Top Banner
1 Dr. Chris Swartz Yanan Cao Air Separation Unit There is no doubt that optimization is the key for the new engineering future. It has a significant impact in chemical engineering research. It is the tool that allows us to improve the existing processes in terms of cost, energy and overall efficiency. As chemical engineers, we are expected to develop new computational and mathematical algorithms that can cope up with the world’s needs. This paper studies different ASU (Air Separation Unit) optimization strategies with gPROMS and addresses some of the ASU industrial issues. Monica Salib Chemical Engineering Spring2015
19

Report- Monica Salib

Apr 12, 2017

Download

Documents

Monica Samir
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Report- Monica Salib

  1  

     

D r . C h r i s S w a r t z Y a n a n C a o  

Air  Separation  Unit    Monica  Salib  There  is  no  doubt  that  optimization  is  the  key  for  the  new  engineering  future.    It  has  a  significant  impact  in  chemical  engineering  research.  It  is  the  tool  that  allows  us  to  improve  the  existing  processes  in  terms  of  cost,  energy  and  overall  efficiency.                                  As  chemical  engineers,  we  are  expected  to  develop  new  computational  and  mathematical  algorithms  that  can  cope  up  with  the  world’s  needs.  This  paper  studies  different  ASU  (Air  Separation  Unit)  optimization  strategies  with  gPROMS  and  addresses  some  of  the  ASU  industrial  issues.    

Monica  Salib  Chemical  Engineering  

Spring-­‐2015  

08  Fall  

 

 

Page 2: Report- Monica Salib

  2  

Table  of  Contents  

1.   CSTR  Steady  State  Optimization  .................................................................................  1  

2.   Batch  reactor  Dynamic  Optimization  ........................................................................  2  2.1   Single  Scenario  Dynamic  Optimization  ..........................................................................  2  2.2          Multi-­‐scenario  Dynamic  Optimization  ...........................................................................  4  

3.   Air  Separation  Unit  ..........................................................................................................  5  3.1   Overview  ...................................................................................................................................  5  3.2   Air  Separation  Process  .........................................................................................................  6  3.3   Dynamic  Simulation  ..............................................................................................................  7  

4.   Steady  State  Optimization  ..........................................................................................  10  4.1   Objective  function  formulation  .......................................................................................  10  4.2   Constraints  .............................................................................................................................  12  4.3   Results  .....................................................................................................................................  13  

5.   Dynamic  Optimization  ................................................................................................  14  

6.   Dynamic  Optimization  Under  Uncertainty  ...........................................................  15  6.1   Overview  .................................................................................................................................  15  6.2   Objective  function  formulation  .......................................................................................  15  6.3   Observations  .........................................................................................................................  16  

7.   Economics  Dynamic  Optimization  ..........................................................................  16  8.   Conclusion  .......................................................................................................................  17    

                                 

 

Page 3: Report- Monica Salib

  1  

1. CSTR  Steady  State  Optimization  

Optimization  is  highly  required  to  ensure  that  any  given  process  is  operating  at  its  

best  feasible  conditions.  In  this  example,  four  isothermal  CSTRs  are  connected  in  

series.  Steady  state  is  assumed  throughout  the  process  because  of  having  a  fixed  

flow  rate.  The  task  was  to  find  the  most  economical  operation  while  staying  in  the  

plant  operation  limits  (constraints),  which  was  ensuring  that  the  summation  of  all  

the  volumes  is  20  m!.  To  do  so,  our  controls  (decision  variables)  were  the  volumes  

of  each  CSTR.  The  optimization  task  is  summarized  in  Table  1  below.  

Objective   Maximize  yield  of  product  Constraint   ΣV  =20  Controls   V  of  each  CSTR  

 

Two  solution  approaches  were  implemented  in  order  to  solve  this  problem  in  

gPROMS.  The  starting  point  is  the  same,  which  requires  defining  the  parameters  and  

the  variables.  

First,  mole  balance  equations  (one  for  each  CSTR)  were  written  in  the  MODEL  

section  in  gPROMS  as  shown  below  in  Eqn1-­‐Eqn4.  

