Top Banner

of 58

Risk Lab 2002

Apr 10, 2018

Download

Documents

rubencito1
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/8/2019 Risk Lab 2002

    1/58

    Hierarchical Mixtures ofHierarchical Mixtures ofARARModelsModels

    forfor FinancialFinancial Time Series AnalysisTime Series Analysis

    Carmen Vidal(1)

    & Alberto Surez(1,2)

    (1) Computer Science Dpt., Escuela Politcnica Superior

    (2) Risklab Madrid

    Universidad Autnoma de Madrid (Spain)

    [email protected]

  • 8/8/2019 Risk Lab 2002

    2/58

    2

    Time series of assets are highly irregularIf market efficiency hypothesis is correct they are

    also unpredictable.

    Time series of assets are non-stationaryThey are usually transformed in log-returns, or, forshort periods of time, in relative returns

    Asset returns exhibit deveations from normalityLeptokurtic: Heavy tails

    Heteroskedastic: Volatility clustering

    Financial time seriesFinancial time series

  • 8/8/2019 Risk Lab 2002

    3/58

    3

    Modelling finacial time-series is not easy

    Natural sciences Not reproducible

    Underlying model?

    Inductive / statistical learning Small data sets Complex data

    Non-linear

    Non-stationarity

    Non-gaussian

    Heteroskedastic 0 500 1000 1500 2000 2500 302000

    4000

    6000

    8000

    10000

    12000

    14000

    Financial time seriesFinancial time series modellingmodelling/ analysis/ analysis

  • 8/8/2019 Risk Lab 2002

    4/58

    4

    Two stylized facts (Two stylized facts (Timo TersvirtaTimo Tersvirta))

    Returns exhibit two empirically

    observed features:

    Correlations

    Short term for the returnsMedium term for absolute

    values of returns

    LeptokurtosisHeavy tails

    Extreme events

  • 8/8/2019 Risk Lab 2002

    5/58

    5

    An example: IBEX35An example: IBEX35

  • 8/8/2019 Risk Lab 2002

    6/58

    6

    Daily returns: IBEX35 (5 years)Daily returns: IBEX35 (5 years)

  • 8/8/2019 Risk Lab 2002

    7/58

    7

    DailyDaily--returns distributionreturns distribution

  • 8/8/2019 Risk Lab 2002

    8/58

    8

    BlackBlack--ScholesScholes theorytheory

    In theory: Markets are efficientAbsence of arbitrage opportunities.

    No systematic trends.

    Very short term memory.

    Model: Black-ScholesLog of daily returns of an asset are distributed

    according to a normal distribution.Two parameters:

    Risk free interest rate.

    Volatility [ free parameter]

  • 8/8/2019 Risk Lab 2002

    9/58

    9

    Advantages

    Simple minimal model with only one free

    parameter, the volatility. Goodpricing accuracy forat-the-money

    options.

    Analyticpricing formulas for simple

    derivatives.

    Drawbacks:

    Incorrect pricing formulas for:

    Deep in-the-money or out-of-the-money

    Short-term (less than a month) orptions

    Options on underlying with very low orvery high volatility.

    This is reflected in the fact that impliedvolatility is not constant [Volatility smile]

    Is BlackIs Black--Scholes a good model?Scholes a good model?

    80 85 90 95 100 105 110.24

    0.242

    0.244

    0.246

    0.248

    0.25

    0.252

    0.254

    0.256

    0.258

    Volatility smile(European call)

    Im

    pliedvolati

    lity

    Strike

  • 8/8/2019 Risk Lab 2002

    10/58

    10

    In practice markets are

    Not efficient: Memory effects (short/long term?).

    Very unpredictable (at least sometimes)Extreme events are more frequent than what the Black-Scholes models

    predicts.

    Occurrence ofcrashes.

    Changes in economic paradigm.Market friction: Transaction costs, lack of liquidity, dividends,

    etc.

    Heteroskedasticity + heavy tails

    Need more sophisticated model

    Parametric models: Generalizations of Blak-Scholes.

