2) NEW DIAMOND Vol.13 No.4, 28 (1997).

(3) ^###, 220 (2000).

(4) K.Ohtsuka et al.,Jpn.J.Appl.Phys. 35,1072(1996).

(5) T.Tsubota et al.,Diamond Relat. Mater. 9, 1380 (2000).

ummm

-ma#, , #

(2000^3^).

- ###, "T-r 7 n^7°7XT CVD led: 6 ir

(2000^9 H).

" ###, ^7 D^7°7X"7 CVD Ir

(2000 4# 12 H)

' ###, 7y D#7°7X-7 CVD Ir

>K/\7n%H7^wi/##(D#:m'' . ##m48

(2001 #3 H?^)

-67-

Page 84: mmmA - OSTI.GOV

• T.Fujisaki et al., “Fabrication of heteroepitaxial diamond thin films on Ir(001)/Mg0(001)

substrates using antenna-edge type microwave plasma assisted chemical vapor deposition ,

12th European Conference on Diamond,Diamond-Like Materials,Carbon Nanotubes,Nitrides

& Silicon Carbide , Hungary (2001 ¥ 9 fj

• M.Tachiki et al., “Heteroepitaxial diamond thin film growth on Ir(001)/Mg0(001) substrate by

antenna-edge plasma assisted chemical vapor deposition” (submitted to Appl. Phys. Lett.).

• K.Tanabe et al., "Reactive ion etching of diamond using 02 and CHF3” , (#,#[#).

• K.Nakazawa et al., “Reactive ion etching of diamond by inductively coupled plasma” (#1

-68-

Page 85: mmmA - OSTI.GOV

2.3.2 [ftisjem]

2.3.2.1 ttUtolC

9-i Jr;e> HlS^tyyx r -T h^e®S6T5.y'f h'^'f (dlc)

kb. eetKS$T6fiKT*. yyTT> his

Aicm$LT. iSS, Hrltt, fcKftmmi. Jr;e>

sy-ycA^c,. v»5ii)gBti. u^u -TT-y

777-f HIS-S^tc-atiT A^b, DLCM© THl b OttRttyy t€> H ICBRB&O

ycx. yyy^>H*®SEyut. am?©!gt#wp.gd&< yyt

t>Hicffi^DLcEyssv, ^ffl^saTf-^it^awtLfc.

tbkio¥$b. 7k*y^yf. K^HTwyyy^&y HiSa<T)*.7i'bB5DLcEyy: ffiaicKig-cBKETsct^gMic. ury-y-y H##e#imf T^-#

-y-atmowoATfts-'ryyf-Ax/yy y u cnicxxw ys%u

BKgETyyxyy H^MfiA LX DLCESo'fiEl/fc. fLT. #SUfc*iitc=fcf3#51.

*mgmj3j=u:a###c@yi6 dlc mmznz

¥68 ii *f$b, y*>H-AXAyy u >y?ittti4L**Sb. SitfEUfcseottflgir

fffffi-rsfc®. SiSfiKEeriros.'S*-; dlcEos-sEiiJiyiisl. ift-Asastt

AOMfiUcooTeiTiA,, $£:, S-jsKSttfcDLCEtoSS'lttt.sssttsisis. sem, a/Lffa*gs$$Mj3=kLi:y-iHy>y7-

xynimmsBswT, sacif*. w^fjofe. yois*. iff-Ai@77

x"T&amy5T Aicy o. dlcKo-a-fiKasBissnu, < y > A-Ax/iv y©*-TA

eKsn^, DLcEcffdi-ts iim JXTs«©K*e^©7j:iL DLcm

A%Bg2y!6T AZHW'bA. ■€■ IT. ift'-Aiey7X7?IILtyU3>lft ±tc£fi£LADLCE«iiOltA'*!l«l7yyCi;< < . X7U >y*icyr5#i#ffiSB'hd

<&0,^ntifci;fteFB1£/6L;fciH»»tt£*-r<5 DLCE»$f#BkiScA £B|§ Bri'lc L-fco

±i$i»cyi$Ttofi£$$:^y at. TbK 12 ySlitilTOViI ICO 071*14 LA. ST.

DLC m©#j$##lcMLT. A U x AiiWICSfflifeJSIffiyeiSALTfflOT DLC S4

s-BkL.fibiifc dlceoty u yywicsfsisjgESfcyy^oBXtisy-ii-Tyy-f XXSWiSimicJ; OlflTfc. OS'1C, DLCJlOliimT&SszXieA OTffiffl LTO

fcx/vyy u >yffly-y'7 hti«o.$$tiyyag^BKyyhcext dlc ios

bK£!a# a. sotic, yy>f-Ax/TyyuyyicfiTt'-ABfiyyx'Tyttig-f

syy s yyy^-ftT-a-TBKEyiicAcofeo s-Ttr-ASrHW-y ayy s >yo^ft^

flbft?. DLCEO#1$#*IC&By#@ICOOT1*MLA.

-69-

Page 86: mmmA - OSTI.GOV

2 3.2.2 DLC

DLcasro#®tef±H- ■erosKto@a&£®OTtmiicj;oTBft5ci:At#;£sfi5„

tit, XtlST' DLCK^SjotafSi: LTffll'tl'fcy U 3 LT. Xf>

1/XW SUS304. 7XX43cty?7;i/5r.r}A® 3 8® ^JS-TO£SKi: X Tffl 0T DLC#

S^ricLfco f Lt. fulfil DLC#t:*LT£-££xf 4 xxa##:i(%mt:£ 0#

iSSitmSfrix. L o> x Wj IMJ Ml] C £ tf & » B S $C 0 # £ £ fr o „ C0t#0M##8&#

2.3.2-1 Cit. %43, C0 j:S-|itS6L/t DLCStoSSttf^r*) 30 nm £—£<hUfc„

2.3.2-1 *R*S± DLC ll®SSKH6fr

Method Ball-on-disk type

Ball material SUJ-2 (Bearing Steel)

Ball diameter 1/8 inch

Sliding speed 6.3 mm/s

Load 0.3 N

Atmosphere Air

ST.^nR’nroSSyfiSfflC-afiKU/LDLcSto^TU xX##i:*r£g, ###»:&

M£UZlS$$BI 2.3.2-1 l:$£. SfiflRi'tT 'J 7£5 AR

A-eet)S<ltl 0.72 T-feO, X7X l/XM&^tMT-X 0.44 43it/0.41

Tfc-5. X4T.60#K1: DLC#&3-74 XX£6cai:j:xT. DLC Ki'XX'J X:/

6W£®W8HSScti:, %&##(: 6 Rf. 19 0.2—0.3 i:S^75> x

i^u atsttwt^7U DLcm&o-

fl XX"L2tt)0l:3 0Tt#%#&7)*m0#|o]2)(&-5 C ^7 U XT'*!#®

621 xx$6^®

###a®aN=£ 0 L Kt> x SiglS©E®¥llj7)Wj: 0 , DLC#t^7U XXW$#<!;®f8#

WloKS^t. *fc, DLCm®#$^30nm

#&@R^£0C6A^^6.***f#0aw: £oT#mm%^%££6a*£64l6.

Xx> LX*Kift.©4B#ffi±t afiloL/i DLCSlT'fc, X U X X*K-h® DLC#

tiBitiic. 1-Rxf-Ax/vy xntctt^Te^ti-Aiijigyxx'veaffl ur-Sfiesxi

t#0^7)X C At)3R7)^„

711/ 3 A 0 AJ£« h© DLC mi:*M~5##M#0 A #.#7)i'*iJSr d £T 0it 0 K##

#SE<£ft® 8HM1bill)#:ce$gsn/L x <k z)> b, DLC#0##l:*£6#i^#^l?*£^

it0i:,#mM#i:43R6Lo'xmi)mi*6#m*mt®Mm^&Ltx'xx&gi 23.2-2 c

££„ Bl£. ±|S]S0XF-|J0A2-6T, DLC#t®7'J XX»3J*t©l#®l*iSt7)«7£3A

7A<hM$*X®#l$ffi#T'&-5*9 0.7 12 A: x XL At S* LT 0-5.

-70

Page 87: mmmA - OSTI.GOV

Fric

tion c

oeffi

cien

t0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.10

D Lubricant free D IBS MIBS+EBEP

Substrate material

m 2.3.2-1 &m£m&Wi±iz£f$.Ltz dlc

IB+EBEP (80 nm)IB (30 nm)IB+EBEP (30 nm)

c 0.4

U- 0.2

Sliding distance mm

HI 2.3.2-2 DLC

-71

Page 88: mmmA - OSTI.GOV

H-f h' —Aag^7X?S81t5 A AlAj; 30 nm J¥S(D DLC E(D#j#

«»tt'l'^->h,-AX/Vy DLC 8g»'*»iJS|-r-5 $ T tof^ y IE

^tt*94<gA*i|iIleS< *fc. if f-ASe^7XxSl«

UTSeKu/e DLcmroms^itiso nm re

#7)WtDHA#l#Lf'T< AoTl'f, A A7)<k7)'6. An 6 CD A AH. ->'J 3>S$±r t>«SX3;hZ:AA7)76, AE*0)ASESfi^*S < ft 0. *J!IILf>T<ft5A«btl5.

2.3.2.S evtl = J$Xf V^X F^X-fty FAUfc DLCEcDSfiE

0frK*x-x-'y hsxxyxu xx-f 5 a*i:. x a-yx snftgisiiX'f at;WSfttt/i7TI'50Tltt<. ^fKXX X XXKcDtbRW^eftmAfto T**A*ft

TIK fc©i>*>-5A#fbfl5. -g AT. X-f'y FtifiALT CVD X'-l'VT X F 2:1$ «t5A AlAJcO. 0fM£*X-X-*y F© sp3!S-gr£Sofctt!ST£fiKf 5 A#x6fl-5 XX y Xf$f-£«fflTi*n«. sp3S^r^^< -a tf i 5 % DLC IgSgsEtf -5 A Aft'M#

CVD yftf>bS:Si?-y7 Z.3.2-2

iatRT, cvd X'f ft x F lixf X □ iSXXx'v cvd ffileJcDt'J Xf x##±l:ogg Lfcferos-ffli'fc.

2.32-2 cvd X'l'-vtxKX—y"vF£Ei'fc®© dlc

Ion beam Intensity 1.2 mA/cm2

Acceleration voltage 1.5 kV

Ar gas flow rate 1.0 cc/min

Electron beam Discharge current 0 40 A

Discharge voltage 0 100 V

Ar gas flow rate 0 4.0 cc/min

Deposition pressre 5.0X10 s 3.2X10 * Torr

Substreate (Electrical state) Silicon(lOO) (Ground)

if, CVD X'f tf> FX — X'y F£ffl Dtf f > t’ — AXXy X 'J XX'lAi; 0 DLC

E 7)snfiKT*5>* AX 7)4:0 IdT^ML/A, AflH. CVD X'f Tty FA###T*6ft A. 7°XXI:##Lftf f X2 CVD fftty Flcpa.Wf f>A*fflf7)icVD fftf y F IBl:@i-3tft-y7'yft?iftJ6, f f X A-Af A b CRSW LT b XX y X 'J > X'SSXtjgAbX. DLcE<D®fi£7)tBEl:A5>5]|btt7)s'$,5A«6T$>f,„

ift'-Aaef7X7SIIILftHT. 8 SSKcDl-f y fc'-AXXyX 'J XX*l:J:0 %btltz. DLCE(D*##%#l:f f,K*^#grEI 2.3.2-3 left". DLC E<D®B)c7)S{tlg A

ft. EW^7t¥SiaMi:®0#HbnfciPfgffl;iS;cD3Sffi®tta56ggi:=tOM^A/eiS*.

72-

Page 89: mmmA - OSTI.GOV

Film

25 p.m

m 2.3.2-3 CVD /f'yb£LZ&t>tltc DLC JSE

< ^ > H-AXA v ^ V 8 50nm (D DLC

L/c^^T, <^>H-A(:j:0 CVD7X"Vt>MllX/^v

W2.3.2-4 1C, CVDy<^t>M$r<^>h:-AX/^v^i''5l^, —A#@7°X

xr^&mm L/c <L#(D5/ u x E 23.2-2 c^-7#

f ^u 3>##

600 nm ^LT,

CVD y<"V^r> L^X/^v7 U >X'L%WT#?H-A(7)«&&^5%L/:<LC

6, |5)+#:C&^T&'5^U3>^%'7f->X'^^l/:(D^#g§L^:. CVDy<"Vt

> M —y v h 6 LT#1#I L/c#a", X"9 X 7< h (Clzb^TX/^ v

<, E@(D^V —

DLCE^^:^^lA:^3/c(L#x6^l^.

-73-

Page 90: mmmA - OSTI.GOV

25 |im

2.3 2-4 CVD X'fY;E>F£—yxhtolT-t'—ABEX^Xxfi

2.3.2.4 DLcmmm#%ic4X6mf e-A»mwf

2.3.2.l I't>f-AXA,7^U >XC«^t'-ABEX7XveS

IBT-5 C DLC SisterfilcT#-5 0 £ SriittSLfc. CCTtt.

DLC K£l=rBK-f SISlC'fXXt'-AX/'Vy X U H-AmeXxXxe

4figS-BrT^fc. £0£#Sb.hfc DLC K0»fimtt7y%'ftX-5iEI3£#llt"5 £, t>£

■o\z\tW;<DW&t>^\kLTzcen,

Tt^tfr^b t)ElgSnT0 5.„ -eUT, L u> xlto©iiXttXSXS 0 £0EH0t>£o

tlT. DLClSro$*ttAS|A]±UT0 5c: A7)i#Xbtl5. **##

£ DLd8<b0Sffi0«ifi^iEftl-T0-5Ct^i5S1"?)fc0i;#XbnS„

0 ft £ T 0 £fi£ X n -fe x ti, m 7 f - A £ HS« L T«7 f - A 0E X 5 X'x £ £ b£ $ *,

7©I*X-X'y h©77>t:-AX/'vyXU >X>M66L-TB8IEL/i0*>, 7X>£-A

#7£'-A!mWX##l:f9776£0b7imx&bX. 2fflfittt, »

7X-ABe7’xXx(c4;£®)S3sSi0£ U-x >XYx-y 7 > X, DLC H0SB?§tt<t

XeSS. bK#fS0 DLCIMSEi^07*X Xxfi70®X £\ $ $ £"$&7‘n 7 XX'SE L-

TXUT0-5. iOtctb. DLC»S0»®t#ttl2X0 7"n-txX'£'0J;7Fj:^g$4XTV'

5^^ffi8X5>0ttBSTj»5„ f 2T, fi8S67S0lgs^b, ®7t'-A»t0X7 5

>X£*ft£-t±. ;x i-v) .•, w&i0xy.x'.'r.xi z- DLc#0t*m#%0KK&fxb/:.

-74-

Page 91: mmmA - OSTI.GOV

(IBS)

(B<^>H-AX/^yy V t:--A&R8#L, k:-AfthEzf 7 X'TlZZ ZLfc'&. nl& Ltc^X> t: — A X A° y X E (EBEP before IBS)

AB&y'yX^lZZ b LAE (EBEP after IBS)

dH X >H —AXA>y X AST L —ARM^rlWlBtt-ffo Tin fi£L AE (EBEP during

IBS)

ACT, ^GSLADLCE######

^#LAo #1^11^2.3.2-3

DLC(OE#tl$%60nmALA.

2.3 2-3 %m DLC E(DSEMHS#

Method Ball-on-disk type

Ball material SUJ-2 (Bearing Steel)

Ball diameter 1/8 inch

Sliding speed 6.3 mm/s

Load 0.49 N

Atmosphere Air

Substrete Silicon (111)

AH 6 DLCE(D##^#[(DL^ 2.3.2-5 l:7i\To !1L#)(DL

ty D W]ii&M.$} 60 mm i£ X > L— A X / \° 7 ^ 3I(IBS)^S t) i^ < > III (A 'i

^ > L-AX/^ v 7 E(C#f H—ARB# L AE(EBEP after IBS), H—ARB^^<D#^

(C#6HA<^>t: —AXA y 7E(EBEP before IBS), —A&<:f >b: —AXAy

7 U >X A|slB#t:R8#LT#bHAE(EBEP during IBS)A#< AoTl^.

< ^->H—AXAy 7El:@?H-A^RB#LAE(EBEPafterIBS)ll,

^)o 2.3.2.3#TMiAAj;7l:, @fA-Am^y7X7l:$b^HAm^ll7:v7>y$

H-5AA^6, DLCE#@l:#^LT%v7>yLA*9; DLC

E&@#a#^{b&^L2tf:5 A A^#A6H,^#A#DLCEll#m^mWfL^T<

AoT, At)l:L^7#^m(DmAoA

#T-5 A#x 6H<5„

<^>H-AX/AyXU DLC H-A#^y7X7^

6 LT^ 6#6HAE(EBEPbefore IBS)(D#^#^ll$1l 0.25 T & 0 , <

— AX/'x v X#(IBS)A#f H —A^|ei^(:#m LTA^cLAE(EBEP during IBS)C#j$

-75-

Page 92: mmmA - OSTI.GOV

O)

& # A >g§ ro0 t 1 0< 8 4 CO

ron A %E A 4 At 4 m A g8 -A) #r vZ 9-h W

M rv V ' Atof A r A to

r 5n d A n# V A M8 A "4t* 8

r 4 $ 4 #Si Sr (X

M 4 A # Sh? A A m 4n i t # r4

A A gW gl V t r4 SS ~n 9r A% A A a# Ml Ar 4 H A 8 M

0 A A M

rX to t M

a2Ert

4%XA

R

8n>

hi?rV-IsAt

A

A A ° AA l/i A 0 r8 V vt f% A3#:%a A# t n 4

g A tor A£ nr <r n s4 av A O’*n t 8 An A A M itrv 4 to

V A K

M in?t Ev

# a

8 nn- o #

o

%4mA'tgxnr<sAA't(X

8Sin?

nr8$rn>rt

nA\3A4VA

I>4-•''o

A

(■» c* 5'vA 09

?X to# ^

8 r<% a^ 23-23- tf

\J< t " CM

si : sA- §•m Q ^ 4

a it^ x g>i A r< °>rv &A

eX tm oa n rv $a

4 8 c ^

sS Si )> 8 H? S

rx & A 4I A t % AA r A <s 1§1 A X' A' XvA W ?Ml (A 4X Mi4 8 Hp^ # ri AA s# A A4VA p^

%8

AY

i r r u1N. 3 VA V5< 4Xm 4A f'l (XM

X & r^8 4 AA EB (X Ain izh m

Mr->□nt

*-*+-tH?

IMm 23- A4 t" s torr 5* A nA 0*' A M4lm 4 t A0*' *fr A 8t m Elt r H #A 8 H?ur Ai 4n 4 A s8 0 4

A 4to Si <S Ag 4 M

Friction coefficient

Page 93: mmmA - OSTI.GOV

wfat)^7u >ym^:^LT 0.3 m^H-Am^y^XT^

#mT6C<h(:j;0^m(:^T'5m^#^fo]±-7'5C(h^m^L/:o ^/z,

13 E Mj' X t£ fn] _h "7 <5o

2) m%^^x<'Vt> M^7-x v he u/z#^,#f tz-Am^x^XT^mmT^c,

DLC#(D#^^m#Tef

tZo

3) #f H-A0iEgX7X7^< AX/i-y 7 U ^XotX^,

#t)#^^Tm^X#l:X<$l6 DLC#^/#T^6C A&%6/N:L/z.

2.3.2.6 ^ik(D It®

C$l^T(D#M^m^6, #^L/z#f H-AmiBX9X7#m<:f >H-AXAW7

^ immf (D^^cx^xv cvnH-A#

—^TX/^c/^U>X&T(DPR#^#^^lTV^1 2L C$1

6(DC^:^6, #^mnrn(D^#^3^^^DLC#(D^^^^^6C(hT,

L^XntX(D#?#&Mo C$l2:Ct)(C,

I±3i, A^m#(hT6.

1) J. Robertson, Thin Solid Films, 383 (2001) 81.

2) R.J. Waltman et al., in: C.S. Bhatia (Ed.), Interface Tribology towards 100 Gbits/in2, ASME,

(1999).

77-

Page 94: mmmA - OSTI.GOV

2.3.3 [SSEffi%]

Introduction

In the present project, free-standing diamond wafers and heteroepitaxial diamond films will be prepared for assessment of their structural and physical properties.

Within the period from April 2000 to March 2001 emphasis was on the assessment of high purity free-standing CVD-diamond layers and epitaxial diamond grown on 13-SiC. These materials have successfully been applied for FET processing.

In addition to our ellipsoidal microwave-Plasma-CVD systems, a novel plasma-CVD system, the CAP-reactor (CAP: circumferential antenna plasma) has been designed and built. It offers good potential for the large area deposition of CVD-diamond and epitaxial films.

CVD-Diamond for Electronic Applications

Large area diamond wafers have been prepared in our ellipsoidal microwave-Plasma- CVD system. The structural and physical properties have been measured and topographically mapped, as described in the previous report [1]. High quality polycrystalline diamond wafers of 250 pm thickness with thermal conductivities over 18 W/cmK were shown by IR-Raman spectroscopy to be of high phase purity. The wafers were diced into small chips. They were used by H. Kawarada et al. for the processing of surface channel field effect transistors (FETs) with gate lengths down to 1 pm. Transconductance values of 15 to 20 mS/mm have been obtained, which is more than an order of magnitude better than that of the best previous poly-diamond FETs [2]. Also, heteroepitaxial diamond films deposited on B-SiC in a tubular microwave-plasma CVD reactor have been assessed in cooperation with H. Kawarada et al. by processing of FETs. Transistor properties comparable to homoepitaxial diamond FETs have been demonstrated with our heteroepitaxial films [3],

The Circumferential Antenna Plasma (CAP) reactor

Our plasma CVD reactor with ellipsoidal cavity is well suited for the deposition of homo­geneous large area CVD diamond films and wafers. The system is very stable and therefore very well suited for the long term deposition of thick layers. In order to get better direct access to the plasma discharge, e.g. for diagnostic in situ techniques, we have designed a novel plasma CVD-reactor, the CAP-reactor. Here, microwave is intro­duced into a metal chamber by radially expanding a coaxial waveguide. The central conductor is connected with the cover pfate of the reactor and the microwave is guided to an annular quartz window which forms a circumferential antenna. The two concepts are compared in Figures 1 and 2.

-78

Page 95: mmmA - OSTI.GOV

AntennaWaveguide,

Ellipsoid

Plasma

Substrate

MicrowaveRadiation

CoaxialWaveguide

Plasma

SubstrateHolderQuartz Ring

(Window)

Cavity Z ReactorCooling Cooling \ Water water \Outlet Inlet Gas

Outlet

Fig. 1: Ellipsoidal-Reactor Fig. 2: CAP-Reactor(Circumferential Antenna Plasma-Reactor)

The electric field and plasma distribution of the CAP-reactor have been calculated on the basis of finite element simulations with an algorithm as described in [4], The geo­metrical dimensions to generate a central plasma ball in contact with the substrate holder have been deduced from these simulations, and a CAP reactor powered with 6 kW microwave of 2.45 GHz has been built. Fig. 3 shows the experimental system.

-79

Page 96: mmmA - OSTI.GOV

In order to verify the calculations of the microwave field distribution, spatially resolved field measurements have been performed. For these measurements a muniature field sensor based on a Schottky diode, low pass RC filters and a high resistance cable has been constructed (Fig. 4). This sensor can be inserted in the reactor through small orifices, without disturbing the microwave-field. Herewith a calibration can be performed.

Fig. 4: Schottky diode based microwave field probe

The distribution of the electric field has been experimentally measured and compared to the theoretical results. Since the CAP reactor is radially symmetric, radial scans in the field measurements were performed. Scans in the expanded antenna and above the substrate plane were made. A perfect agreement between measured and calculated values was demonstrated, as shown in Fig. 5.The CAP reactor shows great promise for the deposition of CVD-diamond. It offers good access to the plasma region e.g. for in situ probe measurements. In addition, bias enhanced deposition is facilitated. The CAP reactor will be used within the FCT project for the deposition of diamond films and wafers. A first publication about the CAP reactor is planned at the ADC/FCT 2001 conference in August 2001 [5].

-HO-

Page 97: mmmA - OSTI.GOV

Symmetry Axis

Radial Position (mm)

Symmetry AxisSimulation

• Measurement8000-

6000-

4000-

2000-

Radial Position (mm)

12000— Simulation 240° Measurement 250°260°270°280°290°300° i310° /

10000 -

8000-

6000-

4000-

2000-

Radial Position (mm)

Fig. 5: Simulated microwave field distribution in CAP reactor and comparison of measured and simulated electric field.

-81-

Page 98: mmmA - OSTI.GOV

Acknowledgement

This work was supported by NEDO and JFCC as part of the Frontier Carbon Technology (FCT) project promoted by AIST, MITI, Japan. Partial support of CeramOptec GmbH is acknowledged; H. Kawarada is thanked for his cooperation in qualifying CVD-diamond by FET applications.

References

[1 ] E. Worner, E. Pleuler, M. Jehle, W. Muller-Sebert, C. Wild, P. Koidl Proc. 1st Symposium on Frontier Carbon Technology,Japan Fine Ceramics Center (2000), p. 79

[2] N.Fujihara, T.Arima, H.Umezawa, C.Wild, P.Koidl, and H.Kawarada „High performance polycrystalline diamond MISFET"to be presented at Diamond 2001, Budapest, 02 - 07 Sep 2001

[3] S. Kono, T. Goto, T. Abukawa, C. Wild, P. Koidl, H. Kawarada „Surface order evaluation of heteroepitaxial diamond films grown on inclined B-SiC(001)"Jpn. J. Appl. Phys. 39, 4372 (2000)

[4] M. Funer, C. Wild, P. Koidl Simulation and development of optimized microwave plasma reactors for diamond deposition" Surface Coatings Technol. 116-119. 853 (1999)

[5] C. Wild, E. Pleuler, P. Koidl „Numerical simulation and realisation of novel microwave plasma reactors for diamond CVD"to be presented at ADC/FCT 2001, Auburn (USA), 6-10 August 2001

-82-

Page 99: mmmA - OSTI.GOV

1. Introduction

During the last two years the modification of diamond film growth by ion bombardment of different energy ranges at different substrate temperatures in microwave plasma chemical vapour deposition (MWCVD) has been investigated [1]. The film structures were studied by SEM and Raman spectrometry. The film stress was characterized in-situ by using the bending beam method [2,3].

By ion bombardment at a negative bias voltage above 80 V the grain size of the films begins to decrease and a nano-diamond film can be obtained at a bias voltage of 140 V. Raman spectroscopy confirmed the diamond phase. Due to ion subplantation the prepared nanocrystalline diamond films were under high intrinsic compressive stress. The prepared nanocrystalline films show improved electron emission properties [4,5].

In this report period highly boron doped nanocrystalline diamond films were prepared in a MWCVD process by ion bombardment at different substrate bias voltages. Doping with levels higher than 1000 ppm was carried out in-situ using gaseous trimethylborane/hydrogen mixture as doping source. The boron incorporation was studied using secondary ion mass spectrometry (SIMS), the film morphology by scanning electron microscopy (SEM) and the phase quality by Raman spectroscopy (RS). Much attention was paid to the influences of film structure and boron incorporation on the field emission properties.

2. Experimental

Mirror-polished n-type Si (001) wafers with a diameter of 50 mm and thickness of 300 pm were used as substrates. All nucleation experiments were performed using an Astex 1.5 kW microwave CVD reactor (see report 1999), 840 °C substrate temperature, 5 % CH4 in hydrogen and 900 W microwave power. For achieving a nucleation density higher than 1010 cm'2 a dc bias of -150 V was applied to the substrate for about 17 min. The growth step was performed at different bias voltages from 0 V to -200 V and a substrate temperature of 780 ± 50 °C.

The 1 pm thick films were grown. For achieving boron doping gaseous hydrogen/trimethylborane mixture (0.1 %) was added into the gas phase by keeping a constant boron content relative to the methane content at 0.3%. During deposition, the electrical potential was kept constant at the substrate so that the substrate surface would be continuously bombarded by energetic ions. The typical deposition parameters are given in Table 1.

TABLE 1: Experimental conditions used for the boron dopingSubstrate (001)-oriented Si-wafersProcess gas 0.5% CH/99.5%H,Doping gas 0.1 % trimethylborane in H2Pressure 25 mbarSubstrate temperature 780 °CMicrowave power 800 WSubstrate bias 0 to -200VProcess duration 6 h

-83-

Page 100: mmmA - OSTI.GOV

3. Results and discussion

A. Film morphology and phase propertiesFigure 1 shows the SEM images of films prepared at different bias voltages. Figure

1(a) is an image of a film deposited at 0 V. It displays randomly oriented diamond crystallites with the average grain size of about 0.3 pm at a thickness of 1 pm and a relatively rough surface. This is a typical micro-crystalline film which should present columnar structure if a long term deposition process was performed. With increasing bias voltage a morphology change occurs firstly at a negative voltage of -160 V due to the onset of secondary nucleation. The average grain size, which is plotted in Fig. 2 as a function of negative bias voltage, rapidly decreases from 250 nm at -100 V to 80 nm at -160 V [Fig. 1(b)]. At -200 V a film with grain size of 20 nm was prepared.

For a comparison a SEM picture and the curve of grain size of the films prepared without doping are shown in Figs. 1d and 2, respectively. The phenomenon that a slight increase in grain size occurs at low bias voltages due to the ion-induced (001)-textured growth effect can not be repeated with boron doping. On the other hand a shift of the bias voltage for the deposition of nanodiamond films to a larger value is found for the presence of boron.

FIG. 1: SEM morphologies of the films prepared under different substrate bias voltages, (a) Vb = 0 V, boron doped; (b) Vb = -160 V, boron doped; (c) Vb = -180 V, boron doped;(d) Vb = -140 V, undoped.

To further characterize the films, micro-Raman spectroscopy was performed. The Raman spectra shown in Fig.3 were obtained with a laser spot size of approximately 20 |im in diameter on the samples. For the film deposited without biasing the substrate, a

-84-

Page 101: mmmA - OSTI.GOV

peak at 1300 cm'1, which is the phonon fingerprint of diamond, was observed. A strong broad signal at 1200 cm 1 which is a characteristic signal for heavily doped diamond [6] and a low broad signal from 1400 to 1600 cm1 caused by sp2-bonded carbon were also detected. With increasing substrate bias, a broadening of the diamond peak at 1331 cm'1 and lower intensities for the broad peak at 1200 cm'1 can be observed. Both peaks are shifted to a higher frequency. The amorphous carbon signal at first decreases up to -120 V and then increases. It is interesting to be noticed that for the film prepared without bias a shift of the diamond phonon from 1332 to 1300 cm'1 happens, which is obviously caused by a tensile film stress. For increasing substrate bias, this diamond feature shifts back to a higher frequency, indicating a release of the tensile film stress. The feature at around 1140 cm'1 which was suggested to be characteristic for nanocrystalline diamond films could not be observed for the boron doped nanodiamond films, possibly due the boron-induced broad peak around 1200 cm'1.

FIG. 2: Grain size vs substrate bias voltage.

Raman shift (cm )

FIG. 3: Raman spectra of diamond films.

B. Electron emission propertiesThe electron emission properties of the boron doped films prepared under

different substrate bias voltages were studied. In Figure 4(a) the current densities are plotted as functions of the applied electric field. Clearly the field emissions of different films exhibit a significant decrease in emission threshold and a stronger increase in emission current if the bias voltage during film preparation is increased to -180 V. The reasons for these improvements might be attributed to the decreased grain size and therefore the increased density of grain boundaries. The irregular behavior of the film at 200 V is possibly due to the porous film structure.

-85-

Page 102: mmmA - OSTI.GOV

-180 Bias

-160 Bias 0 Bias-200 Bias

1.5

applied electric field (V/pm)

« 2e-5

time (min.)

beforeconditioning

after j conditioning !

applied electric field (V/pm) time (min.)

FIG. 4: Emission characteristics of 1 pm thick diamond films deposited on Si substrates under different bias voltages, (a) The effect of bias on J-E (current density vs electric field) characteristics of boron-doped nano-crystalline diamond films; (b) Effect of sample conditioning and l-E plot of boron-doped nanodiamond film deposited under -180 V bias; (c) Stability test of field emission of a sample prepared at-160 V.

After conditioning the sample deposited under -180V bias voltage shows a lower threshold and a steep increase of the emission current. The stability of emission after conditioning increases. The stability test shows a current fluctuation at starting point [first several tens min., Fig. 4(b)]. Then the current density stabilized at certain value for a time up to 900 min. [Fig. 4(c)].

-86

Page 103: mmmA - OSTI.GOV

4. Conclusions

Nanocrystalline boron-doped diamond films were prepared using MWCVD process assisted by a continuous ion bombardment. Investigations about the dependencies of grain size and phase purity on the process parameters and boron incorporation were performed. By a ion bombardment at bias voltage first above 120 V the grain size of the films begins to decrease, which is much higher than those prepared without doping, and a nano-diamond film can be obtained at a bias voltage of > 160 V. Raman spectroscopy confirmed the diamond phase. Due to boron incorporation the prepared nanocrystalline diamond films show a lowered intrinsic compressive stress which is due to an interesting compensation effect between the boron doping-induced tensile stress and the ion subplantation-induced compressive stress. The prepared nanocrystalline films show improved electron emission properties.