Eqn  1.                                        Fc! − Fc! − kc!!.!V! = 0  

Eqn  2.                                        Fc! − Fc! − kc!!.!V! = 0  

Eqn  3.                                        Fc! − Fc! − kc!!.!V! = 0  

Eqn  4.                                        Fc! − Fc! − kc!!.!V! = 0  

 

Second,  four  MODELS  were  created  (one  for  each  CSTR)  and  then  they  were  linked  

together  to  the  upper  layer  model  by  defining  the  inlet  concentration  of  each  CSTR  

as  the  outlet  of  the  previous  one  in  series.  

Page 4: Report- Monica Salib

  2  

The  optimization  file  was  created  using  the  information  in  Table  1  and  the  solver  

successfully  converged  giving  us  same  results  with  both  solution  strategies.  

2. Batch  reactor  Dynamic  Optimization  

2.1  Single  Scenario  Dynamic  Optimization    

A  lot  of  research  has  been  going  on  dynamic  optimization  since  it  is  the  more  

realistic  and  applicable  type  in  the  existing  plants.  The  Ramirez  control  problem  was  

examined  and  the  task  was  to  maximize  the  yield  of  species  B  at  the  final  time  by  

calculating  the  optimal  temperature  profile,  T  (t)  for  a  batch  reactor  with  the  

consecutive  reactions  shown  below  are  carried  out.    

A!! B

!! C  

The  material  balances  for  species  A  (concentration,x!)  and  B  (concentration, x!)  are  

shown  below  in  Eqn5-­‐Eqn8.  

Eqn  5.                                              !!!(!)!"

=  −k!(t) ∗ x!(t)  

 

                                                   Eqn  6.                                              !!!(!)!"

=  k! t ∗ x! t − k!(t) ∗ x!(t)  

 

Eqn  7.                                                            k! t = k!" ∗ e!!"!"(!)  

 

Eqn  8.                                                            k! t = k!" ∗ e!!"!"(!)  

 

 

Page 5: Report- Monica Salib

  3  

The  desired  goal  was  to  maximize  the  yield  of  species  B  at  the  final  time,  i.e.,  

x! t! − x!(t!).    

After  setting  up  this  optimization  problem,  it  was  solved  in  two  different  ways:  

(1) Piecewise  constant    

(2) Piecewise  linear    

The  main  difference  between  both  methods  is  in  the  controlled  variables.  In  the  

piecewise  constant  method,  it  is  the  temperature  that  is  being  changed  till  it  reaches  

the  optimum  value.  In  the  piecewise  linear  case,  it  is  the  slope  of  the  temperature  

that  changes  till  it  shapes  the  optimum  temperature  profile  for  the  process.  The  

results  of  both  strategies  are  shown  below  in  Figure  1  and  Figure  2.  

 Figure  1.  Piecewise  constant  optimum  Temperature  profile  

     

 Figure  2.  Piecewise  linear  optimum  Temperature  profile    

Page 6: Report- Monica Salib

  4  

It  was  concluded  by  looking  at  the  results  that  the  piecewise  linear  is  a  better  

approach  as  it  converges  at  a  higher  yield  value  even  if  it  takes  a  little  while  longer.  

2.2  Multi-­‐scenario  Dynamic  Optimization    

There  is  no  doubt  that  a  design  is  more  optimum  if  it  can  tolerate  different  reactions  

with  different  parameters  and  rates.  Therefore,  taking  uncertainty  into  

consideration  in  the  design  stage  helps  optimize  the  dynamic  performance  of  the  

plant.  Using  the  previous  example,  nine  scenarios  were  implemented  each  with  a  

different  combination  of  k  values.  

If  the  changing  parameters  are  the  reaction  rate  constants  k!  and  k!  where:  

 

k!  ∈  [k!!"#, k!

!"#]  

k!  ∈  [k!!"#, k!

!"#]  

Then,  a  theta  (θ)  variable  is  introduced  as  θ  = k!k!  and  each  scenario  is  assigned  to  a  

different  θ  combination  as  illustrated  below.  