    Non-parametric models: Neural networks, Mixture models

    Beyond BlackBeyond Black--ScholesScholes

  • 8/8/2019 Risk Lab 2002

    11/58

  • 8/8/2019 Risk Lab 2002

    12/58

    12

  • 8/8/2019 Risk Lab 2002

    13/58

    13

    Failure of normal model: Heavy tails

  • 8/8/2019 Risk Lab 2002

    14/58

    14

  • 8/8/2019 Risk Lab 2002

    15/58

    15

    Empirical evidence for leptokurtosisEmpirical evidence for leptokurtosis

    Volatility smiles and smirksBlack-Scholes is insufficient to

    account for time evolution ofunderlying.

    Incremented risk

    Multiplicative factor in marketRisk estimates (Basel Accord1988, 1996 ammendment)

    80 85 90 95 100 105 110 115 1200.205

    0.21

    0.215

    0.22

    0.225

    0.23

    0.235

    0.24

  • 8/8/2019 Risk Lab 2002

    16/58

    16

    Time series analysisTime series analysis

    Consider the time series

    Time series analysis

    Forecasting

    Classification

    Modelling

    These problems are closely related to each other:

    Tt21 X,,X,,X,X

    );;( tF ,X,XX 1ttdt + =);( tFClass ,X,X 1tt =

    );|( tP

    ,X,XX 1ttdt +

    );|(

    ;);(

    t

    dtt

    P

    F

    ,X,X

    ,X,XX

    1ttdt

    1ttdt

    +

    ++ +=

  • 8/8/2019 Risk Lab 2002

    17/58

    17

    Time series prediction: a Learning viewTime series prediction: a Learning view

    Network model for time-series prediction

    Learning

    device

    1tX

    2tX

    ptX

    tX

    1

  • 8/8/2019 Risk Lab 2002

    18/58

    18

    Tasks in time series analysisTasks in time series analysis

    Obtaining data:

    Selection of attributes: Choose relevant indicators

    Data collectionDiscrete data: Grouping /averaging in time window

    Continuous data: Importance of sampling frequency

    Preprocessing data

    Clean data : Missing data, outliersNormalization of data

    Eliminate trends /seasonality: Handle a-priori info explicit /

    Stationary data.11

    11 log;;

    t

    t

    t

    tttt

    X

    X

    X

    XXXX

    ( )

    minmax

    minmax2;;XX

    XXX

    iq

    medianXX ttt

    +

  • 8/8/2019 Risk Lab 2002

    19/58

    19

    Parametric / nonParametric / non--parametric data analysisparametric data analysis ParametricFormulate (restrictive) hypothesis dependent on a set of parameters

    Find parameters by data-driven optimization [training set]

    Sensitivity analysis

    Uncertainty in estimated parameters

    Robustness

    Validation of models [test set]

    Non-ParametricConsider a family of universal approximants

    Fix architecture / parameters by data-driven optimization [training set]Sensitivity analysis

    Robustness

    Uncertainty

    Intelligibility

    Validation of models [test set]

  • 8/8/2019 Risk Lab 2002

    20/58

    20

    Classical models in timeClassical models in time--seriesseries

    Consider the time series

    The series exhibits randomness.

    The process is covariance-stationary when:

    Mean is time independent

    Autocovariance is independent of time-translations

    Ttt XXXXXX ,,,,,, 1210

    ( )( )[ ] =+ tt XXE

    [ ] =tXE

  • 8/8/2019 Risk Lab 2002

    21/58

    21

    AutorregressiveAutorregressive+Moving average models+Moving average models

    Autorregressive model for a time-series

    Vectors of delayed values:

    The systematic term reflects trends.

    The innovations are uncorrelated noise.