Acknowledgement

This work was supported by NEDO and JFCC as part of the Frontier Carbon Technology (FCT) project promoted by AI ST, MITI, Japan

References

1 X. Jiang, W.J. Zhang, and C.-P. Klages, Rhys. Rev. B 58, 7064 (1998).

2 X. Jiang, W.J. Zhang, M. Paul and C.-P. Klages, Appl. Phys. Lett. 68, 1927 (1996).

3 X. Jiang, C.Z. Gu, L. Schafer, and C.-P. Klages, Proc. of 5th International Conference on the Application of Diamond Films and Related Materials & 1st International Conference on Frontier Carbon Technology, August 31- September 3, 1999, Tsukuba, Japan.

4 C.Z. Gu and X. Jiang, J. Appl. Phys. 88, 1788 (2000).

5 X. Jiang, C.Z. Gu, L. Schager, and C.-P. Klages, FCT report of the year 1999.

6 K. Ushizawa et al., Diamond Rel. Mater. 7, 1719 (1998).

87-

Page 104: mmmA - OSTI.GOV

SI3S ESPS

3.1

3.1.1 # W77-f>t75v77t>f- ($$)

A@©iif R, AP=W'*R&9tC#T-5fr±-L>7)>biffi£tiSn-57n>7L.i' 7#i*l:1Sd"VT

sfctero-ssgTfco. a*<«ASSrfl E4A-6, *5fi&FlrTti:f *AA'6iSyt-©:$:AI:,eiST6 A AS-RtbRLTeA.

Uf L, 21 tiESifflx, @#f 6#7R$$#f 6lRJbL'R#iBI=%b!:, i

OSftoty, ttflEtoSAity fS-Aitif ©■fT$ALT6:tb®;f A'b^EP.gfftAA)©*.

6. ^©weictt, #@©%$ll/f-©#l^-rAoA;mi@Lt6%#m#Am#LTA^

^A< At)a@©fKf%OAAAim$A< 66 A AA*&6. AP=1ICH5te

lc5£^fc[R±^$-5fc»C$S®tiS7k8p£W5CACltiflScoffiin^W-rs^b, #

5CiiM?. A©mmiA%bAm#^im##K#A<AR^G#AmBIA66 A ARK

6 Am^6©Amb.

f 6#m#A%<6bAi)A *WGTt)®D±tfT©5 $c©f 6

6ef>b$te6 a, #«*fe«ita?DftcsA/f»s©t>to^w*t

6 A A cm# <. i%mwimmm<D-tM 7f (:**»** nnx© 6

t>©T8 0, ##tm#AA©-3A'f bf $6. aoT^MSliWIfflALTSb

R##f#ff 6 A ARm%E©amRM-b A##R#©i#m©1±^f *6 A#bTA©A6

3. SS?6#ReeS#6tttiFAUTffl©5>A Att, S¥»+5imAafon5SSi:

A6%f *bf A A^f*6L. SEnDa©iBft#i%{bCfSj20= f f

-Tf%sib:87jft:£-3< bAO.ttlgto&Wiyf'J-£7< bAOf 6 A A=fc#x6tl6„

f<*^x©aflit>KffiCStf 6Al5A:A>5„

A0A-5 Htt»Hld3©Tii;AA

66 A AR*WG©BB6-EaT$>6,, 6 ATff ®R«A6fg,6A GilfflffiBKAf *18

U A 4 "3"a tl 4 RSfcoiMHEtlf^f Rb A„

IB-R»lSgi$SiWll©8ISS$R%Tlc43H-6#ttto)6ffllco©TTS>0. RR6tBti©i«]

AI:3©TM##%Afm,#lgfR©. Abl:#*a*Tl:fR6fBMI:3AT#*M$A

MMff^fRb A6©Tifc6<, MEMS R43R6 DLC UtofiJ/BtoRIEttfSb A

t)©T, #1: DLC em©A//TAS (Micro Total Analysis Systems ) ©M%Rf6fEf

88-

Page 105: mmmA - OSTI.GOV

Ma^\roaffl«iaroto>:5r,SBclUZct)roT$.-5, WE'AmZ¥'( H43d:Oi DLC #0

mwAnmto.ms-nuzts^Tftizmmttez&fotvtwttiDftffiiDffl

ll$®9±tffct><DT*-E><, BiaAlftt VGCF, CNT £-3 if ^7 X? y 9 ©««« •

fWffiffffilcM tsfefflTfcf), C-H-0 % c»tt Wti ANl X fSfigtf M % £ g m l fc t> <» T*

•5,

ctieroigissffE^acT,

-89-

Page 106: mmmA - OSTI.GOV

3.1.2

3.1.2.1 teDtolC

dlc stt,s«s •

DLC Utotimx&bTtoS. Anbto#@6*t"5 DLC

;nH, DLCK7)^kS^St?Ac»iC'erom«iccfcSffijSEltro^fd 40o‘cgi$$TL^@

ccdiot£ 7oo<cg$$T±#T#.ntf, xibs xXA^Ato#mi

Ani^#*##to@MlMI, Vy* A -X A©Ey Vfi£S& £'ICEST* -5 C E: 7>' 6, -E-toll

EET-, *»Ttt DLC toEE-|4l:*.'S&$,TT-etoBS*tt^±SS-8-5/itoto)KafiKS

S6l: DLC KtoB»14lcotoT©S:tolHS£ffoT. fto#*

^160"^ -5c

3.1.2.2 K**H«lfi©»»ttlcia-f3HlSE3:

3.1.2.2.1 ttLtolC

DLC SttiS@S • LX, $fc cBN J8ttiB«iSTi1S*ttlC feiStl

TL5Cti^ttl^HTl'53-Ti DLC ttgnfciWttttSWt"?.^',

HffiSKrtUOorKTAto-5^,&^*-5 ‘>~6>. cBNJIttDLC AttSLTBttttCan. #

AtoRi5#A%to##&#-f $@)£*^*S<sacf,to7k5)'l:j:-5K©$JSAs"%aE-r

•at to-5 7) ~9)„ ^ATM#to#Br&#M±1#-3^ AtoM*$Ll5 BCN

fig-Td AASrBtoA LTj'-y-y b "Vt > H Atft^cBNtojg-&tl£IBtofcRF T

XX Ln>x/ty#'iilcj:d^sgj|®6ffofc„ ELT£fitiS©S$, ###&#& DLC

K A ttK L ft 6 SI5Tf 5 A t C J; 0 Hto «fi®fl*ftttlll A L XtoWiSrtt £& W L ft.

3.1.2.2.2 BCN %SfiS©£l$X86

Si&ICffltoft RF xXX b □ AX/t -y XBBtoRlS$-|ll 3.1.2-1 CtRIX X-X-y h^S

S#Al:1iEf ?>ckE) IC*8S8s®SPICvX'tf b □ XH®£g3B L, i$®£$££-tt-5fcto

rHigtCttficLft, bn A&ffiliV-y X'yXi^-y XXSrfrLT RF SSKBSSITT

130, X-y-y bl:Aim%l: =k6#to##&b|inja-i±6y yi:4:0x/AyX^eA. *Sf

x >/'iAgsi:ttB6Ati|ftiLTB6SEBL, DC HESttSLTSISlcLAto/HTXfl;

EErUMT*-5 =kn ICftoTtoS. X-Xy KAtocBN totb£ 5:5 T

S^Lftttoft 8:2 TEALfttito 2 @S£WSLft„ X-X'y b Elf) toS^XW tt >

blifi® 100-120 dm toXE-REA btoBiEig 4~6lim b#$& 11 T

— 90 —

Page 107: mmmA - OSTI.GOV

*300

Nz+H

Matching rf PowerBox Supply

13.56MHz

El 3.1.2-1 Magnetron sputtering apparatus for BCN film deposition.

cBN ### 100-120//m (D cBN 4—6/im CO cBN

1:1 v b^mv^BCN#(D^^:^#^#3.1.2-l

IZtf'To

3.1.2-1 Deposition conditions of BCN film.

RF sputtering power 200 WRF sputtering frequency 13.56 MHz

DC biasing voltage 0 - -150V

N2 flow rate 10 cm3/min

H2 flow rate 0 — 30 cm3/minPressure 0.4 Pa

Deposition time 1 h

Film thickness 0.2 — 0.4 mm

Substrate Si

Substrate temperature 50 - 500 r

91-

Page 108: mmmA - OSTI.GOV

H] 3.1.2-2

Deposition rate

vs. negative substrate

I3 3.1.2-3 Influence of substrate biasing voltage

Deposition rate (nm/h)

hj 4^ un

Jr—

Rz (nm)

ro n>

y a z o

n a\ -

O'* gx d £3 A 4 A r-t r A Ono A ft 4

A ° w N 8 4 8 Or & ft a M O m 8 A 4 A 84d 4 uh n X Sit f4 rv % Z5- rv oo d rv f^ n $ m g

A A SB I# # 4 94 A 1—* d 4 art n> 4 A n pgX A y ffl A g x^ JS- 4 4 to SI gX 8 B r 4 A r %A 4 Sit A n |m gX O'* A to 4 ft 4 d Ona rt V n> s 00 % 4 ° 4 4 g>) M r rv 8 gV > 4 09-t d H A M" On gX rt -3 4 d r t n> r< 4 g>* /\s S', 4 # r to OO 4 si 9a ri 4 4 B rv g)< r< & to# A V 4 ft 4 d 94 9 8 v3 fet A 4 A OOr 4 N 4 gX n M "* av E rv )S 8 - d f 4 A dpf X I # n> A

4A 94 W# n\v 8 Xr D> Or art 4 pH

4 % A M n <r 4 4 8 8 pr B 84 A g>4 a-- 00ogX s # A * r\ V r* # Fit A v7< an A o0 y V£l^ 4 u T4 A rw 8 4i S: <d 4 # A d

rw gX s Or 0 4 9-v* d A 0 A rt A 3A A A >1 X

s,. gX <3 Si 4 pt N d S- A r< od 4 gx 0 rw A X ■* gX # X X f 4 A

V A d 94 N < A (4 A ft w3 Si 8=? 8? 94 dA A & X X ll 8 eE 8 Frt E ->0 I# n A $ Si x- I S, g g Or f 4 8 IS pi A s.

#g> hr

94 8 3 FRA

HX

i—‘OOAN

EA

4gXart8

SI4 2E

sS55

OnA& m r

n r4 hr )# 4 < X El r< 4 A on Oo S 1 4 %c* gX 4 CT V 8 Pf oo rv 8 g> 0 O

o d A •St

H-* 4 4 Or fW A # % t—' M n> r < oo d d <-% r XtCO% 4gX art

rwgXa

Ord 4

d%4

n> 4o\v

"toCO 4

C5B rv

Ah-1to

dm

n>B

X-0*'

d A00

p 52 (V r 4OL n> 4 94 A n 4 to r 4E m 4 % ZT B m W 4 n> Or A n r A gX A ==

A 8 a arty\ r n Ti gX 4 B 84 g> 4 d A ° » 52

8 at 4S', >+ A 4 to00 n %t $ 4

4 ft A 4 3(X A A gX 9 0 4 % 0 ># ft X r 4

m A S ? 8 H 3 4 A A A n # 8 □> d # m-A X r t < <3 n d 4 » 4 d 8 M B 3 A# A si 4 ? fW 4 m M X # X Pf m rv4 A FH 94 II A V A A s Si 84 #t 4 f4 rgX A Q OiO A r # r f 3 41 4 n> A 4n r S r < I4 M d A d 8 Era A 0 m 8 8 #8 d g o 8 r 4 n> 4 S W# A A r m /V4pm r Or S', (A gX gX gX B 4 S A X ° A a n

Page 109: mmmA - OSTI.GOV

Ratio of the target = Dia 8 : cBN 2 Indenting force = 1.5 (gf)N2 flow rate = 10 (seem)Biasing voltage = -50 (V) Substrate temprature = 500( °C)

Biasing voltage (V)

El 3.1.2-4 Hardness of BCN films vs. substrate biasing voltage.

^ —yvHt5:5

3.1.2-5 > M 5: cBN 5 y B-C-N

a#x.6a6. caj;D, A#^tm20cm3/rnin&#m#^LTm^L^.

BCN#(D SEM 3.1.26 . #@1:^-#^+ nm

T&0, —h^f(D±^^(D l/100!XT'T&6C<h

7K###AL%WT'of#L/:#(b7K$&#AL/T^G%L/z#(7)AFM#&El3.1.2-7

7K#^%]xT13nm lOcm^/min

-93-

Page 110: mmmA - OSTI.GOV

Dia 5 : cBN 5

Indenting force = 1.5 (gf)

N2 flow rate = 10 (cm /min)

Biasing voltage = -50 (V) Substrate temprature = 500( C )

H2 flow rate (cm /min)

HI 3.1.2-5 Effect of hydrogen flow rate on hardness of BCN film.

HI 3.1.2-6 SEM photograph of BCN film.

(a) H2 flow rate 0 cmVmin (b) H2 flow rate 10 cm3/min[El 3.1.2-7 AFM images of BCN film deposited without hydrogen (a)

and deposited with hydrogen (b).

-94-

Page 111: mmmA - OSTI.GOV

3.1.2.2.3 BCN ISdUSittSfl

B-C N S iWK © 6 A »IC 6 ?t o it,, Si *$±1:^^

M 5 : cBN 5 <J)9 — >fy Me <fc 0 £s£Lfc BCN R£ttS*F*ICAn, Am* 500%: T

i mr$&m\,tzmzW(%v, E©m#$ib&m%A*^m ©?#.«% ut. cmti<n bcn

EtoASfttt, B:C:N= 63.7 : 4.6 : 26T*?>. tbtit IT DLC iSECO^TfeRJftCOMS

eRoA. ArolSS^BI 3.1.2-8 tCvf, Hi DWbfrfc^vlZ, DLCEtiJc^lC^-ALit

(7)lcyLT*E%T^I$LfcB-C'NilSttiSICK*7)iA'r>ICi|i!)DLfc, Sfeffi

fc*<tA'ae.ti^Aofcc i*'b, DLci)iti:tKLT8nfcB«tt^#-rs^i7)iAAofc.

S bib, z — 'fy hfil$tbS:5,''I'-V : cBN = 8:2 <h LT □ fi£ L/rECO^T 300°CAb

YOorcoM? 100<C«ICSSe$ibS-e-TAm*T'E®S:S:RV', »®JSfi}g;©EJ¥®*it

$ AFM ICJ; Ol^/L©/^'# 3.1.2-2 T'*5. 5 ic, 300t~700r ©ffl©A

a * T'43 (t 3 Ml T (i BCN E©/f $ ItXit L A © £ t i)ft) -5 „ 400t: T'ilJ* A*« A L T

© 5 © ttai/£SSMT'&-5 tSfcft-5.

|H1 3.1.2-8 Weight change of BCN and DLC films by annealing at 500°C in atmosphere.

3.1.2-2 Change in thickness of BCN films by annealing.

Annealing temperature Before annealing After annealing

300%: 200nm 200nm

4oor 400nm 300nm

soor 280nm 280nm

7oor 450nm 450nm

-95-

Page 112: mmmA - OSTI.GOV

3.1.2-9 CSf. C ft 4:0. BCN fPK Ltc BCN lllti 500t;gU

LA'U 700t:g$*T*

bamtst 5GPa ^ikie<hisies©@zt&o, -3-t--< ur©#ttro#tt$*s

4-fSS blCflSrftoMSttStlijnS-tir^.,

100 200 300 400 500 600 700 Annealing Temperature (*C)

E] 3.1.2-9 Variation of hardness of BCN film with annealing temperature0

3.1.2.2.4

*

1) 59(2000)15.

2) A. Grill: Surf. Coat. Technol., 94-95(1997) 507.

3) C. Bonnet,: Surf. Coat. Technol., 100-101(1998)180.

4) 55(1999)38.

5) 57(2000)38.

6) S. Aisenberg and R. Chabot: J. Appl. Phys., 42*7(1971) 2953.

7) .6IC #;ilIH^:#1±(h))IIT., 413(1995)593.

-96-

Page 113: mmmA - OSTI.GOV

8) S. Watanabe, S. Miyake J. Kim and M. Murakawa- New Diamond and Frontier

Carbon Technol., 10-4(2000) 191.

9) Y.*K. Yap, M. Yoshimura, Y Mori and T. Sasaki- New Diamond and Frontier Carbon

Technol., 10 4(2000) 201.

10) K. Yamamoto, M. Kuenecke and K. Bewilogua: New Diamond and Frontier Carbon

Technol., 10 4(2000) 225.

3.1.2.3

Ovid 1987

carbon*film*thermal T 173 IT, DLC*thermal*hydrogen 47 o

S/'J 3 0-19.2 at.%mADL/:DLC#^i%im^y7X'7CVD^lCj;0f^#L/, C

CHn&^Si-H(DFTIRlf-/7^##<?10, C=OaSi-O(D^^mD0T6.

Hl/Zb6tl, SimAD(D^V^eil400r, Si^mA[]^^lT^'5(h#ll500r'rD/i>F(Dy

3 6fi5 j; 3 (:?16 c 6 c 6, Si (Dmmil DLC #####(% io]±!:

Camargo 611, DLC -^110 Si

F-7°L%:7K#{l:DLCmt:o^T, 40ormT& 40ora±T#(Dmi:j;6^{l:^m^6

2). y > F-7°(D DLC #6:^71 0 400raT(Dm^l@Tllg

?L(D#M(L#^^(:j;Osp3(DC-H^e^mA0Ll:^lx7y>^ (CnH2n) (Dsp^^^M

4oor^±Tii7K#(Dm#i:d;6#(D^#^^(;, ^977<HbmmfTT6. ^(D

^%iM^HSi^<7l61:%oTI$^^(:i>7bT6. C1U:0 Si(DmtOll(0##(Df6]

±l:^4T6(!:$g#LTW6. $ 61:%611, 500ri:AomL/:Si M-y7K#fLDLC#ll,

Sim^^7lW#^l:liy^>2:L/T#^6MT67K#^^^, Si #^15 at.%(DDLC

#(D#^l:llcHllll(L/u^M61if,

Wang 611, 6.65Xl03PaT300, 400, 500, 600t:TM#L^7K#{l:DLC#(D#l#^

|o](D7K$m^^^^ERDA(:j;0#l%LT^6 4L 7%-'J>^ll7K#(Dm#^

{SL, ^(DL^^#ll400'CT, C-H^^^^a^,(7)lim^^%(7)lM^l;0^L(%^ 400'C

J^±T&0, 500T:, 600"C(D#^a^^T11116/u^(D C-H$g^ll^6H6^,

-97-

Page 114: mmmA - OSTI.GOV

CfUlDLCm##^

\v](Dffl.1$(D^f£}-mz&mLTl'Z>tLTl'Z>o

Parmeter 6H, DLC #(7)###^^#

LTW^s), C(DDLC#^40%(7)7K^^^^, sp3$g^60%(Dt)(7)T&6o 250-300t:T

300-500rT7K$(Dm(#(!:^a(:#3 sp^^S sp2*^/\(D

'7<^n^UX7;i/(D^777<h, GLC#(:^{bT6Ca^6,

7k#<b DLC 250"C@J^T&6 6 LTW60

200, 300, 400, 500rT#^@L^#^, #(7)#$H20-25GPaT^(h/u<H^fb-&T,

7K#MX<^ 400t:@^^67K#(D DLC {#^6

C^l6(7)#^^:n, R#^6#:bflTW;t 400ri%±T(D7K#(7)Mia^97 7< Hb(Di@

zK#(D^^^l^Wta-CTH600r@^(hm

mea^wca, Si^l5at.%@^ADA6C(ki:J;0 500r@^&'rm^67k#{bDLC#^

* #W3tii*

1) Wu, Weng Jin. Hon, Min-Hsiung. Effect of silicon on thermal stability and wear

behavior of diamond like carbon films Materials Research Society Symposium

Proceedings, v 555 1999. p 339.

2 Camargo, S S Jr. Santos, R A. Neto, A L Baia. Carius, R. Finger, F. Structural

modifications and temperature stability of silicon incorporated diamond like a-C-H

films Thin Solid Films, v 332 n 1*2 Nov 2 1998. p 130.

3) Camargo, S S , Jr. Neto, ALB. Santos, R A. Freire, F L , Jr. Carius, R. Finger, F.

Improved high temperature stability of Si incorporated a C=H films Diamond &

Related Materials, v 7 n 8 Aug 1998. p 1155.

4) Wang, W J. Wang, T M. Chen, B L. Hydrogen release from diamondlike carbon films

due to thermal annealing in vacuum Nuclear Instruments & Methods in Physics

Research Section BBeam Interactions with Materials & Atoms, v 117 n 12 Aug 1

1996. p 140.

-98-

Page 115: mmmA - OSTI.GOV

5) Parmeter, John E. Tallant, David R. Siegal, Michael P. Thermal stability studies of

diamond Tike carbon films Novel Forms of Carbon Materials Research Society

Symposium Proceedings, v 349 1994. Materials Research Society, Pittsburgh, PA,

USA. p 513.

6) A# m, mi m:^xh7x-;i/L^

2000, p43.

3.1.2.4

(usp)USP:74<FlDm%, B*##f:93^1^ai#^)

USP:diamond*film*tribology*(biomedical+space+atomic)

6U/:. USP^SOf#,

3.1.2.4.1

3.1.2.4-1

(&###) USP »##?##

itilEA

#H¥ 8-141072 7 71/ 7 X 1Bx[ jiiS@i6^<»Stog|5l; DLC JS9-173437

#^¥ 11-76256 >/^X DLC m

11-313884 77l/t X7>hB;f^UDLCm#^

11-318960 Q##m AlMErtDiil: DLCEBfiK9-510893 >77 > h U DLC m

11-506807 L## (7) ± (D ^ U DLC #

USP5496359Smith&Nephew Richard Inc0 at. its sic dlc mmrti

99-

Page 116: mmmA - OSTI.GOV

3.1.2.4.2

^ 3.1.2.4 2 (:/T<T.

3.1.2.4-2 jgHlSPW^<7)zi—

usp \tm$ #<tm#A !±S®i*]S

^mW- 7-41779 HA#Z immmmmtiz dlc eam

Wffl 2000-103611 ElSSttS fflftaswt ;,iwb&dlc mzmm

2000-3206732000-320674

H^SE-SBSSttS

x > -7 > g& M © if ft SB 1 c « ^w © » * E $em

USP5672054USP5947710

Carrier Corpca —3? U — 3 >7”Ui/+)-—©i@ftg|5(C DLC EM

3.1.2.4.3

^ 3.1.2.4 3

3.1.2.4-3 m+tiM&om*

mmx mimpti#

## 2000-504843I-C C --7lA-7^$' ?y (xOi-f >)

DLC E&3-X4" >7’LT Mik ■ m# • *#ofcih

3.1.2.4.4 $6A

mm##-

3.1.2.5 $£#>

^&ev\ DLc mmeco

WT^#&zK#ibDLCT 400%:, ta-CT 600r^#m^^T&0, #$, 700r@^^T

-100

Page 117: mmmA - OSTI.GOV

WS»tt£[6]±5-6-5 C f W)*ffi?ET

S-<®ri±lffc Si &£", Wb/i'ffl H-H>y^$SUfc DLC SM5if 5-i:-S***5/£5 5.- £#»J6tt£|6]±S-6fc'k#atiHaroto!f»i»#<1.6

n, w#Tt5 5t^7KPg^tifc„

101

Page 118: mmmA - OSTI.GOV

3.1.3 7^/707^

ttct VT £ □ TAS(Total analysis system) 'SCfJtT'ffl <D njfiEtt

3.1.3.1 7T7a777x%-7©##Aft©E#gl3j:U:7'Tftf > H*m©##A

7T 7 □ TAS(Total analysis system)z\©/*ffllcKI7-SHKSf^

3.1.3.1.1 liUtolc

7T?O7y>0imfiif, #AI:RftftTl7%. ft©S3*ft*ft LT14EW, «9t,

tifi, ftftftTi©«*£ftfti:ft OfXX&^gf'xtoiSiB/AAil'x-iftT

V^-5o ft ft ME MS (Micro Electro Mechanical Systems) ft 1 ¥ 1ft ft ft. 1 ii % ft] ft HI lit (ft' ftft

»e7lsIZ6»), EttWftftT {7 DtSifi (t>+t-ft7777x%-7#) SHir • *1M: (-T >

7U->x>Mt) U LTlEx5ftE@«^$#Sn, f ©jzftftftT 7

-7T7n-r/\*7X®SI1fl0iJftLT, t>»©ftftB7t47°777mR##&M(7ft7a—(:

>1hT>7*T77 7At)?ig£fiJJtlftfcl±:/j-fe>-y-, S«j^©*(4^a/MX*S*©*1ttbT

#at76imim%t>+t##$ifea, fesse • si$stt£*$javTv^„ $ft7

(7fal— 7 © 5ft HE T"14, 7° □ 7 x 7 X — Icffi (A bftft>7 7 7 □ 5 7—-^T >77xy hTz

StoT'U > 7 ft ill ft ft ft T ft ft 7 ft 7 o>UI/7"#t)%m(b^Ti, 85.©iWSim;ft*i8;UT

Cftb7T7 Df/H X©«ififr A LT±ftfflftbftft14f4l4?SIi-e* 0, £©7/1-T7

(4#>7W'i-J77'7 777AAft7fcfllifi£/fjftTiiil/«'tfft1-ft£ AftJ; •O'&gftEflE

£%»UTftft„ ±oT, 77 7 n7/XT7©ESto»ff«, #:+. »l»7ff 7fcfcftt4,

7©S*BlinanAA;-5«liyfi©«ifi, SSSXOftffi# • *«Aft7fc«««#tt (#tt/£»,

#77>tt, «I$tS©&A) 147:*BgT8>9, £tr 6 ##©##%##& ##7^ £ AA*

L^UxT 7Df'mXttift^aUfcyn-feXSfflftTfTB^ft-Sftc©!::,

WAS ft, EtttoAfffifty LT/F+^ftfcbTc,. T-f/af

/IT X©«ifi»ii(t©/;©ctt, iWStiSft *f 7 ftffitotoff « £?7 (7, WMlT-SA AAftR#

bftTftft.

Sfe, 77 7nfA'T XTiBft bftft1.ffil477 nxft —(l/ftftftT#jSti" A LTiflft b

ft ft £ AroT'&fttffi (Hill (4 ft 7 x y 7, WE4444, ItMKHB# O'A (Shape memory alloy :

SMA) #) &#iH7ft£A/i#<, E«Wt#tt0fffSS©g5R(4S*oTH5. teftilSto#

ttlSmTftfflSftftmT, 5iFtiimt47V\'7X©fMT#-mcS58£4xftX*ftJft6iScT

*5i#/.6l15.

-£, ##&iH(7ft77 7nrA7 X14 U V X7 7 LTfTBSft-5 £ AAi$ < ,

^©»Ii£ftl4, ttSttu: (#«ft, iWfli±^©iW«M©SB$). ItAllDI (Iy7>7'), &

-102-

Page 119: mmmA - OSTI.GOV

Mini (K-tts.Efthz,o wiciWMItt, x/t-y^u >E-^xasVi:©oXc

K*a4,TfMl5£7ES5rS%S-e', (Physical vapor

deposition : PVD) E, tl5*fX^$S±TSl6, #)$;*-l±TE©?fcfi£^£*

fe _L (--HIhi 5E (Chemical vapor deposition: CVD) ©^fi^Ti^Sy ci tE50

Lfc#oT, ■ero^K^ffiroat'^, MWhMiMs®, ticnnn, %am, ?-y>; h

*fc, d©i5tc^

®stidiwis©#<liSi-iss.tfSTSd©-!?, $ss,K[6]^egic@©7)taii;fco,

^Fto^©SffilCd:0fflfiK75i"$(fc1"6iS^®f*iafflig©$<l;t)SSIcAn5-i;'S^85„

, iWBf/m©fi#6Wttl:HI"5,6Jft)t!5- =k 5 K/j:OTST43 0, E©IStt«

Wtt7)»jgstLT©5,„ UEU iSKmfSyx"D-bXJ?>j$«©aii8T%#Stc/h$©X;'e®

jiTSfc*, MSi©*-©H^M'S-ffKT-5c:tt±HilT*5ct, ffl!l$lcjott-5ttS»t^F+

»TS.?>©t^£©Pp'lll*^'*5. ^TsmSte^fmx'n-fexiciASSfiVfcSititoii

ZdiSSSftTi'EZd, gzpW*liC^fttt*Zd'M4dnT©^:©©^$y:T'$>-5=

T, M-fe*>S©«Klc5SatolcStt$4-xTB*Stol$:6ai$U, SS5tic«fc 0$©5ftt£

^atg»©?gtuT, e®@sis$«#toicEiiiSti--5^ft, #

n> V l^—*f-7t©fiSWl:J; D

LTSSrlnSSth-S^ii, ##X t;-A-(CA-S.agE©E<bS:

f'iffl LTiMi82-t±5;5ffiZ£i;®ijg^£tlT©5. UZb U Eft 6 ©SJlSSftTliaStoto'ltlC

A6y>H>X©##t:«l;6B#gm#©#$-x©#gA!E+ET&D, aimSto/lxX-

M$<i©tt$:E+ETXj:©<h©oXcBfflE'83,, *fc, Tabata S «y< 7

xxAic^^dEASCA-sKssiiifflLT, amaemwT-v>^#^#:diE6/'Vi/z;&

SrlfiSU Stt/gft-^rtBISlEXl^jRfeTl^o *fc, Nix tSti;, Nanoindentaion ifflin

saE/iEEtoffLiAA-icj: Oieiie-^xxis^aiisuTASAi, EE*%©#*i:eaT

5ffSttit:BIi)<185.

jxEroE^icssto-Mflestozffls^ffxz^iZjCtixztMesEZfiessnTAEZis’, c

nt,ttE^T»fli«S©$SEi9-T<6-5<l:(SSUZct)<hTfffcilZcSI£ST8.i9, ##©

i*]8M jg 5:+E t; 18 x Zc fc © t (in x ts. t x

5I5BKgttffifi, SStol:*tt$SE®®rS*5rfflJ$E5.C AETS-SET, EEX —X

-EEZcC, Sfc.

Z£<t8«WfEE£M/gTSC£E'T'£, $Zc$SE*©SZj;-51Zj;E^R$U, EStlZc#

Re#mE6CAT, iWMi*ii$T©«ti#tt©S:ft:£ t> ffix 3 r A Zd rT^t $> £ <h#x -s

tlZu

EOT, 3&*£

MLT Wxto WtoMI-:©,ifMiEBtT$>-5 A4x b tl-5„ iW8S©f«ffi$5#eVT, E©#$#

-103-

Page 120: mmmA - OSTI.GOV

BZctfC'ZK, ckOiSSZ^fflSISItlCctD, $Zc, ?1'?DT/H

Xtoiait, ff«rog»fcCfB«-S4x^r

■ecT*E%TH, a^Zc»Mttfiro#tt^:gciiS:(c»«T$5a/h?l5Itt»S«ao:ii

dlc »s®#tt$»to«ssRr3Zc, ccDRg, #m$fM®w#Mm-rma£

Zj:3,6i«JtZj:zliJ$roZc«t>®tM**ili£ft, 8B®itifBIIflf, KttCQt'T fcl$M£

6axfc=

3 6IC, MEMS®JEfflft»£LT, uTASfft-f X □ Total Analysis Systems) tC BBT 5 W

/iTAS 'vrotSffltbT DLC i»BI®j6fflICO®Wt3Zc®

IC, Johnes b IC ft o T ti$ 3 hT ® -5, $iW £Sig IC ft 0 Kigft -5 ® BISS £ L T DLC

£ahl ^nm^’&a^xsmmnmzmbxmmmn^tmivt^.

3.1.3.1.2 x-xyx i'Zcy--r*e+;i

«/LZc«|iH3O®T9IMiS^*ff-5^®Fp’!il®0'i:oict>-r*-®ii®fe^*.-5. iiif®X

'r->uommm\zts^TU, t>f>x-*-->* sstiw lets*l -cwc ft 5eastnE-ft&

a»lR5*?i, ft ^ y X MIBI® £ $M h 7 > X Zj; £ TiMSt" 5 * ft, fc L < IftMtfS®**

iStoMSEftllCftO W£i£ftLTE4-$(-5<f®;5ft:£fln>TO-f'>2:$!l$t"-5„ LZoL,

HE® =t5zj:a/hZj:«ttTtt. zn?,©MSffli>5t, -

l6j$fttWcZj:bZjftftd'ftTZj:<eil;»i4D-5,, £Zc, 0 WWiCffl ®

6S*SJ®eic=k5ISS>t®@Jtt®EFt;t)*$®TSf', t>T*®M$7)s'BST$-5„

7t#M&fft, tlici/—tf-7ti£ffl®ZcE'{i • t>r*®MS1i, y,T®#«£*iT

•60

• *@m#l=*LT, #»«, #*«, *Sffffl®ltStoftT6d.• L-ft-ZcroiSS • 5iiStt$$LT®5> (3b-l/> hT$>-£.) ®T',

• 1/—if-76Tlifg|n]tt • SfittZ)tgnT®5®T, Xfty L^S#gS$T«5 3£Zii"

T*, ^p/fMZc«/g(;(*nT®S„

L - ft - )t ft m > 5 ft ft ti: a ft Zj ti file y ft 3 E ii • t>-f>®$ij£icHTU5tfZ.5.

ftZe, *#8#®m@ftfift L£g# h 7>XSffli>tfe»Mfi£S!£t5 ft £ZW#g

T&s/ft cnictt^r. L-ft-)t^ffl®zcaij®c(s, aT®@az:#a&R%#ftT®

5 o

• L-ft'-7t®SiJji!B@lfti5Jft*liBSZiift®Zc®.

