Top Banner
DANIEL E. FAGUE Manager, High Speed DAC Applications RF Converters Enable Multiple Wideband Applications 1 02/15/2017
48

RF Converters Enable Multiple Wideband Applications

Apr 27, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: RF Converters Enable Multiple Wideband Applications

DANIEL E. FAGUE

Manager, High Speed DAC Applications

RF Converters Enable Multiple

Wideband Applications

102/15/2017

Page 2: RF Converters Enable Multiple Wideband Applications

Agenda

2

►Review of Radio Architectures

►Applications for RF DACs

►An Example RF Converter

►Usage scenarios for RF DACs

Page 3: RF Converters Enable Multiple Wideband Applications

Transmitter Architectures with IF and RF DACs

3

Page 4: RF Converters Enable Multiple Wideband Applications

Complex IF Transmitter Signal Processing

► A complex IF architecture uses DACs to synthesize an IF signal and its complex conjugate (Hilbert transform) as the inputs to a quadrature modulator

► The DACs and modulator form single sideband (SSB) upconverter that rejects one of the mixing sidebands, easing the BPF filtering requirements

4

DAC

DAC

PA BPFS BPF

RF RFIF

IF

RF

RF 0LO 90

LOFs

Fs

Page 5: RF Converters Enable Multiple Wideband Applications

Complex IF DAC Imperfections

► Complex IF systems create several images: FDAC – FOUT : the main desired signal’s image

Harmonics (2nd, 3rd, etc.), real or folded

► These must be low pass filtered prior to the quadrature modulator

5

IF DAC

IF DAC

S

IF

RF 0LO 90

Fs

IF Fs

RFLO

imageharmonic

Page 6: RF Converters Enable Multiple Wideband Applications

Complex IF DAC Imperfections (cont.)

► Careful frequency planning must be done to avoid folded products falling too close to the desired

signal that are then upconverted

► Post-modulator, a band pass filter is used to filter the undesired products

6

IF DAC

IF DAC

S

IF

RF 0LO 90

Fs

IF Fs

RFLO

imageharmonic

Page 7: RF Converters Enable Multiple Wideband Applications

IF DAC

IF DAC

S

IF

RF 0LO 90

Fs

IF Fs

Complex IF Transmitter

► DAC Images Fall much closer to the DPD BW edge. Analog LPF is significant challenge.

► Analog LPF Fcutoff now needs to be >= DPD BW.

Example: for 500MHz of DPD BW, LPF fcutoff is 500MHz minimum.

LPF needs to be flat over +/-250MHz centered around IF AND, IF needs to be >= DPD BW/2.

7

DAC output spectrum

Closest Image:

ΔFdac-2IF

Fcutoff = DPD BW

Page 8: RF Converters Enable Multiple Wideband Applications

IF DAC

IF DAC

S

IF

RF 0LO 90

Fs

IF Fs

Complex IF Transmitter (cont.)

► DAC & QMOD BaseBand input linearity performance over Freq is now a key spec.

► OIP2 is out of band

► QEC is much less critical. Image is located 2xIF away

► Sinc Rolloff needs to be compensated for passband flatness

8

DAC output spectrum

Closest Image:

ΔFdac-2IF

Fcutoff = DPD BW

Page 9: RF Converters Enable Multiple Wideband Applications

Zero-IF Transmitter Signal Processing

► A zero-IF architecture uses DACs to synthesize baseband signals as the inputs to a quadrature

modulator

► The quadrature LO in the modulator upconverts the baseband signals directly to RF frequencies

9

DAC

DAC

PA BPFS BPF

RF RFRF

RF 0LO 90

LOFs

Fs

Page 10: RF Converters Enable Multiple Wideband Applications

Zero-IF or Direct Conversion Transmitter

► DAC Images Fall in nulls of Sinc response -> Eases Analog LPF

► Analog LPF 3db BW needs to be ½ that of Complex IF LPF.

Example for 500MHz of DPD BW, LPF needs to be flat over +/-250MHz

10

DAC output spectrum

Closest Image:

ΔFdac

Fcutoff = DPD/2 BW

DAC

DAC

PA BPFS BPF

RF RFRF

RF 0LO 90

LOFs

Fs

Page 11: RF Converters Enable Multiple Wideband Applications

Zero-IF or Direct Conversion Transmitter (cont.)

► DAC performance only needs to be optimized for Low IFs -> Can trade off power vs. High frequency performance

► OIP2 & 1/f noise are now critical specs.

► QEC is also now a critical concern.