    Maximization of the likelihood function yields estimatesof the model parameters.

    tu

    [ ][ ] ][

    ][

    21

    ][

    21][

    mttt

    m

    t

    mtttm

    t

    uuu

    XXX

    +

    +

    =

    =

    u

    X

    );,( ][][ qtp

    tt f uXX =

    t

    q

    t

    p

    tt ufX += );,(][][ uX

  • 8/8/2019 Risk Lab 2002

    22/58

    22

    Autoregressive (Autoregressive (feedforwardfeedforward) MLP) MLP

    ;;1 1

    )1(0

    )1()2(

    = =

    +=

    J

    j

    j

    D

    d

    jjdtjdjt cwxwfwx

    )1(

    20w

    )1(

    10w1

    1tx

    )1(

    JDw

    Input layerHidden layer(s)

    Output layer)2(

    1

    w

    )( tx)2(2w

    )2(Jw

    Sigmoidal (logistic)xe

    xf

    =1

    1)(

    xx

    xx

    ee

    eexf

    +

    =)(

    Hyperbolic tangent:

    2tx

    Dtx

  • 8/8/2019 Risk Lab 2002

    23/58

    23

    ARMA(p,q) MLPARMA(p,q) MLP

    11

    ARw

    Input layerHidden layer(s)

    Output layer)2(

    1w

    )( tx)2(2w

    )2(

    Jw

    delay

    delay

    delay

    1

    1tx

    2tx

    ptx

    1 tx2 tx

    qtx +

    _qtu

    ( ) ;

    1

    1 1

    ++

    +=

    =

    = =

    p

    d

    jdtdtMAjd

    J

    j

    p

    d

    dt

    AR

    jdjt

    xxw

    xwfwx

    2

    MAw

  • 8/8/2019 Risk Lab 2002

    24/58

    24

    Mixture modelMixture model

    st

    t

    X

    X

    1

    tX

    2 t

    1

    2

    2

    1

    st

    t

    MODEL 1

    MODEL 2

    MODEL J

    GATING

    NETWORK

    gJ

    g2

    g1

  • 8/8/2019 Risk Lab 2002

    25/58

    25

    Gating NetworkGating Network

    1 tX

    2

    tX

    rtX

    1

    1h

    2h

    1Jh

    -c1

    1

    ar-1

    a1

    +=

    =

    i

    r

    k

    ktitii cXaXbh1

    1

    11exp

    Probabilities

    =

    =

    ==

    +

    =1

    11

    1

    1)1(21;

    1

    J

    jjJJ

    j

    j

    i

    i

    ggJ,,i

    h

    hg

    i hi l i

  • 8/8/2019 Risk Lab 2002

    26/58

    26

    Hierarchical mixturesHierarchical mixtures

    MODEL 1 MODEL 2

    MODEL 3

    2

    11|212

    11|111

    3Model

    ;2Model

    ;1Model

    =

    =

    1

    1|1

    2

    2|1

    12

    1

    1

    1

    1111

    1

    1

    1

    1111

    1

    1

    exp1

    exp

    =

    ++

    +

    =

    =

    =

    cXaXb

    cXaXb

    r

    k

    ktkt

    r

    k

    ktkt

    1|11|2

    2

    1

    1

    1212

    2

    1

    1

    1212

    1|1

    1

    exp1

    exp

    =

    ++

    +

    =

    =

    =

    cXaXb

    cXaXb

    r

    k

    ktkt

    r

    k

    ktkt

    Input = Vector of Delayed values

  • 8/8/2019 Risk Lab 2002

    27/58

    27

    Mixture ofMixture ofGaussiansGaussians for tfor t--independentindependentpdfpdf

    Empirical sample

    Model pdf

    Two steps:Toss a K-sided loaded dice to choose component.

    Extract value from the selected model.

    Advantages:Close to the normal world.

    Accounts for leptokurtosis of empirical unconditional

    distributions in finance.

    ),;(N)(

    1

    kk

    K

    k

    k xpxP =

    =

    NXXX

    ,, 21

  • 8/8/2019 Risk Lab 2002

    28/58

    28

  • 8/8/2019 Risk Lab 2002

    29/58

    29

  • 8/8/2019 Risk Lab 2002

    30/58

    30

    Mixture ofMixture ofGaussiansGaussians

    Intuition:

    Implicitly market forecasts are made in terms of scenarios.

    Each of these scenarios is characterized by an expected returnand a volatility.

    Markets assign a different probability to each scenario.

    Dynamical picture?

    Direct time aggregation of the process yields a normal model (byCentral Limit Theorem).

    It is possible to construct a discontinuous jump process

    maintaining the mixture form. Not realistic.