• MM/'f X'le^H'.

-104-

Page 121: mmmA - OSTI.GOV

* © X '5 X X ~ +f— ft £ )IK '/i Jill]ii;©U /j.T X, *«f % Icti©Tttx A -y X im#i£lc

=t;-5$eai$r£5fflV'T,

*x^yX ;u©tt R&tfx^ ■> x Af#it©##

* © « B 7^ 1/ - If - )£ T P8 9t £ ti A * ic, M&©£>

ibflS. A©,£© 1 X> 1 X>5:X<'y Xlk Cl ©gt*4 X X -y X X/1X-> A«# XX X A-y

x;u«, k—tf-*©<, mB±©&aA^©m@L7t^a©i:f

Ltzifi-oT, SSLTWXMtotifgSTdxSL-SX©!:, SX^bJiHiffiliSnsW

ic&suTBflss, *ss, fffis, axx-y xxe*

ItWIxTOT-SX, A©#*#MAi-S©i£Ri|l:%X. XX-y Xll/©%mi:M

f UT, ^<*$B©@i*iESlco©T^©E<5:$S!lS'1"5.Sr£lcx^-y

XlHXSfe^iisS. cnil maB©%»): j:&x<-y X;l/©MH@©mfb&#mf

(fe<5o

«E©i!l51im©0-'f*lt-$tof£^ LT, *©f#^B**MmL^t©^&6. Sharpe

Stt, tmfrEBI^SfiKLfcftSe^ldSMLfcl/—tf-Slt7te®T?#$Sfl§LTS!l$U,

Ruud btt@#fft#^©/\°X->»s'Sj$£nZt I/-XX h&tf^e^Wl^iWS-hlCffBVT,

fe©@tfr©Slfj*;£Si|£t'5X ^T0--f»7)'*l+Sil"e#fct VT©-£.. UXoL,

^asfflai:, fi*±ic36tc»/toejaeestieLT6o, steofcfcefmu&ewiupai

$t"diWS©Wttl:4-x5$SKX)UT+^#aUT©fj:©.

XhCtt^T, X A -y X XT#® tC J: -5 g<i$!b£T ti;, tof/OCfiS £#eoKStof!g&$E

T'Sntf, £'©J;x&tieicttLT1feaiJ£5J!gT%i»KSfi8f$i:g6£fE8f •5<£:'g7)f7j:©„

*fc, (g«« © © ebb#: t%+

S 6C, fBA#©Bl%@©#$&*g

X6C A/)*?#. 0S5fto/j:U'f'*e&ai$T5)C X7)tT#^<h©x#fS$S©„

3.1.3.1.3 $e;i$sa©t*hK

x^yx;t/f#i£eMmLtBmg#©%@B&»^#&Tr6^i£XLT. 2 TtJKflgWii, 2

MOf£, ^©EpT't), jlOSittST, @t*l$)BICP3tj-5-|6^t6]©$-(x©S

A Xt)1T*5i 2 )tJRpa»i£^*{if^;T1»ffl b/lo

2 7t$P@#&©*$#a^BI 3.1.3.1-1 XXX. trt*8Btc*fVT, B-¥@ (X - Z ¥1)

l*lTBti55l6]J;O|B]-Af6 0Tl/—jiXlzEBU, *fc, k >X*£ilU

fc CCD © X 9^^©##*f X 9 l:EBf6. ###

BXd-e©¥B (Y-ZIi) l*IT£'SLfc6. ESml1$©B#©etif?fc1j-IC=t: D, X. YXfSj

-105-

Page 122: mmmA - OSTI.GOV

CCD camera

H] 3.1.3.1-1 Arrangement of dual-beam

speckle interferometry.

(a) Photograph of displacement measurement system.

column

(b) Side view of displacement measurement system.

HI 3.1.3.1-2 Displacement measurement system using dual-beam speckle interferometry.

6.

s = A/2 sin 0

(|X| 3.1.3.13(b), (c)#j!(1).

-106-

Page 123: mmmA - OSTI.GOV

(a) Speckle fringe pattern of gage (b) Histogram of fringe pattern (c) Averaged histogram portion of stainless specimen along gage portion direction of fringe pattern

1E1 3.1.3.1-3 Method of extraction of speckle fringe displacement.

ikic, sHiRSsM-toWgrm,

O'-rwd»bti

•a. DSfiEsn/t&cy'r&stoT, mimJc®&tdxtii/T

toHdSSttX^-y Xll/®tiHI:=k9 7>X'ATii»So iot, LT#

tfcA 1C, 5Fff8ISlcaS»Sl6]IC6-'S.OBf!SS$IISU, ¥ffSSl6]©Bt3SS®5fSi: UT

tX f'/7ASt6fc. kX bXxA®»$A#®#l@l:*lt:U, i6S<hUrgmSo tx

ha®at^ottorBiE^EtoraMT*o, ifctx bxxA®#a#®tm^$)*®n,m6

%s. c®kx bX7A«7>XA6/d'Xg%*&#'/o-et^s. xnuffiS7ld®»sc»ftJ

7^$>f), a/2&x®xx-y xil/A*R#Mr®#@*#t:##LT, x-x-y X-JKfiS^O >Xa

l;AS/c»-e$.S= eCT/d’X*l$5f6®DKte, SfcAIC, tXhXXA

5Kr=md,

*$C 16 S 40 kfX-fetW: D t>/hS < &S j: x 1C,S-liHS-rt’-LdcS* 15 ldXt;i/®%a&?Kias. StoSItVt^Sff 5S<blCd:f), %l@

03>i-7xi-«Tt5!)i,

S®T, #56 ® tirS £;lf»T 5 O <kAST-*S.

®®«®®ujisi±. #i@i±®imi%eext;f#6uTMilLt. @ns_k leans#®*®

»s»t, ;tisa*t5fci6ic, sisiststc*

®T¥lTg|i®O'1**13:^--t LTfU'X i JtO.Hifii kl:®tlS#®|!HB^r^<TS!l$rs.

o®ne, UTMieu. x>fn-xicffioatio

b —tf ■- a ® -p »ic * s ns b #**■, iini itii 1*1« » te x —tf ■- % w kj - ic fig w $ n ts. ® m ® %■

-107-

Page 124: mmmA - OSTI.GOV

^T6l^(:, ioaT(:^6g$^(:^WT,

A,

(7)gB#77^2#A^KB#a#A6. ^(Dm#77TC(Dg -A/2sin0

L,

^T^6o

5 A

77 277 sin 6 (3-2)

*ip@i«©® OMA'6, WFiflMbLT© t°X-fc;b»©$ 0)A©.$T£SltiroTiToZi.

■§i?iiit®4>c, m&fflmtinm<DWj£zfioztwvizo-c. mmwr'^niD^mmu

TS, 5 b b^'T^Zc. $Xt, % 0 &©-©MB(l*9 0.25 #T& o

b©#l£5-f$a!T5X7">bXtt^M-ICO©Tffo/:„ESIfjf*®H«©a7a^t)-l±ICc):5

e*SH 3.1.3.1-3(a)Kit. ¥ff gSlcSB^O^MH©itRW#?)7afc. Sfc, btlSrESL- TSftfctX h^7A£IH 3.l.3.l-3(b)(C*1". X^y XE©7 -i ;0£#A<^S7lTH-S C t

IfilvfrZ,. A©#£#»¥9LfcS§$£0 3.1.3.l-3(c)b^-r„ »fflBWSJS©iS£tCtt, #6 F=flH^'#©#Blcj3©Tt), tMiilWittSfcfflWbnfc.

A©i6Sj:0t>-r»eiftSUfc„ ^-©SiJSSStt 95%«SK@T 0.34%<hfco/t„ A©

;i<fcOX'!y?Jl,®fflHfc2 7t*psw?itc «k -5 U-f>$!hm, +^A#||$rff 5;t AST

S5b#x.TJ;©„ j:oTb©8tSii?ie»IE#S©i!l$ttSlc45tj'5U''f’©.a6Sb L-Tffl I'SCttLfc.

3.1.3.1.4 eii/j's i ®sessa 6 ffl i'fc5*14$a;i$;i

* iB8S«»©5*14$a©*titi*ii

siwsanfrtLxawi', tiSM^-r^AbttB*T*-5„ ^cT*#%Tti.

XT>l/XSS±tC#Ke/$EUAcft, 6Xb(:3: 0. »K©5*'I4£»

iǤ50 3.1.3.1-4 i:st.

(a) TRaef-f 5#K)im©**b%:6XT>l/X#*e%'yf XX'Cj; OfWL, M

»Fr£tZ' .

(b) am>t©>i-Bi:#iE$BKEf

(c) X©§»B£«OX)|®H@i£fTA,,

(d) 1 i*i©§l5itt!KIC43H--5*-5—$©t>f*- £ ic*f-r-5fsrlt£ Fo. XT> l/XSE©

#tt$SEo, ti;i6K-©>HT§IS©*a, WS6<-n^h& fc&fcC. #*tit«l«<o9l5i

-108-

Page 125: mmmA - OSTI.GOV

gage portion of 1 st test gage portion of 2nd test

E, ,t.

(d) Determination of Young’s modulus of thin film by rule of mixture

IH3.1.3.1-4 Flow of micro tensile.

» r F, & M, ti ttS

<. ;hb ICObT,

c e o-t, (3-3)

* 51 S»a«*t JfJtt \z n t s «wXx/l/XSfgchUTffS 10 Hm 0 SUS304 -y^>Ylcj; 0ftr

M L /to -?■(/) 3.1.3.1‘5 fl7js^"o ^MTnEld#c:7)l 10mm, te/jl 1mm

imtt-tcdlBfWas/inx/tEl:, TOBflc

lot, cmm#-i=t

L/to

®Ett**Ar»|lSTgCi9. jitl&TOofc $

/t,TOS<hWi$roifi#/n6 Wr1$l:MtTLftAt%'feL/t.-e<Dilr>£|ll 3.1.3.1-6 C/K-r.

;o:iit K»^ttJBf$«t>)iS»T<oi£;*S'h»t'hS<. to»£+»*j&:W»)*6ti

TUSttS/TLTI'^.

-109-

Page 126: mmmA - OSTI.GOV

£/z, X ^ y 7 f TSK Ic £ 5 C d: 0, sm>7lc5l«iW8£6nx/zliS©ESM'J

sit. o.sn &f#mtLxAo

AfcttMiftL, §l5HSS$laxfc. cot®¥ff®tci3^T,

i03/l'7Xhe</i5Jt,

ofc (03,lll'3(a)#S).

ctiioztfri, x&ctl:d: 0, c©!i*>t¥ff3l5rtCdo^x

3l5I!£@:lti: Ltgaat)0TS5

c, 03.1.3.1-7 caf

li:Ei&©±lcltS©tl-f8f9it©5ISS;@i8B£g3BU £©rtSBC?&A£lR9tttt,

HHSHrt®T»C0SLfc. tttiff8@©±if©±ic, li^M-^SSg-r-SXx y7TSB£ 2

*©X71' Hyt 7 hfSSdffc. H'xziy S*s Z $4^|n]C® bfitiK

;t«*TS5. [©zizzy h©TSI$ICiWS$##©$i:Xx y X-hSI!^@$Ufc. nxy h±

@5©7y 7 hf2*©7x7 h©¥f:T!$£$-3/z8?>l:® OWfcS©* jtic&S-xy IJ >7"

HWiXffSj'T. tfflltoyyx h©±58gi!£, |it@{SB©7 DX'x y F®TH# 0 Ztl

taz/t-D-J U-xa'f >hSt!>X-0^L.fc„ 7n^-\y Xy

-f Kzixy HisfitoXx-i' KEtSlCctOSt'TffSXZtt^inilcSDjX?.. zzy

y 7±3IS£H$U [If L/z.KSfli#$i;iWvXz©, ^dSaicfyXSS^M-CffittXS^ee/zJgS. u-

f X7< X > CtA^xbf.6. Lfcibt, ±TXyy7g|5XlttXtX aifr$ 2 7 >X£Jgfflt't. —SttLf^fLXdoO, ■£■

H-MxmaK#©#, -77"©±fg|il:l6l$u. Cfl:#x#f @X6#m£%yXD6.

-110-

Page 127: mmmA - OSTI.GOV

(c) Photograph of attachment system

HH 3.1.3.1-7 Attachment with slide system.

xh Hazy htoz«i^io)0^i)icMLT, tamjjfiitu.mil tcomgcD'fn

ICcfc-5, Eit^frlC7)>z)i5)6A(ii’-3HT®ES, R UU R -7 E7RTSSt: =k•$>to®>f¥M<o

es^r6]<h0SAS<yrnc=k6ei87)5^ft^'tio.25%y.TT-a$n5>„

e Hf 5 #tt5g&aiJ/E (i 0.5%HTt * -5 t # x. £ n 5 „;; © SB ffltftt * a 3.1.3.1-1tcStAfc.

*5liiKK««rtP- K-fcRto^BRIEy^rt0X7f Kxl--y Hctt*jA$n/clWSSlAgffl(7)iWS$ltton— KTRlCARtT,

RlESrff ofc. 3_-A—SRT 3 'f > h^RUT, X7^f FXX7 hOWIffXDXAy

F®rti*D-FtA : 0.3%RO. t Xf U /X : 0.3%RO, $t#W* : SON) I:

-111-

Page 128: mmmA - OSTI.GOV

3.1.3.1-1 Characteristics of Attachment system

Element Error (%)Parallelism between load direction and specimen plane 0.25

Perpendicularity between specimen plane and observation direction

0.25

H/tlTSbbT', RxESffofc. -y ^DXAyHSriSS

lmm/sec. IC7)^^***lW 3N

(OiW*®BICOHTRESffo/r„ h'-tth© Iff til All-tick

WnXA'? F©n- FtVi:#A^%a#©Mmegl 3.1.3.1-8

^©<kS©#BSItttt0.5%RO, tXf'JyXttOiSIROi&ofc. S'h2

EiiKJl^ESffitoTSti-Sn-SSSttO.TOlNW j:/j:-3fc„Cilb^$3.1.3.1-2 (CStfefc.

$/t, §i5ii$$cj:^iWeRiEe^.©^e$Bigt"-5/t»6, ^en-^'nas©56^45 6 0

SfflSb, ft -yi?±gl5icffi0Tif. -XXA©d- c©6#©

#m-#Em©#©iwmii. *©RiE^mv#5fi^Mm6m<-mLX:. c©mm^m

3.1.3.1-9 tc^-r. ±oT, C©'il®ia®T'©VXft

iot, LU%©####©*#&##iJ^t:j3©T. iiffMRlEit£ 0.701N/V tLTSii

SSrff -3 fco

F=0 701 (N/V)

4 5 (V)

Voltage

___ Strain speed =lmnVsec

------Loaded by weight

Vdtage

El 3.1.3.1-8 Load vs. output voltage of developed El 3.1.3.1-9 Load vs. output voltage of two

load measurement system. type calibration method.

-112

Page 129: mmmA - OSTI.GOV

3.1.3.1-2 Characteristics of developed load measurement system

Parameter Value

Calibration constant 0.701 N/VNonlinearity 0.5%ROHystereisis 0.2%RO

Load capacity 3N

3.1.3.1-3 Tensile test of stainless steel substrate

Parameter Value

Averaged Young’s modulus 211.3±0.6GPaYoung’s modulus in loading 211.1GPa

Young’s modulus in unloading 211.4GPaDispersion of Young’s modulus in each specimen 2 %

Strain speed 15 ps/sec.

* TsJ-y

3-^.y hCO^I^IjSS lmm/min. (LNT^illiS- : It) 15p £ /sec.) T' fr V L #.#, 0 1M

L^. 3.1.3.1-10

211.1GPa, 211.4GPa6^o^. cab(D?^#^X7">l/X##(D^#^^6L/2.

{6ti211.3±0.6GPa 6&£ (95%lf M&W „ __

#^(D^mprmT(D#(7)^63en,

0.3%^@P^I:^#^4-A6^T6

6#E_6fi6o 6^i6(DC6^6,

6 6^+^hj^T

(MPa)Loading

Young's modulus

(X10°)

Strain

IE] 3.1.3.1-10 Measured strain-stress curve of

stainless steel specimen.

113-

Page 130: mmmA - OSTI.GOV

3.1.3.1.5

*DLC©BMt£»iS£

y^f'Y:Ey]<y^f t) — > (Diamond-like carbon : DLC)

'i zH U i/ — lC^3 D-'f y 7 — 7 — T&<5 C cb j; 0 PF'l4)l:l£Oz!iJ

3.1.3.1-4 Conditions for depositing

DLC by ion plating

j;oT, DLC

1:, DLC#m$r<^>{b##mi:d;0X7>yx

SE±^J¥£ l/im LU&BLfco

3.L3.1-4 1:^T. X7>l/X#^<h DLC

S Itl 0.1pm (DiS'latHiX U 3 >##^7/^ y ^ !J >comg;#m^ SEM 1:

kDM^l'fzo ®rW@£:gl 3.1.3.1-11 IC^T.

CO DLC C06:e#6a^X7>l/X#^0lL;^-^

3.1.3.1-12 1:^7. El 3.1.3.1-12

Parameters Conditions

Evaporated gas CeHe

Substrate bias -2 kV

Gas flow rate 30 SCCM

Gas pressure 1.8 X 10 1 Pa

Substratetemperature

200T:

El 3.1.3.1-11 SEM image of cross section of DLC films on stainless steel substrate.

ID 3.1.3.1-12 Apparent measured strain- stress curve of DLC-coat stainless steel specimen.

-114-

Page 131: mmmA - OSTI.GOV

<fcD, X 'J 3 DLC 246.4±20.0GPa t#tt!2tl5.

O$0, 8!KfflilSt^l'5CtA<»r)fc. ;tut 77f f X M©/t

7X©$t4£& lOOOGPa j; 0 ttlliDLC ©rtSB^XW 7 f > H©JfO

iS^JItjit 7X7 77 h©t#®aes®:f*ffi,AS7£nZxffi:ia-e<6-5R®T*5.

3.1.3.1.6 **TAS ICOl'T

77X oxXXXAtiiffiffFH'T, 7XX•XU3X• 7"XXf'yXSlE±IC»f 7irts§^>R)®Ss£f£»cfco, xtxoyxf ].%-x-7m©T@'i\M©/tA/7'7'7x7

&t©SI$iM)®gEqan£<7)775ttf'7t£tc*-7fc. ;nb»H^a*&btT, fb#tt

Sr • Ffelfc^fftcm^AtffllWto'hMtcMTseFSE^, th>7>iiA^BF*ttiS;T©^

XXfAtt, wTAS (Micro Total Analysis Systems) tfflt’tl, SfSSSiSSXi^^-VX at

$!lM>g&ttXxtMWj;A, KSREtofflS, yXfAM

®#©lb • il'XXXbf"—{bte t ©^J.&Aictb 5 0

mtas icMr-e>w^t8Stt»#<«6rSnT^5. attasttftriMflmto mems

( Micro Electro Mechanical Systems ) §K , + t It 7 'J — it! >X tk fit ( Capillary

Electrophoresis : CE) XXfA;£i3FiIl$tK-klCfht!icUZCf'.y70 CE §yA:t‘©XXfAI;t, i$

#%^tt#r7%7Si#f XltxaAXD-gXXf A t#K75. tftbCyXrAlt, X

xAA$#fiKf•5^n-eti©aigsi5nan$X'r xntbUT. «#gg;g,me##75a©i:77

X of-y7A/effg%L. TESSA CStlttLfc 2 *7c%%#i57t#3C tAi'#@liX&5<,

AtoAX&fSiSttX* h U AX'7 X A Srfbffl ©TftsSXf -5 fcJX, tl(feefoiig-ea*vtTox h©fi«tb*iia6n?>.

MEMS SlttTAS Ttt, RMKA##. Txx'-WtTX*. RSt©^

RAStSeff 7 U 7X7, #ttlBtfti6©g*&e^75%'NS:#*i-®©SS±l:##

fb£nT©5,,E;SEtSffl£#xfce£TA;lBWj:t'©'y-X7"TIC A-SfiS^mt&S/r®,

tt##lc^#m©*#7teRA5A3l:l/, ©BB»©»&x#T

tSiXCXiSftTl'?!. CE S/ITAS Ttt, eSSSSSf t'lffl UT$#:©l63SfT7

©T*lci#©A4##%6:7x 77/71/7'I±TA'#X, tt)±7EnfiDf 5 7 tT'SttWiiKj^H

WTZCttfmtTfrZ. ;®yXrATU Rf4SA««t«f!i.*®j7ff 7 SS#, SiS©

AO mcilE£m[]T5A®©8S:7—3©8$±i:SflT;Strt©5. 7 0$6$, Si#®

l|lrffltl$/l'S < 75 X tic A 0 »«asp£i@», Si#©#57@<751 tTtHfi9tr=1£@

*Bf 5Ct77*5.

tn6©tiTAS Ttt, @|4©tt#gmR&S*7##J]f 5t©©77 X of xf 11/7, H

J6ffiiiliait©mD, 7X77 • R-S©lWSt:©/i:75R®©-7-g75JAA:f§:SJ£$;tLT©

-115-

Page 132: mmmA - OSTI.GOV

-9IT-

°<z-4-4

-vnyffiJ# 9Z aasn -c<„qx5 eisis <5r<$,n M

°<z 4>-ytM;i-\M±((> ±rmmma>~

•§u?si*f9 i'm i &

09nassMBi- ‘uiui! ysiKflBB y^-c.xmmwzvirmmwa’m ‘®a>^

m-i'ets *:i ei-re re m^WMaY

a^©SV±^ ZTSTG

"§vBiloc-:ii¥S5HS?*»H

oqa ?.4 s

## 'H=m# o?UQit.i*^®#S'z-uif:)ffl00s^S!!l©»* ‘H*^rvg^-:K0<5-U

«?## ‘»2t§4->? 4'£<¥*«• -5-y/q >4-4rH ‘Q fy>4-

*«-v5r4-W¥f$<?ffl°[email protected]@?3$a.ag-0a

#m@m •<5^5-4.:?<i$^?$vz-*a.ii$$iiyssa)¥e ‘s? >a58!$:iT@E#B

‘4l$3#$KflES£E#

>.x_CTV$ °9%*<y^g;l?S4-@*3B}8@G)4 '%}

ngvf'®ag >-vvi»L^ean^n •?«‘£@r54-ftf$i'l ? EM2S#

*%*# '##* %mm %## imnw-i^m^m

° <?•«s <y g -;* ?• 4- 5 +1 si © a s a n@ # # b > * a>

° 4- Bf :i tof*EiiV?,tE0)VE# ‘W@fa># ‘ory > $'f/2)9|i¥5y (Mqi;is 8 a>y4) lt*H QT 5 ti>7!4-) WE# M*}:i<<.

^ir-^xtoa3jft« ‘^5ru?»Ss<yaa?ya!iias<yw«a>y(W®' '<M94-m*#*-Ka-

ry?^s-4-9i3,*BlRWSI^ir^<*»2i«cy5jjh4ry we 'mr**^a4>A. °g

Page 133: mmmA - OSTI.GOV

dielectrv

AI electrode

substrate

AJ electrode

glass substrati

[H 3.1.3.1-13 AI electrodes on glass substrate.

■rapciit',)on ot A:

d) Etching

) Remove resist!

f! Deposit dielectnc in at en al (p olyi mi de .DLC.PZT)

A!

A!

dielectnc material polyutttde.DLC.PZT

HI 3.1.3.1-14 Process of fabricating sample,

c) (/X^ —

f)

3.1.3.1.8 mmm<D&w

Mmix5100FX)(Dmm

500rpm, 30s, ISOOrpm T 141± m —^[I0fc 5s, 500rpm, Zl^HO

^30s, 2200rpmT7//m(7)##^#6fl^:.

(ssor, iso T

-117-

Page 134: mmmA - OSTI.GOV

• DLC ro®l@

DLC «$$«y'f -v> Hy7 7 r 1- hffiiSmf tfc7tJI/7 7Xl®$LT

*0. h£ra«*©«s*w%, *

#l8Mtt£WT3 = 'J 0 , mEffitnA1** <, (KLEExE-il/^—ICE OlStiEJBykttS-ffT-S. ztDZtfrh, v

DLC LE.ffiffltfXti CcHg^AH', ifXSitt 30ccm,

iSA1,7Xli-2kV, KJKBSli 200t:T'*S.

wlzE LEE) !:##;)#<SKEBtoEBxX'E^-^E# < tkfflTS. fk»

LE 3 aSrotifiroEBaS 6 AFM TSJISLE. E0!SS£H 3.1.3.M5 ICJR-t. VISE

BfiSttL-fntotgS-fcHS 0.l~0.2nm T'<fcoE.*iI£&*l®i:tciitTLE*B£, H

3.1.3.M6 i:*TJ:5lc, #'J-fi f, DLC m±l:#TLE#^tE#7kLE.

R.a=0 109nm

(a)polyimicL

Ti - ....... ....... .W

B.a=0 144nm

(b) DLC

Ra=0 164nm

(c) PZT

El 3.1.3.1-15 AFM image of (a)Polyimid(b)DLC(c)PZT.

-118-

Page 135: mmmA - OSTI.GOV

m 3.1.3.1-16 Side view of droplet on (a)Polyimid(b)DLC(c)PZT.

0 2A tan— = —

2 d

^

^3.1.3.15

j;oTMT#6.

3.1.3.1 ~5 Contact angle and surface roughness of insulated films

Contact angle (degree)

Ra (nm)

Polyimide 74 0.109DLC 76 0.144PZT 52 0.164

Coated PZT 77 0.195

*t&&m<Dmim^tmW}W.E

##±1:5^1(D##^^TL, YR#K1R: 100kHz(7)^^#lT^AoA, #

(Bl 3.1.3.117(a)),

-119

Page 136: mmmA - OSTI.GOV

(a) draw voltage

(b) driving voltage

0 3.1.3.1-17 Droplet Shape change.

(0 3.1.3.1-17(b)) .$lW0 3.1.3.M7(a)® ttii 1: &5>IE£318(11 USE i: U 0

3.1.3.1-17(b)®K#l:&6#E£KM@E6T&. illSttiLSEHiSU'f 5 K®JSa- 200V

DLCTli 168VT$ofc. ff 83 dt U-f 5

m 2.7, DLC tt 10 TSofc,

3.1.3.1.9 $.£$>X nxVH TsOm'&Wt ft SUjm^^cD^kttlz

<t 0ES$^^®S^*7)^C5 3:#x.bn, C®d;37km@;#jS®K@l:d: 0,

M»t»51*W#tt5#t§t#Abn5. ItibT,

$x-5/t»l7, »/hZj:»llttl4ICjiLfc5l$tt^SBS^KL, 3IKfettii£fT•?fc.*T, a/h#tt®t>f>lf#®#®<h LT, ###, If:#Ta/JxS«®EMi£lfSJf5

X <h ® T * 5> X X y ibE##£ £ Effl U, IS It, ftSU/i» £ftt;J;t>, *EE®»Htot>

fȣ#SA<, ltaiJt'-5Xtt)i-e#fc.

afi&aLT, xt>i/x*««tttit,

§ISii&£ffv\ «£IiJ£ll®T@tt£»£*m-f£;:tilt. *t, iWKtitticiifflT

86imit#K£*mL, 6^#ett83L/:. c®^#mai:*ma'ism#

—120 —

Page 137: mmmA - OSTI.GOV

l*. cne* omsm-c/sk

c^mtAm^mzxKi, iWii«F<y#tt$»roMS$fTofc„

#KtificOi5l5g«a^lC*5UT, S&5<T®toi£tT<J;5 7,y5X'7AiWE<D5iiM4$16:£$iii

U ifc,

LfcllStT, #tt$8ai$MkUte. £ b tc ©n^rolFHilitt^TAyhy tiroSttSStJ; D t)

(s^ai^ofc. c:nbtt,

:«:» b, *E% TT-ffl u SEti FI-1; y T -5 § 151ro ^ ffi li, txx

c6Fi6. **, ?<?□?

/x<xi:jswT#m##e#a#(kLTm^6, sytt^toWtotitt^aLTisit-rs

«6-,«syFt©i*imM$#au/i#tts»efflHT,sa:n-i-5*S7)x$,-6^*xbn-5.

##*mm#&m©x:###mxx7A©emmae, tisss^ai'T

*#mi:5FD6@#&m^6CtT#b^l:U/:. M©t}SX *^XAHT© =t 5 IC#A

6FI-&. iSiBiiesrflcjsuTflfiSic^isttisn-s,

6Rnt#i:«#©m@i:&C6##icj:o, cmmftmizx

oT«iii»ii$n-5= c©c6»##7)x#@fm±Ti#mga5%mBi#i:F3©-c#m©*

a^m©j=3i:gi#m^Fi%c6^b t), y^#a*ai:tc-c©6 6#%6y&.

sbic, «E$H©ais:, &txKi¥©a5nmzmmmt^xm^tz£ #©@»*e©

E-ft, Eff j:©M«$#SLXt.

3.1.3.2 H»E©##6

74"X O TAS(Total analysis system) a©j$; SI IcBUE<5$8t$A[S]8EI$

X'T-TtXF^ DLC 7)t, SEE, SHStttt, <£*»«»&£'©W#H/^b«Fl/i by

■it-ny—It&ft-DZt, %bTXi:(b#%lc$%T*6ct/kt^b. vyX □7->>t$f$i

(MEMS : Micro-Electromechanical System) clFlTO-So

7© MEMS CjStj-^T/X'f X<hUT, FJX7D—t>th-, (b¥ttHI6li$-fc >"9—. H

x-yffib-bx-y—, -y—7ih7y7rLX-X. y>7 nxx-y, 5x.n.7-7IJj*8B, lx

-y!-)W%¥IEfelto<b'roM%W%Aiil©b.hTj3 0, bftb IcffiFati^xy 7 nt-X

-, 7)t>x‘, /vuy', X-b>, f 7, # • ttSH", fa-T, 7 U >X-75:£©ffliiXii, xw-ytx he-*?5 dlc ©tBmi:m#$Fi6.

DLC lifi8EfS©S@li¥ST, SK&itfjlffit LT=t < Slbytl'S. -XfilSISStt

©AWX'yytX I'lTttn-r-i >X@7)7VmT^< AW@m##eiW77t AI:M6^©

121

Page 138: mmmA - OSTI.GOV

ME^(D^^7)^j#66btlTV^o (Argonne National Lab. /Dr

Gruen #)

£rfrfe-3 fco

(y<-Vt>M+DLC) * (!/>X + t>+h + 7^7^%-7)

ZbG 12 D^T(D^^^^uaT(D^m^#/Zo

3.1.3.2-1

####

l/>x 9ft 18 ft

ir >th 3 ft 12 ft2ft 3ft

^•(DWISS 2ft 2ftfr:t 16 ft 35 ft

^L±#g#C^L^:o fh#[1116f(:T&o/z. C^6i::O^T!%lG::a;(k#)6.

6^^ (#m 2000 66010,67448,67456,99987,113499,173078)

#(D 3f4:^y>X(D^#m(hLT(DDLC

(## 2000-111710,164958,251340)

3 ^T&o/z. (#^ 2000 - 24123.1.3, 323.1.320,

340860)

7/z7:i%-7:HDDm;bcLm±##(D7^7:i%-7& lft(D2#T&oZ:.:K:(: DLC

t(DT&o/lo (## 2000-188886,240667)

^-(D# : 2 ft. DLC #(:

(## 2000 111360,193870)

-7</7nTAS^(D7V-Vt>K#^DLC(D^m###2fl/::&L #

Web.JzTO##

7X^t>M^DLCCmi7'5E$^^mTC6^m*7k^o^7)L

-122-

Page 139: mmmA - OSTI.GOV

X □ TAS 4= DNA =f- V zfmmo&W&IG.iZt-5.