11

DAC output spectrum

Closest Image:

ΔFdac

Fcutoff = DPD/2 BW

DAC

DAC

PA BPFS BPF

RF RFRF

RF 0LO 90

LOFs

Fs

Page 12: RF Converters Enable Multiple Wideband Applications

Direct to RF Transmitter Signal Processing

► Direct RF eliminates all analog up conversion stages

RF signal is directly synthesized at the desired output frequency

Imperfections of analog components (LO leakage, I/Q imbalance, SSB rejection, etc.) are eliminated

► The output of the RF DAC is low pass filtered, leaving the desired RF signal

12

RF DAC PA BPFLPF

RF RFRFFs

Page 13: RF Converters Enable Multiple Wideband Applications

Direct to RF DAC Imperfections

► RF DACs generate images and harmonics, just as BB and IF DACs, and clock spurious signals

also appear on the output

► These are filtered with the low pass filter.

► The cutoff region of the LPF can be steep if the RF output is close to Fs/2.

► If an image or a folded harmonic comes in-band, the LPF cannot filter it—a BPF must be used, or

the DAC performance must be “good enough” for the system

13

RF DAC LPF

RF FsFs/2

image

harmonic

Page 14: RF Converters Enable Multiple Wideband Applications

Direct RF Transmitter

Closest Image:

ΔFdac-2IF

Closest Image:

Δ(2IF)

Closest Image:

Δ(Fdac-2IF)

Fcutoff = DPD BW

RF Bandpass Filter,

BW >=DPD BW

RF DAC LPF

RF FsFs/2

image

harmonic

► Normal/Mix/RZ Mode & Ultra High DAC rates eliminate the need for a Mixer

Page 15: RF Converters Enable Multiple Wideband Applications

Direct RF Transmitter – High Fs

► Ultra high DAC rates push DAC Images far enough away that filtering requirements are simplified

when compared to Real IF.

RF DAC LPF

RFFs/2

imageFs

harmonic

Page 16: RF Converters Enable Multiple Wideband Applications

Direct RF Transmitter – High Fs Using Quad Switch

► Ultra high DAC rates push DAC Images far enough away that filtering requirements are simplified

when compared to Real IF.

► Quad switch DAC core enables rising/falling edge interpolator to “double” the input clock rate

RF DAC X2 (FIR85)

RFFs/4

harmonicFs/2 3Fs/4

ImageFs

LPF

Page 17: RF Converters Enable Multiple Wideband Applications

Applications for RF Converters

17

Page 18: RF Converters Enable Multiple Wideband Applications

Where to Use RF Converters?

► Narrowband systems

RF Converters can be used in many places where traditional converters+modulators have been used

Simplification of the signal chain is achieved, with fewer components being used

Simplification can also be achieved by higher integration, i.e., integrating the converters with the RF

components like modulators/demodulators, LNAs, driver amps, etc.

► Wideband systems

Signal bandwidths, 1 GHz, 2 GHz, or more

Multi-band radios (e.g., wireless infrastructure, 1.8 GHz + 2.6 GHz)

Traditional converters+modulators can not address those systems because the components are narrowband

► Multi-use or software-configurable systems

Some products require a capability to address both narrowband AND wideband signals with the same radio

Other products require a capability to address two different types of radios, e.g. a tone generator and a

wideband radio

18 ©2016 Analog Devices, Inc. All rights reserved.

Page 19: RF Converters Enable Multiple Wideband Applications

Common Wireless and Cable Infrastructure Bands

RF DAC

RF DAC

156 6-MHz Channels

One 4G band

AND

One 3G band

3GPP Base Station

Cable Full Band

Head End

Page 20: RF Converters Enable Multiple Wideband Applications

Applications for RF Converters

►Traditional communications applications

Wireless Infrastructure

Cable Infrastructure

►Instrumentation and MIL/Aero

Traditional signal synthesis

Local oscillator replacement

Fast Frequency Hopping

Types of FFH: Phase coherent, Phase continuous, phase discontinuous

Importance of phase coherent FFH

Phase noise

Reconfigurable Radios (e.g., a Radar and a secure communication link)

20 ©2016 Analog Devices, Inc. All rights reserved.

Page 21: RF Converters Enable Multiple Wideband Applications

Phase Coherent Fast Frequency Hopping

► Why phase coherent frequency hopping? Phase coherent means there is a defined relationship between the fOUT of any FTW and the reference (in this

case, the DACCLK)

The defined relationship between the transmitted frequency and the receiver enables a radar receiver to detect Doppler frequency shifts caused by movement of the target object relative to background clutter and objects

Phase coherence enables More accurate detection of smaller Doppler shifts

Frequency agile radars

Pulse compression and modulated radar

21

Page 22: RF Converters Enable Multiple Wideband Applications

Phase Coherent Fast Frequency Hopping (cont.)

► Phase coherent fast frequency hopping

The AD9164 achieves phase coherency by implementing thirty-two phase accumulators, one for each of the

thirty-two 32-bit FTWs

When phase coherent mode is enabled (0x800[7:6] = 0b10), all enabled NCO phase accumulators are reset

and begin counting together.

