Top Banner

of 15

RLC Circuit Transient Response Solutions

Jun 01, 2018

Download

Documents

Aaron Mueller
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/9/2019 RLC Circuit Transient Response Solutions

    1/15

    EE305 Lecture 6

    Aaron Mueller

    February 11, 2013

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 1 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    2/15

    Roots for various damping ratios

    s 1,2 =   (−ζ ± ζ 2−1)ω 0

    (−ζ ± j  

    1−ζ 2)ω 0   = σ ± j ω d    if   ζ  

  • 8/9/2019 RLC Circuit Transient Response Solutions

    3/15

    Location of roots in complex plane

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 3 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    4/15

    Location of roots in complex plane

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 4 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    5/15

    Total responses for various damping ratios

    x (t ) =

    (   s 2s 1−s 2

    )e s 1t + (   s 1s 2−s 1

    )e s 2t + 1 if ζ  > 1,

    −(ω 0t  + 1)e −ω 0t + 1 if ζ  = 1,−e −σ t (cos(ω d t ) +

      σ ω d 

    sin(ω d t )) + 1 if ζ  

  • 8/9/2019 RLC Circuit Transient Response Solutions

    6/15

    Total responses for various damping ratios

    x (t ) =

    (   s 2s 1−s 2

    )e s 1t + (   s 1s 2−s 1

    )e s 2t + 1 if ζ  > 1,

    −(ω 0t  + 1)e −ω 0t + 1 if ζ  = 1,−e −σ t (cos(ω d t ) +

      σ ω d 

    sin(ω d t )) + 1 if ζ  

  • 8/9/2019 RLC Circuit Transient Response Solutions

    7/15

    General procedure for solving for second order responses

    1 Find the homogeneous solution (natural response) to the differential

    equation. This will generally contain two unknown coefficients.

    x n (t ) = A1x n ,1(t ) +A2x n ,2(t )

    2 Find the particular solution (forced response) to the differential equation.

    This can often be done using the method of undetermined coefficients.

    For a constant forcing function (DC voltage and/or current source), this

    solution will be a constant.  x F (t ) = x f 3 Construct the total solution, which is the sum of the homogeneous and

    particular solutions.

    x (t ) = x n (t ) + x F (t ) = A1x n ,1(t ) +A2x n ,2(t ) + x f 

    4 Solve for the unknown coefficients (A1  and A2) by, for example, using

    known the known values for  x (t ) and/or its derivative x (t ) at a given timeor times. If these values are not directly given. They can usually be

    obtained by using the original (integro-)differential equation and/or other

    circuit relations.Aaron Mueller   EE305 Lecture 6   February 11, 2013 7 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    8/15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    9/15

    Overdamped CaseThe natural response is of the form x n (t ) = A1e 

    s 1t +A2e s 2t . Assume

    x F (t ) = x f , x (0) = x 0, and x (0) = x 1  (all constant) are given. Then we can

    solve for A1

     and A2

    .

    x (t ) = A1e s 1t +A2e 

    s 2t +x f 

    x (0) = A1 +A2 +x f  = x 0

    (t ) = A1s 1e s 1t 

    +A2s 2e s 2t 

    x (0) = A1s 1 +A2s 2 =  x 1

    We have two equations with two unknowns. Solving, we get

    A1 = x 1 + (x f −x 0)s 2

    s 1− s 2 ,   A2 =

     x 1 + (x f − x 0)s 1s 1−s 1

    General overdamped solution

    x (t ) =   x 1+(x f −x 0)s 2s 1−s 2

    e s 1t +  x 1+(x f −x 0)s 1s 1−s 1

    e s 2t 

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 9 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    10/15

    Critically Damped CaseThe natural response is of the form x n (t ) = (A3 +A4t )e 

    st . Assume x F (t ) = x f ,x (0) = x 0, and x 

    (0) = x 1  (all constant) are given. Then we can solve for  A3and A

    4.