* MEMS (Micro-Electromechanical System)

^0^-Sf0H^SIitLTttpTAS (Micro Total Analysis Systems) /H

y mems, 9 umv 9ftVHk¥, 1#, fBthtt&o&tWnmt&gmT >^ISH-bnT^5. f ©#%tlyxyAl©@#6A:^-7y XorttyX

i?D/\';hy*i: rv-f xnxJI/X x-c XXJ ©OT3S, S§Lga8t£fi|ffl 1/teaUMJi

yg • A*, *cktfV'f X n#®(*6fi|ffl LfcEtS • Ifc

iomBtcMLTIlftXX hk-xg

|6HtT©-ft^ • (tL(b¥69ff«Hcn^b<hl^PS@T$,5>„

(tSttftWa, *filSBi:*bTV'£ DNAfv y^>h by*/ AtHIilbiSI^T, DNABE^J

n>-s++ tf7U-®a*«i»tfryxyA&yyxife-5^ayyx^-y ^

a»JDXS«lci D, (b#/X(b#^#yxXA&7< X DibT-6£1>y;i^tt3I»©

«'>!:HOffiS, #tfrP#W©S*, fe*«©(£«*:£'©BTffi*©yxyAlc

tk^X 'J y $fc, ##rfc*W"m&<K®*£vy X

o(kl6C£l:j;0, ffc¥ • £fc#6Sfi££g£C, S«ii< ff 5 X □ U T X y-CHX

H 3.1.3.2-1 H7 ly-«C®£$Sitfc 8x12 (96) fiffl y 'J 3 VSStttWStlfcX'f it

nstS-feiPtofSffiHT, 5iiic<fc0 8{@©-ti;nrtl;

S$$-#ElciSI}®V, 8WJ:<X(b*Si6^*iSt"5fetoTSS. ccoy$f©W5£tt iiTAS

(Micro Total Analysis Systems) cfe -5 l ■» li Lab on Chip X £ £ Hkf£ £ tlT11 £>

2251am k;KJ$

v'j3>: t.Otmm] y'j3>S1kOI:0.4[um] i'X;k : 10[um] f»fc-)-:0.4[um]

m 3.1.3.2-1 vUn>-?-f£PJ5J&-b;U7U—

-123-

Page 140: mmmA - OSTI.GOV

*]-TAS

p-TAS <hMicro Total Analysis System iz>*tL 2: L

3.i.3.2-2(a)(D j; 3 1 ^ v y±l:##ihT

3.1.3.2-2(b)(7)

#@# p-TAS LT#A 6^16.

(a) (b)

HI 3.1.3.2-2 jU-TAS

* MEMS, pTAS H^lSScOib^Ttx —A^ —v—K

1 >~0~ :>X f At£f/tf H it^ http 7/pharaoh.cda.ics.saitama-u.ac.jp/ChemSensor

>'+t ;>X x — A^\—V Last update: Aug 02, 1999 Access Count:

4176 MENU

#PN#

2 MEMS-based Microvalve http://www.eng.tohoku.ac.jp/eng/souzou/groups/Lhtml

MEMS-based Microvalve | "7 7 v7 □ V :> >Sf/|ij (C <L <5 V 7 7 P A' 11/7 | Group Resources

Members Message Board 170^%^ h#g

3 http://www.ims.tsukuba.ac.jp/lab/suzuki

m/Mb##m^tfryXf-A(p-TAS)(7)#^^ffoTW^f-o T</7

-124-

Page 141: mmmA - OSTI.GOV

4 Laboratrv page of enviroircherrrsec http://www.onri.so.ip/Labo/environ

XXlI/^ — ‘ TEL:0727-51-9659 FAX:0727 51 9629

[email protected] English Version jt^iESr B : 2000 ^ 8 H 11 0 4i

5 ^7 y http7/www.scr news.co.jp/news/200009/120915.htm

^12^9^ isa^

(Gso

6 The Micro Total Analysis Systems project at Mikroelektronik Centret

http://www.mic.dtu.dk/research/microtas/microtas.htm 2000/12/13

Micro Total Analysis Systems project About the project Publications Project members

Vacant positions (Master/PhD/PostDoc) micro TAS related links About the project

General Introd

-125-

Page 142: mmmA - OSTI.GOV

3.1.4

3.1.4.1

£785. <4 # tt ®f=in «£ < sgi$ s *7 ® 5 7, v^'^pjwic/gabcfc^tTzt^MT

lift®. *8*8, #%5#KB±5K#*5®H**Kll:@#£#*5^#785 5. A

MB**## <#*) -r^tottftiKwroiaft^ttTSifisn, ^n^oofiasswuTu

5. t7i 4 777*-A® 15-30 7M, AK£*55 4775##*5#%51#7I:R* 81*7, ffiiU77V7L.78*5 5 7?Xt4W1:ift)i/i'-7/:ffl&fATi'5. Mft-t

n*-77A, 7>7ll/ttttgeMtt#*73£7b*. *®57n#B ®BfflW&*Jt.t:M57tt 3.1.4.2 7*^:5.

afi^e»®«*t;=fcoTHj*&*is±ic<f5£#«, #m®##£%5#w;w*K7m *U SS±tC$iJSLfci:StoiII))X*lV^-43d:tX$iiavr^e,®$ffliIllix*;l/4i-^ ###!:*# <M#*5. :®Jii<*ie«:/D*77@#:7Sj$L, iWS$-SKM7®#tol: *o#B7iiM£8i5. ##®x*7f-«#m®&B@mx**f-7*#®a£##*

##®@*l:18l±#<*lA0^&*E*70 57, ##, #l:RKS®S B@ Ax*H/$—H##*l:*8-57<8i*0®5i#*785. #%, ^4t:E>l;fflSB l^W-iiS. #*A#-&5im®7, *0$$llitB®SS'aX*7$-l:1):*57 05£ti;@J

#t:77**7 M®#&, #Bx*ii/$-5i+*i:@*^a7#B®*a&t:* 8-Lfc£l-78, 7"<**> MM®^*518&51:#0®7, t!l$U*5 £T5*73ll<fl6 <. re7J¥<&5i*l78i-£-f <&5©tt, *K0gH78D, R0mia£K#l:70*5

iiJI®S«^b®fiJ#iig®*tfr«, 77nMi:7'J74 78tto*?£7#x5c:£714® 785. eAgp^b^gp&iimnM, *8i785js*i:if £*£#, “WBe*iSf 5” © 785, ItSiSJieSettlCJStFrL*? £T5£7*U 7.,- xz$©77n-*7e*£&5. **, ig,'5S7$BJ178b*0, *#mt:±#t:#1g7#A®®7#mi:HS**A##5*

7#&0071*14:785.

3.1.4.2 IS^U'-UUTOSBfSt/r

**xf 7* AxlbbtS: 5*7"'('**> Kf«ll!I8, Blj¥5:19*l:78l, $7-719*5, 7 ®!:I4||J6IU7U$5. 19607*. *«7**t> h<o hl:g.fi5^b7'7*7> K5bKSS *78, %BH9ia77< , £ 77 7 5 SIB'17 S & 0 * ©, *^**£#*8170*.575&7b, %mi:#B5m#L775 8. 7 > h 5 7 b7PBJSl:IjI8l, 5785774 ■4 h614ST#at5:i7'IPIbJ'l:SoT#7

-126

Page 143: mmmA - OSTI.GOV

%'d%HX + y-V^M#IC&'5C<h&%&L/zC<h ti"fe 'y\L— 'y a "f VI/A#K@/co fc. {b#

SSSAWj-B/cttTZK, U5H5&##

TffhnTS/t^*, S-ISSiT%S*65<£#X^tt|BlttT'8-5„ 111 3.1.4.2-1 li, -ty'±IZ7,

nyy&r'y^n^nross

@,$AA^^o%iflM#l:&6(D7)%^6. $Sro±ic, ##%**

afYuD%amA^%-a%idmmi:&5c6/:6mka5. t^A,, #<

CDte-a, Bil-S«#att-enH£'WHICOZj:A^THZj:H„

HI 3.1.4.2-2 lic-BN fissile'Xx nx t?y + x-V IbfiKft Vtz^'-i ytx Fro JfffifiT*

5. CVD XW-VtX FttS*«IC£'©aa*«i:fcW#tttt®^AS, c-BN H#WT«0,

*§^5£«Cttifi< (~2%), ;-?-ZJ-X-9—$fc, -f U -vr>

AH4^H*T, MtSXX^ -y bm9 7%T&0. SiB^b 1000‘Cto^HTB

S6lc, SS*STT»it,-S;tt 1000‘CK±T$> 0, a^StoSMff

tz x* ;i/gBam&#a c m 3.1.4.23 ay

'fttlFfift'f V #f#A^b#b^%j:

viz, yyytxFtyuyxAtti«^sisc*s*g<az£§icfe^^toe.'r, yuv^a®

flastyyytx MAlBf |y^UI/73%AlbT®5®A%A^5. U yyAiy-ft

-6> H a{OOl}diamond // {OOlilr, <100>diamond // <100>Ir ®1W1X"li'J[xlflv1rA L

Tt,)6Z*fmgP?a2 - 3nm tCSo TlSSWBtDSLtlfcS^AiStt LTU-5. £n$T®¥

0 3.1.4.2-1 — j-Z?£$nBk&&±IZ'\^rPXt^+vVlUSftLtc

7;u=y©»rffi^»**g TEM 5*.

— 127 —

Page 144: mmmA - OSTI.GOV

L i ~j /•' b & -S> o

#!SHro3IfflWStSJSapScriltll, S^-hSBBSIW^&tb. B 3.1.4.24

tt)8®S6:S$±ICfiKSVfcj''4'-V:e> h'rottMTEM^STS-E). H £ WC CO

(0001) B7)tA^nxfM6C<fe5^

tt$Z£*SStlT43t)T. WrfflTEMR»^b#tlr^*«fga»Stltl'* lb

@ 3.1.4.2-2 c-BN S$SS®S±ICATnxt°5*'>V;i-l$#L4z

^V-V^L/KroBBSAPtE tem SS.

‘ up ' tp ■ DEffiH* #

• ©tma

m 3.1.4.2-3 Ir S^BBaSS±l-^nxt:'$z4rV-V>/UJtSL/c

£V^>K<DE@iS^tE TEM

-128-

Page 145: mmmA - OSTI.GOV

ST, DLC m<» 7 7,\Zts.%> ffiip, DLC E »^7Xf

yXX-xtoKgtilMLTti:, Stffl±S«6TW&*Si^'i,

H 3.1.4.2-5 UlTl/X^l/XXL- h±ITjSJWi£:/7X'T CVD L/t DLC E

©Wfa TEM «T&3. EStto$@<D[Hl[Q£KB*U liliiftT

XA-XT&6. TitiJlTLX^LXX 1/- hCDTBic^fcMXT&ScDT, —

H 3.1.4.2-4 $S@^*ete±ICfiE#Lfc5*'f-V^>K©8fB TEM 3*.

0 3.1.4.2-5 ^Ux^L^UX-S^-hSffi-blTKiaiS^XTST

S*Lfc DLC 0KB TEM S*.

-129-

Page 146: mmmA - OSTI.GOV

©t#7t61l675i, -em$£5S< tt*©. fetch, 7 >) n 7fi«±t;£-fi£6fc DLC mttt

t$rt5i, '1X^1/7x7776- h_kK6l$6* DLC S$©;57)1,

-5 sp3*g-&tb«#^t#xbn-5„ f #7)1, ###*6*© j:7*M#*i&6©7)i«^*?:

BflT'$>0, Mf t)7tH/7y7TM&#(lr6T©6©7)i

k/)i6*<*6. *-#x6H6*m##fB* EELS 7*6 3.

3.1.4.3 y4'V:E>KfcJ:U:DLCfl*®#»^ff«;i3.1.4.3.1 WStt©SF«*a

CVD y-iX^'y HiSitfDLC -5±T'|i$S<hZj:5 7 r b7 j'-ro nil, $j

©tt»3S$£SI;6't"6*8;ti:©6©6<hti$£ilT©-Ei7)i, *©^< ti;#ttl±i|8ICE;6Sn,

6btttiiftttHT*.?.. 200y.±$.5£«

©anT©6*t, ffl®$A$i6<, jA<ffl©6nT©3*5m«feT'>&n/£37 ». ###

6fl6. U7Xl;ffliiSH, 7 r 7xlkr7-,6X AT## 6T & D, ffgm©6©tajT8

D, m#K#7)l*#7)i6#j*i-6C67)#&©%*6*oT©6 ». 6t)i6*t)S6, tgg'J4>

ro¥t;tiSE^b$J*tir-f, 5ieSiJ/)iVfiT'©as$tj;BET$-5.

3.1.4.3.2 $S6*i;l$;S6CH, *®$£Xfc)i6 8iJ*i6, Stfc©i*J«lffl«SS!lSg-r

67iT, ##@#&*0©©*l$6 6H6. 6© Jffitin y F^SrliSitcS# 6, $6S

|inll5lb5I6/t», n.y H^»H©#*5Sllz)i, ## - *K©##l#g j; 0 ± # © C 6 7)%

$T66„ 6*7)loTttV5S$7)l*e©)l£#:^\©;i)im"eS*©©;ftl*§*|,«fllItiT$>6.

##im%7)%©i$e#:^A, MeM:#m$7)44T#m^i±6, W77W

aaiifflsns. x?77ftttB, aniKxf>i/x, 7'<-vt>M7ka)&7K?t:m7)i

l*7)16, $HC7)i7)i6ffiaeiS6ade, #Ai**7)i6#u#6*t#©im##m^##©me

^*6fo©T$.6.ei7>7)i#IC$Lte®att*$6*’,*©#»5SSttft/E1"6©ttBET,

6**10 T, 6©*iiHTE©$tt69*ii$SlcRt"67)it)6ii*£©. *©#**#& r,

SE©SS //■, $1 WtL, **SIJi-*®PfSl©iiJSittti-*»rtK*©*-lc=k6t6T, #

#36$ Ftt

(4.1)

tiJtlSffll, Slm«)IClj;zt8sffet)ff(BgT$>6 2). 67)'U, 7"< *t 7 7#**©@g

130-

Page 147: mmmA - OSTI.GOV

3.1.4.3.3 ItttWilSShifcllX37ff-7TX FT*

R/uT^toSEX to#5"-7>ilKI;fi£Cl-3tj-T, ^bS5*(£tS5. TltoXSta,

tt»tt©6S6£tt6X5il)6XLTta#$l;:fiBiiiT$>0/#bft-5imtaSt;:ft1/RT$>5,,

*EX Xs >Tta, $JI6tt*5S8££tt&X:ff«S5KCW84XSlibn-5 d y X Xx/F@£

MS-SmUTFE^.

1910-20 f#, ■eaucffixse

ietto^$^%fi£canro^sS5E<D8S$t^®s$tttti9Ufc„ tiiiT-cSi^nw

E7X XXFSS X 3 7@£S»S STWj: < , StetcESeBV,

£l:tteA$AlX0^t"^ofc. ft*lb®I!tt£!B$x, I*liSta®ffSa©SBip'TfeoZc

Stanley P. Rockwell tt 1919 ^CSfrLt7gS!itSlf££#$U, Charles H. Wilson SEoT

SfflftStl, n-y XX x/kgStiatil ALTEC fiJlfiS 11-5 8 5 K&ofc.

n-y xxxihgStoBxx-ihx cxx-iMa jisT-*©S7i7S:*saiTb5>.$r,

*»fflfSSSDxT#iPEU. *lcimw*6irax, •eLTRV'eTffifebEL/tXe, 191:8 2

iHi©ezF#aicj3tt5S».$s©^sd©E(iicta#x.©ss©*

iX'IWtiiL. #Bta-a-$ai/j:b„ 7*'J X>H-y A —XSg^IiSiTta, I'S'Tlfe^Srffll'

TSS SrSlilT-StobAfLT, n y X Xx/FgStiaTia, liKSlc-faBS-afSTFi+toSS

B®7)>b@25WSR<A$6m-E,. JIS D y X X x /HE £ MIES tag!'! X L T,

100-500/1 (h : SXhIS, mm) (4.2)

^6a7rm#Ai#-xbH6. ±BB©ai:ta#m©m5%<.

te-SSF/rfeafeS. *S, EBB® itTieiSXlt 5 -tto/F b 7‘d -y h -ftltfff L & AS d ttiS

tin l, ‘,a7)fta±©@d”taii,>S5„Bi 3.1.4.3-1 ta#*ttff«©/t»®s*EaEiTSd.

E-SySElcXlSBSftSAffirb, X'XXEX XX

tty ES#fi©Eia*jau,

gondii, *#7)i%0i:exuTb6©7, E/mRia©mta*#L^i7 c©8 5t:#m

l:RFF%%@*&Sx. ^©*18ffitri^6#»5SS^#£S5©7)m-yXXx/FlitaST*

T. XXXE> Ktail!l$#ETeEl$L#KT$>5fc®, x-ftty F»IS “1¥L®D”, S

tt£Ett£'ST6fcsM7ttEXXi$SISt7ffitii<7)AyX>X;5. Ilf SttXXXE > FEES#

7)iStt-SLE^ifeD, XETEX K»Kfc«S©BXbfc "X'XTEXK” Tfc-axXzXb »>*. EBBtoASTta, HKId«M6ttWUfcK®»*to-/»»x/Ht*tj*lcJ:

-131-

Page 148: mmmA - OSTI.GOV

$ 'i

m

E

t£0)3!lt'if3 ca

30KU

(a) (b)

3> H9X h#i#W'6W':5.

m 3.1.4.3-2 OvC7^%Vl/)&lzj:6l^#$g#.

132

Page 149: mmmA - OSTI.GOV

0g$-8cftft7)b $ ft ft 0 @ g £ T ft 81 tt ft ft 5! ft IS $ Zc aft 6 T IS ft: 0. 0

3.1.4.3-2(a)tSBtI»5SZsbT)S®'&^±IC-&fig coys'> H»BS©

□ yXyx;fiffftimi§$T$>ft. K60m:ft'eWLT0ftftft;y3> hftX F0il0^

6So7)2ft. 5 X oWftzaaftOftftftAftE yftS >y#0#*a&*y ft###»gis#B

ftBftYft. 0 3.1.4.3-2(b)IS$#ttAs'ac^eSro6SS«ftSi8!®2F*T$> 0, ffftftfl*)

i^ZclCfc;M*bfffSttfi<»IRft5$0ft*tt<!:eui':o(oTH5

3.1.4.3.4 BgMSft

CVD^PVDiiftctDtifigU/rn-fts >y«li*]g|5icts, a«iiiffi0»I®*i»»0Jgft fiBUfc&£ft^»III&fig®@TI!Ig#©ftgM::£CftJ£ft^tf0l@J&ftft03*T#ffiL

Ttoft. $ft, ft0ft4ftlSaS0A',n/XISt::tk©, tSftMcft£0ft ftZi'tobhTlxft.

EffiZoB nticSSlftys-YftX FJBBSISfttS, GPaft—X'—©SgiSftZFSftLTSsO, ®

#0Ji,8HS±03S$£:|n]-h£t!-ftZcii>, *ATiftftgftftftftft*ft. S@SftSJ£i£i£,

ft#<*#@ft#m#mt:ftm^sift. sms ic isiit# ic e n ?l ft $ it, ^comm^marz«©>tB0*BS£P£ftu e©

ft#0 “EDS” £D«#»SftB0$@Sftft*£#6?>ftft&ft:ft;y$>ft. -ft, ###

ftl:IS. S$g#0Si9$'Se7)^Kft%ftVT0ftS@Sfty*«65SSSO$®ri, 7

ot#e>n5x-<x HE0xx he^e>s@®ft^5R«z>5ftri. x

Sffl Lft X SjftftSI/tffiZjifty&ft. #C XSSSftSJSfitS, &*Mfiy>SME05$Sjftft

B*l:f)STfc5t#Zbntift.

y<ytxF0*giiife(Sftn'e'n0ftftft)fbTfto, a$f#ftMicSTZc?i$ifti6]T'S

fcsns.H 3.1.4.3-3 ts#f

ftT%0ftft0ft&ft.X#iftftSI&X"iS. litto?£|g£$ftE?£|i|ffl0A$£ * A ftnf-SX,

KlCC0fcmi*llcE$8j£;ft aZfi'ftftUTixftft, HSi'fefi®* d tS«</sft.

©©JcftZjYSEBmBi </0*lC*tt"ft${ti£lftft aft’ftStAftftBiiftZtft. £Zc, X#B

E0$ftftMI9M£LT0< CftZM#Tftft. CffiS otzW-MMOOT

1ft ft ft # © ft ft ft y X ,1$ S ft SI it S T * ft. S RS 0 Si $ TIS, EitSBSSftSOBiftT, @x

0 !|> ft|o]00f.frBRAPB ftftftAT sin2* - ft, SI El ft ft fig L, ft ©It SI 04® ft bftft.ftjR©

ft. ft0Eft, qgE0ft*mft%0ftft0l: sin2*©*Bftx$ftROft<ftft ftol:* A

ftiSt LSfS 4 6H±0* ICO0T ftftSISYft ft ftft£-$TSft. lftg|5Sftftft*5SS

0Ma*tS9i*ftiSft0y. ]Etti:ftgii)$ftSi#i$BJIgi:Zd:titf, ft*5S$0P)Hlc£-T'St

yxc X'ZsEMMftftftftftSo.

-133-

Page 150: mmmA - OSTI.GOV

H 3.1.4.3-3 X

3.1.4.4 ###%#;%-;&

m&t), m^(D^^cj;o^±m^T&o,

a^Ccbk:, [p]±L^:@AH%aT^Uo

l) #@##

7 7 1/10-1/10000 T

-134-

Page 151: mmmA - OSTI.GOV

2) fistsem*

#ms?a**s?a^a®ic%mu, ypBm«$##Lx##Lx®^#Ax, -a®W4tifll:/j;-)TH5. M <b L X Au/Si ^ MgO/AbOs MXXTXXAX,

3)

#*t*l»®WICtfi*feK tt#a®K£J*AjAtJAiS:X«fc?lf 27-{tS^TS5. a^XICXlhSOA&m#???^, y)l/5A7)i#BTJMU M?tts*t47)i|6]±T?„

xxx/u, ^<ffls!c®afts*^**ti*iS®Bfl(;rt)AXxarifcilr07)5', y<xx> H:

lltli, ^-nsAsSttWIi*®.

4) ##%##

eKgBttB^tj-XSBXt), S?l/XXXti:0i2T$>3®X', »HSbK»6$*$®IH]$Ic

A 0 iA/u/c C ? 1C&-5 (anchoring peeing) 0 CVD X ? XX A H®##1(f:-5r[B]_kci'dr'5/t0

1C, C®A?i^'^#SfflStl, ®X®5&*iitc A OSt6iEB£ffi@UXtt*B£0±S-ti

XSfc.

±E4) ICMX6%#M&WTlcE?. 0 3.l.4.4X(a)tt$:Eti7»Ai6®:S-£®5'''i'XX> K

Aia**tt®^B®-#iix*5o ^sputicai^*®^^

b, WBICtibXSSWSfiKU 0 3.1.4.4-l(b)IJ**tt

A(&®#A®*BX&0, iB?^'by4tt>Ktltt«il;eSLti'51Wb

^5. 0 3.1.4.4-2(a)ttW*ttZis'® ®#€r® X ^ 7 v AM^ISSX, S(C»b X®WA^ < ftl

ilX'5. 0 3.l.4.4-2(b)tt$*tt»s'S®S€r®#B®S$Se?giaS2F*X, E<b*ti

® A-S’l'k/j-A'. - to X # j£| A ® *|| Rli Zi > A U. i . „

ICSB C»?T

0 3.1.4.4-1 SEM ¥K.

-135-

Page 152: mmmA - OSTI.GOV

(a) (b)

0 3.1.4.4-2 @a^6IC)$ftUfc-5f'f-V;E>Hi©xe77^|itllS*.

3.1.4.5 fct)‘JIC

CVD h'tSJ^DLC ES®Se»E(D#*tttCMVffii|i1C®^TSfc. *5CT

ItSeMfclXft&JiDvgttto&^S© 2 HSIcMLTSB^fc. #7XS$±lcS;;tL/iA®

J;-5IC7 7 >T:1b,7-;l/XATl6'SL.T^6S6#:®#»ttt$ltRto#x.^-n^ L^Lft

*16, i@@£A±®y'f-\’;E> HE® j:5lc8ffl65lc<blSu:o#, b^fci)«^Kj^a0f

5@fi, #»5SS^ff«T5tott. SJiift-5. Sfc,

6aofci>#*roa6tt. safeo

TttDfcV'fc*T-a65„ tc5'MS<#mst,fooTfeD, Sffl5)-»e®BUTia(C “^®ISfiH#*5aS7)s'SW’ tfoTtt>-fe>X

T*^5. M&, j;0*#:{t:Sn/rffliaTT', ^n^'ntoff*5SS<hS*Sn5/tX * - V

> X £0 B £ fl- ik t Z Ml ^ -5 CD *i' R Bt| £ Jg £> tl -5. 1 2 3

1) K.L.Mittal, J.Adhesion, Sci. and Technol. 1. (1987) 247.

2) AIM#. XS 37 (1994) 379.

3) T.Suzuki and Y.Ikuhara, in Crystal Growth and Heteroepitaxy, La Jolla Press (2001)

in press.

-136-

Page 153: mmmA - OSTI.GOV

3.1.5

3.1.5.1 ItCtbIZ

7‘yx?-v?ttmmmr\ ggstt. eEaitte-HiciinT^a c6s

cffiffldnrn-5^, fosffl. zztfrziittaiwstisa;c &&e<»w\

H6S6T5fc66, X7xavx#m©#@$^#m##a^©#aw##©&#7)%#6^hTl'5. ^tlbCO#ttS-5Si#t'5)fc6i)C.

€rtt$l£LTfm?5Zlttf%-7i?>nz>. fiKSS,

©tittWfltt©*# 11 fetc5»ttttSft41--5 d <h^TSd 5fc**g&tm©3i1L

<hUTSS«IS©fflffl»Si6*LTl3l9. ®*E*5ti*7‘ 7 X 7 y X ©SiHtotr 1C & B As*

Sffi, K*«Mt$i*X7Xay X®3ti*tt<hUTti:, PAN*, tf 7 a»&£'®K»ttil;*l

a 11X O-5 7!)t, 1^1 W t-l B;58KBX'i«i HI IB xtlS i>£ 5:6^1^ Hl$l (Vapor Grown Carbon

Fiber : VGCF)^^J — J a n. — X(Carbon Nanotube : CNT)5^6^11ch LX^ffiX-5

:it, j; 0 K##B%#'&##©$SAWIBX*'5 a#A 6H6. CNT -£> VGCF tttoffiX

rx^x nt^-*s<, #a - ##wc#%t:i*%#Bx*aca^6, as©BEM#icaC t): j: a L

tasjnti>5.fiKMS^'s©, mmmoi&wtfTim, ft_hifjni^@*t*©w

ft?:# l-x* o, t&m-y-'f x;b^*g< aunt L-^-r© c t& 6**ttt:«nfcj5£*r£x*>&.

£6iz, ttmizKm-afim%z®m?z>tMmssm%faizg3iti]Tz w-st*. jeaswixi

m*##e%ib^#^#a©R#+^M#gx&6»h#xbii-5. a±©^t^6, «*©?£*

tf £ CNT^VGCF -SCtl: j;oX, j=0%*X%m&ma©tK#4'.

aawc*aw##&#iba#a#am#. a si;a,j£® IC A 1 ®jfit -5 X t ft £ fc # x. b 11 -5.

*«Xli, VGCF jo-tr* CNT ;£3ti*LteB8gtiPt5Mttifi8Si:<):y b£SU, nKSSSroS

SKI • tSttWWttClH'Tsli&WCSFIBt/iilg^CXH'Tif^-S.

3.1.5.2 MMKSEiK 5!HfcX5xay X©#tiJa)E 1C IlSiT-d 6(1*91%

3.1.5.2.1

##i:acNT©tfit/##x&%a#R%aK### (vgcf) t^m<D cnt (mwcnt)

S-ttfflL-/;. VGCF 1±mn#I#as##©&©X*CI, X0SEM 9*^813.1.5.2-1 I:*

X. Sfc, MWCNTki7D>X7 7»-X>XX/ □X-X’DX’xX hX6It >~?)Vt LX

-137-

Page 154: mmmA - OSTI.GOV

^-(D SEM 3.1.5.2-2 VGCF 6

MWCNT <7){±S£:E 3.1.5.2-1

m 3.1.5.2-1 VGCF CD SEM M 3.1.5.2-2 MWCNT CD SEM

3.1.5.2-1 VGCF4)<b MWCNT (Df±#

VGCF MWCNTDiameter [p.m] 0.15 —0.10Length [pirn] 10-20 -Aspect ratio 10-500 -

Density [g/cm3] 2.0 -Resistivity [Q * cm] IX 10-4 -

3.1.5.2.2 Lfz77X3Ly'7ttn(X^<n> 679R)

n> 679R (D##&^ 3.1.5.2-2

3.1.5.2.3

^ 20~30wt%@^T&6 5), 6)y)i,

7)-9)^6 VGCF (Dck

3.1.5.2-2 X$'(n> 679R (Dtirti

Tensile strength [MPa] 43

Bending strength [MPa] 54Heating transformation

74temperature [°C]Specific gravity 1.05

L, VGCF 0.4, 2.0, 6.0, 10wt%(D4@#(D#m^:#m##^f#ML^o

-138-

Page 155: mmmA - OSTI.GOV

X'iS8fc-r-Z>X', c©xaT«M®*iiEitl75s«fi«t8i't'lc-«(c»®rr5ttt#Atc<ufc®,

x#eii«$(7*'/7x h2;v; w.mmmm^pm)^&.mLxufmmtmmrn.Mmmis

IILtScOXMrtifimffltffiX Lt. 3.1.5.2-3 CSX.

3.1.5.2-3 itaDSBrntt^rofFSA#-

Model 50C150

Mixing volume [cm3] 50Mixing speed [rpm] 50Melt temperature [°C] 220

Mixing time [s] 300

3.1.5.2.4

MttifiKST^BfltcMtoEiKSffltififflKSSIlES'ff©, W%^E#Lt©SUXSC>##.

VGCF X^ctiiLttltB, MWCNT £$#Lfcmia© 3 aS©ti$£JtKbit. $!l£Cti:Xv

CA V-l/AX-X£(£fflLt. ail£IS*£[II 3.1.5.2-3 CSX. #$©$§$, F4t3t#L%

cS'J X SO-BBC Eat, 3ci*#£AX.tBB©;SS'ffi,SX*igli[iLT<7-5

it. Jbt, VGCF XSiSl-ttg^CttAT, MWCNT £3t# C tBB©^', PICS#*

T ft o T fe tt ft 7)i A # < ft -5 2 A S' XX o t.

3.1.5.2.5 Bt®6M-©BKfi;

IT®LtltttiiSSfflySeOTUtro^lfttigKKStSAVlitEFrtofiScS^fTot. *ttiti

fi8S#lcttOittmiSff0rMffltT$l*ttifi8Sa$$ffl Lt. *

3.1.5.2-4 CSX. SO h©fc©T'*l3. 7 O A i: X A—th»J¥S £E'{fc$-ti-5

A A T" fi£ » bdp © IS » £ * 1 * 3 A t

A'T#5>. *t, SSSSlih-X-

CX OEMSOAA'iimT, ms 1*1 ©EtttSS!itCtl©a$ntEt-t:>

©ElSElSrgl 3.1.5.2-4 C, Xf kr1

©PsaiaxEi 3.1.5.2-5 csx. c®x

-V tirl 7 1/ — AXjXSfUC® 0 {Tit

TSit@;>t®jXSXfir7t. 8 3.1.5.2-5

CBKS^ttS:, H 3.1.5.2-6 tSK®

10

Y104(U0lZ' 103CZ)

| 102

10

—O— Polystyrene -A-2.0wt% VGCF/PS -Ar- 10wt% VGCF/PS -~V“2.0wt% MWCNT/PS

*-6.0wt% MWCNT/PS

10 101 102 103 104 Shear Rate [sec -1]

m 3.1.5.2-3

-139-

Page 156: mmmA - OSTI.GOV

im 3.1.5.2-6

^l64:3[:^oTV^.

3.1.5.2-6),

VGCF 6 C: 6: Ccko 6 C

3.1.5.2-4 ##G%B#(7X±#

Model SAV-30/30Maximum injection volume [cm3] 30

Diameter of screw [mm] 26Maximum injection pressure [MPa] 173.5

Maximum injection rate [cm3/s] 27Mold clumping force [ton] 30

Maximum stroke [mm] 250

13.1.5.2-4 ^g#0§gi HI 3.1.5.2-5 4r^k='T<##Hl

3.1.5.2-5 m$3k\*

Thickness of workpiece [mm] 0.5, 1.0, 2.0Mold temperature [°C] 60Melt temperature [°C] 240

Injection pressure [MPa] 7.2, 72Injection rate [mm3/s] 6.8

Injection time [s] 2.0Cooling time [s] 15

HI 3.1.5.2-6 J$fBpnq(7WE

(a)Polvstvrene, (b)0.4wt%VGCF

Page 157: mmmA - OSTI.GOV

3.1.5.2-6 VGCF

(#### : 7.2MPa, 60%:)

0.5mm 1.0mm 2.0mm

Polystyrene - 98% 100%

0.4wt% — — —

2.0wt% — 96% 100%

6.0wt% - 95% 100%

10wt% — 77% 100%

— : not tested

3.1.5.2.6 fiOf5ncS‘t)©JSIftft!!©l¥ffli

3.1.5.2-7 Cfi8®nDact1*6i;©7te¥Sa®2FK$5Ff. ??Mfr6t>frZ>£vlZ, at/u^'##©

E*H^-e>n^nfc©, d c«fcy vgcf e

mi 0np E (; a K-*l c » a $ * & z. t # % c t f>mm stit.