 

Scenario  1:  θ  = k!!"#

k!!"#                            Scenario  2:  θ  =

k!!"#

k!!"#                                      Scenario  3:  θ  =

k!!"#

k!!"#  

 

Scenario  4:  θ  = k!!"#

k!!"#                          Scenario  5:  θ  =

k!!"#

k!!"#                                        Scenario  6:  θ  =

k!!"#

k!!"#  

 

Scenario  7:  θ  =k!

!"#

k!!"#                            Scenario  8:  θ  =

k!!"#

k!!"#                                        Scenario  9:  θ  =

k!!"#

k!!"#  

 

Page 7: Report- Monica Salib

  5  

Generally,  the  optimization  problem  follows  the  same  formulation  as  the  single  

scenario  case.  The  objective  function  is  the  only  thing  that  changes,  as  it  has  to  

account  for  all  the  scenarios’  constraints  at  the  same  time.  The  most  common  

technique  for  the  objective  function  reformulation  is  assigning  it  to  the  average  of  

the  summation  of  the  scenarios  as  shown  in  Eqn  9.  

 

                                                           Eqn9.        New_objective_function  =  !!  ∗ ∑!!!!!!  objective  (i)  

 

Piecewise  linear  and  piecewise  constant  were  again  used  to  solve  the  optimization.  

Piecewise  linear  proved  to  be  a  better  approach  in  solving  multi-­‐scenario  dynamic  

optimization  problems  as  it  converged  at  a  higher  yield.  The  only  disadvantage  it  

was  the  time  it  needed  to  converge.  

Overall,  both  methods  worked  successfully  in  gPROMS  and  settled  at  very  close  

values.  

3. Air  Separation  Unit    

3.1  Overview  

The  air  separation  industry  is  essential  as  it  plays  an  important  role  in  a  lot  of  

markets  such  as  food  processing,  petrochemicals  and  healthcare.  For  a  long  time  in  

the  air  separation  industry,  the  dynamic  performance  of  the  plant  was  assessed  by  

how  capable  it  is  in  rejecting  disturbances.  The  idea  of  switching  the  operation  

points  was  not  relevant  due  to  the  usual  stability  of  electricity  prices.  Recently,  this  

Page 8: Report- Monica Salib

  6  

has  not  been  the  case  because  of  the  fluctuations  in  electricity  prices  in  many  

regions.  Those  deregulations  in  the  price  cause  unexpected  rapid  changes  in  the  

plant  cost  since  electricity  is  the  main  operating  cost  for  the  air  separation  plant.  

Therefore,  further  techniques  that  take  dynamic  rapid  changes  into  account  should  

be  adopted  as  steady  state  simulation  has  their  limitations.  

In  this  paper,  all  the  studies  and  results  are  based  on  the  cryogenic  approach  of  air  

separation.  It  produces  large  gas  phase  quantities  of  air  components  (Nitrogen,  

Oxygen  and  Argon)  and  operates  at  a  low  temperature  distillation.  

3.2  Air  Separation  Process  

A  simple  schematic  of  the  main  process  equipment  is  shown  in  Fig  3.  Further  

description  of  the  process  can  be  found  in  Roffel  et  al.  [2000]  and  Miller  et  al.  

[2008a].  

 

Page 9: Report- Monica Salib

  7  

 

 

Fig  3.  A  cryogenic  air  separation  plant  that  produces  argon,  oxygen  and  nitrogen.  LAr  =  Liquid  Argon;  

L02  =  Liquid  Oxygen;  G02  =  Gas  Oxygen;  LN2  =  Liquid  Nitrogen;  GN2  =  Gas  Nitrogen;  PHX  =  Primary  

Heat  Exchanger;  LC  =  Lower  Column;  UC  =  Upper  Column.  

3.3 Dynamic  Simulation  

Step  tests  were  conducted  to  investigate  the  effect  of  certain  input  changes  on  the  

dynamic  performance  of  the  process.  Fig  4.  Shows  the  output  results  of  the  product  

impurity,  air  feed,  reflux  and  GN2  production  upon  -­‐5%  change  in  inlet  volumetric  

air  feed.  Fig  5.  Shows  the  dynamic  response  of  the  product  impurity,  gas  draw  

fraction  rate,  reflux  and  GN2  production  after  being  subjected  to  a  positive  step  

change  in  the  gas  draw  rate.  

