Top Banner
•1 RF/Microwave Circuits I VNA Calibration Fall 2007 VNA & Calibration Vector Network Analyzer Measures amplitude and phase of Reference, reflected, and transmitted signal to find [S] Basic Components of VNA Synthesized swept signal RF source Test set (signal routing from/to source, DUT, and internal IF circuitry) IF circuitry (down convert RF to IF, e.g., 100KHz) (page 183, 3 rd edition) Digital processors (A/D conversion, amp & phase measurements, etc)
12

RF/Microwave Circuits I - Baylor ECSweb.ecs.baylor.edu/faculty/baylis/EEL4421/VNACalibrationFall2007.pdf · RF/Microwave Circuits I VNA Calibration Fall 2007 VNA & Calibration Vector

Apr 04, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: RF/Microwave Circuits I - Baylor ECSweb.ecs.baylor.edu/faculty/baylis/EEL4421/VNACalibrationFall2007.pdf · RF/Microwave Circuits I VNA Calibration Fall 2007 VNA & Calibration Vector

•1

RF/Microwave Circuits I

VNA CalibrationFall 2007

VNA & Calibration

Vector Network Analyzer → Measures amplitude and phase of Reference, reflected, and transmitted signal to find [S]

Basic Components of VNA Synthesized swept signal RF source Test set (signal routing from/to source, DUT, and internal IF circuitry) IF circuitry (down convert RF to IF, e.g., 100KHz) (page 183, 3rd edition) Digital processors (A/D conversion, amp & phase measurements, etc)

Page 2: RF/Microwave Circuits I - Baylor ECSweb.ecs.baylor.edu/faculty/baylis/EEL4421/VNACalibrationFall2007.pdf · RF/Microwave Circuits I VNA Calibration Fall 2007 VNA & Calibration Vector

•2

From Anritsu

Page 3: RF/Microwave Circuits I - Baylor ECSweb.ecs.baylor.edu/faculty/baylis/EEL4421/VNACalibrationFall2007.pdf · RF/Microwave Circuits I VNA Calibration Fall 2007 VNA & Calibration Vector

•3

In reality, there is much hardware within VNA that affects a1, b1, etc Measurements are determined after IF and digital processing

∴ To determine [S] of the DUT, we need information about signals at DUT ports →have to calibrate/remove all VNA effects

Source [S]

DUT

Load

VNA VNA

measure a1, b1

measure a2, b2

[S] → scattering matrix [T] → transmission matrix (e.g., [ABCD]) Error box – networks that include internal VNA effects (couplers, switches, IF and

DSP circuits, etc) and possibly external cables etc different “error models” have different “error boxes”

First step: Determine how to represent these complex VNA effects. This is “error modeling”

Page 4: RF/Microwave Circuits I - Baylor ECSweb.ecs.baylor.edu/faculty/baylis/EEL4421/VNACalibrationFall2007.pdf · RF/Microwave Circuits I VNA Calibration Fall 2007 VNA & Calibration Vector

•4

Second Step: Determine values for error box parameters (i.e., [Se1], [Se2] or [Te1], [Te2]). Determining the error box parameters is called “calibration”

[ ] [ ] [ ]'m e1 e2T T T T = This what we measure (or raw-measured

data)

Error corrected or “calibrated data” [ ] [ ][ ]1 1'e1 m e2T T T T− −

= Determined when calibration is

performed

A SIMPLE 1-PORT MEASUREMENT

Γ= +

− Γ21,e1 L 12,e1'

11 11,e122,e1 L

S SS S

1 S

Page 5: RF/Microwave Circuits I - Baylor ECSweb.ecs.baylor.edu/faculty/baylis/EEL4421/VNACalibrationFall2007.pdf · RF/Microwave Circuits I VNA Calibration Fall 2007 VNA & Calibration Vector

•5

Goal: Find [Se1] (i.e., “calibrate” the system) You can select different ΓL (cal stds) and measure S11

How?

Γ

=

=L

'11 e1,11

(i) choose 0 (use match load)

then S S

( ) ( ) ( ) ( ) ( )Γ = Γ'L e1,22 11 e1,11 e1,21 L e1,12

(ii)

1 - S S -S S S

=1 2U K U U = unknown

K= known

Γ= +

− Γ21,e1 L 12,e1'

11 11,e122,e1 L

S SS S

1 S

.