X100 (b) x 500

0 3.1.5.2-7 KKn**SIU7iT»)©7te^MaE¥K

%## : 0.4wt%. tiBfrSS : 0.5mm, MttiE© : 72MPa)

-141-

Page 158: mmmA - OSTI.GOV

3.1.5.2.7 JftTfSKroSSlBtJtStttofiMffl

SIS^fTT) fc =

*-r, fiKsaro^iteScofstne^ 4 se 4 swaicj; oausut. iajjgctt^aMHtK®MCP-T400 (M^SIt^H : 10-2~10’Q) SEfflLt. -®IC#eStolh#<h LT«IET5

JfttrCtttt lO’QUTTfeS >»> ;t!)'b, C<D8ET-ai]$»lT*ntt'lieato±«<hLTt8lg

#£$S$£$ 3.1.5.2-7 CEE. «»*''»<, MtoEA»ii«izi/iKS6,Tttail

£i@XT L ft o t C -S, CtL<b<DI%Mgh<D$£tfimt 1Q5Q • m y±

T*-5 *IC, ffitnll7)1«S oTfiglSffl 1*11C£>o 7cfi£»nDnroffitrL»<htttteS

£©MtK£EI 3.1.5.2-8 l:*T. 2L0IS$, VGCF 3%~6%<Z) MTffitnWS.

aic6Ti"5^<h7)i«ig.sn7c. vGCF0es*is<tiD, s6(cisiG»S0fiS®aTtt.

5;ti>b, 8}E=f=0ttl6lsi±0E?iSlcJ;7)Tffiin¥0

fiT*i3£UT0-5t^-^.6ns„ C0C6$r#^.f 6itAI:, mWet'&Rf&ELtgK®

SWBfBftSEM CftDKIILt.e5tSto|6]<h$e&»rBCDSEME*:£'0 3.1.5.2-9CE"r.

0 3.1.5.2-9 (a)tt$ff*|6]4,-C.'SI!#)ifi, 0 3.1.5.2-9 (b)tt*a@ifiBT$.-5.

e.,» m i* ® t- t -11 c i ^ mm <d 62 011 b c. mm ra ± ®e »& m mt s c t wr # &.

y.±0S6$*ft . MmEBAifi W6 < Tft-5 22 <h/»7 6

veep c * it, itmas^ie^S2 < &-5 £ t^ b, Sett&*T^>fiSSaan£fi8®T5>fci6ICtt VGCF B±0 Ei#7)i@-E>=t:5IC, $.-5ej$ltttiaS$a< H6E*t5 u tMg-e*51 tiiSto*^ t.

3.1.5.2-7 !$®S,®#fiiESll£roiiS$(*aSS 60°C)

0.5mm 1.0mm 2.0mm

0.4wt%(0.2vol.%)

7.2MPa — — —

72MPa >107Q — —

2.0wt%(l.lvol.%)

7.2MPa — o o72MPa V t—

> o <1 SO o o6.0wt%

(3.3vol.%)7.2MPa — o o72MPa >107q o o

10wt%(3.1.5vol.%)

7.2MPa — o o72MPa >107q o o

O : less than 107£2, — : not tested

-142-

Page 159: mmmA - OSTI.GOV

uGe£

K3-4uilHS?

GLlOo>001CNLO

[IU . u] A)!AUS|say

nA4- M K [4

LU(Z)

GB

#1AJg■Rsm

05ICMLO

Nn'Q

illX P G uIff A 4^ □

P ,H4 PP o ' u % OA) Iff rH lid 49g 49 A Iff 44 49s A LO Iff 4u 0

s 5e AJ E rH $iE itIN lid CO AJA o Iff n K) %

f;CO Iff o

4^ AJ■&J # o BK K U

ti m G o m 1 Kd m93 iff <□ CO 44 N 44$4 G # w m 4U CO

* > 49 m G A # AJ&ri A

o A P <n Pco 1—t K A # m % A?od u l P 49 % #1

ng N A lid it noW u Iff K Iff Hft 1 Iff Iff «9c , M G K # 49

u AJ #( AJ P K?-s l±j K u K? A m 4^49 Iff A o 4* yj & iiiinK) Iff H A

m-R G£ '4 l LO

fira P it! Poi—4 sg G 44 % &A6 CO M #9 S 0iM t- J M # £ um o 14 A s SiS rH

m mK G Oo G itG G 0 m A > Dg S

£ 49 44 Uo m M

Iff 49 A) m > A 0# P 14 G -4z G

-nj m lid BK AJ CO ngt-j Iff a Iff m y J C\j e& m P Iff G P ig

u u P CO

143

Page 160: mmmA - OSTI.GOV

3.1.5.2-12

im 3.1.5.2-13

fV a\v d d 1 rv CO Oil f4 Mld 64 d 8* lira r FOr f4 $n{ $11 in COPr Pi 0 64 n d d ® 4 m d cnIffl Pr d M 94 4^ fW 4

aa?*

• • todc

Pr<s

rvd

#4*-

K89 §n

9494

1+to0

sn

1O

64 % 640“' <4-

&rv-mB di

a-B-

Prd

nrt- 1 □na

rv

0

<OO

&95

r 4<QO

S9ro<d

d

#464nPr94

%

ri

pi(V%dnW64

rr

SMh?

Sn

dr 4 # if h?

4:dr464nPr%d

0m

rdt—'o3C-h

da

d54M-md#ss$SFa

§M94

d

r r d d

fW ^ 2 Sn 64 (V

EE A

a 0

2£EEa r11

# 14: #64 ^^ %# w

# da rv% rvw z

94

n rv %& &

i% J ^ d

OXrm k

El n54 cu

>fr rx 4> » St« » 11 5® m» - » a i*

* <~ a-

co

Cnto

rv O''Si dto

B 3

r a d St ^

COn

R 89Pr

d H 4 # 0 a

# a

ru-I—*to33

94

da&

94too

?COo3r+

d a f4 da 89 945^ # #av #md s d &@ r v3 <T"

m EE 64 r89 pi r ri dr rv c-d IS d d# m ttm 54 d d □na cn 3* 0 rv

3 f4 d rv3 0 0 Aa | d& 5' d

54

^ B

3 3 3'Prr d

410d

14

M94

$L 3f 4t42

% m ^

s Z m- c/2 MI H

&J Oz

CO

Cnto

to

444

id

x" n

IIs E1 ^ w m

MFR

a 01to

o <<8 m “n

-&|Pf S^ HHu

| 64>J qw w m

iim

Charge voltage [kV]

n 11 11

* *• ill

Charge voltage [kV]

o ro

o o cn3 3 3

Page 161: mmmA - OSTI.GOV

3.1.5.3

3tSt • i$$fi»|S)©SI3S

$T, 9 xf 7 • e9t69!tt'ttffffiKM"5'-5Sz:Ki:ov>T$

8S>W®Mbl;i, czL-

T(9#M 3>S:!-f ofcwfe, X*M&X IJ y htti$?Sl*iro#—a.— h 2 *7ESfllC jo-». xro$Ftmtt$e£MiH*£#x, tt

ttWeDT#!: Tucker bfflfStr^ 12X13)^^ uT, UTSSS

fr<b<Dt), ffl®i(tlt ^nb®^*j3 jxtfE-x >

*lt©jSft, iai6]j5j:y:?6)*5j*65Rfc5>chVx'5 t)(DT»e„ C0##V,

SSStiEjsvxTtt, ttlSA^aeB^roTi^lcjiDBHTlxe^Uaji^iiF/ilcS^U, £8

s ss-rss /2/1E: / Mmmwmtt&t

Sti^yExn-Cifi-iK (H 3,1.5.2-14).

....•— 100100 (Newtonian)

y/mm

(a) U- Fcurves

U 0.10

(Newtonian)

y/mm

(b)<7* Fcurves

- 100

^ 200

y/mm

%/mm

-*■-10—50— - too

100 (Newtonian)

-10000

y/mm

(c)Zy" Vcurves (d) Tm- Ycurves

m 3.1.5.2-14

-145-

Page 162: mmmA - OSTI.GOV

146

r u«JU

4m XiPt

~r

%Y' EE

A 4

4 9r<3 <3uy4o <JUx:V

8mPt

T3 4<QO >

C/3hj A£

We CO<rv

rvtju CD

rt-5"O

, O-at O02CO% 00

£# V)

CDP# <

4rv3

44

4V.

3 8

crcrCD3-CZ)O''84

4A<QOhjW4A□VfV4

4□fXVv4F

r

M00cnho

UV4XX

3pit

St#3ncv

CJ1

<OoT|DJ>itMbr i

4e>>TJ"0\<ooTl

Log 10 ( El. resistivity (Urn))GO ->• Ol CO CO

cr 4^ -

o °)"

33 CO -

D TJ •,3 Tl T o

O O to > o

UV4XXv-T3ifpitSrSt#3

cnhola<OOT|

DJ>it

f i3t4eNTl"0\<ooTl

Thermal conductivity (W/m K)o o —*■ —l r\oo en 'o cn "o

"0 Tlti <

o cn-

F- O'

^

e- ^

? (9

i-s's

-fe m

v c 9

q t

«*K

3f¥t

o. m

wot

w4

f4rv

^t ##

rd

45

<QO

<00 Ht

v5 frl}r 4

4M

r<r^

4 4 m M hj A # w % O V 4 d# 3 4 (V A 3 3 # 4 # # rt4

43hr!

3 T rv AHi 4 * Wt r 4 E F# p# A ME rv 3 4 »# 0 » A rv ?* # tlS A r 3 < V eV <

O

n0

AAIXatO’'8

§nM

d

M

3mgM=He0d

r

Hi

4 l»° % at ^ a*' ~t\ M 4

hd 53- U A"| %

hdPb

9-v”e>irv

i#

4r

%er

4r*

4 4 4= A d ^ Ast m

% m# M 25 4 n m% ^ 4 x eV dr< cfPr 4 % I^ ><5- inn0 n

o<

l

st m s

a

FRdSSSt-mr^§1ft}4eVOr

£>

#fll

/>Pr­

ata-'St­ep#ft}3

ffi PIE3 m

4 4C (P d Sb

St\3 #

A^ 2

hd

IOhdSt

43

¥

ilm

5A

*

3

%

cnt

aQ

s

§n rvT) hd

, l3 ^ rv ^C4 gn J4 8d rv" at # IH ii n^ 3 % d 5ft & ^ I#

% IX ^# > #50 ffl 88 S |51 B 5 S 1 w ® m w 3? s s-

a rg r\ W. #S ?

02l—1-0

Vh5 rV 2|Hr; ^ r^.^ s s- * a

1s i

* 1 d 8

OlH->Cn

<oA325d

rvat4d

m

3&

A

d>#3*

r><OohcjA

4

mr#

o"to

3d4

> 3fS

^ n3

m m# a# at r# 4

dr 8rV ^u wV M 4 ^ X: ^ v r 7- T*3 gFgtt ^4 nDrv 33 si4 ^

O 3 9 o

oCL

48CD <□>

c*rVcH3

%EE

d

m

at4

0"'34V*

I4A

3 2f EE & #

4

4

d> 3

cnto

cn

814 4

33PF

W.i4r

ohd

n

rd

eV

3v>at

s#

3f4

nD C5- SS 1—1 □ 03 000

St 0X X

m 4t # V dM V 0 rv to V m4 3 d X A )#X' 3 Hi Cn A rv4 & eV # 3 rv a?

3 # 3 Pit 4d d 3 4 3 m 4

@t s W. 8n a

Page 163: mmmA - OSTI.GOV

147

A8

i 1n ^W o Or % S ^ 6*

Sd3

>b

8>$r□>5na

Xo|v64

8

ms;

#

s u< EE #

n d g& $2 #

o A A S2 Iti n r 4 $H 8 A # H?

K \3 8r£f m & id #M r^ # ASt & r 8 (Arv m 944 Cli

r (V A d %d 4 8 M 1$

64 A r 44

% $ gn A n0 rv

VJ< Vi ^i d 24-

A 8 5d A 4 d d

Or 64 HI 08 % d 94 id& S °A r f 4 Vj'8 94 Ad fV A 64S <~ W Ad8*

vs< 8 8% 8

64 m S dnr % d 8

& 5?A 64 ws nO'* A rv AA 8 d d6< rv 64 c

<S id °a S n0*' ■* A2 A m

64 8 nA 2£

M d S d # rrv to hr A i# d

M S 4 nVr 8 64 V 4

0 n 94- J_d # (V o V

i$ ^4- orrj # in

$(5

u W A8 d 8

0xyOL m as

# 4 d tTov> g m

# @ \< rvS?A

f4rv

CO ~rrv

rvcd

rd

a d, cn l vf4 <

rv%

d to 9%gr St

Aoo

d 0f 4 4 rV

nV d rw<o 64

64 0 O-' o n St% @

M T3 rv r00 8 d d

d i—ih-i A #

\3 Or Cn # d D>4 to <

o # 0 w-t% oo s 8 d £>64 n a ° Arv ov d g

hdO'*n d

M#

gQ

64r<

)# 6 O rv% 4 # d Vj

dJ_ Ull u A

A V* ft V d# IJJ r 4 064 4 8 rd Vi d9V V) 9? Vrv as hd S ~r Ar n U' d dd V-! ?F d 94-

A n

d u 8 # a

8 8 r^ # #(d d ^ rv

8 ^ 8 m< ^ d mO A 8 ^§ d 6* ffl

Z 6< ^ xm% ° ^ dg A n 64C 8 " w

^ ° ^ A8 ^ as A^ ^ n# S Al U# hrj V)4 88 U I ^4 V S ^g ek nr in ^ ^ d% <: ///6 T ^ Ad d ^ d^ h ^ ^^ ^ a ^m 4 # rWf I $E- dH= A ^ gF^ ^ ^ 8 ^nA A ^ rv Eft

4 f# A 864 as 8 ig X#8 f^ a as dn ^ 8 64^ T n w

16), #### VG

CF

0.2/zm T&

O,

Page 164: mmmA - OSTI.GOV

77^ F,

t)(DT&6. J%#7T U y;i/(D###^ 10-75%TT, ^#E#:iNK

#^^kT6Xz^C#tD^lT^6.500nmaT(Dm#^t)3M^^yjL-y^(Dj^#7^

yj;i/$/f#T^{l:L/:#^#:H, #^-#:4:(7)7T yj;i/##(D#^#(D7<'7(7)^b#^i:l:

0.01-

lwt%(T)'7^j^$V< ^OVzT'/^—6, l-40wt%(D^^^^:#f # 0.5//m J^T(D###

102-10100/0, ±7^

##A# 0.1—10/zm)[:g@T^) t)(DT&6,

4* 5 E£S"7T ^D77"f A'—3.5—70nm, 7 7 A 7 h it, 5 t/.-bCQAT' h: U 4" > • 7 7

us>%%(Dfyy77<h'7xruy;i/^#mLTv^.

2 10) Til, "7 h u ^7X4:^ 3.5-70nm (C#@(D

m#(D io2fea±(D#^a:mmiJE^L^^#mf(Dm^%^#m(D#(i:37(h^7

^ yjyj;i/^"7 t u 7 744:#t?1#

3.1.5.4

t/ —/t >7/ 7 a. — 7'(Z)|ISMI^-lhti"/xC0jSffl7)T,{il^S t IT, fWtr)\/$$\'V$) T>

VGCF

# VGCF ^ MWCNT 5 L^.

-148-

Page 165: mmmA - OSTI.GOV

##%, (VGCF, CNT) &:7°7Xf-y^#

Bl:-a#^l±6C61:J;0, 6C(h^m#

Te^,. ^[Ei(o;m#^:j3u-oa,

Ef^LT#5/:^, u^c,

;:, vccF jcozscwm

CNT T(D#wmfc ^ c j; o, #Lc 6

1) fTB#, 1f S?S* : /JcStt, 1(2), 197 (1989)

2) trm# : l&MtiQX, 2(1), 21 (1990)

3) jmKnA, B*#####^:#C#, 64(626), 353 (1998)

4) M#I#, ^#T, ±fri^# : AK#AD3: 11(10), 847 (1999)

5)

6) /hilifti£, HJflEil, ffl^HJE : mmx 7(5), 315 (1995)

7) /j\)n#^, #miEm, B^iSEidcWozsdi), 739(1996)

8) #^H11-121334,

9) #^H09-115334,

10) #MH08-27279,

11) 5#%^ : ^c^ADJ: 12(5), 242(2000)

12) F.Folger, C.L.Tucker, : Journal of Reinforced Plastics and Composites, 3(4), 98 (1984)

13) S.G.Advani, C.L.Tucker : Journal of Rheology, 31(8), 751 (1987)

14) S.A.Gordeyev, F.J.Macedo, J.A.Ferreira, F.W.J. van Hattum, C.A. Bernardo,

7%ysfcaB 279, 33 (2000).

15) F.J.Macedo, J.A.Ferreira, F.W.J. van Hattum, C.A.Bernardo, Journal of

Materials Processing Technology, 92 93 , 151 (1999).

16) G.G.Tibbetts, J.J.McHugh, Journal of Materials Research 14(7) , 2781 (1999).

149-

Page 166: mmmA - OSTI.GOV

17) : JNDF ?g 14 lliy'f •V;E> H'>>^vT7A

!8§l$gS, 114(2000)

18) H7t-7i : (C43(t5*aWi*l

48 (2000)

— 150 —

Page 167: mmmA - OSTI.GOV

3.1.6

E8*%fi«iEtroroeeB$£*<DEs>6, *^$E%Tli0z*%»IErottPg^jtTlcj3tt

6#**usm. MEMS ILdSItS DLCE©fi|ffl, yT-VTTkjojiLX DLC #©##©. *

— ^ — "/Sr^Ttf Tx XT' b X ©WWW • Sxvto^ttfffBiSrfTro/c.

3.1.6.1 @pm#%Ticioite%WM&mic3i\T

BI*tt(9[p]±liS*%3-T-^ >^K<Dffliii£*rofc»l;*gT*6.DLC Eicouth

4oo‘CK±Tro*s©ffiiSt^77T-r Ht®ilff7i5{iiigstiTu?.. *fc, 7k*®S$n

%©ta-c T»6ooreaam##AiRV'ca, si $ i5at.%g$ftix sctiz^v soorg

S$TBx5**-(t: DLC 2

tcS, H 3 TcS^Stt Ufc doped DLC IEti:4'f$®Sii,ll©|8]-fc©fc65>R:W8te#i£T$);5 3

^0-a?£LTfTofcBCN«*ffl©Hi«f^Ttt, DLC tttKLTB»tt

7)i|S]_hLfcX^»i$IBgTS, S6CS4iroS*»$tSSDS'e-?>, J;

5WH4cO|6]-hy)$MS5n5„

3.1.6.2 MEMS IC jo It-5 DLC JS©*lJffl IC2UTT< x of/W X©#m# A LT1H © b$16#m©a#*l##$B^X6fLT. 31®

tit, M#gt:^A7g,#m(7)m##!lST-5 C ^1: j: D O-f

L/C. LOfSB, #XA#fM:j;6*E#m©*#^m©%1L&@x6C(b ?)©?#%#&

T'*5t#X<in-5o $fc, #t-TAS 'xtoSfflto-S.LLT, fit*»fjij?#!£1lj ©/L*!iS» S-XXT'AtolBiWil^, fES*M1H't»#rtl:ti;5i»$l<5LiTSb^l:

Lfc. DLC EIS, (SV'SfflxxiL^—l:<k Ogki^S/kttSWf^.AiDX i:*b,X'f X n

5LxX1LlC*UTB6SE®fSffi5:$fc"r<kA > X'ffl^.©#* £ to <" X <k^SX#xbft3.

3.1.6.3 XXtt>M&D:DLCE©##KIC3©T

jiLXSttKJtiffflffilCOUTSHSSRo/L. *'xX*1g±tCsl#

Ltz&<D£vlzy r >xlL7-lLX*TIS'&LTA5li^ft©##ttt3;tbiRK)#x^Ti/^i,

@sss#±ffly'm> KE®<fc5ic«ffia^ciieyfT>#,

.sanctts-f se-s-, ##%m%##Ts©iaa#T&6. LA^#mm#TTia#*%©

7)$S®#:ICj)Dt)bT43D, (SmA-et##LT#l:git^^*^b##±)©±/|7^#bTt#

-151-

Page 168: mmmA - OSTI.GOV

ffito MiSft.ti:a«;5eS)ls»5 iBtifts.

3.1.6.4 VGCF, CNT4t'tj^77.91'y^CD^feEW • ®aW^1llf*ICOC'T

CNT BS«TlilS!fflattfiTS <0, ■?-© i@ 7 X ^ ? Mtlc<t S+K Xx4$»$til4E6^l:e

^©fc^tctt, cNTSW#iE©«tt

W • PSStlgtVGCF$8stDL.fcttf4^W

&5Si$LSiMiT’Sett&£ro«Sto#tt7)i;eu$lcE<fct"Lfc. -©«

lias, xk • t#w<D!H$ss5i£/tttrotc-g(-t"s. croasvsue^EiSto^as.v-y-'f

«#g3i6]^eiiiPUfc68ss©M%7)sa$nj:5.

«±, S$z2Ss«SgtiR0SttmSffl®H6£*CMt'-5lB^i?0i9$E%lc j: 0, w*«

JS0BEtt-#»A0|B]±, MEMS^WfBffl, CNT%-&##0M*CO0T0E*&#/z.

cnsii:, *^a«, ##x#m#m0xy#aNi#6##x%#. memssit^xx

K • DLC EtofBffl, CNT #-&##0M%AH7)iX--76LX#1f

$/t, 4 inch XX+tX b* X iA-0®ffiSffjfcag&§l ^SiX-VT'S-5 tStitl-S.

cfib&imuT.K#*$^#A*m#mn##m0#f tLxm#-*mx6C6&wi:atT.

-152-

Page 169: mmmA - OSTI.GOV

3.2

3.2.1 gM

3.2.2 m#

OSMAC 2000 (3rd Specialist Meeting on Amorphous Carbon)

MB# 2000^8^298-9^1 B

H'fStitl Politechnico di Torino

Centro Studi Mondovi

Via Cottolengo 29

12084 Mondovi (CN) Italy

: ## #$a

1.

*^##(1, 7t;i/77X*-^7^^mAL^:^-7T777&0,

3 B^(D/\-MX7-i/3.-;l/T30 &dzv 7 3 7^61:

$6(:/^;i/^TX*7 73 7^ffA)^T, $<1100

2.

(dz y 7 3 7 l)

Univ. of Houston (TfxEI)O J.Kulik 17 (7X7 Xll/O Lifshitz 0#^E^0LW #) d)X 7T

11/7 7X A —^7^\(7)J%#< ^-7(Di^%^;l/f— fj0 , 20keV J^±X

7'7X%7

SoreqN.R.C. (7X7%Vl/) (DY.Lifshitzgjl, aK##(7777/X7MGH —7(7lM^

### (7%-U77#m) 7X-U7// (lOOOr) #, Gk:— 7(7Xn — M%77^@G^)o 7 7X7'-th<XO##^^^dT/co

Cambridge Univ. (%[H) (D J. Robertson 1Z 7 0 , MSSE7C) sp2, sp3 (ZfHiiS^^vVX

DLC ObJ%#^X(77X7A7 Mil, sp2 th< b(7^-—7'— U 7 7'(D^^n^^L,

UV 7777 sp3 th< b^%^(Z^lb,^ll6.

(dz 7 7 3 7 2)

Univ. of Helsinki ( 7 T 77 7 b) <7 Veli-Matti Tiainen 17 (IZ 7 0 , 7

-153-

Page 170: mmmA - OSTI.GOV

###/^(DDLC3 —

X h j: D,5^^b 15 t £ tlT g fz0 Filtered Pulsed

Arc Discharge #T#^^#^7K#7U—(D DLC# (sp3^c^:^180%, ^c#)g^:5/2

m/h> b£JHtSflt : 20cm2) 'Sir 200/1 m T'<D j^F cE ;£ T' hip joint ltb£#cE "ti", ^##(D #

#$r#T#/to 200kg (D#g(D^e, DLC-DLC 3-/^7^ hip joint ^#:$^#(D#

0.05T$,0, #^(Dhipjoint^#:##'r&6^m-^'J%f-ly>^0.05. #t

DLC-DLC^Tll, lO'-lO/^M^L^, ^/t,

a#(0 C0CrMo#^/\(D 1/zmCD DLC 3-/T 7/1: j; D,2^ 37T:(D^g#m7K^

t:?E 7T> m#/7' 10' f/M/ L /to (/#!%7, New Diamond and Frontier Carbon Technology

9, No.4 (1999) 283-288 1: $ #T 1^6.)

Uni v. de Barcelona (/^yt) (D J.L.Anujar 07: cfc <E> S —bend §yOt&jl: FVCA V'i

TX>yu'7^±ch(D*i5ief^Tta-cm(D##m#%^#eL^. /wxxms (-

20V----- 350V) (3.2g/cm^), sp^ (84%-88%) (D#^#^:. //"Vt7M<

77^7/ —100/2 N—2mNT 10—60nm (D#7:#$^#A/t.

Seagate Recording Heads % (3RIU) <D R.Goglia ££ \Z / D * 100GB/IN2 /X—FfV

E#^\7 0^(DDLC^##(D#^^&o/to /\—07^TX7(DBg#^^li, #100%^

±(D#A[1^^LTW6. 100GB/lN^T7, DLC 3 —/T

X 7#(D j# cE 1.5nm lOnm T$)§o 7 CD J|l cE 7f\ GMR pBHX 7 X 7 h CD

mm##, t777/^g^^Ti6. cc2^^x,

Korea Institute of Science and Technology(KlST #Q)CD K.Y.Yun 07:d; V DLC (D##%

I^mCOV^T^^^&o/t. 0##(Dfm#gH, Si, W(D^^@^A#T%#^^./to (#

#/W @ / W- Cmix # /DLC) 1400~2500kg/mi/ (D X — 7°#^ $: # /t o

(t y 7 B 7 3)

Institute de Investigaciones en Materiales(7 / 7 3 )CD S.Muhl 0: (337 0//)^ b 5 ^E|fj

##) CcLO, g{b^#(D#%a(D#^^7t:zL-$#/c. C:#^Tl:^#^(DC3N4li,

#^c^#TU7^Wo 0%7:#i42fi/t&n;0,7, ^7##^ C3N4(D$M^kU:^3i:v^^

(DT7^7/)b

PontificiaUniversidade (77711/) (DF.L.Freire^l:d;0, a-C:H:F#(D^c#C0#

7v##/jn(:j;0, DLC/)^U 7—77 71:^6.

Nanyang Technical University ( 7 7 7/"11/) CO S.F.Yoon 57/ ECR — CVD #1: ck <5

^#M-7Me-C:H#^#^L, W(Df#A[U:j:U, ^#69^777°^

#L<M^L, Mo$:^lmL/t##(:ij:, XPSCDClsU —

7^4^^^^b#^$#/to ^U7 —C-O^#7r&6o

IBM T.J.Watson Research Center OKIS) (DA.Grill07:ckO, USLI^v/misl^#/^

-154-

Page 171: mmmA - OSTI.GOV

mAHT^6, SiOzjcO### (k) #WkT(DUSLI[g%

CD#f^#, /^7 —^#<716. DLC##, #@#T 10^ Qcm (D#^^tfL^#76^,

##$#Si02 (k = 4) 7 0A#V\ U^U, a-C:H##3.3—2.7 (#k(DDLC##,

m^(DDLC##l:b^^6X)l:^:6) —7, 7^#A0DLC (FDLC) #, 70#%^%

2.4#^:6o FDLC/S^, SiC^, Ta/Si^cE'(D^@#t)^#^ll

TU6o

University of Sydney (D D.R. McKenzie K # 7 0 , ta~ C (D J7# # 7> rf^''$) ~D fc0

##^#F-7l:7 0, #%#, @^(Dn-type F-U>7#m/l77#77&#^(D7

t 'J 7 — # W 7 6 ;7', i6iV^'/Sj$#7^^) ^:lfr L Poole-Frenkel type —Fl: 7l D ,

###, m±6.

Univ.ofSurrey (^@) (DS.R.P.Silva^#7URF PECVD^#70^^c^ll/:a-C:

H #(7) electron field emmision CO njte'14# 7> V ^i=f L tz. Ufeo a~C : H #H!

(2-5xl0^cm"^)

lOkeV (D C60 (D#f oit.

ECRCVD &#767 —7>77</i—77 —7>7777</'(

aT^mo.

(m^) ±7 77<;\-(DEim#,

(lEl#) 7773-7l:M6H677#% II, %±^^7)'

(#^) T^df,

(@#) ±7 7 7<;\-(D7c^0mu##4;6C

do'±-y-) m#

6H7^C 7^6 t)#76.

(#^) 77777X-A7773-7#mW7

([g^) 4'[el#61l^:7777l/'\ —, 7n—77777/^—#, #^^@7773—

7Tmm$^6 3.4A^m^@^#m^mmi^^uf, ^-77^7777^#

a#^:7TW6/:^), Ci:T#, C(D77^7-^>7^L/:. U^U. A6

#, #$0^:TEM,

Samsung %(DN.S.Lee^#, #@77 73 —7l:76FED(D9 7>7, 15 7 77(D7

7-77 77°l/-0|^2l7o/:o 7773-711, 77 U —>7°U 7 FfATWu CNT

^7^;F/777&^<F#, m^-7F^#^A. 7<7-F^<7AF'J777-F

— 1x10 ^TorrT/^7 —7>7'L/:o #)—7l#®2V//2m

155-

Page 172: mmmA - OSTI.GOV

T-flfflgOO, 200,

150cd/cm^T&o/:. #^#11, 60ATmOm/uT^6a(DC(hT&3^:o

3. ^(D#^0KD SMAC 3

<^57% ^l##7#(D^t:, Mondovi^CA%Tl^^^^(Dlij^gB

9<>I#^E#L/zo 200

##6L^97>t)#t)3^o

ODiamond 2000

(11th European Conference on Diamond, Diamond-like Materials, Carbon Nanotubes,

Nitrides and Silicone Carbide)

M 0 2000 ¥9^30-9^80

D# # % Fundacao Dr Antonio

Cupertino de Miranda

Porto, Portugal

#»«:*« *M0. /|\# X*. BEB I?til- JHHCffl ff. ±$ ##.

a# am. mm s$

l. SSitoRB

xxxt> M. dlc, to-dox/xn-x. mm. sic axutuxs

-X-Y >XT'$> 0 , 11 0B l2<6Xd„ 5 B rdltoA-KXXX^-ll/T 72 frto

ism<0 5*., 17 ft <nimmm^7t>ntz. x 612. ^xx-x-y xa >«, 20*0. a

iitfcli, 474 ttT&o/A UXU, Dy7, (fBI#® d?X X — to X ■*■ XXll/X5'# < £> 0 .

asBEH, *=t-e35ofrgaist>n-5. &*, B^xbroitijss^efc^xox.

(!g-B @)

aafflsaii, m###0 5#Xb%abt.

fiftitGEtt (*BI) ® T.R. Anthony ftl2<fc 0 , HliX'f tiE > H to^BfiXX tt -SIS

iiim-TTtoS*Xb i'7-xtosffltttot'n^b, sue, x;i/-, e>». s$e, ##X'ftS-5. GE®aff.?4titi, BEI.LATAIRF. XliX'iXt.

2 Still A, 0 . tff/('fX0fcW«S,lA7DitXty

f 11/ CVD 7'4tit> K to IBSX" it, o it. fSiSSXX > 0.015%/H2 T 4.x4mm2 tog*

12 IB ¥ iW ¥ fi & E to 6 b£( 2 s£ $b U t. 'SST5.27eV®i¥ h>%)t»$K883*i;fc. W

-156-

Page 173: mmmA - OSTI.GOV

CL#, MWZaW'g/z. 2 6#, Al

p §4 r^HX^SIS (L (DfelT Shottky junction 7^'f# 6 tl/iLo B H — *7°^7'/f'\7:E:> F CD rU4c # tb

^c%L, ^ —290KTl840cmVVs'r&o^o

3#B#, CEA/LETI (79>X) (DP.Bergonzog;#j;0

4#B#, Univ. of Ulm (M<V) (DS.Ertl&#4:D,

120nm

'y — Jl/yx(Z)i!:>'ij*— (U— ^ —, HA), XnA"—

i/j: U ^60

5 # B #, Univ. of Cambridge (%E1) CD M.Chhowalla H#cL-5 DEC 3 — 7“t'XXH'D

m-BB#,

XA, DLc#f#, x/^zL—y-ceo-x/

X9X^—, CNx, ^fb#L SiC

41^:0

(#%2 BB)

#BB#, ^##, —

jEZLX^&K:cLO,

Linkoping University(X "A >) CD L.Hultman H H 0 7 "7 " X > 7 X 7 ^{bA%##CD

ECRCVD —^>77X/\'—AA —^>AX77X7\ —(A

aToao.