Now, any FTW can be chosen, and when returning to the previous FTW, it is as though no switch occurred

— “phase memory”

► Fast frequency hopping is important for Test and Measurement

Faster switching speeds reduces test time on ATE

Phase coherence can be important for testing MIMO systems, active antenna arrays, etc., for wireless

infrastructure

► TX_ENABLE pin can be programmed to reset NCO phase accumulator

22

Page 23: RF Converters Enable Multiple Wideband Applications

Example RF DAC

23

Page 24: RF Converters Enable Multiple Wideband Applications

Example of an RF DAC: The AD9162 and AD9164

► The DAC can be run as a traditional, real domain RF DAC

All signal processing can be bypassed

24

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

Page 25: RF Converters Enable Multiple Wideband Applications

Example of an RF DAC: The AD9162 and AD9164 (cont.)

► The DAC can be run as a traditional, real domain RF DAC

All signal processing can be bypassed

Or, the final blocks that run at DACCLK can be selected individually

25

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

Page 26: RF Converters Enable Multiple Wideband Applications

Example of an RF DAC: The AD9162 and AD9164 (cont.)

► The DAC can be run as a traditional, real domain RF DAC

All signal processing can be bypassed

Or, the final blocks that run at DACCLK can be selected individually

► The signal path would be a real-domain signal path

With full access to the Nyquist zone in NRZ mode, 45% of it in 2xNRZ mode

26

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

Page 27: RF Converters Enable Multiple Wideband Applications

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

Example of an RF DAC: The AD9162 and AD9164 (cont.)

► Complex data interface – Interpolating DAC mode

Use for all interpolation modes, including FIR85 (2xNRZ mode)

Treat data like any conventional IF DAC with I and Q DACs

Typically, use the NCO with this to shift signal to correct fout

27

Page 28: RF Converters Enable Multiple Wideband Applications

Data Interface – JESD204B

► The data interface is JESD204B protocol, 8 lanes, 12.5 GBPS

This is an upgraded receiver core compared to the IF DACs presented at this training

Configuration of the JESD interface is simplified compared to previous core

► The JESD core has full features such as crossbar, subclass 0 and 1 support, selectable number of lanes, etc.

28

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

Page 29: RF Converters Enable Multiple Wideband Applications

Fast Frequency Hopping NCO (AD9164)

► The Fast Frequency Hopping (FFH) NCO enables several key hopping functions

Pre-loading of up to 32 frequency tuning words (FTWs)

Selection of FTW by single SPI write

Phase coherent frequency hopping

► FFH NCO is available only on the AD9164 DAC + DDS

29

Page 30: RF Converters Enable Multiple Wideband Applications

Usage Scenarios

Page 31: RF Converters Enable Multiple Wideband Applications

Defining Nyquist Zones and Operating Modes

► Quad switch modes include Mix-mode – Rising edge samples data, falling edge samples negative data (DACCLK is an LO)

2xNRZ mode – Rising edge samples data, falling edge samples filtered data (from FIR85)

RZ mode – Rising edge samples data, falling edge samples zero data

31

Page 32: RF Converters Enable Multiple Wideband Applications

Example 1: Create a 400 MHz tone

► Several ways to do it

► NCO mode

Lowest power

Image at Fs – Fout

32

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

X

XDC

FSIGNAL FS 2FS

Page 33: RF Converters Enable Multiple Wideband Applications

Example 1: Create a 400 MHz tone (cont.)

► Several ways to do it

► NCO mode

Lowest power

Image at Fs – Fout

33

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

X

XDC

Page 34: RF Converters Enable Multiple Wideband Applications

Example 1: Create a 400 MHz tone (cont.)

► NCO mode + 2xNRZ (FIR85)

Added power of FIR85

Image at 2*Fs – Fout

2nd and 3rd Nyquist images suppressed by FIR85

filter

34

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

X

XDC

FSIGNAL FS 2FS

Page 35: RF Converters Enable Multiple Wideband Applications

Example 1: Create a 400 MHz tone (cont.)

► NCO mode + 2xNRZ (FIR85)

Added power of FIR85

Image at 2*Fs – Fout

2nd and 3rd Nyquist images suppressed by FIR85

filter

35

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

X

XDC

Page 36: RF Converters Enable Multiple Wideband Applications

Example 2: Create a 3.5 GHz tone

► NCO mode

3.5 GHz is above 1st Nyquist

Image at Fs/2 – Fout is higher than desired

=> Wrong mode

36

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

X

XDC

Page 37: RF Converters Enable Multiple Wideband Applications

Example 2: Create a 3.5 GHz tone (cont.)