1-port calibration (cont’d)

Γ

Γ'

1 2

sL L

(iii)

choose 2 more known (e.g., = 1 ( ) and -1

find U and U (2 equat ions and 2 unknow

)

ns)

( )open short

1 e1,22

(iv)

once U is known, find S

( ) ⇒e1,21 e1,12

(v)

also know you only need to know the proS S duct

[ ]( )

( ) ( )Γ

e1

'11 e1,11

L 'e1,21 e1,12 e1,22 11 e1,11

Now that you know S

S - S=

S - S + S S - S

·

Page 6: RF/Microwave Circuits I - Baylor ECSweb.ecs.baylor.edu/faculty/baylis/EEL4421/VNACalibrationFall2007.pdf · RF/Microwave Circuits I VNA Calibration Fall 2007 VNA & Calibration Vector

•6

Commonly Used Calibration Methods

1. OSL (can be used only for 1-port calibration) Open, Short, Load

2. OSLT (2-port calibration) Open, Short, Load, Thru

– Thru is a section of matched transmission line

3. LRM Thru Line, Reflect, Matched load

– Reflect can be open or short

4. TRL Thru line, Reflect, delay Line

Commonly Used Calibration Methods

For many calibration methods, precise knowledge of the standards (e.g., the Γ for the short) must be known It won’t be exactly -1!

Page 7: RF/Microwave Circuits I - Baylor ECSweb.ecs.baylor.edu/faculty/baylis/EEL4421/VNACalibrationFall2007.pdf · RF/Microwave Circuits I VNA Calibration Fall 2007 VNA & Calibration Vector

•7

TRL Calibration

Used for planar circuits (e.g., microstrip) this is the most accurate approach, especially at mm-wave frequencies

Does not require perfect (or well known) matched loads, opens, or sorts (other methods do require) ⇒ TRL is known as “self-calibrating”

How to construct TRL calibration lines for measuring a DUT…

TRL Calibration

To cables , VNA

To cables , VNA

L/ 2 L/ 2

Assumed to be identical in all measurements

THRUZ0

L/ 2 L/ 2

Z0 Z0

∆L

Z0

T.L (coax , microstrip , CPW , etc .)

DELAY

L/ 2 L/ 2

Z0 Z0

Γ1 Γ2

REFLECT

Reference plane in the center of thru

Page 8: RF/Microwave Circuits I - Baylor ECSweb.ecs.baylor.edu/faculty/baylis/EEL4421/VNACalibrationFall2007.pdf · RF/Microwave Circuits I VNA Calibration Fall 2007 VNA & Calibration Vector

•8

TO MEASURE DUT

Z0 must be identical for all standards and DUT Theoretically, any L > 0 is acceptable Ideally, ∆L = 90° at center frequency

Calibration is typically valid from f1 to f2, when f1 when ∆L =20° f2 when ∆L =160°

Reflect standards do not have to be perfect opens or shorts, but Γ1 has to be identical to Γ2

Z0 does not have to be 50Ω, but its value does serve as the reference impedance for the calculated [S] matrix

DESIGN RULES

DESIGN TRL STD’s FROM 1-6GHz AND MEASURE A CHIP CAPACITOR

We need to know the following: Capacitor size, substrate properties on which capacitor will be

mounted/measured, what kind of TL (microstrip, CPW, etc) Frequency range

Capacitor dimensions from the manufacturer data sheet is 2mm × 1.2mm Given that the substrate is 31-mil FR-4 (εr=4.27)

Choose a value of “L”, this is the length of “thru”. There is no equation for choosing L Let’s say L=5mm

Page 9: RF/Microwave Circuits I - Baylor ECSweb.ecs.baylor.edu/faculty/baylis/EEL4421/VNACalibrationFall2007.pdf · RF/Microwave Circuits I VNA Calibration Fall 2007 VNA & Calibration Vector

•9

CALCULATIONS

Use equation 3.197 to calculate W that will give Z0=50Ω

W from 3.197 is 1.49mm

ph

eff

eff

We want the length L = 90 at 3GHz (center frequency)

V cf f

Use 3.195 for calculat ing

L= 13.89mm

∆ °

λ = =ε

ε

Page 10: RF/Microwave Circuits I - Baylor ECSweb.ecs.baylor.edu/faculty/baylis/EEL4421/VNACalibrationFall2007.pdf · RF/Microwave Circuits I VNA Calibration Fall 2007 VNA & Calibration Vector