(IB#) SZ:, #

(7X7 F) PEEM, FEEM(7)#J^^T6C(!:^#66^.

(@#) m#m^#mALTUT^uc^

-157-

Page 174: mmmA - OSTI.GOV

XX.

((B#) CCX11, ^#(D7-X777X7g7^{5^LT#:mL^.

(M^) TEMXBU 7i;F77X^(:m#^^l, 7X7/\'7FX^, 7^-7°^7(7F

cLW'?

((B^) $6(:TEM, xm(B^#^#^cmj^Li777X/\-

^77 X V XX;F^^77)#SBM:#MLSBm^^L/:^o

(ms BB)

Case Western Reserve Univ.O J.C. Angus 1 0 X'SB In 7 □ 7 F — 7° X X 717 F O#

#@(DXPS#!i^b, #7C#(D##

#40^3^T^/</Zo insitu^:M#FTIRX#^^#7

xmm^mc7 oc ii^.

7 0#1V^XX X(7)##^#7X#fF76 gateFET 1:3

zK##)%y<7t>F^mv^6a/:o

Phillips Research Laboratories CD P.K.Bachmann 71 0 7° 7 X X 7 /f X 7° 1/—Xl/tlll/O

(l#X77#@2^#f%m#m) (D7-%'/7XmilT(D

cvDXX7i7F(:3WT#S-^&3^. 2^:#

HiXtiFL MmEEthfa-o T7X0

FCTCD^mo-mcLLT, ^#X-X(7)g^XXXO%7XF

u v7A7-x<

X717 F^(DX7X F-7l: j; 0, %##%###)!:,$ (A 150mAXcm"^#6^l

7o

(m4 SB)

King's College (51(11) © M.Newton KF<F 0 > X X 71 7 F 7 CD X 7 X — X 7 -Y 77

)F(D^Pm(Z)E

Univ. of Cambridge (%IK) CD A.C.Ferrari 7 X D 1 7 X U X X 7 X X 71 7 F CD 7 X 7

1150ll450cnm-Xl, 77XUXX)FXX7l7F

(D/\7 FX&^o (X7 X U XXJFXX717 F(D7XXli,2nm 17T7 J.Robertson (1,

#7TC^.)

Technische Universitat Munchen ( F X 7) CD C.E.Nebel 1X(4, XX 717 F CD X: FH1© fnf

Univ. of Ulm ( FX 7) CD M.Adamschik ££(71 0 , HX{F#XCDXX 717 FXX X

n 7XXAC3^T(7)#e/4&o/:o

7#10 2(BB(D^XX-77737mX^^/:. XX717F^@,

-158-

Page 175: mmmA - OSTI.GOV

HI *(6714 81 > / 7 -Vt > K’rV'W 7 > "7 'f —)V F x ^ y 1/ 3 > • // 77:

> H ## • %%, * 3 — 77 >7\ DLC • * 7%#%##, DLC ##.

y-DLc. DLc##%#%/^^^a,

(^5 BB)

Oak Ridge National Laboratory CO V.I.Merkulov Be/7 0 , UlS /jEHbl L/l 7 — /7 /

7 #^^b^c/#^L^#/FL^700^T

^1^:0 DC %#/76 PECVD v / a >7/ HI, 10^77 F/cm^

#^11, 150nATl50B#fm#o/z. —*^^0 70-350kA/cm^7#^LTW6o (SEM

&/:, Elo]#t)77#^c/:o FCT(D%%#fB

7T&6.)

JFCC(D##/7 oy<7t> F#f ^6(D77-;F F%^ y/a

3.5V/ f/ m (D@^T 1mA $4l/bo

3. 70#

5 B^O/\-FX77n.-;FOPFT,

^Te6t)07#/6^l6.

OFI/X7>%#7:#

0^B^ 2000 ^9^110 ^Fif

PJf 6 # D-01062 Dresden Germany

ea#m

1.

7T, Dr. Andre A.

Gorbunov (Head of the Laboratory for Laser and Thin Films Technology) Z7D, MTull -Srlfl

70#, t^7-g/##L, ^77

D BF 7 £n 7" ■& ft ~d fc o Z b Z > Pfl L/Ti?iiT § IFW(Institut fur Festkorper- und

Werkstofforschung Dresden, Institute of Solid State and Materials Research Dresden))/## L,

Dr. Mark S. Golden, (Section Head: Solid State Research)/#7:^6 7#/] LT^fc/;^, WcA CO

2. /-7-^7^####y70#^m#

L—tf- 7 7 L- 7 a >&&#! (Ait DLC Fe-AL Co-Cu ^0/7^###^:0#^

-159-

Page 176: mmmA - OSTI.GOV

76M#7T6 7 n7l:-A&6lif

tb tl <E> /7\ ##77(D|6i#:7— ^7 h^b^fuf, K n y 7° V y h MJjOt&fifl rfjiJ b,

##:#%#!:

i#^#m^#T(D7—tf-77'7-73y^^-y(D

#^ef^^eoTW6o #%a, YAo #

#(D7-if-/^l/7(D7y 7zL-7^^m@^(D^#^#mi:^^4;7

3.

5Bck 0 FCT 7°07%7 ^"#4; 0 ECR-CVD %(:4; 0#A)cL/

^@E[o]fy77</x-^6(D7y —;i%v5>a xcov^T, /j\#j:o i/—if—yyi/

— y-7#%#^(CO^T, 7^7^77—73 7$:#

■ofto ###14 11 AT&o/Zo

4 . IFW Solid State Research 7ll/—7%(D#5%|%

4.1 EELS (Electron Energy Loss Spectroscopy) ct (Dr. Golden)

EELS$fR7!7 ±7 7-3. —7'(^%{b), 777^ —7(D7U7A<77 —

77-737## (@7##, 76##%#) #1C3^T#^LTV^. C59N —#

#:, 7 77 — 7 L—7g 7b/z77—77(D#7##l:'7V^Tt)#^LTV^.

4.2 CVD bfe 12 4c <5 7 — ^7VtU 7 JlsCOMlik (Dr. Albrecht Leonhardt)

m%M#i77(^7i:7, HI/%7, 7j:nt7#), Am^^if^-E^J^lf.MgO

$))# 7 ^ /7 7- T, 7 7 y A — (herringbone #)#), #@7" 7 7rr— 7Jf2$t 7fr ~o T 7 <5 0

4.3 "7< 7 D^7°7X"7 CVD l:4:6Elo]7 7</^—(D#^c (Dr. Bartsch Karl)

#^100^G 200nm@^(D@glo]7 7<A-(D "forest" $g#hi:#^LT^6.

4.4 7 7 7 zl — 7 7 — 7 (DMtft (Dr. I. Monch)

7 774; %##%:&#$: Si m^±(:7^7v 7s 7b, Elo]7 7 73.-7(D/i

7 — 7(D#h)c$^Nb77'&o

4.6 7 —7 7°7X7%1:|^^7 7—77(D)Bh% (Dr. C. Wang)

^#-^#J^7p*7&bT: C60 45 4; [f C70 7 7— 7 7(D#5%$#7, ESR %1:4; 0#&E$

#oT^6.

-160-

Page 177: mmmA - OSTI.GOV

5.

Dr. GorbunovCLL

^<0mL/zWo M<VTA/7

C(D#, #rcg#m(7)bft)\ ^^.-A^McT,

Freiberg ^ cb [n] ~d ft 0

6. A^*#

(1) “Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption

spectroscopy" , O. lost et al. Appl. Phys. Lett. 75, 2217 (1999).

(2) “ Gas-dynamic consideration of the laser evaporation synthesis of single-wall carbon

nanotubes” , A. A. Gorbunov et al. Appl. Phys. A 69 [Suppl], S593 (2000).

(3) “Nanopatterning by biological templating and laser direct writing in thin laser deposition films”,

A. A. Gorbunov et al. Appl. Surf. Sci. 109, 621 (1997).

(4) “Features of the thin-growth conditions by cross-beam pulsed-laser deposition”, A. Tselev et al.

Appl. Phys. A 69, 353 (1999).

(5) “Thin film mixtures synthesized by cross-beam PLD , A. A. Gorbunov et al. Appl. Phys. A 69

[Suppl], S463 (2000).

(6) IFW Dresden Annual Report 1999.

(7) “Localized and delocalized electronic states in single-wall carbon nanotubes” , T. Pichler et al.

Phys. Rev. Lett. 80, 4729 (1998).

(8) “Potassium intercalated bundles of single-wall carbon nanotubes: electronic structure and

optical properties” T. Pichler et al. Solid State Commu. 109, 721 (1999).

(9) “On-ball doping of fullerenes: The electronic structure of C59N dimmers from experimental

and theory” , Phys. Rev. Lett. 78, 4749 (1997).

(10) “Mott-Hubbard-like behavior of the energy gap of A4C60 (A=Na, K, Rb, Cs) and NalOC6” ,

M. Knupfer and J. Fink, Phys. Rev. Lett. 79, 2714 (1997).

2000 ^9^118

PJr S ttk Freiberg University of Mining and Technology

Brennhausgasse 14, D 09599 Freiberg, Germany

Tel:+49 (3731)39-2666

Fax:+49 (3731)39-3129

-161

Page 178: mmmA - OSTI.GOV

pfj 9l%'\: Prof.Dr.Robert B.Heimann(Chair of Technical Mineralogy)

Dr. Werner Klemm, associate professor of geochemistry

Dr.Jens-Uwe Goetze, research associate, technical mineralogy

Ms.Margitta Hengst, M.Sc. (chemistry)

Mr.Michael Scheel, M.Sc. (mineralogy)

i.

langasite (LGS) La3Ga5Si014, langanite (LGN) La3Ga5.5Nb0.5O14, langataite(LGT)

La3Ga5.5Ta0.5O14 LT V^„

0 , [00.1] (crystallographic c-axis and electric Z-axis)# t:E1f t:^c# L/Co

(ii) ad (i4) ii, 5^o3^<,

#[11, 0.16 (1470 ^^0A)

rSj X? (0 iz > it —, —, l/'/T — — (fSlW AD*—Z3

S b 12 calcium gallium germanate (CGG)<2)#$o^O$R o fto

a at:Tie/:,

E^tl, E#t:

s.

(1) List of Publication of Prof.Dr.R.B.Heimann(July 12,2000)

(2) "Czochralski growth and charactrerization of piezoelectric single crystals with langasite

structure:La3Ga5Si014(LGS), La3Ga5.5Nb0.5O14(LGN) and La3Ga5.5Ta0.O14(LGT) Part

I",J.Bohm,R.B.Heimann, M.Hengst, R.RRoewer, J.Schindler J.Cryst.Growth 204(1999)128

(3) "Czochralski growth and charactrerization of piezoelectric single crystals with langasite

structure:La3Ga5Si014(LGS), La3Ga5.5Nb0.5O14(LGN) and La3Ga5.5Ta0.O14(LGT) Part

ll",J.Bohm,E.Chilla, C.Flannery, H.J.Frohlich, T.Hauke, R.B.Heimann, M.Hengst, U.Straube

J.Cryst.Growth 216(2000)293

(4) "Recent trends towards improved plasma-sprayed advanced bioceramic coatings on Ti6A14V

implants", R.B.Heimann Mat.-wiss.u. Werkstoffeetech.30 (1999)775

-162-

Page 179: mmmA - OSTI.GOV

(5) "Compositional and microstructual changes of engineered plasma-sparayed hydroxyapatite

coatings on Ti6A14V substrates during incubation in protein-free simulated body fluid",

O.Grassmann, R.B.Heimann J.Biomed. Mater. Res., Appl. Biomaterial (in press)

OFraunhofer Institut Electronenstrahl und Plasmatechnik

0^8 0# 2000^9^12 8 4:#

F/r Pt itii Winterbergstrasse 28 D-01277 Dresden Germany

1.

Institut Electrnendtral and Plasmatechnik (IEP, IIFP A]kZS7° 7

T, Prof. Dr. Gunter Brauer (Director) A (A Dr. Volker Kirchhoff (Deputy Director, Division

Director Plsama) (D —AC:@ALA = Prof. Dr. Brauer RA <0 , IEP#^BrO#E#,

2. IEP#^F!f(D#^^%lA#

A, 7"7X7j3AA7

F7773 AMU 96 A<D#M,

30 A(3 I' M 7, 94 W' 6 99 ^(D^^T,7.2 Zb b 11.1 million

EuroT&^). /^l/AXbX'T^mwAmm^S, 3

#T&D, Am##, #77h##^(Dm@(D^%i:t)A^AA

^rA^lTV^o 7°77Av7, AW#'^7EUv7°X(D—/F/7 —X7X), #

#g;a,

3.

A^A D ECR-CVD f^l:A 0 #l#LAElF]A/ 7 yA/^—^b(D7 ^ — A v 7 3 7

&A AlN/X<Xt7 M SAW ##(:3AT, A#A 0 7-+T-7X7-7 3 7&CA-5

4. #%##(DM'7:

A"(ISCO magnetron Sputtering b A A Pilot sputter roll coater (FOSA 600, deposition

width:600 mm, Web width 650 mm)#(D web coater, MAXI cHAfAtl, coiler station 1, sheet

storage station 1, pretreatment station, deposition station 1, deposition station 2, after treatment

station, sheet storage station 2, coiler station 2 A b #lA cS A. <5 in-line coating equipment

-163-

Page 180: mmmA - OSTI.GOV

(deposition width of 500 mm) 'tkPL-f- L/z0

5.

(1) Achievements and Results Annual Report 1999.

(2) Added value through surface and coating technology.

(3) MAXI, Sputter roll coater > "7 1/7 K

-164-

Page 181: mmmA - OSTI.GOV

3.3

y.TlclB-r5$*S$MfflL,fc„ tt H ff] $8 K V'« M W «|g MR to 5->f4dR t/ 7 - * > ^

N m ^ fT o /c o

4^124^

B ^ 12 fk 5 73 10 B (?k) 13 : 30—16 : 30

#Mff (M)

EH (l) tutRlIIVSIS

(2) H12, H13?#(COWT

(3) FCT//%ki/0A (6/6—7) /o/^ACO^T

(4) H12^lB3#^W#^ (4/24-25) (7)^#

(5)

B P# /^c 12 ¥ 7 73 19 B (7k) 13 : 00—14 : 00 ( I )

14 : 00-17 : 00 (E)

#Eff (E^)

BlU (l) #BlBl$##8^

(2) -y-//;!/##%%

(3) (#. #:f)

(4)

(5) #yn/%77h(7)!##^#E

(6)

(7)

(8)

^R% 12 ^

B^F 4^^ 12^9^26 8 (jk) 15:00—17:00

-165-

Page 182: mmmA - OSTI.GOV

mm (St) 7ri' >-fe75 -y 9an d) &7)i-?’mmmt7:4xt)-y>3>

(2) FCT7"P'7i7 hB n MflfltiSCTH'T

(3) XmS<Dm?m£. 7>xR-77AICOl'Tnew, 7-d^7ai

(4) 0#

• -E"0i[lj

are i2¥$ h 4

B»# ARE 12 ¥ ll fl 28 B (*) 15 : 00~l7 : 00

mm m i4S*a±H;F$3 6!is

I1B (i) «*«

(2) 6iOl/-7‘ia#tt«$6-8r(3) Hl2

(4) *-^>7hy 5LrL-7'-9->7";F*l6, SttttSi

(5) ee$*a«s

(6) rnmmA (####*)

(?) r*jig fct 7°n-7x7

SHA0 tA U >7'Ki7'7 4D-£: i: 7 ilfe-SEoj

are 12mm ms@w%*#esiiB B# AfiE 13 A l 26 B (A) 13 : 00—17 : 00

iJIF/r (flf) 7 7 A 7A 7 5 7 7 7A >7 — AAARFlr

an (i) BN®a*§ft

(2) r*RE7‘n-7'x7 h l:iiWT0#»A*, Biff bA U > 7'R@4o AUAmSMIlJ(3) #7'lF-7'm#**$B@

(4) ARE 13 B$SFI-Se=SiMii

are 12 ms m 1

g 8# Are 12 A 4 El 3 g (El) 14 : 00—17 : 00mm (tm -xmmmmm > 7-6 m 602

—166 —

Page 183: mmmA - OSTI.GOV

M6H (1) VbK SB Ita

(2) ¥s£ 13 ¥8tffSEAW, SB (CScifi) Ita(3) rFYl3#®$ti<J SXSfilEA

-VnK 12 SI 2

B»# 12¥4 fl 4 B (A)

±j§F/r 2 ## 6 i SI

US (l) ¥fi£ 12^SW5lI*1®. SB (afejfi) atH

(2) ¥b8 i3 ^se%a®, bb (escis) it a(3) fFY13 E#$;Rj CSSfiEA

Tee 12 * 3

Bfl# ¥6U2iF4 fl 7 B (A)

#F/r tMl^I*ft«»SSFlr*ig 2 *§« 6 @fg l SI

liffi (l) 2in*T0il# • «* (WlttiS)

(2) ¥s£ 12^$«3£8tB, SB (55BS) It a

(3) ¥i$ i3¥S»%ita. SB (Bfc@) it a

¥fig 12 ¥$ # 4 0E%t*E-SE^$MS

B Bf ¥b£ 12 f 4 14 18 B (A)

mpfi 1 ## 6 itttats

ilH (i) cn*T0ii» • (Witfes)

(2) ¥bK l2 4FSE%ltB, SB (Scifi) It a

(3) 13 itEE^ita, sb (Scifi) it a

¥eE 12 fpS SI i 6I#jRSiJS • ®#Sf4S WG

BS# ¥fi£ 12 ¥ 4 14 6 B (*) 14 : 00~17 : 00

t!Fir ft«l¥l.*f»j«¥FJr 2 iff* 6 BS 1. * 2 S

IIS (l) im

(2) irsss

(3) iFSiiMto&tX-SSS

SbK 12 :| A SI 2 BI#R0IS • ttlttSttS WG

Page 184: mmmA - OSTI.GOV

BB# 12 7 fl 6 B (*) 14 : 00~17 : 00

JgF/r 2 ## 6 i. m2 AN

an (i) :m

(2) ESEAS

o)

TeK 12 m 3 • SMAf4A wo

SB# ¥fi£ 12 ¥ 8 fl 24 B (*) 14 : 00~17 : 10±ifit 2 e 3sas

an (1) sfIiII

(2) P5E:

(3)

f 12^ 4 [e WG

am ¥)i£ 12 *F 10 £ 12 0 (7fO 14 : 00-17 : 00

^<6^2^0^252

(l) l#?j|

(2) #!&

(3)

^F^c 12 #5 we

0 # 12 *F 11 ft 2 0 W 14 : 00-17 : 00

mm

(2)

(3)

6#'

^F^jc 12 ^F^ # 6 WG

0 ;# ^Ff# 13 ^ 2 ^ 13 0 (^() 16 : 30-17 : 30

#f9f 2 4 ^ 4409 ^

(1)

(2)

(3)

mm

^F^jc 12 fFfg 3^ 7 WG

0N# ?^13^F2M 22 0 (?F) 16:00—17:00

-168-

Page 185: mmmA - OSTI.GOV

mm (i) im

(2)

o)

%% 12ms-ms##^wc

0 ;# w-fc 13 m 3 n 19 0 03) 15 : 00—17 : 00

#^f 6^2^:#^ 252

mm (i) ms

(2)

(3)

^F^c 12 m 1 WG

0 B# ^F^c 12 m 5 ^ 19 0 (#) 13 : 30-17 : 30

mm

^F^c 12 4^ m 2 wo

0B# ^F^cl2^F7^7 0 (#) 13:00—17:30

#f9?

mm (i) (FCT)- v ^AD%

' 't CD {ill

(2)

(3)

(4) -ir CO fiii

^F^ 12 m 3 [0#^%^####^#^ WG

01# 'FJjjc 12 <F 8 13 18 0 (A) 13 : 00-17 : 30

mm (tic #i is w #; in ii3 o')

-169-

Page 186: mmmA - OSTI.GOV

Vp£ 12 *p)& 35 4 [i'lvli31%tiAg44:f4#>44A WG

HB# -¥fi% 12 Ip 10 41 13 PI (A) 13 : 00-17 : 00

«ifr tiiSIBAiXlittaAtt WHrAP/r Aim

ail

¥1$ 12 xit s 5 woHP# Vb£ 13 A 1 41 12 tl (A) 13 : 00—17 : 00

mm «£«$

ii a (pl »«-»«©>

¥fifei2^s 31 6 HillSCWSlf®ft 14145#44A WG

HP# 13 4p 3 fl 13 B (A) 13 : 00—17 : 00mm *«4#R*t > f -6 K 603

liffi (1) fct x'n-xm htoMrottSIM

(2) FCT 7"n -XX /7 h ©pf

(3) y#At> M44#K#<7)mm

(4) A'XAXX H • A/H xt$#irosa

(5) Sttlc-WmiWBM

(6) 1# Etl a# IS

<Co4m A^A

¥be 12 tps m i mmnm^

HP# Bl$ 12 ¥ 4 fl 24 B (fl) -4 fl 25 El (A)

mm lSS«K@ti6E%A>5'-Affla»eAAIIS

VfiK 12 A-ffi Si@7n>f-f7*-#>f7 7ny-y>iiiVi7A

HP# 12 7p 6 m 6 H (A) —6 41 7 H (*)

«(#f XiiSffiKStiSWSEA > m*m,W:AAim

-170

Page 187: mmmA - OSTI.GOV

sms

(1) m^am - ma - #;m#a- BCN X^ 7 7< h^^(D3 7tX h : P.25-33

• OTiiWI7 cBN JBfrar£tf)3 >-fe-7° h : p.18-19

' 77XX^7< 7 n^7°7XT CVD t

3 7't:7° h : P.44-45

- DC 7°7 XT CVD (: j; 6 X< 7#{7# 3 X h : P.45

- : P.58-60

(2) 7%# • US

- ### CN : P.18-23

- BCN /\7DX<X(D^^ : P.15-16

- X/7 U77;i/X<Xt> : P.54

-171-

Page 188: mmmA - OSTI.GOV

173

(##) (2000.4-2001.3)

2000.4.3 S# SFI, AS. SS.#

2000.4. 5

2000.4.12 /j# M5M IE%. SH Time-resolved emission spectroscopic studies of laser ablat ion of born nitride and carbide

Japan Laser Processing Society

2000.6.14 ~ 16

2000.4.20 # AS f (D# 2000.8.1

2000.4.20 # AS. SM2000.5. 15 mm 2000.7

2000.5.16 m. mm . a#s* mm # ms 2000.9.3

2000.5.17 J F C C (#)3 $ ZL%A—>/ 3 >%

2000.5

2000.5.17 IS AS j pee 2000.3.31

2000.5.29 m i EFCTSx>^^^A ## 2000.6.6

2000.5.30 s* ms #E,fflS Triborogical properties of diamond-like carbon films synthe sizedby plasma based ion implantation

2000. 10. 30

2000.5.31 sm mumFCTS/^^A 2000.6.6

2000.5.31 AS. SmUM ^11 Amorphous Carbon Structure for Injection Enhancement into Diamond

DIAMQND2000 ## 2000.9.3

2000.5.31 fii. (/F^ mN. Rupesinghe , G. Amaralunga) Carbon-based Vacuum Microelectronic Power Switch Device: Its

Possibilities and RequirementsDIAMOND2000 2000.9.3

2000.6.1 ^0 #%, s* mgfflS -cm### 2000.9.4

2000.6.1 A# jes. mm w. mm #s. mm ms 2000.9.3-7

2000.6.5 S M. IS AS 2000.6.5

Page 189: mmmA - OSTI.GOV

174

2000.6.5 2000.9.2

2000.6.5 2000.9.3

2000.6.5 {g'A, Bffl e* ft til 2000.9.3

2000.6.5mo

2000.9.3~7

2000.6.5 iij$ me,BB43

2000.9.3

2000.6.9 m* m, 5jn ms, %bb mm j 2000.7.512

2000.6.9mm

J FCC#^%^ 2000.7.512

2000.6.9 m , sm murn mm

^^-XElR]#0TEM(: j Fcce%%^^ 2000.7.512

2000.6. 14 Sung-Pi 11 Hong. WIN tSiS,Cedric Moel. "SWIHE wmm

2000.9.2830

2000.6.16#555(2]

2000.9.22

2000.6.16 M'n 2000.9.22

2000.6.19 M. kusunoki,T.Suzuki,T.HirayamaN. Sibata

A Formation Mechanism of Carbon Nanotube Films on S i C (00 01)

Applied Physics Letters 2000.3.6

2000. 6.1 9 ■wji ;ii Mi. fv.xraf'.U;, 'Mfi, /miNWi umnw.*;, 'J'lfStt, X. rupcs i nghe, (i. anaralunga

Electron Injection and transport Control of Diamond for Vac uumMicroelectronic Power Switch Device

I VMC 2000 ## 2000.8.14

2000.6.20 mtFr 2000.6.30

2000.6.20 Sm New Diamondo ^(7)# 2000.7.25

2000.6.20 iVlllhflia.^ liRrlf.agXi «!-;*. Ill'll mi'J, yj'14 AWi, A'T' ^ til , 'JM ?|J. liln-J 7*-

A. 2000.9.4

2000.6.30 CHARACTERIZATION OF LARGE FREE-STANDING DIAMOND SINGLE CRTS TALSBY H0M0EPITAXIAL GROWTH

City University of HongKong

jV 2000.6.30

Page 190: mmmA - OSTI.GOV

175

2000.6.30 ## Llm T#, Structure Formation of Nanoribbon Graphite from Carbyne-1ik e Carbons

1CSM2000 2000.7.21

2000.6.30 mui,mm

<^>H-A7/Nv^U j:6B-N-Ti^##(7)f#Sl 0 2000.10.1-3

2000. 7.1 (#) # "f / /X— > g >2000 y J J-3- — 2000. 7. 1

2000.7.106m

Mi& #fp 2000.7.12

2000. 7. 10 Ill DUUflUG. WHI(*d Well-aligned carbon nanotubes synthesized by electron cycro tronresonance chemical vapos deposuton

MRS 2000.11

2000.7. 10 hf /ffr III G %. fr, Multi-walled carbon nanotubes prepared by catalytic decomposition of methane at low temperature

ACS 2000.12

2000.7.14 m e# m# ^=m.mm ms. %M>y-y

2000. 7.1 8 * BFixMmi 2000.7.18

2000.7.21 ^m, m#. /j\# (B6±) 4% (B6±%)

Diamond films grown by a 60kW microwave plasma CVD system Diamond and RelatedMaterials

2000.7.24

2000.7.21 #0, #, /J\# (ttPSliH) Growth of {111}-oriented diamond on Pt/Ir/Pt substrate depositedon sapphire

Diamond and RelatedMaterials

2000.7.24

2000.7.24 ## « Large Scale Synthesis of Multi-Walled Carbon Nanotubes and theirApp1ica tion mm)

2000.5.17

2000.7.24 ## ^m 2000.5.22

2000.7.24 ## (%%#]:# ^>y-y ^3.— 2000.6.2

2000.7.24 ## XWe. $90#rM emi 2000.6. 7

2000.7.24 #11 tFSI—y%-7/ ----

±y^/?y 2000.6.20

2000.7.24 )k# # . Study on The Large Scale Synthesis of Multi-Walled Carbon Nanotubes

Hurocabon2000 2000.7. 12

2000.7.24 mm ^ m y—4^ > y y y^L—y' coDris o"B)c& #19^17 7->>>>#>7 A jL-s. 2000.7.27

Page 191: mmmA - OSTI.GOV

176

2000.7.24 ^i9[5]7 7-ix>^>as;'yA ^ A. 2000. 7. 27

2000.7.24 #5l9|5]7 7-l/>7>a:xr>A 2000. 7.28

2000.7.28Baa

2000.8.23

2000.7.28 mm a*B3a

a 7-^E c2000^^#^;#

2000. 10. 1 -3

2000.7.31 # ^ ?a m,##

## 2000.9.29

2000.8.3 tW ti. tun K'4. iU',U't, #10 mi l # Hill. FCT)

Secondary-Electron and Field-Emission Spectroscopy Studies of CVD grown Diamond Particles

The International Symposium onSurfac

c and Interface 2000

## 2000. 10. 17- 20

2000.8.10 em mm, ms, cm #M,SEB XS§

GHz#SAWf/WxmiNm##M#:!:9?# 2000.9.29

2000.8. 1 1 ^g aj, am, i^a,cfEB isng. /h» sm A

## 2000.11.30

2000.8.11 am, t^a, ^g ftj,/j# m%. A

2000.1 1.30

2000.8.1 1 f^a, am, sg #j. #5HiE]y<4rt7 E A>as;aA

## 2000.11.30

2000.8.14 @m #, /j# #E ^Mimya-vtA EA

2000. 1 1.3012. 1

2000.8.14 ^jil 1#il, #E /y. ^ 2000.9.5

2000.8.14 Baa SrS h7<av-r'J7;i/ Mimm# 2000.9

2000.8.14 #B #, /J# ^ta, #E ix-tF-yyix-^g >&i:m2

2000.8.14

2000.8.17 pj, mm wsf, a* mas

y 9X^-##&Tf#mL/:SiCNm#(D{|:#^#^ ^i4mya-vt> E A>as;aA

Ay> a. 2000.II.3012. 1

2000.8. 18 mtb., mmtm,## ua$ mm #s

mi4@y<-vt> E7>a>;aA

2000. 11.3112. 1

2000.8.18 MM f&m %, #th,ma $f&

Oxidation of superhard refractory coatings THERMEC' 2000 ,'Y TV 2000. 12.4-8

Page 192: mmmA - OSTI.GOV

177

2000.8.21 Friction and wear of nano-size diamond films with amorphous phase

ADC/FCT 2 0 0 1 ## 2001.8.6

2000.8.21 Aligned carbon nanotube films on SiC wafers 0 f/\dz 5 ~f~ —(7y AXA##^#)

#m# 2000.8.28-29

2000.8.21 Sung-Pi 11 Hong. WHI tSilu 7 nmy^XvcvD&Cj; KJBOXPSC mi4[3y<-\rt A M AA^AA A

## 2000.11.3012. 1

2000.8.21 m# mn iE# mi4[gy<-^t A M AA^AAA

## 2000.1 1.30

2000.8.21 # . ^m, mm , , /E# ,, mm 60kWT< 7 DmcvD^mT^L/zy^-vt > rmm mi4Ey< "Vt A M AA^AAA

2000. 1 1.30

2000.8.21 hy<^aA-#% mi4imy<7t A M AA^AAA

## 2000. 1 1. 30- 12. 1

2000.8.21 Friction and wear of nano-size diamond films with amorphous phase

ADC/FCT2001 ## 2001.8. 6- 8. 10

2000.8.22 H# isUtt. Tell #. S b1.4-# $, mm mmms V

###6112]##mm#

## 2000.9.4

2000.8.22 Si #. gH?m #, mmmeais

mMigy^ttAM AA^AAA

## 2000.11.30

2000.8.22 7cl§ #:. iff# S:Hf. $b1.? m #, mm

^#<^A%y7AAl: A mi4imy<^t A M AA^AAA

2000.11.30

2000.8.22 S:S #. @# A@. aMH sSfW].?m #, mm mma;

y 77y y AACJ:^ mi4imy<-vt > M AA^AC;A

## 2000.11.30

2000.8.23 mejn a,Am #S, # #A

%?k:- Ami@7y Xv C V D1: j; 0 L mi4By<-Vt A M AA^AAA

A^-A 2000.1 1.30

2000.8.26 #m#, 1%#^. mm#emiE^, ii#%gL

Laser ablation of boron carbide:thim-film deposition and pi ume analysis

Diamond and RelatedMaterials

#yc 20000.9.3

2000.8.28 /E% mm #H. mm #s BCN/\7oy<4rt> &0%A Am## ## 1 999.5.14

2000.8.28 (M) 2000.9. 1

2000.8.28 (m R6A. Mmmcf y+F< y a 2000.9

2000.8.28 dttt JIM til, MM W, Am #H.## mm #5

m4iEi%m#m# AjA 7X 2000.8.28

Page 193: mmmA - OSTI.GOV

178

2000.8.28 mm. mm #i. #8%m* msL mm ms m

%572ElB*i#&Ma^Ag| 2000.11.21 -22

2000.8.28 mm. mm #i.## mm

miimm m^i&2 2000.9.3

2000.8.28 m# mm. mm #i. A### iii* mm #5

mums; mu 2000.9.3

2000.8.31 j Fcc, Diamond thin film has high crystallinity Laser Focus World 200088# p.74-75

2000.8.31?. mm. ms

BN Substitution Reaction of Fullerene using an Excimer Ease r Irradiation

Elsevier Science 2000.9.4

2000.9.1 r. iii^fn'i&. 'bw# r. upb .mm

The structure and tribology property of amorphous carbon an d nitride films prepared by ECR plasma sputtering method

2000.9.7

2000.9.6 mm a. mm wm c - B2000

2000.11.28 -29

2000.9.13 ##.VlLi M

s i y^cL-y#(7)#ifT 2000.11.21 -22

2000.9.18 ^-78213# Zi ;i — ~h — * > 7 ^ — 7 A ##^ 2000.9.14

2000.9.18 # m. /;F:i-7Ki3m<D%mw-s i #31 @ 2000.9.29

2000.9.18 e. m# ^=m. ## mm. mu 2000.9. 19

2000.9.21 #± *—* > -y j * sl—i# ^ I'D T7 1 2000.11

2000.9.22 *# ## ##. #mm* me. mm A *= 1999.11.25

2000.9.22 i^m. #m./j\g

mum mu 2000.9.28

2000.9.29 # . #v* JFCC. 0E7 13 —*J1 2000*108#

2000.9.29 #11 \FH Development of Large Scale Synthesis of Multi-Walled Carbon Nanotubes by Using Catalytic Decomposition of Hydrocarbon

2000#±*#(mm##)

mu 2000. 12. 17

2000.10.2 min mm F(7)#g "1% 7 $ V 7 "T— 7 7' V 72 0 0 0

2000.9.20

Page 194: mmmA - OSTI.GOV

179

2000. 10.3 Mo- PEACTlV1TY OF GRAPHITIC RIBBONS:DIAMOND SYNTHESIS UNDER HIG H PRESSURE.