  • 8/8/2019 Risk Lab 2002

    31/58

    31

    Mixture of AR processesMixture of AR processes

    Mixtures of Gaussians + autorregressive dynamics InIn: Vector of delays (Used in gating network + AR models)OutOut: Next value in time series

    No hierarchy Tree hierarchy

  • 8/8/2019 Risk Lab 2002

    32/58

    32

    Synthetic dataSynthetic data: E: Example 1xample 1

    10 8 6 4 2 0 2 4 6 80

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Contribucion de cada experto

    E3E1E2

    Histogram (unconditional pdf)

    10 8 6 4 2 0 2 4 6 80

    50

    100

    150

    200

    250

    Time series generated by a hierarchical mixture of 3 AR(1)

    experts

    Expert contributions

  • 8/8/2019 Risk Lab 2002

    33/58

    33

    Model 1 fitModel 1 fit

    Fitting to a mixture of 2 AR(1) experts(wrong type of model!)

    Contributions Histogram Percentile plot

    10 8 6 4 2 0 2 4 6 8 100

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Contribucion de cada experto

    g1g2

    15 10 5 0 5 100

    20

    40

    60

    80

    100

    120

    140

    10 8 6 4 2 0 2 4 6 815

    10

    5

    0

    5

    10

    X Quantiles

    Y

    Quantiles

    0.46450-18009-17967

    ECM TestK-S TestLL TestLL Train

  • 8/8/2019 Risk Lab 2002

    34/58

    34

    Model 2 fitModel 2 fit

    Fitting to a mixture of 3 AR(1) experts(learnable model)

    Contributions Histogram Percentile plot

    0.31640.9666-16755-16675

    ECM TestK-S TestLL TestLL Train

    10 8 6 4 2 0 2 4 6 8 100

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Contribucion de cada experto

    E3E1E2

    10 8 6 4 2 0 2 4 6 80

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    10 8 6 4 2 0 2 4 6 810

    8

    6

    4

    2

    0

    2

    4

    6

    8

    X Quantiles

    Y

    Quantiles

  • 8/8/2019 Risk Lab 2002

    35/58

    35

    AR(1) fit for Ibex35AR(1) fit for Ibex35 (1200 +712 days)(1200 +712 days)

  • 8/8/2019 Risk Lab 2002

    36/58

    36

    AR(1) fit for Ibex35AR(1) fit for Ibex35 (1200 +712 days)(1200 +712 days)

  • 8/8/2019 Risk Lab 2002

    37/58

    37

    MIX 2 AR(1) fit for Ibex35MIX 2 AR(1) fit for Ibex35

  • 8/8/2019 Risk Lab 2002

    38/58

    38

    MIX 3 AR(1) fit for Ibex35MIX 3 AR(1) fit for Ibex35

  • 8/8/2019 Risk Lab 2002

    39/58

    39

    Hierarchical MIX 3 AR(1) fit for Ibex35Hierarchical MIX 3 AR(1) fit for Ibex35

  • 8/8/2019 Risk Lab 2002

    40/58

    40

    ConclusionsConclusions

    and perspectivesand perspectives

    MixturesMixtures of AR(1) models improveimprove the results of single

    AR(1) models in financial returns time series. Mixtures ofMixtures of2 / 3 experts2 / 3 experts seem to be sufficientsufficient to

    model leptokurtosis and dynamics.

    The introduction ofhierarchyhierarchy in the structure of themixture may significantly improve statistical descriptionof financial time series data.

    To do: Heteroskedasticity

    Calibration of models to market

    Mi f ARCHMi t f ARCH

  • 8/8/2019 Risk Lab 2002

    41/58

    41

    Mixture of ARCH processesMixture of ARCH processes

    MixARCH

    The model for the residuals is

    The quantities are assumed to beN(0,1)

    )(

    ),(

    ][

    ][

    ][

    ][

    ][

    ][

    i

    r

    ti

    i

    m

    tit

    gyprobabilitwith

    tuX

    ,,,,

    X

    X += +

    )(][)(

    )()(

    ][][

    22][

    ][][

    tut

    Zttu

    qiiii

    tii

    +=

    =

    +

    tZ

    Mi t f GARCHMi t f GARCH

  • 8/8/2019 Risk Lab 2002

    42/58

    42

    Mixture of GARCH processesMixture of GARCH processes

    MixGARCH

    The model for the residuals is

    The quantities are assumed to beN(0,1)