Page 10: Report- Monica Salib

  8  

 

 

   Figure  4.  Dynamic  response  of  selected  scaled  variables  to  a  negative  step  change  in  the  air  feed  

 

 

Page 11: Report- Monica Salib

  9  

 

 

 

   

 Figure  5.  Dynamic  response  of  selected  scaled  variables  to  a  negative  step  change  in  the  air  feed.  

 

While  keeping  all  other  inputs  fixed  in  the  system,  as  the  gas  draw  fraction  

increases,  GN2  production  increases  and  reflux  rate  decreases.  The  system  tries  to  

reach  a  new  equilibrium  steady  state  but  since  the  reflux  rate  is  much  lower  than  

before  relative  to  the  air  feed  at  the  new  steady  state,  the  product  impurity  

increases  significantly.  

Page 12: Report- Monica Salib

  10  

4. Steady  State  Optimization    

4.1  Objective  function  formulation  

This  paper  focuses  on  optimizing  the  air  separation  unit  so  that  it  can  handle  the  

frequent  changes  in  demand  and  electricity.  Normally,  the  plant  runs  steadily  under  

certain  operating  points.  

When  a  change  in  demand/electricity  price  occurs,  the  plant  is  adjusted  to  operate  

at  a  new  set  of  operating  conditions.    Therefore,  the  plant  is  expected  to  operate  at  

steady  state  all  the  time  except  that  time  during  the  transition  between  the  

operating  points.  

Since  the  plant  is  assumed  to  be  steady,  we  have  to  ensure  that  all  operation  points  

are  feasible  and  optimum.  Hence,  a  steady  state  economical  optimization  is  

performed,  not  only  to  make  sure  that  all  operation  point  are  economically  

optimum,  but  also  to  serve  as  a  guideline  in  the  dynamic  transition  optimization  as  

well.  The  steady  state  optimization  takes  the  form  shown  in  Eqn  10.  

 

Eqn. 10        maxΦ!! = C!"# F!"#  !"#$ + F!"#$ − C!"!#W!"#$ − C!"#$F!"#$  

 

Subject  to:  

f  (x  =  0,  x,  z,  u  ,  p)  =0  

g(x,  z,  u  ,  p)  =0  

h  (x  ,  z,  u  ,  p)  <  0  

 

Page 13: Report- Monica Salib

  11  

Where:  

x  =  differential  state  vector  

z  =  algebraic  state  vector  

u  =  control  input  vector  

• u!=  Inlet  volumetric  air  flow  rate  under  standard  conditions  

• u!=  Liquid  molar  air  flow  rate  to  the  column  

• u!=  Liquid  Nitrogen  production  rate  (Distillate)  

• u!=  Gas  draw  fraction  

• u!=  Evaporation  rate  of  liquid  nitrogen  for  unsatisfied  demand  

p  =  parameter  vector  

C!"#=  Sales  price  of  gas  nitrogen    

C!"!#,C!"#$=  Costs  associated  with  compression  and  evaporation  

F!"#  !"#$=  Flow  rate  of  GN  2  produced  

F!"#$=  Rate  of  evaporation  of  pre-­‐stored  liquid  N2  

W!"#$=  Power  consumption  of  the  compressor  

 

A  detailed  plant  configuration  with  labeled  variables,  parameters  and  inputs  is  

shown  in  Figure  5  below.  