National Research Institute for Metals

2000.10.30- 11. 1

2000.10.3 VIBRATIONAL FREQUENCIES AND THERMAL STABILITY OF HYDROGEN F REE GRAPHITIC RIBBONS

mi2B B*MRS ## 2000.1 2. 7-8

2000.10.6 mm ms. ##. %m mm.IE. _E#

Improvement of Adhesion of Diamond-Like Carbon Film by Ion Implantation Techniques

ITC Nagasaki 2000 AAA 2000.10.29- 11.2

2000.10.10 mm WA ^:'J. Synthesis of carbon Nanotubes by The Catalytic Decompositio n of Hydrocarbons Using Ultra Fine Metal Particles.

ADC/FCT' 99 1 999.9.2

2000.10.10 ^12^g $81

2000.4.24

2000.10.10 /j\% mm ^M'j.m# #. #7% ## ^=#

Effects of Catalyst Metal on The Method of Catalytic Decomposition of Hydrocarbon for Synthesis of Multi Walled Carbon Nanotubes

2000#±f# 2000.12.14

2000.10.10 /M2I id HA {f'rWi 7:%, ## mil Synthesis of carbon nanotubes in the presence of ultra fine metal particles.

Ful lerene Science &Technoligy

#7: 2000.10.3

2000.10.16 ^mi (FCT) JFCC NEWS 2000NO,58 4%24#3M

2000.3

2000.10.16 #m %. #-&.mm S'/6

DLCdo m&KBN##(7)nano-indentat ion&ll mg## ' EPMAARBf^ 2000.1 1.21-22

2000.10.16 ^E. mo m#.#E

Structure Formation of Nanoribbon Graphite from Carbyne-1ik e Carbons

Synthetic Metals #7: 2000.10.30

2000.10. 25 m# ste # Am. #m# fUJ&

2000.12.1

2000.10. 25 mo m#. #e i^E. Milty 2000.1 1. 14

2000.10.25 mo m#. #e i^E.1^7 #E 5%

m2 7[m 2000.12.6-8

2000.10.27 m. mm. m#, m#a

60kW7</7Ctac mi 4[my<mm>7A

2000.10.27

2000.10.27 r. iii^Ai'iA. 'i'#^ r. tipbAiK!*; -. mm him p,tt@&,d. h 7< ###

mi#A

2000.1 1.30

2000.10.27 am m14imy<mm> Mmmrns; OA

2000.10.27

2000. 10.27 4-# #i# mi 4imy<-vt>7A

2000.10.27

Page 195: mmmA - OSTI.GOV

180

2000.10.30 mm m, am iE# Kif E^6(7)7/ -2b M%a v ^ g > : m 1 4|g]y<yt>OA

2000.10.30

2000.10.30#%

m14@y<yt>7>A

2000.10.30

2000. 10.30 ^m m, A#, /j\#f m #, mi#

A>xvA>y(:=kay<tt> m 1 4[gy<yt>OA

2000.11.30

2000.10.30 ^m m, m# m#, /j\# ^m, $, m#

,y 7%-/ =k&y'f-VHttJPI

#51 4my<5>A

2000.11.30

2000.10.30 m# > pvu- 2000^12^%fr(7)A7^ 7^21/ 7 VX7X^-M

2000. 12.24

2000.11.1 ms #%, ai$ -a-* 2000.8.23

2000.11.1 mm U# X7 X7<^7&A&(: a - mi 4[ayd'yt>M7>^s; 7A

2000. 1 1.30

2000.11.1 #, a# xx, mm ix-y-yyiy-^am2 1

## 2001.1.30 ~31

2000.11.1 f##?, 5im-aiL ,sm iE%, %, A*

mi 4imy<yt>7A

## 2000.11.30

2000.II.1 sm lE^, #E, mmm##

m14@y<yt>7A

2000.11.30

2000. 11.6 mm, ##,IE,

<^7aAK#CA6DLC#(7)##%%# mi 4@y<yt>7A

2000.11.30

2000. 11.7 UN ff A, Bffl %, fitii,bb^ Mm

Relaxation of Internal Stress of cBN Film by means of A1 Add i t ion

American Vacuum Society 2001.4. 30~ 5. 4

2000. 11.9 A# Pj, Siil #—#T, lx-lf-7 7l/-S/g 7CA67V #54 Ay,^. 2000.3.30

2000.11.17 mm #%, aiA ** #*g,@4: ##, @# ^=#. WK m 2 0 0 04# ##|At&

2000. 5. 1 7

2000.11.17 mm m* msA, ^ #;K,Mm

Triborogical properties of diamond-1 ike carbon films synthe sized by plasma based ion implantation

ITC Nagasaki 2000 2000.11.1

2000.11.17 mm #%, m* me,ffl* Mm<

y7Xv<;f>aA&(:j;aa-ciBi(DfE# 2000.12.8

2000.11.24 m-a;, m± mm x p s Cskao L cmomm - H 1 2 E S CA ^.—f-x - ^-7^ >y

2000.12.15

Page 196: mmmA - OSTI.GOV

2000.11.28 ##If 2000.11.291$

2000. 1 1.30 mm mm g* mm #:fir 2000. 11.30

2000. 11.30 mm mm mm #^lT 2000. 11.30

2000.12.1 fit 2000.12.8

2000.12.1 Condensed phases of all-pentagon C:„ cages as superconductor s

Physical Review B 2000.12.1

2000.12.1 C-jii ful lerenes as possible superconductors? First-principles investigations

APS 2001 March Meeting ## 2000.12.1

2000.12.1 C:u 7 9-lx>(7)m&+8 : ^5 6 2001.3.26

2000. 12.4 m# a# 2001.1.12

2000. 1 2.4 m# A# #* 2001.1.12

2000.12.5 Bjiimjjnm* , mm A#

j; <5 ^ ^ y-y J zFji — 7* @3±#COf## 2001^B$t^^

2000. 1 2.5 #$. ##. ejiimmm# , mm A#

2ooi^##m48@Tbm#a#M yy> y\

2000.12.5 #$. ##, BjiimAnm# , mm A#

Oriental ion of Freestanding Carbon Nanotube Film by Sublima tingDecomposition of SiC Film

The 20th Fullerene General S ymposium

/y. 2000. 1 2.5

2000.12.5 %cr/ay^7';/ 2 0 0 0(%)

2000.12.14

2000.12.5 2001.1. 1

2000.12.8 m# A#fs E I TODAY]

2001.1.1

2000.12.8 ##. g* Theoretical identification of the smallest ful lerene, Gi. Phys. Rev.Let 2000.12.26

2000.12.11 ^jii m# vDy<-vt> M NEW DIAMOND Vol.16 No. 4 2000.10.25

Page 197: mmmA - OSTI.GOV

182

2000.12.11 ^AifiZE —re —X l/ $> —fSE I WORLD]

2001. 1.4

2000.12.11 mm, mm #i, #s,## in* mm ms

## 2001. 1.1 8

2000.12. 11 it{)E (%) 2001. 1.4

2000. 12. 1 2 # *#?, fin m, mm m#

m2yyA

## 2001.1.22 -23

2000.12.12 # # #,¥Oj wl mm m#

m2 oiE]7 7-i/>me7># yyA2001.1.22

-23

2000.12.12 ^ m,mm m#

Carbon nanotube films formed on SiC poly-crystal ^2 0[E]77-L>m^7>^ 2000.1.22 -23

2000. 1 2. 1 2 hcgyi. mufnx. . Y,Tr^. Well aligned carbon nanofibers by ECRCVD American ChemicalSociety

2000.12.12

2000.1 2. 1 2 mm %, msyoy^xh#^ <3->t:-AXXA'y f V >y&(: j:a@#Rc2001#!^^

2001.1.10

2000.12.12 ##DI S£, tli A A A#,# #A

tc-Amigy^xvc mi siEiy^XTynty^y 2001.1.26

2000.12.15 Cedric.Morel. WJH tSiS,"SW #$S, Michael Liehr

mi BBy^XTyaiiy^y 2001.1.26

2000.12.18 #jn . ** #$s &

m4 2001.3.30

2000.12. 21 2001.1.10

2000.12.22 ~h—y >d~ y ^ zi_—y 2000.12.25

2001. 1.4 m, mo iE#, Microscopic study of field emission from diamond particles 3rd symposium on Diamond Ele ctronic Devices

## 2001.1.23— 24

2001. 1.4 tEniEm.IIIOIE#

Secondary-Electron and Field-Emission Spectroscopy Studies of CVD grown Diamond Particles

3rd symposium on Diamond Ele ctronic Devices

A^:^. 2001.1.23-24

2001.1.4 /j\y@ ^cA, #, em IE#.** m*E'

PLD&C=kamfE#ymm#(7)M(!:±y<>f >T--:X3 > SE2

m4 2001.3.28-31

2001. 1.5Vol.45 No.1

^(7)# 2001. 1

Page 198: mmmA - OSTI.GOV

183

2001.1.5 m4me###

*= 2001.3.28

2001. 1.8 e# ## J F C V y 3 > 2001.1.25

2001. 1.9 il# WEa*

y9XE<A>&A&(:=k&a-C#(DM# mm##%mes%# MlA 2000.12.8

2001. 1.9/J# #^E

Time-of-fight mass spectroscopic studies of positive ionic species generated by laser ablation of silicon carbide

Chemical PhysicsLet tens

#A 2000.12.25

2001.1.9 iUT ##. mm 2000.12.26

2001.1.9 iii* ./N8 XA,^i cN##om% m4

iS###### 2001.3.28

~312001. 1.9 Am#. m4 8Eft;m#a#Mm

me###y# 2001.3. 28

2001. 1.9mmmw

C F ,#AOO^X(: M(Di@a%v^>yA0%K* m4 8Efwm##mmme###

## 2001.3.28

2001.1.9 &@Ji| S. ili^ fotLE A# .## MA

2ooi^##m48iE]it;m#@##Nmme###

## 2000.3.28

2001. 1.9 mm ejn was,£ d] ?mi 3^m##^m#### ## 2001.3.28

2001. 1.9 111* AW #$E. /J\# $E] ## 2001.3.28

2001.1.9 ae mm me. it is a,BJU EE. # ##

fmi3^m##^m%@## ## 2001.3.28

2001.1.10 mm. u# ew #EBA ##

Development of plasma based ion implantation system using ECR plasma source with a mirror field and synthesis of carbon thin films

Japanese Journal ofApplied Physics

#A 2000.12.8

2001.1.10 {gm mm. ew #EBA $# A9XE##^>AyAA2 0

0 12001.1.26

2001.1.10 ma mm. B* Aw meBA $# %#

fwm###2 ooi^ #%##

## 2001.3.28

2001.1. 10 mm mm. u# fuiiA. AwBA $#

y^XEi A>%A%cB& 3 fm

M#JM##2 0 0 1 J|f #MA#

-X=# 2001.3.29

2001.1. 10 m 5# gtA. ## 4=#.## #. mm #E. A* #^s

ts — A>A J fa-AcoS^A A #m= 2000.12.12

Page 199: mmmA - OSTI.GOV

184

2001.1.10mm ms,

2000.12.12

2001.1.10 #/J\# ^ o] . fi$ A

## 1999.11.25

2001.1.10 J. Wang,G.M.Swain,T.Tachibana, and K.Kobashi

Incorporation of Pt particles in boron-doped diamond thin fiIms-Applications in electrocatalysis

Electrochemical and Solid-State Letters

2001.1.10 T. Tachibana,Y.Yokota,K.Hayashi, K. Miyata,K.Kobashi ,Y.Shintani

Parametric study of bias-enhanced nucleation of diamond on platinum in microwave plasma

Diamond and RelatedMaterials

2001.1.10 Y. Yokota, T. T a i'll ibana. k. Miyata. k. Hayashi, k. koba

sh t, A. Hat ta. T. 1 to. A. Ill raki, and Y. Shinlani

Cathodoluminescence of boron-doped heteroepitaxial diamond fi1ms on platinum

Diamond and RelatedMaterials

2001.1.10 T. Tachibana,Y.Yokota,,K.Kobashi M.Yoshimoto

Heteroepitaxial growth of (111)-oriented diamond films on plat inumG 11)/s apph i re (0111)

J.Crys t,Growth,

2001.1.10 ^So]

1998.11.T

2001.1.10 # g^. #t=?B3 So]

1 999. 3. 24

2001.1.10 T.Tachibana, Y.Yokota, H.Hayash iK.Kobashi

Growth of polycrystal 1ine diamond films including diborane and oxygen in the source gas

J.Elec trochem.SocVol. 146 p. 1 996 (1 999)

2001.1.11 mufnA IW'tiiklf. Ylfrti&jc,III

Well-aligned carbon nanofibers synthesized by eletctron eye lotron resonance chemical vapor deposition

2000.12.28

2001.1. 11 #84 *= 2000.3.28

2001.1.15 Large diamond single crystals grown by vapor phase epitaxy *= 2001.1.23

2001.1.16A A—

zK—A -A—A 2001.1.20

2001.1.16 Ujp f# frn rfb#z#j 2001.3

2001.1.19 am 2000. 12.28

2001.1.19 Microfabrication for an electron emitter tip of Single Crys tal Diamond

2001.1.23

2001.1.22 am. a f'j

mtff 2000.12.28

Page 200: mmmA - OSTI.GOV

185

2001.1.23 Y.Ozmen A. tanaka and T.Sumiya The effect of humidity on the tribological behavior of diamond-1 ike carbon film coated on WC-Co by physical vapor deposition method

Surface and Coatings Technology,vol.133-134

2000.5.10

2001.1.25 WE Field Emission and structure of Aligned Carbon Nanofibers deposited by ECR-CVD Plasma method

SAMC 2000Organizing Comit tee

2000.9.1

2001.1.25 Y.Koga Field Emission of Carbon Nanofibers Elsevier Science 2000.9.5

2001. 1.25 Lf# WE,mm

XPS studies of amorphous SiCN thin films prepared by nitrog enassisted pulsed laser deposition of Sic target

City Uni versity of HongKong&%3.-y<-vt>

2000. 7.25

2001.1.25 UU* ti"® WE,mm #5

XPS studies of amorphous SiCN thin films prepared by nitrog enassisted pulsed laser deposition of Sic target

Elsevier Science 2000.9. 1

2001.1.25 UU* 8l%. fgm #8, 8l#/i\% me, mm

2000.3.29

2001.1.25 tit* *® EE,mm ms

2001. 2.5

2001.1.25 uu* 8i%. mm #8. 8i#/j\# mm

The sp3 bond fraction in carbon films prepared by mass-sepa rated ion beam deposition

Diamond 2000 Conference Secretariat

## 2000.9.4

2001.1.25 iij^ fn!i, mm #8, 8i# %-eh /j\% me. mm mz

The sp3 bond fraction in carbon films prepared by mass-sepa rated ion beam deposition

Elsevier Science 2000.9.1

2001.1.25 8i%. mm #8.8i# %-K /j\% me, mm #5

jA/, A 2000.3.30

2001.1.25 uu* 8i%. mm #8.81#/j\# me, mm

2000.3.31

2001.1.25 8i^A. mm #8.8i# n# we, mm 7^~7A

2000. 1 1.30

2001.1.25 uu* 8i^A. mm #8, 8i# %-K /h# #E. mm ms

####< %i- > t: - j; B A^-A 2000.10.2

2001.1.25 do* 8i^A. mm ^8. 8i# %-K /i^ #E. mm

2000.3.31

2001.2.1 Mechanical Properties of DEC Film Prepared by ion Beam Sputtering with Electron Beam Excited Plasma

Diamond 2000 2000.9.3~8

2001.2.1 3^± XM, ^FB $j(, XfH -v t 6

2001.2.1 eo ^FBto

2ooo#am%%####±##

Page 201: mmmA - OSTI.GOV

186

2001.2.1&DL

#13^7777^77777A

1999.11.25-26

2001.2.1

2001.2.1 f mu 1:-A I: j; ##

2001.2.2 ###

t y 7 7 77 h •t

2001.2.20

2001.2.2 #5 zty-Tx 2001.2.2

2001.2.6 ts — 7 >7 J 7n.— 7 7 0 EM EM 2001.2.2

2001.2.8 7077/77-^777/07- #29&

2000.1 1.9

2001.2.8 II. hush i. K. Tsiuzawa. (loin. T. Isshikawa.

S. Yaraash i l a. M. Yumura. T. II i mano, k. Dura, Y. Kona

Field Emission and structure of Aligned Carbon Nanofibers deposited by ECR-CVD Plasma Method

Diamond RelatedMeterials

1999.9.1

2001.2.8 2 1#E&fWTa7-77V7)l/ ## 7 7 — y A 2001.2.8

2001.2.8 Ej^###%## 2000.1 1.22

2001.2.8 mu i#m, fit?

7//u%7;i/y7777M New Diamond 7(D# 2000.10

2001.2.8 E&L Eg S AW#f(7)M% WE## 2000.7

2001.2.8 M.1shihara,K,Yamamoto,F.Kokai,Y.koga

Aluminum nitride thin films prepared by radical-assited pulsed laser deposition

Vacuum59,649-656(2000) 2000.11

2001.2.8 M. Popov, M. Kyotani, Y.koga,R. J.Nemanich

Polymerized nano tubes:Bir t h of a new class of superhard materials

Phys.Rev #7: 2000.11.1

2001.2.14 mm #is

Carbon nanotubes and carbon nanofibers synthesized by sublimating decomposition of silicon carbide with catalysts

ADC/FCT 2001 2001.8. 10

2001.2.16m, mm

6H-SiC(0001)m(OmBa*-#>f ^ A. 2001.128-31

2001.2.16 7 — zff 77 7 f a — ~f 0#I#EM EM 2001.2.16

Page 202: mmmA - OSTI.GOV

187

2001.2.16 2001.2. 1 6

2001.2.19 CURRENT STATUS OF R&D IN FRONTIER CARBON TECHNOLOGY (FCT)PROJECT • ELECTRICALLY FUNCTIONAL MATERIALS

ADC/FCT 2001.8

2001.2.19 ^ a:#,# ftuS, Ji|± imZ.

R&D OF DIAMOND FILMS IN KOBE STEEL ADC/FCT 2001.8

2001.2. 19 pmim. iiuu'i MICROFABRICATION OF VARIOUS EMITTERS ON SINGLE CRYSTAL DIAM OND

ADC/FCT 2001.8

2001.2.19 #m. m#, /j\m#

Morphological control of diamond films using a 60 kW mi crow ave plasma CVD reactor

ADC/FCT 2001.8

2001.2.22 %a >

2001.4. 1

2001.2.23 *7®)

2000.12

2001.2.28 /j# em #. sm a** #^2

Deposition of boron carbide thin films and their hardnesses Auburn University, JFCC 2001.8.6~ 10

2001.2.28 Takeshi Hasegawa,Kazuhiro Yamamoto,Yozo Kakudate

Synthesis of B-C-N thin films by electron beam excited pi as maCVD

Diamond 2001 2001.9.2

2001.3.1 %lil A# m$ff

2001.3. 1 (## : /J\# Smooth and high-rate reactive Ion Etching of Diamond Elsevier Science in association with Diamond and Related Materials

2001.9.2

2001.3. 1 (## : Large Area Deposition of<100>-Textured Diamond Films byA60 KW Microwave Plasma CVD Reactor

Elsevier Science in association with Diamond and Related Materials

2001.9.2

2001.3.5 # $ii./i# ±$

Field Emission and Electrical Characteristics of Ion-implan ledHomoepitaxial CVD Diamond

ELSEVIER SCIENSE 2001.3.5

2001.3.6 'I'K S% The first syntesis and characterization of cyameluric high polymers

Macromol chem phyo 2000.10.19

2001.3.6 K am, f#BS, Ci-fTfE/h' 7^-;A 2001.9.2

2001.3.6 Sung-Pill Hong, Hironiichi Yoshikawa, K oichiro Waztimi and Yoshinori Koga

Synthesis and Tribological Characteristics of Nanocrystal 1i neDiamond Film using CH,/H: Microwave Plasmas

Diamond 2001 2001.9.2-9. 7

Page 203: mmmA - OSTI.GOV

188

2001.3.6 #^x em i#urn f'L /]#

Synthesis of High Quality Homoepitaxial Diamond using High Pow erMicrowave Plasma CVD system

ELSEVIER SCIENCE 2001.9.3

2001.3.12 #jn ^ii*

2001.5. 10

2001.3.13 iVn1 Akt. AA tnA. # Al'tufi 11}lit. ilil l r A.r. tktl- \:k. Ah!

^m%K(7)An# - 2001.5.10

2001.3.13 a# mm MEf.fnAx

2001.5.23

2001.3. 13m# mef. a-% #E (^Bl5K

2001.3.31

2001.3. 13 mm#, mof#. Nano-structural Properties of Carbon Materials obtained fro m Organic Compounds

ADC/FCT 2001Conference

2001.8.6- 8.10

2001.3.15 meig &]. &#ni m^x ##

FIELD EMISSION CHARACTERISTICS OF ION IMPLANED CVD DIAMOND JFCC fill 2001.8.6

2001.3.16 mm #%x %^x msaf $#

Xv< ^->&A&(:=k 0 ftmuita-c##;#### 2001.5.16

2001.3.16 mm mf WL #a %fflf $-/6x SSI #$E

Synthesis of Amorphous Carbon Films by Plasma-Based Ion Imp lantation using ECR Plasma with a mirror fierd

CNRS,Eurupian Commision and

Governmental Institutions

2001.6.26

2001.3. 16 mm mm. a* #9Ax mefflf

Formation of a-C thin films by plasma-based ion implantatio n

NED,JFCC.NDF 2001.8.6

2001.3. 1 6 mm ##x a* %sAx #Efflf SB

Formation of a-C thin films by plasma-based ion implantatio n

Elsevier 2001.2.15

2001.3.16 m Isotope effects of CH-i in synthesis of single-walled and mult i-walled carbon nanotube by thermal chemical vapor deposition

Nanotube 2001 2001.7.22-7.25

2001.3. 19 /j\# ^c*x em #xem mm. ^ ms

Effect of laser fluence on the deposition and hardness of b oroncarbide thin films

Springer 2001.3.19

2001.3.21 # x %±.x fiii m #? M v H v m^ir #m=

2001.3.21 # x #?/k fill e]^0 A#

#-#>7/7zL-7.sic#g#x

m$Jr

2001.3.21 mm mas?. s# #E. munfn^x #ner $n^x #

Carbonization of Polyacetyrene by Pyrolysis Auburn University 2001.8.6

2001.3.22 B#, A# #x mm

#11Gas-phase Synthesis of Single-wall Carbon Nanotubes from Co lloidal Solution of Metal Nanoparticles

Chemical Physics Letters 2001.2.27

Page 204: mmmA - OSTI.GOV

189

2001.3.22 Ab-initio investigation of physisorption of moleclar hydrog en on planar and crved graphenes

Journal of ChemicalPhysics B

2000.9. 2

2001.3.23 mo ?#. mm. mm

2001.3.23 mo mm. mm

2001.3.23 Field Emission and structure of Aligned Carbon Nanofibers deposited by ECR-CVD Plasma method

SAMC 2000Organizing Comittee

2000.9.1

2001.3.23 Y.Koga Field Emission of Carbon Nanofibers Elsevier Science 2000. 9. 5

2001.3.23 $0^. ** #E. mm ms

XPS studies of amorphous SiCN thin films prepared by nitrog enassisted pulsed laser deposition of Sic target

City Uni versity of HongKong & .7. :: - y f ; h r - V -7

2000.7.25

2001.3.23 ill* ** #E.mm

XPS studies of amorphous SiCN thin films prepared by nitrog enassisted pulsed laser deposition of Sic target

Elsevier Science 2000.9.1

2001.3.23 m* fti%. mm mm. %-Kmw #$E. mm ms

2000.3.29

2001.3.23 ill* %^A. "SS 6E.mm ms ## *= 2001.2.5

2001.3.23 m* mm mm./N@ #5%. a-* #$s. mm

The sp3 bond fraction in carbon films prepared by mass-sepa rated ion beam deposition

Diamond 2000 Conference Secretariat *= 2000.9.4

2001.3.23 m* ^ii%. mm mm./h/6 #;E. mm

The sp3 bond fraction in carbon films prepared by mass-sepa rated ion beam deposilion

Elsevier Science 2000.9.1

2001.3.23 m^ fii^. mm mm. %i& %-@R. 7:^. me. mm

0 ife iS ^ xi? ** 2000.3.30

2001.3.23 m^ %]%. mm mm. ^6-gp./h# 7^. #$E. mm #5 ** 2000.3.31

2001.3.23 ii# $u9A. mm mm.$u^/j# #E. mm 2000. 1 1.30

2001.3.23 m* fti%. mm mm.fna /j\# #E. mm

2000.10.2

2001.3.23 iij* fn^A. mm mm. %-G^./]\y@ 7:5^. #E. mM( *= 2000.3.31

2001.3.27 polycon densation pyrolysis of tris-s-triagine derivatiues leading to praphite-1ike carbon nitrides

The royal Society of shemis tvy

2000.3.31

Page 205: mmmA - OSTI.GOV

mmoimwsL

1.

2. S Si to K ® IE M 17° □ -fc x ff <E t$ *

3. • mmmmityn-txmmmi

4. iffl^ttyfiyn-bxffee#

tWx^liSIM

ftllfllSiflfM

6. #fi^t€>FiiXntX (^PffiaWiiSilsESfta*)

-190-

Page 206: mmmA - OSTI.GOV

4

(^F^c 1 1 4*i^)

(SrJH£) 6®17SpI> 7# >7 y A s(#aw^=t«) #1^ #7, #$E, 51U

ill* mk, 7#

am mm, ## ffl,

## #2:, ## ^fW, A# Iff,

^R'J, mm

1 . (3D#)IC

3 c<hcj: o,

^Tt(DT&6.

(sp2, sp2, sps) (^

2.

^^*7##%*%;, 77—>>^(DKrF%7>7l/ —7—BN ##17^

^m^/:^\^n7 7—1/> BNC5 8^#T^o^7°n-t:7&MajL//:o

77 > F##±(c DC 7 7'* F n >7/i v 7—&(:* 0 , 7)1^ —7 A

@^T^F# (#@^^1.8nmi7T) T\ (002) EF](D$g^#(D^W (Ov*

>7'7 —7'0.2^1>T) #&#/:. 2.5GHzw(D^

^&m^T^mT6SAw#7 (#m##^) ^(Dimmcdmu/:.

7j($#)%(DAU7'7 7% > U 0,2000cm " M:* 7

6 7 * H 6 7 A & W% L^:o

ECRCVD &!:* 0 , Si #%&LKSi #^_h(: Ni 2

L. CH4/Ar^77^1R^T60nm LK#(D7y7 7</\' —(Dfr^l:^%L/Zo Si ##>17:

7^(7)7770 —77</X—(E7:0,

-191-

Page 207: mmmA - OSTI.GOV

gi&(:#a(:Efo]L, #2#, i5^^a>(D#L/zo

12.5V/

3 . $£#>

Oy^^t>Mg^±(C^Efo]AlN# (002) $r##L, 2.5GHzT(DSAW#/(D#fE#

OECRCVD ^CckO, 60nm <b//zKn — :77<A —(D^J#DR%

%L^. 12.5V/jUmT7.25mA/cn/

(1) T.Nakamura,K.Ishikawa,A.Goto,M.Ishihara,T.Ohana,Y.Koga,"BN substitution reaction of

fullerene using an excimer laser irradiation",Diamond Relat.Mater.(in press)

(2) M.Ishihara,K.Yamamoto,F.Kokai,Y.Koga,"Aluminum nitride thin films prepared

byradical-assited pulsed laser deposition",Vacuum 59,649(2000)

(3) M.Ishihara,K.Yamamoto,F.Kokai,Y.Koga,"Effect of laser wavelength for surface morphology

of aluminum nitride thin films by nitrogen radical-assited" Jpn.J.Appl.Phys.(in press)

(4) SMiE&L "SAW#f(D^^",#### 20,28(2000)

(5) T.Kawai,Y.Miyamoto,O.Sugino,Y.Koga,"Graphite ribbons without hydrogen-termination:

Electronic structures and stabilities",Phys. Rev.B62,Rl6349(2000)

(6) F.Hoshi,K.Tsugawa,A.Goto,T.Ishikura,S.Yamashita,M.Yumura,T.Hirao,K.Oura, Y.Koga,"Field

emission and structure of aligned carbon nanofibers deposited by ECR-CVD plasma

method",Diamond Relat.Mater.(in press)

0 5#%#

(1) T.Nakamura,K.Ishikawa,A.Goto,T.Ohana,Y.Koga,"BN substitution reaction of Fulleren using

an exicimer laser irradiation",Diamond 2000(4 Sept.2000)

(2) ^##i\

(2000 ^ 11 ^ 30 ID

(3)

i4i"i/<-vt> (2000^ n ;i 30 a)(4) AXJ1/// "7 > Jj(Diy?flH> , R.J.Nemanich" ^P-@ / // .cl — "7 CD iWj/±50;$i /

-192-

Page 208: mmmA - OSTI.GOV

0)

(5) Y.Koga,"Field emission and structure of aligned carbon nanofibers deposited by ECR-CVD

plasma method",SMAC2000(Montovi)(l Sept.2000)

(6) Y.Koga,"Field emission of aligned nanofibers",Diamond 2000(5 Sept.2000)

(?) /ay—29 immm - #

12^ 11^90)

22 0)

(1)^##. 5"#, 5)10 5^,

/\7 n 7 7 — 0 2000-245739

14 0 77^^75 (2000^ 11 ^ 30

-193

Page 209: mmmA - OSTI.GOV

* 4

±ms&

ej*b£

/j'Jia « ®awfimmmit*□-txw«s«

(¥fi£ 11 ¥S~¥l$ 14 ¥$)

(W?E0f€)(Br@£) SBRtKSIS, fb#7XyAeB

5JH3-05.

##*#, *0 1§\ iE/fcSrliJ,

#>x #5:fn, Mm**

1 . liDtolc

s$sstitg#f4roe*-*vt'fx*^x®sffl»s, ifi¥5S<a$nTud„ xxyt > H icjoUTIi, *ffllcft'ite*SftM*WT5>7 gy* btiTSd, cn$T'W%5nT#/c-a*i$:itiWFio->un>-^yuyyxstt,

c«j:3fgeE-eses$a

a, (*/*n-7"S)♦m^PtXWM£fr} 7i£B«tUT:fcD, ®a®iS«*g«f4©®ifittSft7-P

2. W^MSSt/fiSS

!SSS7'nyi2 h r$XSK®t£ti#Si|lto*lffl%J t:43UT(4, MS7 5 -y h/t**** I65t LTA-#>t 7*yL-7'®*g^@KR#r#®7T®-5. 47_7T1i T — XffiCg-SS’HA —*>*7*7. — X t, icvDiii:j;5#i*-#>t7fa-7fflifft!imtts»iL. m**m$m

7 L T ® y ® ri# Mt t7 S K 1~ ft * 7. til ifi ®SEttI2ft#"*5, X ti)^ b

;]7j - -7) 7- / y- i - '7 ® ,|i f'-))|[lilr'l'l:7jl,'l'(illi

■i) 7 — X (£Tffb£ U/ciS-Hy 7 y 7 — 7SSttltSflfSiaSrfM ® T * — * >7" 7f j-7 l *$> ft 9 toll* ft ItittSi! * $!l 7e! L ft

s $. # m m t- ^ tiHW m l m * - * > y 7 y ^ - 7’ i * & fc o ® « y era s * is,

-194

Page 210: mmmA - OSTI.GOV

CO##, lcm^/zO(D#

n) # CVD 7 7^ — 7'

# CVD ^T^RjcL^^@i-y^zL-7ll, 7-7^T^^L/z^@7/7%L —7'j;0

[1, #7, 3l#mL#milOOOVJ!%TT&0,

m cvD mT^^L^#@7/73.-7im, 7K#m#mm::m@LTW67h^^#A6

tl-5«

%T^#m77'y F/177^^{7L^:«

T./wwiMm-@##mT:a{7L,

Mj±(D^mFPtDLTE^L/c^, !