    ),(

    ),(

    ][

    ][

    ][

    ][

    ][

    ][

    i

    r

    ti

    i

    m

    tit

    gyprobabilitwith

    tuX

    X

    X += +

    )(][)(][)(

    )()(

    ][ ][2][ ][22 ][

    ][][

    ttut

    Zttu

    piiqiiii

    tii

    ++=

    =

    ++

    tZ

    AR(1) / ARCH(1) f IBEX35AR(1) / ARCH(1) f IBEX35

  • 8/8/2019 Risk Lab 2002

    43/58

    43

    AR(1) / ARCH(1) for IBEX35AR(1) / ARCH(1) for IBEX35

    The maximum-likelihood fit of the time-series

    IBEX35 yields the model

    The quantities are assumed to follow a N(0,1)

    distribution.tZ

    ( )2212

    1

    1129.01118.09097.0

    1129.0

    +=

    +=

    ttt

    tttt

    XX

    ZXX

    R id l l ti ARCH(1)R id l l ti ARCH(1)

  • 8/8/2019 Risk Lab 2002

    44/58

    44

    Residual correlations: ARCH(1)Residual correlations: ARCH(1)

  • 8/8/2019 Risk Lab 2002

    45/58

    45

    Normality hypothesis: ARCH(1)

    KS Test = 0.12

    -6 -4 -2 0 2 4 6

    -6

    -4

    -2

    0

    2

    4

    6

    X Quantile s

    YQ

    uantiles

    -4 -3 -2 -1 0 1 2 3 4 5

    0

    50

    100

    150

    200

    MIXARCH for IBEX35MIXARCH for IBEX35

  • 8/8/2019 Risk Lab 2002

    46/58

    46

    MIXARCH for IBEX35MIXARCH for IBEX35

    The mixture model is

    The probabilities for the mixture are

    ( )

    ( )2212

    1

    2

    21

    2

    1

    1380.003821.06820.0

    1380.02Model

    0559.01976.02194.2

    0559.01Model

    +=

    +=

    +=

    +=

    ttt

    tttt

    ttt

    tttt

    XX

    ZXX

    XX

    ZXX

    { }

    )(1)(

    ;)5155.2(6839.0exp1

    1)(

    1]1[1]2[

    1

    1]1[

    =

    +=

    tt

    t

    t

    XgXg

    XXg

    Residual correlations: MIXARCH

  • 8/8/2019 Risk Lab 2002

    47/58

    47

    Residual correlations: MIXARCH

  • 8/8/2019 Risk Lab 2002

    48/58

    48

    Normality hypothesis: MixARCH(1)

    KS Test = 0.83

    -3 -2 -1 0 1 2 30

    20

    40

    60

    80

    100

    120

    140

    160

    -6 -4 -2 0 2 4 6-6

    -4

    -2

    0

    2

    4

    6

    X Quantile s

    YQuantiles

    MIXARCH Model fit

  • 8/8/2019 Risk Lab 2002

    49/58

    49

    MIXARCH Model fit

    AR(1) / GARCH(1 1) for IBEX35AR(1) / GARCH(1 1) for IBEX35

  • 8/8/2019 Risk Lab 2002

    50/58

    50

    AR(1) / GARCH(1,1) for IBEX35AR(1) / GARCH(1,1) for IBEX35

    The maximum-likelihood fit of the time-series

    IBEX35 yields the model

    The quantities are assumed to follow a N(0,1)

    distribution.tZ

    ( )2

    1

    2

    21

    2

    1

    8733.0

    1358.00755.00527.0

    1358.0

    ++=

    +=

    t

    ttt

    tttt

    XX

    ZXX

    Residual correlations: GARCH

  • 8/8/2019 Risk Lab 2002

    51/58

    51

    Residual correlations: GARCH

    0 5 10 15 20 25 30

    0

    0.2

    0.4

    0.6

    0.8

    1

    Magnitude

    Autocorrelations of residuals

    0 5 10 15 20 25 30

    0

    0.2

    0.4

    0.6

    0.8

    1

    Delay

    Magnitude

    Autocorrelations of abs(residuals)