•10

TRL Standards and Test Fixtures

LineCalc

Page 11: RF/Microwave Circuits I - Baylor ECSweb.ecs.baylor.edu/faculty/baylis/EEL4421/VNACalibrationFall2007.pdf · RF/Microwave Circuits I VNA Calibration Fall 2007 VNA & Calibration Vector

•11

De-Embedding Example

S_ParamSP1

Step=0.01 GHzStop=6.0 GHzStart=1.0 GHz

S-PARAMETERS

TermTerm2

Z=50 OhmNum=2

TermTerm1

Z=50 OhmNum=1

PortP2Num=2

PortP1Num=1

COAXTL1

Rho=1TanD=0.002Er=2.1L=.1 meterDo=131.0 milDi=36.0 mil

MSUBMSub1

Rough=0 milTanD=0.02T=1 milHu=3.9e+034 milCond=1.0E+50Mur=1Er=9.6H=10.0 mil

MSubDisplayTemplatedisptemp1"S_Params_Quad_dB_Smith"

TempDisp

MLINTL2

L=2 cmW=10.0 milSubst="MSub1"

CC1C=1.0 pF

LL1

R=L=1.0 nH

Hypothetical Error Box Coax cable Connector Microstrip on circuit board

De-Embedding Example

freq (1.000GHz to 6.000GHz)

S(1

,1)

Input Reflection Coefficient

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.51.0 6.0

-150

-100

-50

0

50

100

150

-200

200

freq, GHz

pha

se(S

(2,1

))

Forward Transmission, dB

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.51.0 6.0

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

-3.5

0.0

freq, GHz

dB(S

(1,2

))

Reverse Transmission, dB

Use with S-Parameter Simulations

2 3 4 51 6

-18

-16

-14

-12

-10

-8

-6

-4

-20

-2

freq, GHz

dB(S

(1,1

))

Output Reflection Coefficient

S-parameters for the Error Box

Page 12: RF/Microwave Circuits I - Baylor ECSweb.ecs.baylor.edu/faculty/baylis/EEL4421/VNACalibrationFall2007.pdf · RF/Microwave Circuits I VNA Calibration Fall 2007 VNA & Calibration Vector

•12

De-Embedding Example

S_ParamSP1

Step=0.01 GHzStop=6.0 GHzStart=1.0 GHz

S-PARAMETERS

1

1

2

TermTerm3

Z=50 OhmNum=3

1

1

2

TermTerm4

Z=50 OhmNum=4

21

BPF_ChebyshevBPF1

Astop=20 dBBWstop=1.2 GHzRipple=1 dBBWpass=1.0 GHzFcenter=3.5 GHz

12

cal ibration_port1X2

1 2

calibration_port1X1

12

cal ibration_port1X4

1 2

calibration_port1X3

1

2

TermTerm2

Z=50 OhmNum=2

1

12

3

Deembed2SNP2Fi le="cal ibration_port1.ds"

2 1

Re f

1

1

2

TermTerm1

Z=50 OhmNum=1

1

1

1 2

3

Deembed2SNP1Fi le="cal ibration_port1.ds"

21

Ref

21

BPF_ChebyshevBPF2

Astop=20 dBBWstop=1.2 GHzRipple=1 dBBWpass=1.0 GHzFcenter=3.5 GHz

COAXTL1

Rho=1TanD=0.002Er=2.1L=.1 meterDo=131.0 milDi=36.0 mil

MLINTL2

L=2 cmW=10.0 milSubst="MSub1"

CC1C=1.0 pF

LL1

R=L=1.0 nH COAX

TL1

Rho=1TanD=0.002Er=2.1L=.1 meterDo=131.0 milDi=36.0 mil

MLINTL2

L=2 cmW=10.0 milSubst="MSub1"

CC1C=1.0 pF

LL1

R=L=1.0 nHWhat is measured

What is measured“Deembed Network” “Deembed Network”

“Deembed Networks” reference the dataset for the Error Box

De-Embedding Example

2 3 4 51 6

-150

-100

-50

-200

0

freq, GHz

dB

(S(2

,1))

dB

(S(4

,3))

3.52.5 4.5

-8

-6

-4

-2

-10

0

freq, GHz

dB(S

(2,1

))dB

(S(4

,3))

2 3 4 51 6

-100

0

100

-200

200

freq, GHz

pha

se(S

(2,1

))p

ha

se(S

(4,3

))

3.52.5 4.5

-8

-6

-4

-2

-10

0

freq, GHz

dB

(S(1

,1))

dB

(S(3

,3))

BLUE – Measured Data RED – Deembedded Data