@m

tC,

#6%7^(DZnO:Zn CPMbtl, 7 7 —

#776^661: H ZnS^(D#^#:^m

C^l6(D#7^

#:$: lkV#^(0#mgTm@-f 5 ch# (

777^7—737^^77-50 77:

^7. <77##^4-75ch^

#1: CNT ±(:##L, CNT ^6 0###7%aiiM#^^#75 7 7 77B#^^7lE7o

ca6(7)^mA^#^T6^mchLTm^m(:7;i/a%7A^6^6##^#^L.

2 {^(:[p]±L^o 7 V v CNT ^7 — MT7 h U v 7 7^#WcL,

Carbon nanotube FED panel

(screen size:66x66mm)

m 1 HI$ffl77vb/^; U

6kvX)^#^Ujn$tiTu^iM[7^@n:rp]^oT%]g$^i6o #

7xl05cd/m"($^ lmA/cm"T(7) DC 77^^775#^ H7

-195-

Page 211: mmmA - OSTI.GOV

g 1000^6T6 ch 700cd/m^^# 6^16 C& RGBHM

LT t 400cd/m" 6 C 0 , ##^#@@#^(0

3 . $£#)

o #]t

1) o'##, I"Dispersion of metal nanoparticles for aligned carbon nanotube Array] Appl. Phys.

Lett., 77, 79 (2000)

O) Og#^#

1) ###, rLarge Scale Synthesis of Multi-Walled Carbon Nanotubes and their

Application], # 197 2000 5 ^ ( h □ > h)

2) ;##, l~Study on The Large Scale Synthesis of Multi-Walled Carbon NanotubesJ,

Eurocabon2000, 2000 7 El (^7f'J>)

2000 ^7^ (#^Tff)

4) #$^, mi9[n]77-k>7>^>;

7Ao 2000^7 ^ (#^rff)

5) ##, r^7 —7M>y-y^^L —bn-7X^(DJ^hdJ,

^3[g]^f%l/7hCiZ.7X^%#. 2000^11^ (%lilr4)

6) o"##, TColloidal Solution of Metal Nanoparticle as a catalyst for Carbon Nanotube

GrawthJ, Material Research Society 2000 Fall Meetings, 2000 11 El (/^Xh>rfT)

7) ###, ^Development of the large-scale synthesis of multiwalled carbon nanotubes by using

catalytic decomposition of hydrocarbon.], 2000 #yc^FEEIE]^{h#^;#(fB#p#iM), 2000

^12 El (^y;E;b)

/\)

1) #l# 2000-110675 (T-hjcl2^4^ 12 13)

2) #m 2000-379340 mme ^^12

4': 12 11 13 II

3) ## 2000-379353 y^-y^a^y^ (@dr4l)J #08 12 ^

12 LI 13 1:1

-196-

Page 212: mmmA - OSTI.GOV

-) MlftM

1) EUMSSrWI, /fa-y. StttlCffittlCEKfiJ. ¥/$ 12 ¥ 5 fl 23 B

2) B HIf.'.' iM mn ITrttMSffl&J. 12 4 5 '! 23 B

3) El EMM). regiii, y/x^Wa-xj. -¥B£i2¥7fl6B

4) FI EMI. U flUJfEJ. V»K 12 ¥ 6 FI 8 El

5) >31 El Ml. rsisroyy^a-7'TrnliffiJ. ¥fiKi2<E6fli4 0 (#m

-197-

Page 213: mmmA - OSTI.GOV

4

(WXXHElf.)

* m El f, wi** iffi « m M n « « % llfl 56

>l'«Elf,

'I'mEif, mmi • xmik®

('E»S ll *I4~ '-M 14 <Eli!!)

(« 5E rlr f,) « {Jf % p/r<0r«f,) ttBKfSSU, ft*AX7A31(#BW'^S€) HE #5, S* #E, 5HI

Ui* fn3A, HIM, m-t #*,

BBS iESc, AS! if-H, i»$ -HI,S# #*, sftt, *KS e,

H* $1U, #**##*, Affl **

l . I1CAle

ifi*. fSa3ft£lfiBBH. 'WSt#T$>0, Br6SSI|ij3X hA*SBSRfl®fi«^to£-Slt

7)l*****Abl3T('6. WCIg|ii|#M^BrflM«®*SIS»**AT*D, #91*-!®

8» ¥ IEI: I® 11A E U A fMi M 56 M' * A b h T A T „ X® A##l:l3AT, *ffi5EH056

11, BHSS*l:*HBX IJ A*-®JB9Jft«®M56le£'g*EX*iSHft • S}*fttt$HE

Xatx®##*!! A X AXSWIC l-TE D, »iSAW4ftx’n-tx®#aieM*B.

2. B%i*i8RtXEfll

fi5ST*X7AX h A-H*-7 7 A-A a Aiil:*ri. TB177X CN IM&6X SIGN

#®*g*EA, x«*«*/7>*i:*0, Ero«iS*BflbMl:UA„ Sblx signK*S

B#® A — tf— 7 X' A — A 3 > j® fg £ 0H bEITXTl: A, Si„Cm+ (n = 1 — 3, m = l~2) 55

x5-5mifmmmmimnmml. -e® a—e-sm;#azmb x ix l /a

TXADiS CVD STffl AT CH,/Hl, (10: 100) ©iMXTTTA HS:B$IS*T*fr

ixtET Si;*®® ch 4 T Bti-Tfro A16®, 8~30nm ®*Gh*W*T* y 7 U X5 TX7

XTA K ® BfiK IXftKflj L/A IS® 11, SS® XX t€ > H ® 11 BE L ., 514,5nm @Ji£® 7

T ASJIaETH. 1333cm ‘A A HU, SiSJXtlA AX>, %5E@@7T ATI1, A b — A'/IA

A K^KiDSnfc. 3 b I:. X $S®rril'*Ab t>, XX Tt> AT&6X AE'«gXEA.

3 etc. k: A * A 7" y x 71:151* m # & ® ill'l E1' b. >#««#» =0.02 &#

fc. 7/A a*i«3tt. 8.4nmK HTXD, *HI AKmi*-t±f l:*lg A A.

198-

Page 214: mmmA - OSTI.GOV

3. %ttb

7t;i/7yXCN, SiNC#(D^

(j[Z=0.02)

(1) K.Yamamoto,Y.Koga,S.Fujiwara,"Binding Energies of amorphous CN and SiCN films on

X-ray photoelectron spectroscopy ",Jpn.J.Appl.Phys.,40,LI 23(2001)

(2) T.Kimura,T.Nakamura,K.Ishikawa,F.Kokai,YKoga,"Time of flight mass spectroscopic studies

of positive ionic species generated by laser ablation of silicon carbide",Chem.

Phys.Lett.(2001)(in press)

(3 F.Kokai,M.Taniwaki,K.Takahashi,M.Ishihara,K.Yamamoto,Y.Koga,"Laser ablation of boron

carbide:thin film deposition and plume analysis"Diamond Relat.Mater.(in press)

(4) T.Ohana,A.Goto,K.Yamamoto,T.Nakamura,A.Tanaka,Y.Koga,"The structure and tribological

property of amorphous carbon and carbon nitride films prepared by ECR plasma sputtering

method"Diamond Relat.Mater.(in press)

(5) F.Kokai,K.Yamamoto,Y.Koga,"Time-of-flight mass spectrometric studies on laser ablation

dynamics of graphite: correlation to diamond-like carbon film deposition",SPIE

3885,193,(2000)

(6) #M#&E, "7/^U77;l/7X'tt>H"NewDiamond, 59, 29

(2000)

(1) Y.Yamamoto,T.Watanabe,K.Wazumi,F.Kokai,Y.Koga,S.Fujiwara,"The sp3 bond fraction in

carbon films prepared by mass-separated ion beam deposition",Diamond2000(Porto, 4

Sept.2000)

(2)

(3)

(4)

(5)

H.Yoshikawa,S.Hong,M.Cedric,Y.Koga,H.Kawarada,"Synthesis of transparent and continuous

diamond film on glass by microwave plasma CVD",Diamond2000(Porto, 4 Sept.2000)

T.Ohana,A.Goto,K.Yamamoto,T.Nakamura,A.Tanaka,Y.Koga,"The structure and tribological

property of amorphous carbon and carbon nitride films prepared by ECR plasma sputtering

method",Diamond 2000(Porto,7 Sept.2000)

wfn'jA, wa -K

(^^12^5)1 17 hi)

K.Yamamoto,Y.Koga,S.Fujiwara,"XPS studies of amorphous SiCN thin films prepared by

nitrogen assisted pulsed laser deposition of SiC target", 7th International Conference on New

— 199 —

Page 215: mmmA - OSTI.GOV

Diamond Science & Technology,(Hong Kong)(25 July 2000)

(6)

e - a & c ± ?.«*» m <r> m #« 2000 ##ip# (VBK 12

ip 10 PJ 2 0)

(7) s.Hong.SJUtififi. iiiSilliE-T. A □ffix’ffix'x cvd ffiieffi OfPKl-Zi

A"-f Affix HE© XPS 14 PI A" A A ffi x K XXAXXA (Alt 12 ip 11

n 30 h)(8) Lilting. /N»x*, iSWUE. »S«eh. *x

f-AffifCck-S DLC H0<t#E£ro$W'tg 14 0A'X Affix h'y^y'JA (AfiK

12 ip 11 PI 30 H )

(9) SiMSL LiJ*fa?A, SJtMfi, "7”XX*xffiAffile=fc3 a-cE-ofiKAWlirS! 14 HI

A"X Affi X H X X A XX A (AfiE 12 A 11 Pi 30 B)

(10) *«*!. m##E9A 0i*to3A. BA«S. AiRK-. (£*

R8], "ECR A^X^X/Vy AiileA OfPKLfcAffiAX 7 XKS&tPS

(bS*fWKtof*®RtP h X A Atett”, m 14 B?P + t>Fy>#yr) A (AfiSt 12

¥ 11 fl 30 B)

(11) AtfFA #@#EA, lll*ln5A- SSI#®, "A XXA—SSffiT'fP® U/r SIGN *18

©E*Kia«S". ll4@Xl'tE>Hy>#y(7A (AfiE 12 ip 11 fl 30 B)

(12) ft lift-SIX *«#«. BASS, "$*SW»S6S,A''f Affix K*8g© PX-iAnX

-#tt\ SB 14 BA'AAffiX H'XXAXXA (AJ&12 A 11 fl 30 B)

At L

-200-

Page 216: mmmA - OSTI.GOV

^#B€,

/h^Bf, iMmmfkM#yn tx

11 — 14

(^m^) <b#^xf-Ag;

(#m#^^€) rnmms. ## m

5Jil SIL

±# #, ^TfC^ilJ,

iP^r fli^lP, FNEQ^to

1 . [dXA&lc

#, Ef t-f b tl •§) o P-'i ~7—» P '-~ tf >^f(Z)X^ Jl/^ —

43^-01,

6#T#0, 5#

L^L, —

2.m&Ei#%&U^#J^###(bLT#;/jT&6 BCN ^\%-ay<-Vt>M(D#j#yn-t:

&. 3-4GP& (D^m^TT

3000-4000°C(:;j[l#LT^7 7 7< h^hBN (A^ggfk##)

X (XPS)$#6o vii r-mi,

mUTU6C^:. X#Un|^(D&^^6t)W(#ME%j: 0

-201-

Page 217: mmmA - OSTI.GOV

B:C:N=1:1:1 tiitt l 'ttT'# b t\tc C t. Xaisiyr©$i,i$ft b a til, c tt i; fc M© 7 X ft hi:

hBN © [111 l : X © * ©, $ ft c [f[| |4 T © M Wl: HI “i t © l-'IhrS © © -- 7 MUS Mil si < he 7 T t ■

mm*'6. »rfc& bcn littft-erft (be#) #**(&»&?#&tj&wia.

,« * # w * &,« e e E««© ffiffl tt meg#'/ ft © ft: f-l: © nil © /j -© /: > © © t ■ ®*©#8#tftti:,fiits • ft®® MM

© S# £BfiEft © © 2: 11 iftS12 B * T X © ft ©, ErSSttiMtoSliXftMhS2—fti*S < ,

• © 7* n ft x SMS M © © - ft ft © ?S 6t ft £ St ft t: IS % L, ftftffil::ft D SGSdiiftiSIt

*#©*am, ^m©*#m#@i^Mbft. ?6SttKtiK<kB7S(B4c), i«i;xf>hx

#(SUS304)&m©. 1 ©3 7 hXftO l~2xm ©BtHSiOBfiKdllft. ©3 7 h 1C

ft y BBKSXiftiSttSJBroiSrfflllft-glfiiiEsFXTMbll, ll%#lc##%l:A

yBSSSiaciiSSUT©©© ft, ft Hi £» figITlftfif®A#$tlBfWftfiE©A*

dft y ftd < - $ft5K>:l|tlj!.b;hftt©©TB*Wl©oft/uigiiU, ®$ft:9I£®fiKUT

©©ftftAiftA'oft. lift B4C #)#©#$, ffifigllBMtlil ft Jt®t L, S<EMfcUT©& ©ft i^ttfgMft,,

3 . SiJ6

ASiWEiSSlftftft y, ©AnX'S Aft© hOilliif itTiSftaglttOB CN

flttftStl^MfigTSSftx ft&oft. ftft, cni:J;yii£*0^®tt»>tliiil|T

$ft, Aits . ,6e8K$%MM©$Mft*ftLT©-ftft©T§#tft£IM%U Aft©

hXS##l: B4Cft#£Bfi£ftfc,, ©©*#11, Stoft©ffi*tt*Sft < iSTS y , BM

'm*©*a^#a, 4-m. ft#mmftj#A#ft

© M «? 1© soft 5 w « £ ff 7 ft 8 t *> § „

w%%»

• ra88nii7"7X'©rS9tS»©rS%i:-t:7 5 7 7Xi§*t6E©ff«J, jmwti. *#

4-N, Mil ft ft, iJlftfl-MA, IjIBffftft i5EgIfl, GID-01-6 (2001) 39.

t#lT

• rmWtWMft&iftSEj, iWS-W. A&lftft. ###±. »B#A, OWJiitil, ##

2000-266347

•r«iil^7 X’ v M ft © fiW ft ft & M 8 B J. si«W, ftffiftft, ItitSft. IfiBis ft.

,|t M IX lift MHi 2000-266351

— 202 —

Page 218: mmmA - OSTI.GOV

412

(E%1B£>$JIB : KSSfiitiffitiH ¥ *B : UfHty’n-feXtMi

/msb :

(¥fi£ li $$~¥-fi£ 14 ¥$)(E5E3rfc) ««tM»E?cf¥r(f9rJR«) SrStif-fisli h7¥xHny-E%S(#UE%#g) UiEJSX, ffltfSS, Blt$¥,

4: !¥' lufj

1. (iDtoic

*E%X6©Xti;, IgiS*#? • h 7-fiSDy-

ffin/z«|g%Ijl© 7 A xXA £Bfl 7)ticf ■£> X $ X$ 0 , h 5

¥ n UfcK **»]«© tSU-SffittiCiS-t X 2i5@»t UXE%£

fr^XX-5. *fc, SiS/KSS^X© h ¥¥ *X 5 AXKtS^fiJl! UX, @z*Stifl©¥

»BS>ME*ffi©#3g#iL X «¥S X t £ @ M t LXW9S£f¥7 XU5„

2. E^ASStMS

(l) $SSt$K® h 7 ¥ $ n X—t$tc%$S

X¥xx> H?¥ 7*-$>(DLC)m©#@####$. #Ba©s$<¥©s;g£Si<

stj-xAL m7c#©mmt:x oma#©###^%t»xca##@^fixug,. -exx,

$¥$0:. DLC X F7n*£i8ttlUX DLC JK£*t#!X LX, $©####©@$(4###

£ I£ SfflX if]'Xfc, ¥•©*§*. $¥©$ 7 ikx X£i#IB LX.

(a) $i5]©§ltS:Xffl©X¥X>7‘l/-¥-i' > Xi£ X $ Xto DLC ®l©Sit X 69 LX tt, SB

xlS$®SS£s'A 0 B#X#¥lXXoX. RF 7*5X'x CVD r£X

xxdlchxx, #e©S)${4i¥tt^®<isnx*o , « dlc s©*®©s$(4s

tttt. m©#M@xxom/kxa6#x6x&.

(b) F XSttlLXfc. «*©S*tt#tt©®TfC»Lfc. XXL.

MiDLClKxtt, (8S$©lii/XXX 1) XXX)VSl$$jX’X LX£L F £gsttl1~X XJiliS

© $ tttt/hX</j:XXX X 'l!i| i !9 L X.

(c) fli-EXOUXX. F XiBiJll LX t>* 0 SXLttSiflXXo X. fct'L, F ©gUjPlX'^X

teZt. @$£1(8 KLlf:#XX£<tmjllLX.

-203-

Page 219: mmmA - OSTI.GOV

(2) ■:-v?h/u;V;ivM;yuftiA

UT- flU>r,TT©i6ffi*SS(4'"e. CVD iATiflile LX: X'T -V t X b'KtoS-ietiilSHHTx/:<, *&##

ICtt. X'T-L^X Hi|-tXx> L-XiUMl'/:. XT 4xl|-£(FI LfcttSi:tcfclltf. SS

®x: a 4= tetter 3ooc Co/k4$a^rhy<-ns<yw#7)t*s<xc5«16)x^abnxc„ *SM&tf400C f &o %.

3. *i»

(1) k**«e® kb-r^D

4SL ii®, ffirB®J;7X£S6Si;/'\xk-X

j=g, dlcE®

•SlWttXk. *KMl:SS®Se$r*0 5tj-<£®-l4H6So®))7. f ®®6n84$tt*D W

#T#6®07)7&#bXAICL/L® $Xc, DLCE®»i6®iSl$ttfftttiX E

*®7k#®rn6IWmA<&6Rr#lt7)*&FI, 7kSs®Seibef-Tb^$Ti65„

(2)

KS/kSatkTtoWKimcjSHTH, WfSBThb'f 7kXr5»7kKJSzy;e® 9, x<

"TE® SttXkiSit£ tl 3 X <k £ iTl L T t > k> AC

ii8S£ft-5b:H5L&^ofc. 4-m, *K##®y<^*®#m#^#Wf

OiSfiT®Et@!£fT(A. bxT#X 5»;bK)6®';M£Bfl<XAT:-f 5.i^T$>k>„

W5S«*

!™5C, 7°nx—xT XX*X

1) The effect of humidity on th tribological behavior of diamond-like carbon (DLC) film coated on

WC-Co by physical vaper deposition method, EBtkSfn, '017X' XX' XX (IX jS, Surface and

Coatings Technology , 133-134 (2000), p.455 -459

ammtk (#&. isBisa)

1) The effect of humidity on the tribological behavior of diamond-like carbon film coated on

WC-Co by physical vapor deposition method, (1141 Siri, T 11/77' tk X' k >, A# iS,

International Conference on Metallurgical Coatings and Thin Films, 3kEl,2000. 4

2) An Investigation of Humidity Effect on Tribology of DLC Synthesized by Ion Plating, Eti ck S

/S, 41 (TX’XX'X/, Mi iS, b XT 41n X — 2000 2000.4

3) Eg*SiWia®AhKk b XT Tkn x-t.'ftt, lll'l1 viS, 35 l IhI X n Xx t 7 *-rk > rX

k D 9— X XT; X7 A, 2000.6

-204-

Page 220: mmmA - OSTI.GOV

4) ^#<EE7XXoX — , 2000.8

5) Tribological studies of DLC Films containing different amount of silicon, EE X##. X JE7 X

X X X > > Xl# )S, NATO Advanced Study Institute, /X >Xf U—,2000.8

5) Effect of hardness of mating materials on friction and wear of DLC films, EE X ##. ###,

EE 2000.9

6) Friction and Wear of Si-Containing DLC Films under Different Humidity Conditions, EE X ##.

X TTX XX X > > Xl# iS, International Tribology Conference Nagasaki 2000, 2000.10

7) HUMIDITY DEPENDENCY OF TRIBOLOGY OF DLC FILM SYNTHESIZED ON WC-Co

BY ION PLATING, ElX##. Yilmaz Ozmcn. A# #,

2000.5

ax##,2000.9

1)###^#, BX##, ,193,(2000). p.150-152

BX##, XXXXXXX ,227,(2001), p22-25

3) ##^#7°DX%X EcE EXXXoX—, EX##, EXXXn^ , 161, (2001),

pl2 -14

4) 21 #$a^%7Exxxox—ax##. xa#xc. Exx

X n XX E ,46,1 (2001), p82 -87

-205-

Page 221: mmmA - OSTI.GOV

4

'emu :

(4^^ 10 4^~4^% 14

(#@#^^^) m^mo, /J\^ #

1 . 1*13#) 1C7X"Vt7 M^17< M/^7 K4ri- v 7°4^##(7)-OT\ - 7^####(bLT(D^jm

iL6^:^:CH, 0^0, #7X'Vt7M^:^(7)#^, ^<6^#

^##:7V-Vt7 MCOUT^l, &CL<bK:j;0 p^f##:##^^T^

#]&, U>^mADT'5C:(h(Cj:0nM#%^^Ty<'tt

7M(7)^^:C^%L^: (1). C:^lb(7)^##:7V'Vt7M^3UT#^^^#$#

(h<(C'J>#AD(Dn^y<'Vt>H(7)^^#fo]±(C

U7#A07X'Vt7H^, 7<7n#7°7X'7CVD^^Cj;'3T^^:LTV^, g^ch

LTAl±^^7X'Vt7M (100) #^^(C^LT, 7 7

7#^^ F^fT^^L/:o ^^##f#(C^^7—M7l/^^vi:77 (CL)

2.

2-1 (100) S^±/\CDU 7 K-TBtT)^

7X "Vt 7 M^7 7 7^7^r#^#T6 7< 7 n#7°7 X'7 CVD^(Ccko T^^L/io

^(T)4'^7 7 7axK#(7)#^^7^mL, 7<7nm(Cj;oT%

7 ^-(7)±(C^###(!: LT7X"7t7

T, 7^77^7 (PH3)

^7K#-/77mfr^7[:)JllA6C6(:j;0 U 7 M-k:77^ff3^.

og(D(L^0T^6, 7 7 7#^:0.2-0.5%, 7^7 7^ 7#l^:2000ppm, #7E7 80Ton\

^7^#:400sccm, ##^4^:910%:, ^MHTm:2^^o ^ILfrWcGO

7X-Vt7M (^J2mm) (7)(100)lijH#[Al^41U^:. #^N^^777#^H2%T&o/:o

-206-

Page 222: mmmA - OSTI.GOV

2-2 fiES

(i) (100) $ « ± £ b£ U fc 7' Y V ^ > KiW 1«0,tt:«

±IBro^ftT/$ft LfcSB 1C (ii t" 7 * 7 i- )H$R L /CbKfi Xf7 7>*X7 bft, £tlJ7,

$fp%0#lc. sSffi^<H<hX81£0M

acaiL, *V-H;PS*-y-k>XTXE<»»ei6fT-3fc. <■©»*> r*R#»iiC 7 * 7 f 6 T ICiA 0 % 6 r.*SS|!£IC I* 400 550nm 0

settee5*0^x-77j:%>tf-x7x,i>bnfc„ C0%£tf-7tim*b£#y<-vt

> H'tc;nwkt?-7 t LT-rTicgdKttsnxu^As'. £0/sia^£5Xiiii«jfi. (fesKft

tttt*fc‘93e>^ICftb>T0&0. £Ih], 70 5 ^toti-YroffiXt-lSlSSriH^fcYCY,, *

51'fflftMitoe.nf. 5 *0f-7is-E-n£naa0xroi:eHf5t)0T$>£7chxjs

lei'icaofc.

3. j3fcU 1C

V > K-7"0 n S¥iS*0$^£0fc6i)i;ti, |J 7£H-7”T5iifel7, £Ytjy$1.0

?%#i, XKMI!£±"t-g> 7 A/^gTifeS. £0. (100) *K±ICb£AL£7"< Vt7 K

(iKSfffBl-fclg*. 'J /tttiliOlK 7>^0fS}fc£-?*!#.£,ft. 7$l6ll£b£#

fri7#®i7Mi$-re£7t*5. y-f-vtxM0Xpg#m^^ML.

•sfcfeictt. ?M#M*0*£#a0;?#&^6t:ff

1) S. Koizumi, T. Teraji, and H. Kanda, "Phosphorus doped chemical vapor deposition of

diamond" Diamond Relat. Mater.9 (2000) 935-940.

2) E. Gheeraert , S. Koizumi, T. Teraji, H. Kanda and M. Nesladek , "Electronic states of

phosphorus in diamond"Diamond Relat. Mater.9 (2000) 948-951.

3) K. Haenen , K. Meykens, M. Nesladek, G. Knuyt, L. M. Stals,T. Teraji, S. Koizumi and E.

Gheeraert , "Electronic states of phosphorus in diamond" Diamond Relat. Mater.9 (2000)

952-955.

4) T. Teraji, S. Koizumi, and H. Kanda; "Ga Ohmic Contacts for n-type Diamond by Ion

Implantation" Appl. Phys. Lett., vol. 76, No. 10, (2000) 1303-1305.

5) E.Gheeraert, S.Koizumi, T.Teraji and H.Kanda, "Electronic transitions of electrons bound to

phosphorus donors in diamond" Solid State Com. 113(2000)577-580

6) A.T.Collins, H.Kanda and H.Kitawaki, " Colour changes produced in natural brown diamonds

by high pressure, high tempearature treatment " Diamond Relat.Mater. 9 (2000) 113-122

7) K.Thonke,R.Schliesing, N.Teofilov, H.Zacharias, R.Sauer, A.M.Zaitsev, H.Kanda and

-207-

Page 223: mmmA - OSTI.GOV

T.R.Anthony, "Electron-Hole Drops in Synthetic Diamond" Diamond Relat. Mater. 9 (2000)

428-431

8) A.J.Neves, R. Pereira, N.A.Sobolev, M.H.Nazare, W.Gchlhoff, "New paramagnetic centers in

annealed high-pressure synthetic diamond" Diamond Relat. Mater. 9 (2000) 1057-60

9) G.Davies, H.Smith and H.Kanda, "The self-interstitial in diamond" Phys.Rcv. B 62 (2000)

1528-31

10) S.Yamaoka, M.D.Shaji Kumar, M.Akaishi and H.Kanda, "Reaction between carbon and water

under diamond-stable high pressure and high temperature conditions" Diamond Relat. Mater.

9 (2000) 1480-1486

11) M.Akaishi, M.D.S.Kumar, H.Kanda, S.Yamaoka, "Formation process of diamond from

supercritical H20-C02 fluid under high pressure and high temperature conditions" Diamond

Relat. Mater. 9(2000) 1945-1950

12) T.Kawashima, S.Sueno and H.Kanda, "Preparation of diamond and graphite from super-cooled

molten metal inNi-C system under HPHT conditions, New Diamond and Frontier Carbon Tech.

10 (2000) 283-289

13) H.Kanda and T.Sekine, High temperature high pressure synthesis of single crystal diamond, in

Properties, growth and applications of diamond ed. by M.H.Nazare and A.J.Neves, INSPEC

Pub. 2001 UK, pp.247-255

14) S.Koizumi, T.Teraji and H.Kanda," Ohmic contacts for phosphorus-doped n-type diamond"

phys.stat.sol. 181, 129 (2000)

15) O.A.Loutchev, Y.Sato, H.Kanda, "Postnucleation surface transport-kinetical phenomena and

morphological instability in film deposition from vapor" J.Appl.Phys. 89 (2001) 2151-59

16) H.Kanda, X.Jia, "Change of luminescence character of lb diamonds with HPHT treatment"

Diamond Relat. Mater, in press 1 2 3

1) S. Koizumi, T. Teraji, H. Kanda, "Growth of P-doped {100} homoepitaxial diamond films"

11th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides

and Silicon Carbide,

2) K. Haenen, K. Meykens, M. Nesladek, G. Knuyt, L. M. Stals, T. Teraji, S. Koizumi,

"Phonon-assisted electronic transitions in phosphorus-doped n-type CVD diamond films" 11th

European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, Nitrides and

Silicon Carbide,

3) E.Gheeraert, N.Casanova, S.Koizumi, T.Teraji and H. Kanda "Low temperature excitation

spectrum of phosphorus in diamond" 11th European Conference on Diamond, Diamond-Like

Materials, Carbon Nanotubes, Nitrides and Silicon Carbide,

-208-

Page 224: mmmA - OSTI.GOV

4) eo frVj. m&JL. /i'% m. mwm*, wi-TmmmmK «BN #

ISt&Wffhlii.i'MlliJ # 14 H y>^>=^A

5) WBX'-k, IB. jlSiSWffr], EcvD fktl If 9 y x V V^E > K CD

*V-H^5*yt>xj #14 liiiyi H2z>#yi)A6) Uiffl##. /Mft IB, OTIUlfv], MffiftlM, MR « r*o&miinyy Vtr> H/J'b

tofg-TMltSffij # 14 [S|y'i'-V;&> H x>^i>'k7A,

7) tffli-s. mmmm. m. mem # nj > k^--S#$BS-F%7t®E#J IS HEiiy-f t€> KAAdU^A,

8) rhSE KB, ilxiSWm, ilkt-WW.#, Ft1 EH t\ fk "Diamond pn junction UV-LED"

IS 14 05'®!' tk> Kx >#'>*'!7 A,

9) S.Koizumi "Formation of diamond pn junction and its optical emission characteristics" The

3rd International Symposium on Diamond Electronic Devices,

10) M.Hasegawa, T.Teraji and S.Koizumi "Lattice location of phosphorus in n-type homoepitaxial

diamond grown by chemical vapor deposition" The 3rd International Symposium on Diamond

Electronic Devices,

11) S. Koizumi, K. Watanabe, M. Hasegawa, H. Kanda "Formation of diamond pn junction and its

optical emission characteristics" Surface and Bulk Defects in CVD Diamond Films, VI,

12) N. Casanova, E. Gheeraert, E. Bustarret, S. Koizumi, T. Teraji, H. Kanda, J. Zeman "Effect of

magnetic field on phosphorus center in diamond" Surface and Bulk Defects in CVD Diamond

Films, VI,

13) T. Yamada, A. Sawabe, S. Koizumi, J. Itoh, K. Okano, "The effect of sp2/sp3 ratio on electron

emission properties of nitrogen doped diamond electron emitter" Surface and Bulk Defects in

CVD Diamond Films, VI,

14) fflHZSBI, Jfc* m, #, JWSEBff, E u > K-AX Vt > K1343

15) Yigang Chen, M. Hasegawa, D. Takeuchi, H. Okushi, S. Koizumi, "Properties of

metal/diamond interface (I) Graphitic electrode for n-type diamond" # 48 0 Af|!550'

i6) zj># m, sasfri, witiiiMt ry-itt> h pn#48® A

m » a # Em * * fr m m m in A # mm a** >nx.

1?) wjikm, wm #, 'Mk e. tiiiiitiS, cvd yytt> n®

SytSfMmtt 1:4317 5 A$ii> tt # t'l: j If) 48 I'll ft.AU m@ '# ai XA,

is) iiiinm#, jfa/nt:. d'« m. fji)i»i 'ii, MR tt ruMmijuyyyyy kxs -y

ayb®vix frnmwi in 48 m

i9) mtiMi rxi>< • AhSiA-f va/ K®»ffifi!j iajK nyyy^s-y m*) ■>>yyo

A

-209-

Page 225: mmmA - OSTI.GOV

20) H.Kanda " Colored synthetic diamonds made under high pressure conditions" 14th

International Conference on Defects in Insulating Materials

21) H.Kanda and X.Jia, "Change of luminescence character of lb and Ha HPHT diamonds with

HPHT treatment" 7th International Conference on New Diamond Science and Technology

22) mwi smiiis. ffl'iiiiXife.ffrJ m 41 im A ft Mm A

23) #•*«-. Sffl3Et2

$j 35 41 WifiEr-ISSS

24) M.D.Shaji Kumar, H20-C02 6 ® #''-1'"V ^

> Kro£6£S@8J IS I4 0y-fjr;t>25) ga*S|. 4r:E> Hto/O HSICjotj-^fg

TtWttJ S 14 @j'"4'-V:E>

26) H.Kanda "Influence of HPHT treatment on luminescence of diamond" Proceedings of the 8th

NIRIM International Symposium on Advanced Materials(ISAM2001)

27) M.Akaishi, M.D.S.Kumar, H.Kanda, S.Yamaoka "Formation of diamond from C-O-H fluid

under HP-HT conditions" Proceedings of the 8th NIRIM International Symposium on

Advanced Materials(ISAM2001)

28) O.Fukunaga, T.Sugano, H.Kanda "Epitaxial growth of B-doped diamond single crystal by

limited growth space" Proceedings of the 8th NIRIM International Symposium on Advanced

Materials(ISAM2001)

29) S.Satoh, Y.Takigawa, H.Kanda, Y.Yasutomi " Observation of natural carbonados by EBSD and

CL" Proceedings of the 8th NIRIM International Symposium on Advanced

Materials(ISAM2001)

#0^ C0Eta±-

-210-