    x (t ) = (A3 +A4t )e st +x f 

    x (0) = A3 +x f  = x 0

    (t ) = e st 

    [s (A3 +A4t ) +A4]

    x (0) = A3s +A4 =  x 1

    We have two equations with two unknowns. Solving, we get

    A3 =  x 0−x f ,   A4 =  x 1− (x 0−x f )s 

    General critically damped solution

    x (t ) = {(x 0− x f ) + [x 1− (x 0−x f )s ]t }e st +x f 

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 10 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    11/15

    Underdamped CaseThe natural response is of the form x n (t ) = e 

    −σ t [A5cos(ω d t ) +A6sin(ω d t )].Assume x F (t ) = x f , x (0) = x 0, and x 

    (0) = x 1  (all constant) are given. Thenwe can solve for  A

    5 and A

    6.

    x (t ) = e −σ t [A5cos(ω d t ) +A6sin(ω d t )] +x f 

    x (0) = [A5 + 0] + x f  = x 0

    x (t ) = e −σ t [(A6ω d −A5σ )cos(ω d t )− (A5ω d  +A6σ )sin(ω d t )]

    x (0) = A6ω d −A5σ  = x 1

    We have two equations with two unknowns. Solving, we get

    A5 =  x 0−x f ,   A6 = x 1 + σ (x 0− x f )

    ω d 

    General underdamped solution

    x (t ) = e −σ t [(x 0−x f )cos(ω d t ) + x 1+σ (x 0−x f )

    ω d sin(ω d t )] + x f 

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 11 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    12/15

    Problem 7.101 (1)

    Given the circuit below, solve for  v 0(t ) for t  > 0.

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 12 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    13/15

    Problem 7.101 (2)

    t  = 0−

    By inspection,

    i L(0−) = 0

    v C (0−) = −12V 

    t  > 0

    We can construct a Thévenin equivalent for the

    portion of the circuit to the right of the inductor.

    Here

    V OC  = 4V ,   R Th  =  4k Ω

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 13 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    14/15

    Problem 7.101 (3)The integro-differential equation that governs the circuit behavior for  t  > 0 is(using KCL)

    (R 2 +R Th )i (t ) +Ldi dt 

    +   1C 

       t 

    0i (t )dt  +v C (0) = V OC .

    Differentiating to get the purely differential form,

    d 2i 

    dt 2 + (

    R 2 +R Th L )

    di 

    dt +

      1

    LC i  = 0.

    The characteristic equation is

    s 2 + (R 2 +R Th 

    L)s +

      1

    LC = 0, or

    s 2 + 4×106s + 3×1012 = 0

    ⇒ s 1 = −1×106,s 2 = −3×10

    6

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 14 / 15

  • 8/9/2019 RLC Circuit Transient Response Solutions

    15/15

    Problem 7.101 (4)

    i (t ) = A1e s 1t +A2e s 2t + i (∞)

    Since the capacitor acts as an open circuit at steady state,  i (∞) = v 0(∞) = 0.We know that i (0+) = i L(0

    −) = 0 = A1 +A2, but how do we get a value fordi dt t =0 (so that we can use

      di dt 

     = A1s 1e s 1t +A2s 2e 

    s 2t )?

    Use the original (integro-differential) equation at t  = 0:

    (R 2 +R Th )i (0) +Ldi dt 

    t =0

    +v C (0) = V OC 

    i (0) =   V OC −v C (0)L

      = (4− (−12))/(2.5×10−3) = 6400 A/sA1 +A2 =  0 & (−1×10

    6A1−3×106A2 =  6400)

    ⇒ A1 =  0.0032,A2 = −0.0032⇒ i (t ) = 3.2(e −1×10

    6t −e 3×106t ) mA

    ⇒ v 0(t ) = R 2i (t ) = 19.2(e −1×106t −e 3×10

    6t ) V

    Aaron Mueller   EE305 Lecture 6   February 11, 2013 15 / 15