 

Page 14: Report- Monica Salib

  12  

 

 

Figure  5.    Plant  configuration  with  labeled  decision  variables  

4.2 Constraints    

There  are  different  types  of  constraints  that  we  need  to  put  in  consideration  to  

make  sure  that  the  plant  runs  without  violating  the  physics/chemical  laws  or  

the  operational  conditions  along  with  satisfying  the  customer’s  needs.  All  the  

constraints  are  categorized  and  summarized  in  Table  2  below  

Table  2.  Constraints  for  steady  state  optimization  

Operational  Constraints   Product  Specification   Modeling  Constraints    

Compressor  Surge     Demand  Satisfaction   Pressure  in  PHX  

Flooding     No  Overproduction   Temp  diff.  in  IRC  

  Product  Purity    

 

Page 15: Report- Monica Salib

  13  

Each  constraint  mentioned  above  is  modelled  by  an  equation  that  has  a  certain          

tolerance.  The  goal  is  always  to  minimize  the  tolerance  to  approach  zero  

4.3 Results  

It  was  observed  that  the  initial  guess  plays  an  important  role  in  the  optimization  

process  in  terms  of  the  converging  time  and  value.  That  is  due  to  the  non-­‐

convexity  from  the  nonlinear  model.  Therefore,  different  initial  guesses  were  

provided  and  the  best  point  was  reported.  

Also,  the  system  responds  differently  in  terms  of  active  constraints  (when  the  

final  value  is  very  close  to  one  of  the  bounds)  depending  on  the  change  it  was  

subjected  to.  For  instance,  as  demand  increases,  both  flooding  and  impurity  

constraints  are  active  because  the  system  has  to  settle  at  its  maximum  level  of  

impurity.  However,  as  demand  decreases,  the  compressor  surge  constraint  is  

the  active  one  because  of  the  decrease  in  the  flow  rate.  

The  steady  state  optimization  results  upon  demand  fluctuations  (-­‐30%  to  +30%)  

are  reported  in  Table  3.    Those  output  results  were  used  again  as  a  target  to  

dynamic  optimization.  

 Table  3.  Steady  state  optimization  results  for  demand  fluctuations  

 **  Data  in  the  Table  are  scaled  values  for  company  confidentiality    

  -­‐30%   -­‐20%   -­‐10%   0%   10%   20%   30%  

LN2  production  rate   0.0002   0.0002   0.0002   0.0002   0.0002   0.0002   0.0002  

Gas  draw  rate  fraction   0.058   0.068   0.0754   0.0758   0.0758   0.076   0.076  

Air  feed  volumetric  flow  rate   29.998   30   30.4   33.8   37.075   38.2   38.212  

Liquid  air  to  the  column   6.84   6.5434   6.21   5.356   4.6202   2.5288   2.5288  

Evaporation  rate   0   0   0   0   0   2.176   5.64  

Page 16: Report- Monica Salib

  14  

5. Dynamic  Optimization    

Steady  state  optimization  provided  us  with  feasible  optimal  operating  points.  

However,  it  did  not  account  for  the  transitions  between  those  points.  Hence,  

dynamic  optimization  is  conducted  to  switch  from  the  base  optimal  case  to  the  

new  operation  point  upon  demand  fluctuations.  

The  objective  function  is  formulated  differently  as  it  is  no  longer  a  cost  based  

one  but  rather  a  trajectory  demand  tracking  function  as  shown  in  Eqn  11.  

 

Eqn  11.                minΦ = t! 1−F!"#  !"#$ tF!"#  !"#$∗  

!!!

!!  dt+ w! 1−

u! t!u!∗

!!!

!!!

 

Where  𝑤!  represents  the  weights  assigned  to  the  manipulated  variables  as  

shown  below:  

w!"#  !""#   = w!"#  !"# = w!"#  !"#$ = 1  

w!"# = 0.1  

The  problem  was  solved  using  5  control  intervals  with  a  tolerance  of  1E-­‐5.  The  

number  of  control  intervals  is  critical  in  the  optimization  problem  formulation.  

It  has  to  be  big  enough  for  capturing  the  control  behaviour  but  not  too  big  for  

unwanted  oscillations  in  the  results.  

The  time  was  divided  into  three  periods  with  an  input  slope  of  0  to  the  first  and  

last  period.  This  ensures  that  both  the  start  and  end  point  operate  at  optimal  

feasible  steady  state.  Also,  a  dummy  variable  was  introduced  to  represent  the  

slowest  variable  in  the  process.  By  minimizing  that  variable,  we  guarantee  that  

our  system  converge  at  a  steady  state.  