► NCO mode + 2xNRZ (FIR85)

3.5 GHz is now within 1st Nyquist (of 5 GHz)

Analog image at FDAC/2 – Fout is higher than

desired (balance of output stage or DACCLK)

Image of 2*FDAC – Fout is visible

37

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

X

XDC

Page 38: RF Converters Enable Multiple Wideband Applications

Example 3: Create a 2.1 GHz WCDMA signal

► Complex I/Q + Interpolator(s), NCO

► Synthesize at 50 MHz, interpolate and shift

with NCO

Signal is a wideband (5 MHz) signal, so no

discrete tones visible

Image in 2nd Nyquist zone visible and high

38

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

Page 39: RF Converters Enable Multiple Wideband Applications

Example 3: Create a 2.1 GHz WCDMA signal (cont.)

► Complex I/Q + Interpolator(s), NCO + 2xNRZ (FIR85)

► Synthesize at 50 MHz, interpolate and shift with NCO, use FIR85

2nd, 3rd Nyquist images are reduced

FIR85 changes sinx/x rolloff to 2xDACCLK, so fundamental is 3 dB higher output power

39

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

Page 40: RF Converters Enable Multiple Wideband Applications

Example 4: Create 192 6-MHz 256-QAM Cable Signals

► Complex I/Q + Interpolator(s), NCO

► Synthesize at baseband, interpolate and shift

with NCO

Signal is bleeding through the 80% BW filter,

images clearly visible

40

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

Page 41: RF Converters Enable Multiple Wideband Applications

Example 4: Create 192 6-MHz 256-QAM Cable Signals

► Complex I/Q + Interpolator(s), NCO

► Synthesize at baseband, interpolate and shift

with NCO

90% filter helps

Images clearly visible

41

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

Page 42: RF Converters Enable Multiple Wideband Applications

Example 4: Create 192 6-MHz 256-QAM Cable Signals

► Complex I/Q + Interpolator(s), NCO + 2xNRZ

mode

► Synthesize at BB, interpolate, shift with NCO,

use FIR85

Images filtered

42

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

Page 43: RF Converters Enable Multiple Wideband Applications

Example 5: Create a 1.8 GHz, 2.1 GHz Dual Band LTE Signal

► Complex I/Q + Interpolator(s), NCO

► Synthesize, interpolate and shift with NCO

Image (of dual band signal) visible

43

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

Page 44: RF Converters Enable Multiple Wideband Applications

Example 5: Create a 1.8 GHz, 2.1 GHz Dual Band LTE Signal

► Complex I/Q + Interpolator(s), NCO plus

2xNRZ mode

► Synthesize, interpolate and shift with NCO,

turn on FIR85

Image (of dual band signal) filtered

Some analog bleed-through visible

44

HB

HB

JESD

HB

2×,

4×,

NCOINV

SINC

HB

DA

TA

LA

TC

H

SDOSDIO

SCLKCSB SPI

DAC

CORE

SERDIN0+/- . .

SERDIN7+/-

SYSREF+/-SYNC+/-

CLOCK

DISTRIBUTION

DACCLK+/-

TO JESD

TO DATAPATH

TX_ENABLE

OUTPUT+/-

RESETB IRQB

VREF

ISET VREF

NRZ RZ MIX

Page 45: RF Converters Enable Multiple Wideband Applications

Fast Frequency Hop with 100 MHz SPI Writes

► Three frequency hop

► Dwell time ~ 260 ns

45

Page 46: RF Converters Enable Multiple Wideband Applications

Example Phase Noise – 3.6 GHz Tone

► Phase noise performance is critical for local oscillator replacement applications

Here the phase noise of the AD9164 is shown with two different regulators

The ADP1761 (board 15002D) shows superior performance to the previous generation regulator

46 ©2016 Analog Devices, Inc. All rights reserved.

-150

-140

-130

-120

-110

-100

-90

100.0E+0 1.0E+3 10.0E+3 100.0E+3 1.0E+6 10.0E+6 100.0E+6

Ph

ase

Nois

e [

dB

c]

Offset [Hz]

3.6 GHz Output

Wenzel 4 GHz source

15002C

15002D

Page 47: RF Converters Enable Multiple Wideband Applications

Evaluation System

47

DPG

Downloader

ACE

ADS7-V2

AD9162-FMC-EBZ

J32

J31

J62

J61

DAC OUT

External CLK

ADF4355 REF CLK

+12V TP41

GND TP64

Board #

Crystal120MHz or 122.88MHz

JP1

XP2

USB

FMC

ADF4355 Output

Page 48: RF Converters Enable Multiple Wideband Applications

Thank You For Watching!

View Additional Webcasts at

www.analog.com/Webcasts

Ask Questions on EngineerZone

ez.analog.com/Webcasts

Search for ADI Parts on Arrow

www.arrow.com

48