  • 8/8/2019 Risk Lab 2002

    52/58

    52

    Normality hypothesis: GARCH(1,1)

    -4 -2 0 2 4 60

    50

    100

    150

    200

    250

    KS Test = 0.56

    -6 -4 -2 0 2 4 6

    -6

    -4

    -2

    0

    2

    4

    6

    X Quantiles

    YQuantiles

    Test Data

  • 8/8/2019 Risk Lab 2002

    53/58

    53

    Test Data

    -5 0 5-6

    -4

    -2

    0

    2

    4

    6

    X Quantiles

    YQuantiles

    0 5 10 15 20 25 30

    0

    0.2

    0.4

    0.6

    0.8

    1

    Magnitude

    Autocorrelations of residuals

    0 5 10 15 20 25 30

    00.2

    0.4

    0.6

    0.8

    1

    Delay

    M

    agnitude

    Autocorrelations of abs(residuals)

    -6 -4 -2 0 2 4 6

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100 200 300 400 500 6000

    1

    2

    3

    Time

    Vola

    tility

    KS = 0.33

    MIXGARCH for IBEX35MIXGARCH for IBEX35

  • 8/8/2019 Risk Lab 2002

    54/58

    54

    MIXGARCH for IBEX35MIXGARCH for IBEX35

    The mixture model is

    The probabilities for the mixture are

    ( )

    ( ) 2 12

    21

    2

    1

    2

    1

    2

    21

    2

    1

    0285.03314.00000.06230.2

    3314.02Model

    8937.01255.00778.00156.0

    1255.01Model

    ++=

    +=

    ++=

    +=

    tttt

    tttt

    tttt

    tttt

    XX

    ZXX

    XX

    ZXX

    { }

    )(1)(

    ;)8710.4(0.5418exp1

    1)(

    1]1[1]2[

    1

    1]1[

    =

    +=

    tt

    t

    t

    XgXg

    XXg

    Residual correlations: MIXGARCH

  • 8/8/2019 Risk Lab 2002

    55/58

    55

    Residual correlations: MIXGARCH

    0 5 10 15 20 25 30

    0

    0.2

    0.4

    0.6

    0.8

    1

    Magnitud

    e

    Autocorrelations of residuals

    0 5 10 15 20 25 300

    0.2

    0.4

    0.6

    0.8

    1

    Delay

    Magnitude

    Autocorrelations of abs(residuals)

    N li h h i MIXGARCH

  • 8/8/2019 Risk Lab 2002

    56/58

    56

    Normality hypothesis: MIXGARCH

    -6 -4 -2 0 2 4 6

    -6

    -4

    -2

    0

    2

    4

    6

    X Quantiles

    YQ

    uantiles

    -3 -2 -1 0 1 2 3

    0

    20

    40

    60

    80

    10 0

    12 0

    14 0

    16 0

    KS test = 0.95

    MIXGARCH Model fit

  • 8/8/2019 Risk Lab 2002

    57/58

    57

    MIXGARCH Model fit

    200 400 600 800 1000 12000

    1

    2

    Time

    Volatility

    200 400 600 800 1000 12000

    0.2

    0.4

    0.6

    0.8

    Entro

    py

    200 400 600 800 1000 12000

    0.2

    0.4

    0.6

    0.8

    Pro

    ba

    bilities

    Model 1Model 2

    Test Data

  • 8/8/2019 Risk Lab 2002

    58/58

    58-6 -4 -2 0 2 4 6

    -6

    -4

    -2

    0

    2

    4

    6

    X Quantiles

    YQuantiles

    100 200 300 400 500 6000

    1

    2

    3

    Time

    Volatility

    0 5 10 15 20 25 30

    0

    0.2

    0.4

    0.6

    0.8

    1

    Magnitude

    Autocorrelations of residuals

    0 5 10 15 20 25 30

    0

    0.2

    0.4

    0.6

    0.8

    1

    Delay

    Magnitude

    Autocorrelations of abs(residuals)

    -6 -4 -2 0 2 4 60

    10

    20

    30

    40

    50

    60

    70

    80

    KS = 0.25