Page 17: Report- Monica Salib

  15  

The  solution  time  in  the  air  separation  unit  is  too  long  compared  to  the  one  in  

the  batch  reactor.  That  concludes  that  the  complexity  of  the  problem  is  a  key  

variable  that  affects  the  solution  time.  

6. Dynamic  Optimization  Under  Uncertainty    

6.1  Overview    

The  bigger  picture  comes  into  place  after  the  individual  demand  dynamic  

optimization  cases  have  successfully  converged.  The  task  gets  more  complicated  

because  our  objective  is  not  only  to  optimize  the  operating  conditions  and  the  

trajectory  for  certain  demand  percentage  change;  instead  it  is  finding  the  

conditions  that  are  optimum  overall  regardless  of  the  fluctuations.  

 The  approach  used  to  tackle  the  uncertainty  is  very  similar  to  the  “Multi-­‐

scenario  dynamic  optimization”  one  in  section  2.2  regarding  the  batch  reactor.    

6.2  Objective  function  formulation    

Since  the  solution  time  increases  drastically  in  uncertainty  problems,  only  two  

cases  (0%  demand  change  +  10%  demand  change)  were  solved  simultaneously  

to  better  understand  the  capabilities  and  limitations  of  gPROMS  in  handling  

those  complex  problems.  

The  problem  formulation  was  very  similar  to  the  single  case  dynamic  

optimization.  The  difference  was  mainly  including  both  cases  into  one  single  

process  and  having  the  new  objective  function  (Φ∗)  capturing  both  of  them  as  

explained  by  Eqn  12.  

 

Page 18: Report- Monica Salib

  16  

Eqn  12.          Φ∗=  Φ! +Φ!  

Where:  

Φ!  =  Objective  function  of  the  0%  demand  change  case  

Φ!  =  Objective  function  of  the  10%  demand  change  case  

All  the  optimization  elements  were  handled  in  the  same  manner  as  the  single  

case  with  only  the  difference  of  having  two  of  each  manipulated  

variable/constraint,  one  representing  each  case.  

6.3  Observations      

Multiple  factors  were  observed  to  affect  the  optimization  under  uncertainty  

more  than  just  the  number  of  the  control  intervals.  

Based  on   the   results   reported   in  Table  4,   relaxing   the  bounds   seems   to  be   an  

important  key  that  affects  the  ability  of  the  optimization  to  converge.  Also,  using  

the   dynamic   optimization   results   as   initial   guesses   plays   an   important   role   in  

terms  of  the  solution  time.  

Table  4.  Observations  in  uncertainty  dynamic  optimization  trials  with  fixed  control  intervals    

  Provided  initial  guess  from  previous  optimization  

Relaxed  bounds  

Optimization  converged  

Solution  time  

Trial  1   ✖   ✖   ✖   -­‐  

Trial  2   ✓   ✖   ✖   -­‐  

Trial  3   ✖   ✓   ✓   6.6  h  

Trial  4   ✓   ✓   ✓   2.6  h  

 

7. Economics  Dynamic  Optimization  

Another  economical  base  approach  was  tried  out  to  optimize  the  dynamic  

process.  The  objective  function  was  not  formulated  to  track  the  demand  

Page 19: Report- Monica Salib

  17  

trajectory  as  before  but  rather  to  maximize  the  accumulation  of  the  profit.  

The  constraints  and  controls  were  handled  in  the  same  manner  as  the  

demand  trajectory  case.  The  optimization  successfully  converged  in  30  min  

for  the  10%  demand  change  case  and  that  is  promising  as  the  solution  time  is  

very  short  compared  to  the  demand  based  one.    

8. Conclusion  

The  research  is  still  ongoing  to  better  optimize  the  air  separation  process,  as  it  

is  the  primary  supplier  for  our  everyday  vital  chemicals.  The  design  has  got  a  

lot  of  interesting  possibilities  that  should  be  examined  in  future  work.  For  

instance,  the  introduction  of  external  liquid  nitrogen  and  the  addition  of  a  vent  

stream  after  the  compressor  can  be  some  promising  alternatives.  Also,  more  

cases  should  be  solved  simultaneously  to  achieve  a  better  operating  point.